

1 **Seismic and Hydroacoustic Observations of the 2016-17 Bogoslof**
2 **Eruption**

5 Authors: Gabrielle Tepp1, Robert P. Dziak2, Matthew M. Haney1, John J. Lyons1,
6 Cheryl Searcy1, Haru Matsumoto3, and Joseph Haxel3

8 1. Alaska Volcano Observatory, U.S. Geological Survey, Anchorage, AK
9 2. NOAA/Pacific Marine Environmental Laboratory, Newport, OR
10 3. CIMRS, Oregon State University/NOAA, Newport, OR

13 Corresponding Author:

15 Gabrielle Tepp
16 4230 University Dr. Suite 100
17 Anchorage, AK 99508
18 907-786-7118
19 gtepp@usgs.gov

23 Keywords: volcano seismology, hydroacoustics, explosion seismicity, earthquake
24 swarms, volcanic tremor

28 **Acknowledgments**

30 We would like to thank the FWS Tiglax crew for help in deploying the hydrophone
31 and Geoff Lebon from NOAA-PMEL and the crew of the NOAA ship R/V Oscar Dyson
32 for the recovery. AVO staff and others provided access to their data and analyses
33 and helpful discussions throughout the eruption, for which we are grateful. Dane
34 Ketner provided information about the seismic data return. Andy Lau was very
35 helpful with the hydrophone data. Brian Shiro, Robin Matoza, and Alex Iezzi
36 provided helpful comments on the manuscript. Seismic data (network code AV) is
37 available through the IRIS Data Management Center. Hydrophone data is available
38 from the NOAA Pacific Marine Environment Lab upon request to the authors. This
39 paper is NOAA-PMEL contribution number 4954. Some figures were made with the
40 GISMO Toolbox for MATLAB (Thompson and Reyes, 2018). GT was supported by the
41 U.S. Geological Survey Mendenhall Fellowship Program. Any use of trade, firm, or
42 product names is for descriptive purposes only and does not imply endorsement by
43 the U.S. Government.

46
47 **Abstract**
48

49 In mid-December 2016, Bogoslof volcano, Alaska, began an 8.5-month-long
50 eruption. Bogoslof is an emergent submarine volcano with only the very top forming
51 a small island. Thus, the eruptive activity mostly occurred from a vent submerged
52 beneath a bay or lagoon. The Bogoslof eruption was recorded on regional seismic
53 and infrasound arrays as well as by a hydrophone that was deployed locally during
54 the second half of the eruption. Since few emergent volcanic eruptions have seismo-
55 acoustic recordings, these observations provide an opportunity to greatly improve
56 our understanding of the seismo-acoustic signals produced by these eruptions.
57 Here, we summarize the seismic and hydroacoustic observations of the eruption
58 and put them into context with satellite and other observations of the eruption. The
59 instruments detected a range of activity including earthquake swarms and explosive
60 eruptions. Earthquakes occurred before, during, and after explosions as well as
61 unassociated with explosions and as part of swarms. The seismic swarms can be
62 further broken into 4 types: precursory, post-eruptive, general, and tremor-
63 dominated. We examine the explosion seismicity in more detail, calculating an
64 explosion tremor magnitude and analyzing the frequency content. The tremor
65 magnitudes determined from the hydrophone data show a roughly linear relation to
66 explosion plume height. Lastly, we categorize the activity into five eruption phases
67 with differing character - precursory, opening, explosive I, pause, and explosive II -
68 to outline the seismic and hydroacoustic story of the eruption.

69
70
71 **Introduction**
72

73 After 24 years of quiet, Bogoslof volcano unexpectedly began erupting in December
74 2016. The 8.5-month-long eruption was defined by at least 70 major explosive
75 eruptions (herein 'explosions'), some of which sent ash plumes up to 12 km above
76 sea level (Coombs et al. 2019). Typical for historical Bogoslof eruptions, lava domes
77 were also produced: a cryptodome which emerged early in the eruption and two
78 later lava domes that were destroyed by explosions within days of forming
79 (Waythomas & Cameron 2018; Coombs et al. 2019). The main period of eruption
80 can be broken into two explosive phases with a 9-week pause in between.

81 Bogoslof is located north of the main arc of the central Aleutian Islands of Alaska
82 (Figure 1). While primarily a seamount, the summit of Bogoslof reaches above sea
83 level, forming the small Bogoslof Island. Over the course of the eruption, Bogoslof
84 Island changed dramatically in morphology and size (Waythomas et al. 2019). Most
85 explosions during the 2016-17 eruption occurred in a partially or fully submerged
86 vent located in a bay or lagoon, depending on the morphology of the island at the
87 time of the explosion. However, there is evidence for eruptive vents drying out
88 during some explosions (Fee et al. 2019). The volcano is also unmonitored, with
89 near-real-time observations of the eruption provided primarily by regional (>50
90 km) seismic and infrasound (Lyons et al. 2019) networks, satellites (Lopez et al.

92 2019; Schneider et al. 2019; Waythomas et al. 2019), and regional lightning sensors
93 (Van Eaton et al. 2019). Because Bogoslof is predominantly a seamount, coupling of
94 seismic energy into the water column produced detectable hydroacoustic phases.
95 Thus, a local campaign hydrophone was deployed during the second half of the
96 eruption to provide more detailed recordings.

97
98 For a near or at sea-surface ("emergent") eruption, the Bogoslof eruption was well-
99 recorded seismo-acoustically despite being primarily recorded by regional
100 instruments. Only 10 such eruptions occurring at 7 seamounts and on one
101 submarine volcanic flank, including Bogoslof in 2016-17, have confirmed reports of
102 seismic, hydroacoustic, or acoustic recordings for at least part of the eruption (Table
103 1). Eight of those have seismic observations, while 6 have hydroacoustic
104 observations and only 4 have acoustic observations. The Bogoslof eruption is the
105 first emergent eruption to have all three types of seismo-acoustic observations with
106 modern instrumentation. However, the 2010 submarine eruption of South Sarigan
107 seamount (~180 m below sea level) in the Mariana Islands was recorded by all
108 three observations types as well (Green et al. 2013; Searcy 2013). The only other
109 emergent eruption with all observation types was the 1958 eruption of Capelinhos,
110 on the flank of Fayal volcano in the Azores, which had minimal acoustic and
111 hydroacoustic recordings and was only recorded on one seismograph (Machado et
112 al. 1962; Richards, 1963). The Bogoslof eruption also had the longest duration of
113 seismo-acoustic observations, with seismic and infrasound data available
114 throughout the entire eruption.

115
116 The 2016-17 Bogoslof eruption produced a variety of seismic activity. Much of this
117 seismicity played a key role in detecting the explosions and occasional precursory
118 activity, allowing for timely responses and hazard notifications (Coombs et al.
119 2018). Here, we first describe and examine the seismicity and hydroacoustic activity
120 observed during the eruption: earthquakes, seismic swarms, explosion-related
121 seismicity, and other activity. We then combine our observations to outline the
122 seismic chronology of the eruption within the context of other geophysical,
123 geological, and satellite observations of the eruption.

124
125
126 **Data**

127
128 Bogoslof is an unmonitored volcano with no local instrumentation. Therefore, the
129 Alaska Volcano Observatory (AVO) monitored the eruption seismo-acoustically
130 using nearby seismic networks on Umnak (>45 km away) and Unalaska (>70 km
131 away) islands (Figure 1) as well as several regional infrasound arrays (Lyons et al.
132 2019). The seismic networks have a mix of short-period (100 samples per sec) and
133 broad-band (50 samples per sec) instruments. Periodic and extended outages of the
134 stations (Table 2) further hampered detection capabilities of the already limited
135 regional data. Given the remote location of the region, weather-related noise levels
136 were also sometimes high enough to mask eruption-related signals, especially

137 during the winter months. All times are given in UTC, and all figures of seismic data
138 in this paper show the vertical component of the seismometer.

139
140 A single hydrophone mooring was deployed ~7 km northeast of Bogoslof on 22 May
141 and recorded continuously at 2000 samples per second until being retrieved
142 on 2 October 2017 (Figure 1). The data was not telemetered and was therefore not
143 used for real-time monitoring. The mooring consisted of a float, hydrophone
144 instrument package, acoustic release, and an anchor (Figure 2a; Haxel et al. 2013).
145 The mooring was deployed on the northeastern flank of Bogoslof at a water depth of
146 ~1500 m with the instrument situated at 231 m depth.

147
148
149 **Hydroacoustic Propagation**

150
151 Much of the seismicity from the eruption produced seismic waves that were able to
152 convert into hydroacoustic waves at the seafloor. Seismicity occurring within the
153 seamount was particularly well-suited to conversion (Wech et al. 2018).
154 Hydroacoustic phases were recorded by the hydrophone and sometimes on the
155 seismometers. When detected seismically, two conversions are present – the first
156 from seismic to hydroacoustic and the second from hydroacoustic back to seismic.
157 For hydrophone detections, only the first conversion is present unless the activity is
158 at or near enough to the seafloor to directly produce a hydroacoustic wave. In this
159 study, we refer to all phases propagating primarily through the water as T-phases,
160 whether they were detected by the seismometers or the hydrophone. On the Umnak
161 and Unalaska seismic networks, T-phases typically arrived 20-30 sec after the P-
162 phase due to the much slower propagation speed in water and were not recorded on
163 all stations.

164
165 The hydroacoustic sound speed profile in the region is a polar half-channel (e.g.,
166 Kutschale 1969) with a near-surface (<~400 m depth) low-velocity layer in the
167 summer months, the time of year the hydrophone was deployed. Sound speed
168 profiles approximated from Profiling Float (PFL) data gathered during the summer
169 of 2007 as part of the US ARGO Project show that the surficial channel is thicker but
170 less pronounced toward the east of Bogoslof, where the hydrophone is located,
171 compared to the west (Figure 2b&c). The hydrophone instrument was situated near
172 the axis of the channel to improve its detection capability.

173
174 T-phases from volcanic activity have been detected by seismometers and
175 hydrophones after traveling long distances through the ocean, in a few cases greater
176 than 14,000 km (e.g., Dziak & Fox 2002; Metz et al. 2016; Tepp et al. 2019), due to
177 the low attenuation of water and channeling of the energy in the deep-ocean low-
178 velocity sound channel (e.g., Dietz & Sheehy 1954; Talandier 2004; Green et al.
179 2013)al.al.. However, as previously discussed, the higher latitude Bering Sea has
180 only a small low-velocity channel very near the surface, usually only in the summer
181 months (Figure 2b). Typically, the sound velocity increases approximately linearly
182 with depth in polar regions, requiring more sea-surface reflections and associated

183 energy loss. Despite this, several Bogoslof eruptions were detected by the seismic
184 network on Tanaga Island, ~700 km away in the western Aleutians (Figures 1 & 3).
185 The station TANO, on the northwestern shore of Tanaga, seemed particularly well-
186 suited to detecting reflections off of the submarine Bower's Ridge (Figure 1 inset),
187 adding an extra ~120 km to the distance traveled. The best distant T-phase
188 detections occurred on 8 March 2017 (event 37) and 30 June 2017 (event 55). We
189 also looked for signals from the Bogoslof eruption on the International Monitoring
190 System hydrophone arrays at Wake Island. Unfortunately, no detections were found
191 likely because the path from Bogoslof to these arrays is blocked by topography (e.g.,
192 Unalaska and Umnak Islands).

193

194

195 **Earthquakes**

196

197 Earthquakes were a common occurrence throughout the Bogoslof eruption. Most
198 earthquakes, however, were too small to be located from recordings on the distant
199 seismometers. AVO analysts located 244 earthquakes between 22 December 2016
200 and 8 August 2017 with magnitudes between 0.6 and 2.8. The Alaska Earthquake
201 Center (AEC) located an additional 18 earthquakes near Bogoslof between 28
202 September 2016 and 30 June 2017 with magnitudes between 1.4 and 2.2. Following
203 the method described by Thompson & West (2010), we calculate an equivalent local
204 magnitude for the entire catalog (AVO+AEC) of 3.26. This value is about the same as
205 that for the earthquake catalog of the 2009 Redoubt eruption. Given the distance to
206 the closest seismic stations and their poor azimuthal coverage, the hypocenters
207 have large errors and are poorly constrained (Supplementary Material S1).

208

209 The located earthquakes were categorized as swarm, precursory, co-eruptive, or
210 sporadic. Swarm earthquakes were defined as those that occurred in groups of at
211 least 5 within 3 hours. In the next section ("Seismic Swarms"), earthquake swarms
212 are further categorized based on their relation to the explosions. Earthquakes that
213 preceded explosions, typically by no more than a few minutes, but were not part of a
214 swarm were considered precursory. Co-eruptive earthquakes were those that
215 occurred during explosive eruptions (see "Characteristics of Explosion Seismicity"
216 section). Lastly, sporadic referred to the remainder – individually occurring (i.e.,
217 non-swarm) earthquakes without any clear relation to the explosions. About 87%
218 (228) of the AVO+AEC catalog earthquakes occurred during a swarm, with most
219 coming from three periods (19-20 February, 10-13 March, and 15-16 April). Only 3
220 precursory earthquakes were locatable along with 15 sporadic and 16 co-eruptive
221 earthquakes.

222

223 A variety of seismic phases were recorded for the Bogoslof earthquakes which may
224 be linked to their locations, depths, and/or source processes (Figure 4a&b). On a
225 few stations, notably MAPS and OKFG, a secondary P-phase was commonly
226 observed and was useful for identifying earthquakes as coming from Bogoslof. This
227 secondary P-phase is likely a reflection off the Moho, given that it only appears for
228 some earthquakes when the propagation path to those stations is right for reflection

229 near the critical angle. The S-phase amplitudes varied quite widely. In particular, co-
230 eruptive and non-swarm precursory earthquakes often had weak S-phases
231 compared to the P-phase amplitudes. This may be due to shallow hypocenters,
232 source processes, or both. Many of the earthquakes also had associated T-phases, as
233 described in the "Hydroacoustic Propagation" section.

234
235 The hydrophone recordings of the earthquakes also appear to have at least two
236 phase arrivals (Figure 4c). The second arrival (T2) is the expected T-phase,
237 converted near the source, and typically has a much larger amplitude. The first,
238 weaker phase (T1) is most clear in waveforms of stronger earthquakes or stacks of
239 weaker earthquakes and tends to have less high frequency energy. This phase is
240 likely a P-phase that converts to a T-phase somewhere near the hydrophone
241 mooring. The arrival time difference between the two phases is typically around 0.8-
242 1.5 sec, which is similar to the expected time difference for a P-phase converted at
243 the mooring base and a T-phase converted near the source. However, P-phases can
244 also be directly detected by seismic shaking causing depth changes of the mooring
245 that are large enough to be recorded, and this explanation for the first arrival (T1)
246 cannot be completely ruled out.

247
248 Many of the earthquakes produced during the eruption were too small to be located
249 with the regional seismometers, often being detected by only 1 or 2 of them, and
250 therefore were not included in the AVO catalog. To better estimate and characterize
251 the earthquake activity, Wech et al. (2018) created a matched-filter earthquake
252 catalog. Starting with the AVO and AEC catalog, they identified repeating earthquake
253 families and performed a single-station matched-filter analysis (minimum cross-
254 correlation value of 0.4) from September 2016 through September 2017 using 3-
255 component data from MAPS, which was operational for most of the eruption (Figure
256 1 & Table 2). This approach generated a catalog of 3199 earthquakes (estimated M_L
257 ranging from 0.5-2.5), which is 12 times as many as the AVO and AEC catalog.
258

259 A matched-filter earthquake catalog was also produced for the hydroacoustic data.
260 We applied a matched-filter detector using templates generated by the RESA
261 detector (Tepp 2018) and supplemented with hand-picked earthquakes to data
262 recorded between 23 May and 1 September 2017. RESA templates and hand-picked
263 earthquakes were combined if they correlated at the minimum value of 0.7,
264 resulting in 43 templates. The data were filtered from 8-20 Hz to avoid false
265 detections from frequent noise below ~8 Hz. The resulting catalog included 5292
266 events. This is much more than the seismic matched filter catalog found for the
267 entire eruption, demonstrating the greater sensitivity of the local hydrophone
268 compared to the regional seismic stations.
269
270

271 **Seismic Swarms**

272
273 Analyzing seismic swarms can provide insight into periods of elevated seismicity
274 during eruptions, typically indicating subsurface magma movement or other stress

275 changes in the volcanic system (e.g., White et al. 1998; McNutt 2005). A total of 47
276 seismic swarms were manually identified in seismic data recorded between
277 September 2016 and the end of the eruption on 30 August 2017 (Supplementary
278 Material S2). The swarms were categorized as precursory, post-eruptive, general, or
279 tremor depending on their temporal relation to the explosions and whether they
280 were dominated by earthquakes or tremor (e.g., Figure 5). Precursory swarms were
281 those that ended within 4.5 hours before an explosion onset. Post-eruptive swarms
282 were those that started within 4.5 hours after the end of an explosion. General
283 swarms did not have any clear relation to the explosions, and tremor swarms
284 primarily comprised tremor bursts rather than earthquakes. Table 3 lists the 26
285 major seismic swarms, defined as those with at least 20 earthquakes except for the
286 tremor swarm. The major swarms were labeled with a letter indicating the swarm
287 type (P=precursory, A=post-eruptive, S=general, and T=tremor) and a number
288 giving the chronological order of the swarm, with each type numbered separately.
289 Of the major swarms, 15 were precursory to explosions and 2 were classified as
290 post-eruptive. Eight were general swarms not directly associated with a known
291 explosion. Only 1 was a tremor swarm dominated by short tremor bursts rather
292 than earthquakes.

293
294 The earthquake counts in each swarm were determined with the seismic matched
295 filter catalog since it is more comprehensive than the AVO catalog. A swarm onset
296 was chosen when the earthquake rate reached a minimum of 5 earthquakes in 3
297 hours, with the swarm ending when the rate dropped below this. Some manual
298 division was necessary to separate the types of swarms and earthquakes (e.g.,
299 precursory and co-eruptive) that might otherwise blend together simply based on
300 earthquake rates. Only earthquakes with a cross-correlation value of 0.405 or above
301 were included. Three of the major swarms (P3, A2, & P5) occurred during outages of
302 station MAPS and, thus, do not have any associated earthquakes in the matched
303 filter catalog. The average earthquake rate was determined by dividing the number
304 of earthquakes by the swarm duration. The maximum rate was determined as the
305 maximum number of earthquakes in a 15 min window using windows that
306 overlapped by 10 min throughout the swarm duration. Figure 6 shows rates,
307 earthquake counts, and durations for all swarms with values provided in Table 3
308 and Supplementary Material S2. Most swarms were less than 10 hours long (83%),
309 had fewer than 50 earthquakes (78%), and had average earthquake rates below
310 20/hr (88%).

311
312 Twenty-five earthquake swarms were observed to have increasing rates that
313 reached a high enough rate that the waveforms overlapped and appeared as tremor,
314 with 19 of these leading into an explosion (Figure 5a, Table 3, & Supplementary
315 Material S2). These swarms were useful for short-term forecasting of explosions
316 (Coombs et al. 2018; Tepp 2018). Similar accelerating swarms have previously been
317 observed at other volcanoes before explosions (e.g., Ketner & Power 2013;
318 Tameguri & Iguchi 2019) and dome collapses (e.g., Neuberg et al. 2000; Powell &
319 Neuberg 2003). However, during 11-16 December (including swarms S2, P1, A1, P2,
320 and 4 unnumbered swarms), there was nearly continuous seismicity in which

321 earthquakes merged into tremor and tremor separated into earthquakes (Figure
322 5e). Evidence from infrasound and satellite data suggest that an explosion (event 4)
323 occurred at the end of that period with other surficial activity occurring throughout
324 it (Coombs et al. 2019; Lyons et al. 2019; Schneider et al. 2019). All of the
325 seismically-recorded swarms that were observed to merge into tremor occurred
326 during the first half of the eruption.

327
328 The precursory swarm on 31 May 2017 (P15) was different than the other
329 precursory swarms. It peaked and ended ~4.5 hours before the explosion onset,
330 with only minor, occasional tremor or sporadic earthquakes in between, and never
331 reached a high enough rate for the earthquakes to merge into tremor. In some ways,
332 this swarm was more similar to the general swarms, which may indicate that the
333 source process producing it was different than that of the other precursory swarms.
334 Similar swarms occurring a few hours before explosions have been reported at
335 Sakurajima volcano, Japan (Nishi 1974 via Tameguri & Iguchi 2019). See Tepp &
336 Haney (2019) for further analysis and discussion of the precursory swarms.
337

338 Only 7 post-eruptive swarms were identified using the minimum 5 earthquake
339 threshold. All but two of the post-eruptive swarms had fewer than 20 earthquakes
340 (Figure 6e&f; Supplementary Material S2). The swarms also had relatively low
341 earthquake rates with none exceeding an average rate of 8/hour and only one (A1)
342 with a maximum rate above 12/hour (Figure 6b-d; Figure 5b; Supplementary
343 Material S2). The two major post-eruptive swarms (A1 & A2) occurred in mid-
344 December during the period when earthquakes merging into and out of tremor
345 were frequent and were classified as post-eruptive due to their occurrence soon
346 after explosions. These swarms stand out from the other post-eruptive swarms and
347 have characteristics (e.g., rate changes) that are more similar to the precursory
348 swarms, particularly those in mid-December (compare Figure 5a,b,&e). The A2
349 swarm even increased in rate, briefly merging into tremor at the end, and could be a
350 precursory swarm to a small, unidentified explosion. The earthquakes in the
351 unnumbered post-eruptive swarms also differed in character from those in the A1 &
352 A2 swarms with more sharply defined P-phase onsets and weaker T-phases (e.g.,
353 Figure 4). The earthquakes in the unnumbered post-eruptive swarms were likely
354 deeper, brittle-failure type events caused by stress adjustments in the volcanic
355 system.
356

357 There were 17 general earthquake swarms observed with no clear relation to any
358 major explosion (Figure 5c; Supplementary Material S2). Of these, 8 were
359 considered major swarms (Table 3). The character of most of these general swarms
360 differed from that of the precursory or post-eruptive swarms, though 3 unnumbered
361 swarms in December 2016 were similar in character to precursory swarms (e.g.,
362 merged into tremor) and may have been associated with small, unidentified
363 explosions. While the general swarms had variable earthquake rates that were
364 comparable to the precursory swarms (Figure 7b&d), the rates typically did not get
365 high enough to result in significantly overlapping waveforms (i.e., they did not
366 merge into tremor) except for those previously noted. The lack of tremor may be

367 due in part to the general swarms typically having earthquakes with weak T-phases
368 (e.g., Figure 4) and, thus, shorter duration waveforms which would require a higher
369 rate to be observed as tremor. The most notable general swarms occurred in late
370 September 2016 (S1), mid-April 2017 (S7), and mid-August 2017 (S8). These three
371 swarms in particular were likely produced by magma intrusions, based on when
372 they occurred in relation to other seismic and surficial activity and on the swarm
373 characteristics (e.g., earthquake rate changes). However, other smaller swarms may
374 also be linked to intrusions. Two swarms (S5 & S6) categorized as general swarms
375 occurred in mid-March 2017 before a precursory swarm (P14). While the three
376 swarms had only short pauses between them and by some measures might be
377 considered a single swarm, there was some difference in the earthquake character
378 of each, especially in the first swarm (S5). This suggests that there was a change in
379 source location or process for each of these swarms.

380

381 *Hydrophone-detected Swarms*

382

383 There were 33 earthquake swarms identified in the hydrophone data, most of them
384 initially through the use of the hydroacoustic matched filter catalog (Supplementary
385 Material S3). However, earthquakes in 15 swarms did not match any of the
386 templates and were manually identified. Sixteen of the swarms ended within a few
387 hours of an explosion and are considered precursory, and 3 swarms were post-
388 eruptive. Following the same parameters as for the seismically-determined swarms,
389 17 of the swarms could be considered major swarms with at least 20 earthquakes
390 (Table 4). The major swarms were labeled similarly to the major seismic swarms
391 but include an "H" to indicate that they were hydroacoustically determined.
392 Earthquake counts and rates and swarm durations are plotted in Figure 7 for 18
393 swarms recorded in the hydroacoustic matched filter catalog. Similar to the
394 seismically-derived swarms, the post-eruptive swarms tended to have lower
395 earthquake rates (Figure 7b&d) and fewer earthquakes (Figure 7f).

396 Seven swarms with a similar character occurred during 22-24 August 2017, six of
397 which were undetected by the matched filter detector. The one that was detected
398 had most of its earthquakes matching the hand-picked templates, which were
399 chosen from that swarm. These swarms, therefore, do not appear to comprise
400 repeating earthquakes. In addition to earthquakes, these swarms also contained
401 bursts, about 1 minute long and typically comprising multiple impulses, that could
402 be small explosions, including one on 22 August that had an infrasound signal
403 (event 65). The bursts were also similar to the tremor bursts in the T1 seismic
404 swarm (during the HP7a swarm; Figure 5d) although with lower amplitudes.

405

406 At least part of three swarms (end of HP5, HP7b, & unnumbered swarm on 6 June
407 2017) had very high event rates, rarely falling below ~10 events/min. Such swarms
408 were only observed on the hydrophone. When observed in the seismic recordings,
409 these rapid rate events (RREs) appeared as tremor, likely from overlapping
410 waveforms. The RREs are thought to be a more extreme version of the precursory
411 swarms that increase in rate leading up to explosions (Tepp and Haney 2019). The
412 HP7b RRE swarm increased to a high and consistent enough earthquake rate that it

413 merged into a gliding harmonic tremor (Tepp and Haney 2019), similar to an
414 observation during the 2009 eruption of Redoubt volcano, Alaska (Hotovec et al.
415 2013).

416
417 Six earthquake swarms were recorded by both the hydrophone and seismic
418 stations: two major earthquake swarms (P15/HP1 and S9/HS4), unnumbered post-
419 eruptive swarms on 13 June, 29 May, and 7 August 2017, and the tremor swarm
420 (T1/part of HP7a). In the case of P15, S9, and the 29 May swarm, the hydrophone
421 was able to detect more earthquakes than the seismic stations. Many of these extra
422 earthquakes occurred near the beginning of the swarms when the earthquake
423 amplitudes were smaller. Because the hydrophone detected more of the early
424 earthquakes, the duration of the swarms was longer on the hydrophone as well. In
425 the case of the 29 May swarm, the extra detections on the hydrophone allowed it to
426 be classified as a post-eruptive swarm, whereas the seismometers did not start to
427 detect the earthquakes until about 5 hours later. During the S9 swarm, low-
428 frequency noise in the hydrophone data strongly increased around the time that the
429 seismic stations began detecting S9 earthquakes, ~4 hours after the hydrophone
430 began recording earthquakes. Shortly after the hydrophone noise decreased,
431 seismic noise began to increase. Thus, it is difficult to directly compare the
432 detections of this swarm in the seismic and hydroacoustic data. However, when
433 earthquakes were recorded in both data types they tended to have similar rates,
434 suggesting that the seismometers were recording most of the activity. Most of the
435 earthquakes in the 13 June and 7 August post-eruptive swarms were strong enough,
436 or perhaps occurred in a good location for conversion and propagation, to be
437 detected on both the seismometers and the hydrophone. This suggests that for at
438 least some swarms, the seismic recordings are not missing much additional activity
439 despite the lower detection capability of the regional instruments. The tremor
440 swarm occurred during a long earthquake swarm detected by the hydrophone and
441 is otherwise very similar in both data types. The tremor swarm is possibly a
442 pulsatory explosive eruption; however, there were no infrasound detections during
443 the swarm.

444

445

446 **Characteristics of Explosion Seismicity**

447

448 Between 12 December 2016 and 30 August 2017, Coombs et al. (2019) identified 70
449 major explosions, with a few smaller ones later identified and left unnumbered.
450 However, the exact number of explosions is somewhat open to interpretation as
451 several of the numbered explosions had multiple sub-events occurring up to an hour
452 apart. Searcy and Power (2019) examined the pulsatory nature of explosions and
453 identified 118 events that they deemed “eruptive episodes” based on the duration of
454 high amplitude seismic signals. Their eruptive episodes often contained multiple
455 pulses separated by lower amplitude tremor. Several tremor bursts possibly
456 associated with small explosions were also identified in the hydroacoustic data but
457 could not be identified or were only very weakly visible in the regional seismic or
458 infrasonic data. Here, we present basic analyses of the 70 numbered explosions.

459 Various seismicity accompanied the explosions, primarily in the form of seismic
460 tremor and co-eruptive earthquakes. Additionally, Haney et al. (2019a) analyzed the
461 wavefield composition of the eruption tremor and estimated reduced displacement,
462 a standard measure of tremor intensity, for some of the explosions.

463
464 For each of the 70 explosions, we determined a maximum amplitude and tremor
465 magnitude for both the seismic and hydroacoustic recordings to examine how the
466 size of the explosions progressed throughout the eruption (Figure 8b&c). The
467 maximum amplitude was measured as the maximum value of the absolute value of
468 the waveform. The tremor magnitude, TM, was defined as:

469 $TM = \log_{10}(\sum |amplitude|)$

470 with the sum taken over the duration of the explosion, here defined simply as the
471 end time of the last signal minus the start time of the first signal with no regard to
472 pauses in between pulses (Figure 8a). The TM was chosen as a way to calculate an
473 explosion “size” while accounting for the clipping that occurred on the hydrophone
474 recordings. Of the 30 numbered explosions recorded by the hydrophone, 12 had no
475 clipping, 11 had only minor clipping with little data affected, and 7 had moderate to
476 severe clipping (see Supplementary Material S4). Instrument responses were
477 removed before the TM calculation. Seismic data were band-pass filtered from 1-20
478 Hz and hydrophone data from 5-75 Hz. The lower end of the hydrophone filter was
479 chosen to help exclude frequent strong, low-frequency signals that are likely related
480 to strumming of the mooring line.

481
482 There were no systematic changes in the TM over the course of the eruption (Figure
483 8c). However, clusters of lower TM explosions occurred while the lava domes were
484 present in the second half of the eruption. The lowest TM explosion in the first half
485 of the eruption occurred on 22 December 2016 (event 8), one day after the first lava
486 dome became visible (Waythomas et al. 2019). The TM calculated from station
487 OKER is higher than that at MAPS which is a consequence of its more proximal
488 location (53 km vs 73 km distance) and local site effects. The hydrophone has
489 different units, so the TM values are not directly comparable to those from the
490 seismic. However, the seismic and hydrophone TM follow a similar pattern over the
491 course of the eruption and have a roughly linear relationship (Figure 8c&f). This
492 suggests that the hydrophone is likely recording converted seismic phases rather
493 than direct hydroacoustic phases.

494
495 We also compared the TM to the estimated plume heights (Schneider et al. 2019).
496 There is no clear relation between the seismic TM and the plume heights, but there
497 does seem to be a roughly linear relationship between the hydroacoustic TM and the
498 plume heights (Figure 8g). Given that the hydroacoustic data were only recorded
499 during the second half of the eruption, this relation could be applicable to only the
500 later part of the eruption. Examining the seismic TM for the first and second halves
501 of the eruption separately shows no clear relationship for the first half and a
502 marginal relation for the second half (Supplementary Material S5), supporting the
503 conclusion that the relation may only be applicable to the second half. Other
504 possible explanations for why the TM-plume height relation is most apparent in the

505 hydroacoustic TM are that the relation is only valid for the hydroacoustic recordings
506 or that uncertainty in the seismic TM measurements from noise and propagation
507 effects is large enough to hide any potential relation. In contrast, Haney et al.
508 (2019a) found a weak relation between seismic reduced displacement (a
509 standardized tremor amplitude measurement) and plume heights of some
510 explosions in the first half of the eruption. Thus, it is possible that different seismic
511 parameters were better related to plume heights at different times during the
512 eruption.

513
514 The maximum amplitudes, plotted as log amplitude, show a similar pattern to the
515 tremor magnitudes (Figure 8b&c); however, the clipping on the hydrophone
516 becomes apparent. Because maximum amplitudes are more prone to fluctuations in
517 the recorded waveform due to noise and other spurious signals, the maximum
518 amplitudes are also more variable than the tremor magnitudes. The 24 June (event
519 52) and 13 June 2017 (event 49) explosions had the highest maximum amplitudes
520 on MAPS; however, these were both very pulsatory explosions, so the maximum
521 amplitudes may have been from intervening earthquakes or noise rather than the
522 explosion seismicity. Neither of those explosions has a particularly high tremor
523 magnitude. Similarly, the highest maximum amplitude explosion on OKER was on 23
524 December 2016 (event 9), though that explosion does not have a particularly high
525 tremor magnitude.

526
527 We also calculated the frequency index and the average frequency of the co-eruptive
528 tremor (Figure 8d&e). The frequency index is calculated as $FI = \log(\frac{A_{high}}{A_{low}})$ where
529 A_{high} and A_{low} are the average amplitudes of the signal in high and low frequency
530 bands (Buurman and West 2010). The frequency bands used were 1-3 Hz and 3-15
531 Hz for the seismic data and 5-20 Hz and 20-50 Hz for the hydrophone data. The
532 average frequency was calculated by normalizing the inner product of the power
533 spectral density and the frequency vectors in the spectral domain. Instrument
534 responses were removed before these calculations, and the average frequency was
535 calculated on data that had used the filters described in the TM paragraph above.

536
537 The seismic recordings of the eruptions have little variation in frequency content.
538 Most of the seismic energy was below ~5 Hz, with few explosions having higher
539 frequency content. This is likely a result of attenuation acting over the regional
540 distances from the volcano to the sensors. Some of the explosions on OKER have
541 higher frequencies which are likely from ground-coupled airwaves recorded on that
542 station. The hydrophone frequency content shows more variation, with larger
543 explosions typically having more high frequency content. However, the clipping,
544 especially of the largest events, has likely affected these results. The hydrophone
545 recordings also often have strong energy bands in the 2.5-8 Hz range that are likely
546 from strumming of the mooring cables and may also affect the frequency analysis.
547 For comparison, Lyons et al. (2019) found that the explosion infrasound had a
548 higher low-to-high frequency content ratio than is typical for subaerial eruptions.

549 Thus, the strong low frequencies in the seismic data may be in part a reflection of
550 the source rather than simply attenuation along the propagation path.

551
552 Earthquakes sometimes occurred during explosive eruptions along with the tremor.
553 A few of these earthquakes even reached magnitude 2-2.5. Of the 70 numbered
554 explosions, 23 had enough co-eruptive earthquakes to be considered a swarm (5
555 earthquakes in 3 hrs), with 12 of these swarms having 20 or more earthquakes
556 (Table 5 & Supplementary Material S2 & S6). Swarm statistics were determined in
557 the same way as previously described for the seismic swarms. The explosions on 8
558 March (event 37) and 7 August (event 63) had by far the most co-eruptive
559 earthquakes; however, these two explosions were among the longest in duration, so
560 the average earthquake rates were similar to those of other explosions with major
561 swarms. Co-eruptive earthquake swarms became more common as the first half of
562 the eruption progressed, with few accompanying December explosions; however,
563 only 25% of the explosions in the second half of the eruption had co-eruptive
564 swarms compared to 42% in the first half (Supplementary Material S6a). The major
565 co-eruptive swarms were evenly split with 6 occurring in each half (Table 5). Higher
566 TM explosions were more likely to have co-eruptive swarms (Supplementary
567 Material S6b), suggesting that the larger explosions produced more earthquakes.
568 The hydrophone recorded co-eruptive swarms during 7 of the explosions based on
569 the matched-filter catalog; however, the templates used to produce the catalog did
570 not intentionally include co-eruptive earthquakes, so many may have been missed.

571
572
573
574 **Other Seismicity & Hydroacoustic Activity**

575
576 In this section, we describe other types of seismicity or hydroacoustic activity
577 beyond the earthquakes, seismic swarms, and explosions that were noted during the
578 eruption. We also examined the data for any seismicity associated with non-
579 explosive subaerial eruptive activity (e.g., extrusion of lava domes) to provide more
580 insight into those processes. In addition to the activity described here, Haney et al.
581 (2019b) documented hydroacoustic signals associated with volcanic lightning and
582 interpreted them as being high frequency volcanic thunder acoustically transmitted
583 from the atmosphere into the ocean.

584
585 *Harmonic Tremor*

586 Three instances of gliding harmonic or monochromatic tremor were seismically
587 recorded prior to eruptions on 26 December 2016 (event 10), 4 January 2017
588 (event 15), and 30 June 2017 (event 55). Each of these glides evolved differently
589 over time and had a duration of 5 min, 75 sec, and 2 min, respectively. The
590 hydrophone recorded the 30 June glide as well as two more possible glides before
591 explosions on 13 June 2017 (event 49b) and 5 July 2017 (event 58) that weren't
592 detected by the seismometers. See Tepp and Haney (2019) for more information
593 about the precursory glides.

595 In addition to the precursory glides, downward-gliding harmonic tremor was also
596 observed on 2 July 2017, ~25 min after explosive event 56 in both seismic and
597 hydroacoustic data (Figure 9). This glide was immediately preceded by an
598 earthquake and followed by a tremor burst lasting ~2.5 min.al.al. The sequence of
599 events is reminiscent of the explosion sequence on 30 June 2017 (event 55) and
600 may be a weaker explosion. However, the timing between the seismic and
601 hydroacoustic arrivals is different, though it's still plausible for a source at Bogoslof,
602 especially one on or near the southwestern slope. There was also no observation of
603 associated surficial activity. Another possible interpretation is an underwater
604 landslide (c.f., Schöpa et al. 2018) or some other geological process. The glide itself
605 could result from a stick-slip process with a decreasing rate of events (e.g., Hotovec
606 et al. 2013) or increasing patch size (e.g., Schöpa et al. 2018), such as might be
607 expected preceding a landslide.

608

609 *Mass Flow Events*

610 In the hydroacoustic data, explosions on 24 June (event 51), 27 June (event 54), 5
611 July (event 58), and 27 August 2017 (event 66) were followed by very broad-band
612 signals that were several to tens of minutes long and started before the explosion
613 tremor ended (Figure 10). The signals have a diffuse character with no strong
614 dominant frequency band up to the ~500 Hz Nyquist frequency of the hydrophone.
615 Some frequency banding is visible in the first 3 cases, especially near the end of the
616 signals, and is likely a result of wave interference (e.g., Lloyd's mirror effect - Carey
617 2009). These signals were not recorded by seismic or infrasound sensors,
618 suggesting that they likely occurred underwater, on or just below the seafloor.
619 Somewhat similar diffuse signals were recorded by seismometers after explosions
620 during the 2009 eruption of Redoubt, Alaska (Buurman et al. 2013). These signals
621 were interpreted as mass flow events, primarily lahars but also pyroclastic flows.
622 Drobniarz (2017) also analyzed similar diffuse signals recorded by hydrophones
623 during an eruption of West Mata seamount, NE Lau Basin, in 2009-2010 and
624 interpreted them as landslides. However, the diffuse nature of the signals is similar
625 to that of sediment flow in streambeds recorded by hydrophones (J. Ball, pers.
626 comm.), suggesting that they result from a looser, turbulent flow of material rather
627 than a large ground movement as would be expected for landslides. Thus, the
628 diffuse, post-eruptive signals observed during the Bogoslof eruption are likely mass
629 flow events occurring on the submerged volcanic flank where a resulting
630 hydroacoustic signal would be stronger than a seismic signal.

631

632 *Lava Domes*

633 There were no obvious seismic signals associated with the growth of the lava domes
634 present from around 5-10 June and 18-27 August (Waythomas et al. 2019).
635 However, event 43 (5 June 2017) appears to be a seismic-only event with no activity
636 recorded by any of the other data types beyond a report and photos of steaming and
637 a white plume up to a few thousand feet. The seismic-only signal on 5 June could be
638 indicative of magma moving up from depth, with the plume resulting from hot
639 magma interacting with cool water and/or simultaneous degassing. The first
640 satellite image of the dome breaching the sea-surface was taken mid-day on June 5

641 (Coombs et al. 2019), suggesting that the dome was submerged prior to that. The S8
642 swarm began 3 days before the August dome was identified in satellite data.
643 Earthquakes from this swarm were detected in the hydroacoustic data and
644 occasionally in the seismic data through much of 17 Aug. Similar to event 43, the S8
645 swarm could have been associated with magma first moving toward the surface,
646 eventually producing the dome within a few days. The first satellite confirmation of
647 the dome came on 18 August (Coombs et al. 2019). From 19-24 August, the
648 hydrophone recorded occasional short swarms of earthquakes, sometimes including
649 small bursts of activity ~1 minute long that could be explosions (e.g., event 65), as
650 described in the subsection “Hydrophone-detected Swarms”. The bursts of activity
651 were typically recorded as weak tremor in seismic data, but only event 65 on 22
652 August was detected by infrasound sensors. It is unclear if there is any relation
653 between these swarms and the growth of the August lava dome.
654

655 One lava dome (cryptodome) was produced early in the eruption sequence and was
656 not destroyed during the eruption. Satellite images show the first sign of this dome
657 on 21 December 2016, but it may have begun growing sooner (Waythomas et al.
658 2019). It is possible that the swarm and tremor activity between 11-16 December
659 was associated with the initial growth of this dome. Similar earthquake swarms
660 have been noted during the extrusion of lava domes and plugs at other volcanoes
661 (e.g., White et al. 1998; Iverson et al. 2006; Thelen et al. 2011). Loewen et al. (2019)
662 determined that the December dome was composed of non-vesicular and crystalline
663 rock with a different composition than the most common basaltic tephra and bombs
664 known to be ejected during the eruption. They suggest that the dome was extruded
665 as mostly solid rock, so related seismicity would not be unexpected. The June and
666 August lava domes, however, are thought to have been composed of fresher, less
667 solidified magmas similar to the trachybasaltic tephra and bombs, which may
668 explain the lack of, or weaker, seismicity during the effusion of those domes.
669
670

671 Seismic Chronology 672

673 Figure 11 shows the overall seismic progression of the eruption in terms of the root-
674 mean-square (RMS) amplitude of the continuous data and earthquake rates with the
675 numbered explosion onsets and major seismic swarms marked. RMS amplitude can
676 be strongly affected by noise, which was certainly true for the seismic RMS
677 amplitude. Due to the distance of the seismometers from Bogoslof, the seismic
678 signals often have relatively low signal-to-noise ratios. In comparison, the
679 hydroacoustic RMS amplitude shows a better correlation with the explosions and
680 earthquake activity. While the hydrophone was much closer to Bogoslof and could
681 record higher amplitude signals from the eruptive activity, low frequency noise was
682 common, resulting in RMS amplitude peaks unrelated to the explosions and seismic
683 swarms.
684

685 Using the seismic observations described in previous sections and shown in Figure
686 11, we divide the 2016-2017 Bogoslof eruption into five phases of activity. These

687 phases are largely the same as those proposed by Coombs et al. (2019), except that
688 we include an additional phase in mid-December which was seismically unique.
689

690 27 September to 10 December 2016 – Precursory Phase:
691 The eruption had some precursory seismic activity that was primarily noticed in
692 hindsight since Bogoslof is unmonitored and earthquakes originating there may be
693 mistaken for regional seismicity. The first major precursor was an earthquake
694 swarm lasting ~18 hours on 28 September (S1; Table 3), which was likely caused by
695 an initial magma intrusion. A low-rate swarm of earthquakes occurred in early
696 October, with sporadic earthquakes continuing until the next major eruption phase.
697 Additionally, a few earthquakes were found with the matched-filter detector going
698 back to at least mid-July 2016, although no comprehensive search was done.
699

700 11 December to 15 December 2016 – Opening Phase:
701 The Precursory Phase was followed by a period of near-continuous earthquakes and
702 tremor. Earthquakes were observed increasing in rate before merging into tremor
703 that was sustained for minutes to hours (e.g., swarms P1, A1, and P2). The tremor
704 sometimes ended by dividing into individual earthquakes with a decreasing rate
705 (e.g., A1; Figure 5e). The first occurrence of merged-earthquake tremor occurred on
706 12 December (P1) and was coincident with the first detection of infrasound (Lyons
707 et al. 2019). Two numbered explosions occurred on 12 December (events 1&2);
708 however, these appear to be different than the other explosions with higher
709 frequency infrasound (Lyons et al. 2019). Fee et al. (2019) analyzed the frequency
710 content of these events and determined that the vent was likely subaerial at the
711 time. Additionally, neither produced a plume that was detectable in satellite data
712 (Schneider et al. 2019). This type of seismicity was observed for nearly the full 4-
713 day period, primarily on the station MAPS. Unfortunately, MAPS was offline for
714 much of 13-14 December, with no clear activity observed on other stations.
715 However, activity continued throughout the periods when MAPS was online,
716 suggesting that it was persistent while the data was out. The seismicity in the
717 Opening Phase is possibly related to the initial growth of the December lava dome.
718 The first satellite confirmation of emissions from Bogoslof was a small steam plume
719 from a subaerial vent observed on 14 December (event 3; Coombs et al. 2019),
720 shortly after an episode of earthquakes merging into tremor (P2). Late on 15
721 December, noise levels on station MAPS increased substantially, making it difficult
722 to determine the end of this phase.
723

724 16 December 2016 to 13 March 2017 – Explosive Phase I:
725 On or around 16 December, the Opening Phase gave way to the first phase of
726 explosive eruptions. Explosions occurred roughly every other day for the first two
727 months, becoming more sparse starting in mid-February. Of the 70 numbered
728 explosions, 35 occurred in this phase. During Explosive Phase I, around half of all
729 explosions were preceded by earthquakes that increased in rate before merging into
730 tremor that led into the explosion (Figure 5a; Tepp and Haney 2019), which was
731 useful for short-term forecasting (Coombs et al. 2018). The last explosion in this
732 phase (event 38) was preceded by earthquake swarms (S5, S6, and P14) occurring

over ~3.5 days. The December lava dome also first became visible in satellite images during this phase, although it is unclear whether it began being extruded earlier (Waythomas et al. 2019).

14 March to 16 May 2017 – Eruption Pause:

A 2-month pause in eruptive activity followed the explosion on 13 March (event 38). Very little seismicity was detected during this pause. A lone swarm (S7) lasting ~3 hours on 15-16 April was the only significant activity. This swarm is interpreted as an intrusion below the volcanic edifice. Daily AVO satellite reports from this period indicate only a few days with thermal anomalies, which were typically weak and likely related to a warm lagoon (Coombs et al. 2019), indicating an accompanying pause in surficial activity.

17 May to 30 August 2017 – Explosive Phase II:

Explosive activity renewed on 17 May (event 39) and included the remaining 32 numbered explosions. However, the character of Explosive Phase II was typically different than Explosive Phase I. The seismically-detectable accelerating earthquakes were not observed during this phase (Supplementary Material S2); however, a weak accelerating swarm (HP2) and an accelerating RRE swarm (HP7b) were identified in the hydrophone data (Table 4). There were 3 major swarms seismically detected (Table 3; Figure 11): a swarm that preceded the 1 June explosion (event 41) by ~4.5 hours (P15), the tremor swarm (T1) on 1 Jul, and a swarm on 15 August (S8) that was likely produced by a magma intrusion. Additionally, the hydrophone detected 14 swarms of weak earthquakes that preceded explosions by a few hours or less (Supplementary Material S3). Explosive Phase II also included the construction and subsequent destruction of two lava domes (e.g., Waythomas et al. 2019). Neither of these lava domes had seismicity clearly associated with their growth. A few explosions occurred during the emplacement of each. These explosions tended to lack seismic precursors (Tepp and Haney 2019), have a smaller tremor magnitude (Figure 8), and sometimes have higher peak frequencies in infrasound (Lyons et al. 2019). These characteristics are suggestive of surficial phreatomagmatic explosions from water interacting with the growing lava domes. Seismic activity from the Bogoslof eruption concluded with an explosion on 30 August (event 70) and a few sporadic earthquakes through the next day. Steaming and weak fumarolic activity were observed up through a field visit in August 2018 and in later satellite images (e.g., Coombs et al. 2019), although this is from residual heat rather than new eruptive activity. A local seismic station (BOGO) deployed on Bogoslof Island during the August 2018 visit has not recorded any notable activity.

Summary

Bogoslof volcano erupted from December 2016 through August 2017, with precursory seismic activity primarily beginning in September 2016. The eruption comprised 70 major explosive eruptions, around 76 earthquake swarms, over 3200

779 earthquakes, and 3 lava domes. As Bogoslof is unmonitored, the eruption seismicity
780 was only recorded in real-time on regional seismic and infrasound networks.
781 However, detection was good enough to allow for timely response efforts and good
782 characterization of the eruption. A local hydrophone deployed during the second
783 half of the eruption provided additional detail of the seismic activity. Few emergent
784 eruptions have been recorded seismo-acoustically, with the 2016-17 Bogoslof
785 eruption having arguably the best seismo-acoustic recordings of any such eruption
786 of this type.

787
788 The eruption produced a variety of seismicity, including earthquakes, seismic
789 swarms, non-eruptive tremor, and co-eruptive tremor and earthquakes. However,
790 no seismicity associated with lava dome growth could be confidently identified. The
791 earthquakes had a variety of characteristics and recorded phases. Most of the
792 earthquakes occurred in 74 swarms, 27 of which comprised small earthquakes that
793 were only detectable by the local hydrophone. The explosion seismicity was
794 dominated by tremor but also often included co-eruptive earthquakes. Tremor
795 magnitudes and frequency content of explosions were fairly consistent throughout
796 the eruption, except for explosions that occurred while the June and August lava
797 domes were emplaced which tended to have smaller magnitudes. Tremor
798 magnitudes determined from the hydrophone data show a roughly linear relation to
799 plume heights. However, the seismic data shows no clear trend, suggesting that the
800 relation may be applicable only to the summer months or perhaps only to the
801 hydrophone recordings. Three cases of precursory gliding tremor were observed
802 along with a case of gliding harmonic tremor associated with unidentified activity.
803 The hydrophone recorded a diffuse, broad-band, noise-like signal after 4 explosions
804 that was likely produced by a mass flow event.

805
806 Seismically, the Bogoslof eruption can be broken into five different phases. The
807 Precursory Phase included the initial increase in seismicity with a swarm from a
808 magma intrusion in late September 2016 and more earthquakes continuing into
809 October. After about two months of only occasional sporadic earthquakes, the
810 Opening Phase of the eruption occurred in mid-December, ending with the earliest
811 observed possible explosions. This phase was defined by earthquakes merging into
812 and out of tremor almost continuously. Explosive Phase I progressed until mid-
813 March 2017 and included most of the seismically detected earthquake swarms.
814 Around half of the explosions in this phase were preceded by earthquake swarms
815 with an accelerating rate that were useful for short-term forecasting. From mid-
816 March to mid-May, the eruption paused with no significant surficial activity and only
817 a single swarm, likely related to magma intrusion, detected in mid-April. The pause
818 was followed by Explosive Phase II which continued until the eruption ended in late
819 August 2017. There have been no further signs of eruptive activity since then,
820 though local, regional, and satellite monitoring of Bogoslof continues.

821
822
823
824 **References**

825
826 Bohnenstiehl, D. R., Dziak, R. P., Matsumoto, H., & Lau, T. K. A. (2013). Underwater
827 acoustic records from the March 2009 eruption of Hunga Ha'apai-Hunga Tonga
828 volcano in the Kingdom of Tonga. *Journal of Volcanology and Geothermal Research*,
829 249, 12-24.

830
831 Buurman, H. & West, M.E. (2010). Seismic precursors to volcanic explosions during
832 the 2006 eruption of Augustine Volcano. *The 2006 eruption of Augustine Volcano,*
833 *Alaska*, edited by Power, J.A., Coombs, M.L., and Freymueller, J.T. *U.S. Geological*
834 *Survey Professional Paper*, 1769, 41-57.

835
836 Buurman, H., West, M. E., & Thompson, G. (2013). The seismicity of the 2009
837 Redoubt eruption. *Journal of Volcanology and Geothermal Research*, 259, 16-30. doi:
838 10.1016/j.jvolgeores.2012.04.024.

839
840 Carey, W. M. (2009). Lloyd's mirror-image interference effects. *Acoust. Today*, 5(2),
841 14-20.

842
843 Coombs, M. L., Wech, A., Haney, M., Lyons, J., Schneider, D. J., Schwaiger, H., Wallace,
844 K., Fee, D., Freymueller, J., Schaefer, J., & Tepp, G. (2018). Short-term forecasting and
845 detection of explosions during the 2016–2017 eruption of Bogoslof volcano, Alaska.
846 *Frontiers in Earth Science*, 6, 122.

847
848 Coombs, M. L., Wallace, K., Cameron, C., Angeli, K., & Cervelli, P. (2019). Overview,
849 chronology, and impacts of the 2016-2017 eruption of Bogoslof volcano. *Bulletin of*
850 *Volcanology*.

851
852 Dietz, R. S., & Sheehy, M. J. (1954). Transpacific detection of Myojin volcanic
853 explosions by underwater sound. *Geological Society of America Bulletin*, 65(10),
854 941-956.

855
856 Drobniarz, Jonathan G. (2017). "Interpreting the dynamics of submarine landslides
857 through hydroacoustic modeling, West Mata volcano, NE Lau Basin". *Western*
858 *Washington University Masters Thesis Collection*, 593.

859
860 Dziak, R. P., & Fox, C. G. (2002). Evidence of harmonic tremor from a submarine
861 volcano detected across the Pacific Ocean basin. *Journal of Geophysical Research: Solid Earth*, 107(B5), ESE 1-11. doi: 10.1029/2001JB000177.

863
864 Fee, D., Lyons, J. J., Haney, M. M., Wech, A., Waythomas, C., Diefenbach, A., Lopez, T.,
865 Van Eaton, A., & Schneider, D. (2019). Seismo-acoustic evidence for vent drying
866 during shallow submarine eruptions at Bogolsof volcano, Alaska. *Bulletin of*
867 *Volcanology*.

868
869 Green, D. N., Evers, L. G., Fee, D., Matoza, R. S., Snellen, M., Smets, P., & Simons, D.
870 (2013). Hydroacoustic, infrasonic and seismic monitoring of the submarine eruptive

871 activity and sub-aerial plume generation at South Sarigan, May 2010. *Journal of*
872 *Volcanology and Geothermal Research*, 257, 31-43. doi:
873 10.1016/j.jvolgeores.2013.03.006.

874

875 Haney, M. M., Fee, D., McKee, K. F., Lyons, J. J., Matoza, R. S., Wech, A. G., Tepp, G.
876 Searcy, C., and Mikesell, T. D. (2019a). Co-eruptive tremor from Bogoslof Volcano,
877 Alaska: Seismic wavefield composition at regional distances. *Bull. Volc.*
878

879 Haney, M. M., Van Eaton, A. R., Lyons, J. J., Kramer, R. L., Fee, D., Iezzi, A. M., Dziak, R.
880 P., Anderson, J., Johnson, J. B., & Lapierre, J. L. (2019b). Characteristics of thunder
881 and electromagnetic pulses from volcanic lightning at Bogoslof Volcano, Alaska. *Bull.*
882 *Volc.*

883

884 Haxel, J. H., Dziak, R. P. & Matsumoto, H. (2013). Observations of shallow water
885 marine ambient sound: The low frequency underwater soundscape of the central
886 Oregon coast. *The Journal of the Acoustical Society of America*, 133, 2586–2596.

887

888 Hotovec, A. J., Prejean, S. G., Vidale, J. E., & Gomberg, J. (2013). Strongly gliding
889 harmonic tremor during the 2009 eruption of Redoubt Volcano. *Journal of*
890 *Volcanology and Geothermal Research*, 259, 89-99. doi:
891 10.1016/j.jvolgeores.2012.01.001.

892

893 Iverson, R. M., Dzurisin, D., Gardner, C. A., Gerlach, T. M., LaHusen, R. G., Lisowski, M.,
894 Major, J. J., Malone, S. D., Messerich, J. A., Moran, S. C., & Pallister, J. S. (2006).
895 Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004–05. *Nature*,
896 444(7118), 439.

897

898 Johnson, R. H., & Norris, R. A. (1972). Significance of spectral banding in
899 hydroacoustic signals from submarine volcanic eruptions: Myojin, 1970. *J. Geophys.*
900 *Res.*, 77(23), 4461–4469, doi:10.1029/JB077i023p04461.

901

902 Ketner, D., & Power, J. (2013). Characterization of seismic events during the 2009
903 eruption of Redoubt Volcano, Alaska. *Journal of Volcanology and Geothermal*
904 *Research*, 259, 45-62.

905

906 Kutschale, H. (1969). Arctic hydroacoustics. *Arctic*, 22(3), 246-264.

907

908 Loewen, M. W., Izbekov, P., Moshrefzadeh, J., Coombs, M., Larsen, J., Graham N.,
909 Harbin, M., Waythomas, C., & Wallace, K. (2019). Petrology of the 2016-2017
910 eruption of Bogoslof Island, Alaska. *Bulletin of Volcanology*.

911

912 Lopez, T., Clarisse, L., Schwaiger, H. F., Van Eaton, A. R., Loewen, M. W., Fee, D., Lyons,
913 J. J., Haney, M. M., Wallace, K. L., Searcy, C., Wech, A. G., Schneider, D. J., Graham, N.
914 (2019). Constraints on eruption processes and event masses for the 2016-2017
915 eruption of Bogoslof volcano, Alaska, through evaluation of IASI satellite SO₂ masses
916 and complementary datasets. *Bulletin of Volcanology*.

917
918 Lyons, J. J., Fee, D., Haney, M. M., & Iezzi, A. (2019). Infrasound generated by the
919 shallow submarine eruption of Bogoslof volcano, Alaska. *Bulletin of Volcanology*.
920
921 Machado, F., Parsons, W. H., Richards, A. F., and Mulford, J. W. (1962). Capelinhos
922 eruption of Fajal Volcano, Azores, 1957–1958. *J. Geophys. Res.*, 67(9), 3519–3529,
923 doi:10.1029/JZ067i009p03519.
924
925 McNutt, S. R. (2005). Volcanic seismology. *Annu. Rev. Earth Planet. Sci.*, 32, 461-491.
926
927 Metz, D., Watts, A. B., Grevemeyer, I., Rodgers, M., & Paulatto, M. (2016). Ultra-long-
928 range hydroacoustic observations of submarine volcanic activity at Monowai,
929 Kermadec Arc. *Geophys. Res. Lett.*, 43, 1529–1536. doi:10.1002/2015GL067259.
930
931 Neuberg, J., Luckett, R., Baptie, B., & Olsen, K. (2000). Models of tremor and low-
932 frequency earthquake swarms on Montserrat. *Journal of Volcanology and*
933 *Geothermal Research*, 101(1-2), 83-104. doi: 10.1016/S0377-0273(00)00169-4.
934
935 Nishi, K. (1974). Relation between micro-earthquake swarm and explosion
936 earthquakes at Sakurajima volcano. *Abstracts of Natural Disaster Science*
937 *Symposium*, 11, 345-346, (in Japanese).
938
939 Powell, T. W., & Neuberg, J. (2003). Time dependent features in tremor
940 spectra. *Journal of Volcanology and Geothermal Research*, 128(1-3), 177-185. doi:
941 10.1016/S0377-0273(03)00253-1.
942
943 Richards, A. F. (1963). Volcanic sounds: Investigation and analysis, *J. Geophys. Res.*,
944 68(3), 919–928, doi:10.1029/JZ068i003p00919.
945
946 Schneider, D., Van Eaton, A., & Wallace, K. (2019). Satellite Observations of the 2016-
947 17 Eruption of Bogoslof volcano: Aviation and Ash Fallout Hazard Implications from
948 a Water-Rich Eruption. *Bulletin of Volcanology*.
949
950 Schöpa, A., Chao, W. A., Lipovsky, B. P., Hovius, N., White, R. S., Green, R. G., &
951 Turowski, J. M. (2018). Dynamics of the Askja caldera July 2014 landslide, Iceland,
952 from seismic signal analysis: precursor, motion and aftermath. *Earth Surface*
953 *Dynamics*, 6(2), 467-485. Doi: 10.5194/esurf-6-467-2018.
954
955 Searcy, C. (2013). Seismicity associated with the May 2010 eruption of South
956 Sarigan Seamount, northern Mariana Islands. *Seismological Research Letters*, 84(6),
957 1055-1061. doi: 10.1785/0220120168.
958
959 Searcy, C. K. & Power, J. A. (2009). Progression and character of explosive activity
960 during the 2016/17 eruption of Bogoslof volcano, Alaska. *Bulletin of Volcanology*.
961

962 Smink, M. (2017). 'Evanescent wave coupling' between the ocean and atmosphere
963 by use of infrasound and hydroacoustic data generated by the Hunga Tonga
964 underwater volcano eruption of 2014-2015, Master's Thesis, Koninklijk Nederlands
965 Meteorologisch Instituut, 85p.
966

967 Talandier, J. (2004). Seismicity of the Society and Austral hotspots in the South
968 Pacific: Seismic detection, monitoring and interpretation of underwater volcanism.
969 In *Oceanic Hotspots* (pp. 29-71). Springer, Berlin, Heidelberg.
970

971 Tameguri, T., & Iguchi, M. (2019). Characteristics of micro-earthquake swarms
972 preceding eruptions at Showa crater of Sakurajima volcano, Japan. *Journal of*
973 *Volcanology and Geothermal Research*, 372, 24-33. doi:
974 10.1016/j.jvolgeores.2019.01.016.
975

976 Tepp, G. (2018). A Repeating Event Sequence Alarm for Monitoring Volcanoes.
977 *Seismological Research Letters*, 89(5), 1863-1876, doi:10.1785/0220170263.
978

979 Tepp, G. & Haney, M. (2019). Comparison of short-term seismic precursors and
980 explosion parameters during the 2016-17 Bogoslof eruption. *Bulletin of*
981 *Volcanology*.
982

983 Tepp, G., Chadwick, W. W., Haney, M. M., Lyons, J. J., Dziak, R. P., Merle, S. G.,
984 Butterfield, D. A., and Young, C. W. (2019). Hydroacoustic, Seismic, and Bathymetric
985 Observations of the 2014 Submarine Eruption at Ahyi Seamount, Mariana Arc.
986 *Geochemistry, Geophysics, Geosystems*. Doi:10.1029/2019GC008311.
987

988 Thelen, W., Malone, S., & West, M. (2011). Multiplets: Their behavior and utility at
989 dacitic and andesitic volcanic centers. *Journal of Geophysical Research: Solid Earth*,
990 116(B8).
991

992 Thompson, G., & Reyes, C. (2018). GISMO – a seismic data analysis toolbox for
993 MATLAB [software package], <http://geoscience-community-codes.github.io/GISMO/>, Accessed February 2018.
994

995

996 Thompson, G., & West, M. E. (2010). Real-time detection of earthquake swarms at
997 Redoubt Volcano, 2009. *Seismological Research Letters*, 81(3), 505-513.
998

999 Van Eaton, A., Schneider, D. J., Smith, C. M., Haney, M. M., Lyons, J. J., Said, R., Fee, D.,
1000 & Holzworth, R. H. (2019). Ice charging generates volcanic lightning during the
1001 2016–2017 Surtseyan eruption of Bogoslof, Alaska. *Bulletin of Volcanology*.
1002

1003 Waythomas, C. F., & Cameron, C. E. (2018). Historical eruptions and hazards at
1004 Bogoslof volcano, Alaska. *U.S. Geological Survey Scientific Investigations Report*
1005 2018-5085, 42 p. doi: 10.3133/sir20185085.
1006

1007 Waythomas, C., Angeli, K., Wessels, R., & Schneider, D. (2019). 2016-17 evolution of
1008 the submarine-subaerial edifice of Bogoslof volcano, Alaska, based on analysis of
1009 satellite imagery. *Bulletin of Volcanology*.

1010

1011 Wech, A., Tepp, G., Lyons, J., & Haney, M. (2018). Using earthquakes, *T* waves, and
1012 infrasound to investigate the eruption of Bogoslof volcano, Alaska. *Geophysical*
1013 *Research Letters*, 45, 6918– 6925.

1014

1015 White, R. A., Miller, A. D., Lynch, L., & Power, J. (1998). Observations of hybrid
1016 seismic events at Soufriere Hills volcano, Montserrat: July 1995 to September 1996,
1017 *Geophysical Research Letters*, 25, no. 19, 3657-3660, doi: 10.1029/98GL02427.

1018

1019

1020

1021

1022

1023

1024

1025 Figure and Table Captions

1026

1027 Figure 1: Regional map showing Bogoslof (red triangle) and nearby instruments.
1028 Blue and blue-green circles indicate stations with broad-band and short-period
1029 seismometers, respectively. The white circle marks the hydrophone location. Inset
1030 shows the location of Bogoslof in Alaska and other places mentioned in the text.

1031

1032 Figure 2: Diagrams of the hydrophone mooring and hydroacoustic sound speed
1033 profiles. (a) Vertically-exaggerated Bogoslof profile with a diagram of the
1034 hydrophone mooring (not to scale) at its approximate location. (b) Approximate
1035 sound speed profiles calculated from PFL data recorded in the summer of 2007 in
1036 (c) several different locations around Bogoslof. Colors of lines and circles in (b) and
1037 (c) correspond to the same days. Circles are labeled with the UTC time that the data
1038 were recorded. The red triangle indicates the location of Bogoslof. The white star
1039 marks the hydrophone location.

1040

1041 Figure 3: 30 June 2017 eruption sequence recorded on, from top to bottom, the
1042 hydrophone (7 km), an Umnak seismometer (53 km), an Unalaska seismometer (73
1043 km), and 3 seismometers on Tanaga Island (~700 km). The onsets of the
1044 earthquake, glide, and eruption tremor are marked by white dashed lines on the top
1045 spectrogram. All 3 events are visible on the 3 Tanaga stations. On TANO, the
1046 reflected phase is stronger than the direct arrival and arrives ~1.5 min later.

1047

1048 Figure 4: Example waveforms of different earthquake types recorded on (a) & (b)
1049 the vertical component of seismic station MAPS and (c) the hydrophone. Amplitudes
1050 are normalized. Approximate phase arrivals are marked by red dashed lines and
1051 labeled. P and S are direct body-wave arrivals. Pr is the Moho-reflected phase, and T

1052 is the converted hydroacoustic phase. T1 and T2 mark the first and second arrivals
1053 on the hydrophone. UTC times are given for the waveform start.

1054
1055 Figure 5: Examples of seismic swarms: (a) precursory swarm merging into tremor,
1056 (b) post-eruptive swarm (explosion tremor visible during first ~6 min), (c) general
1057 earthquake swarm, (d) tremor swarm, and (e) mid-December swarm. Waveform
1058 data were filtered from 2.5-10 Hz. Note that these examples do not show the full
1059 duration of the swarms.

1060
1061 Figure 6: Sequence statistics for the 41 swarms based on the matched filter catalog:
1062 (a) swarm duration histogram, (b) average earthquake rate histogram, (c)
1063 maximum earthquake rate compared to swarm duration, (d) maximum earthquake
1064 rate histogram, (e) number of earthquakes compared to swarm duration, and (f)
1065 histogram showing the number of earthquakes in the swarm. Precursory (red),
1066 post-eruptive (blue), and general (black) categories refer to the presence of an
1067 explosion occurring within 4.5 hours before a swarm start (precursory) or within
1068 4.5 hours after a swarm end (post-eruptive) or the lack of relation to explosions
1069 (general).

1070
1071 Figure 7: Sequence statistics for the 18 swarms determined from the hydroacoustic
1072 matched filter catalog: (a) swarm duration histogram, (b) average earthquake rate
1073 histogram, (c) maximum earthquake rate compared to swarm duration, (d)
1074 maximum earthquake rate histogram, (e) number of earthquakes compared to
1075 swarm duration, and (f) histogram showing the number of earthquakes in the
1076 swarm. Precursory (red), post-eruptive (blue), and general (black) categories refer
1077 to the presence of an explosion occurring within 4.5 hours before a swarm start
1078 (precursory) or within 4.5 hours after a swarm end (post-eruptive) or the lack of
1079 relation to explosions (general).

1080
1081 Figure 8: Plots showing (a) duration, (b) tremor magnitude, (c) frequency index, and
1082 (d) average frequency for each explosion over the duration of the eruption. (e)
1083 Comparison of tremor magnitudes determined from seismic (MAPS, red and OKER,
1084 white) and hydroacoustic data. (f) Comparison of tremor magnitudes to plume
1085 heights (Schneider et al. 2019). In (a), the red circles represent durations from the
1086 seismic stations and blue triangles from the hydrophone. For (b)-(f), red circles are
1087 measurements made on seismic station MAPS, white circles on seismic station
1088 OKER, and blue triangles on hydrophone HC09. Blue triangles are shaded by amount
1089 of clipping: dark is none, mid is minor, and light is major. Gray bars indicate the
1090 approximate duration of lava domes that were produced and destroyed during the
1091 eruption.

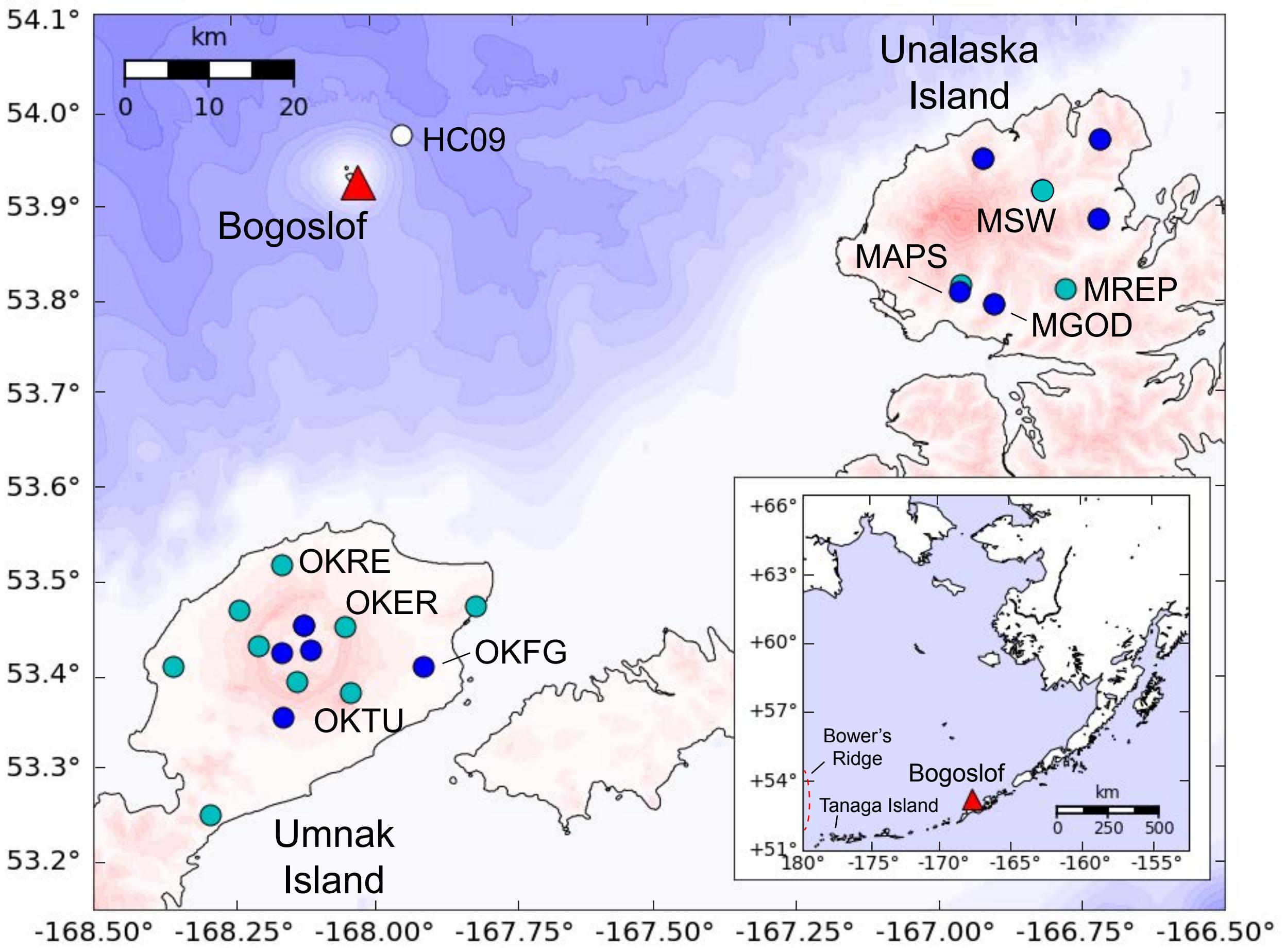
1092
1093 Figure 9: Spectrograms of the 2 Jul 2017 post-eruptive sequence starting at
1094 21:26:30. The top spectrogram is from the hydrophone, and the bottom two are
1095 from regional seismometers.

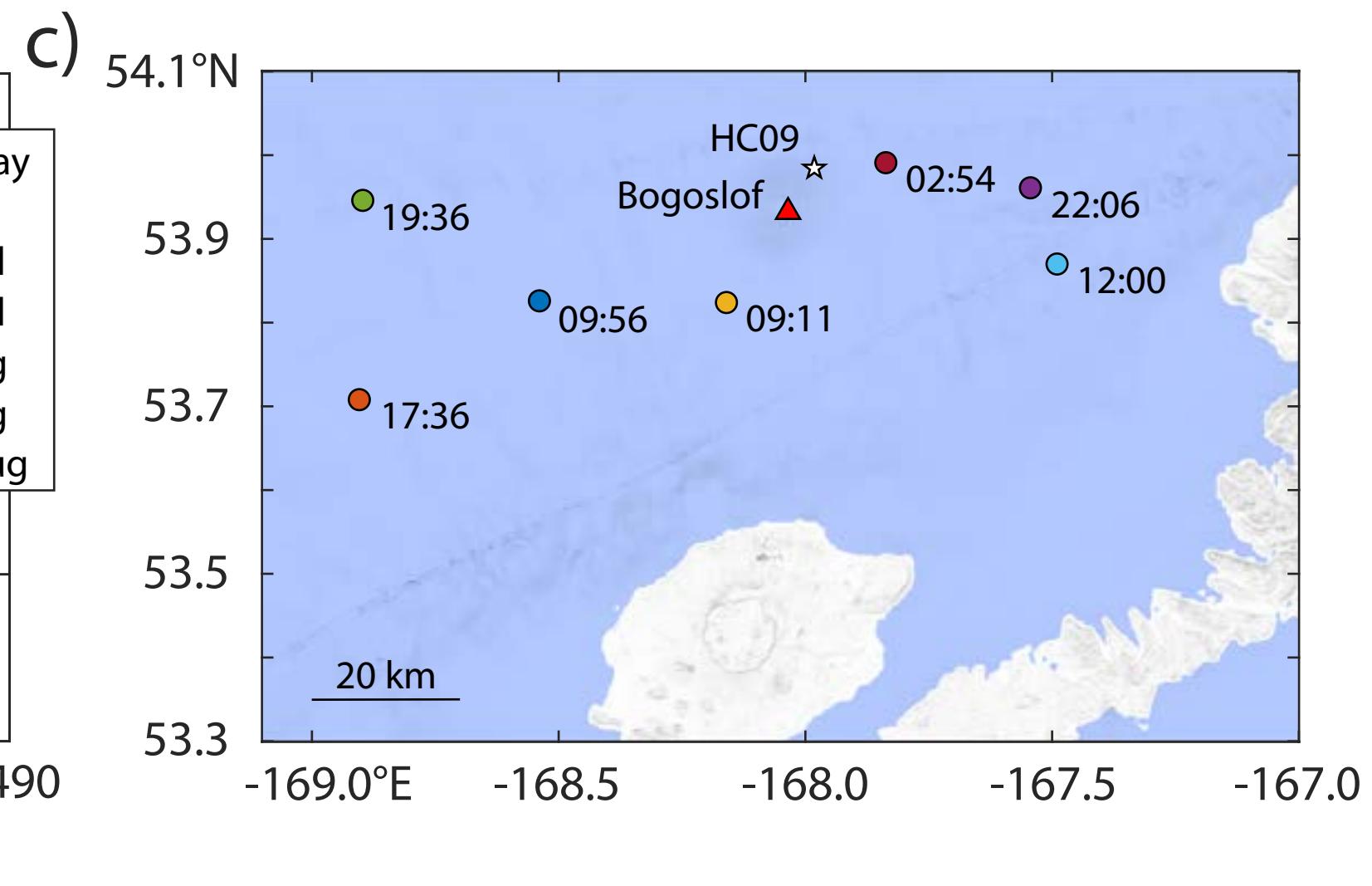
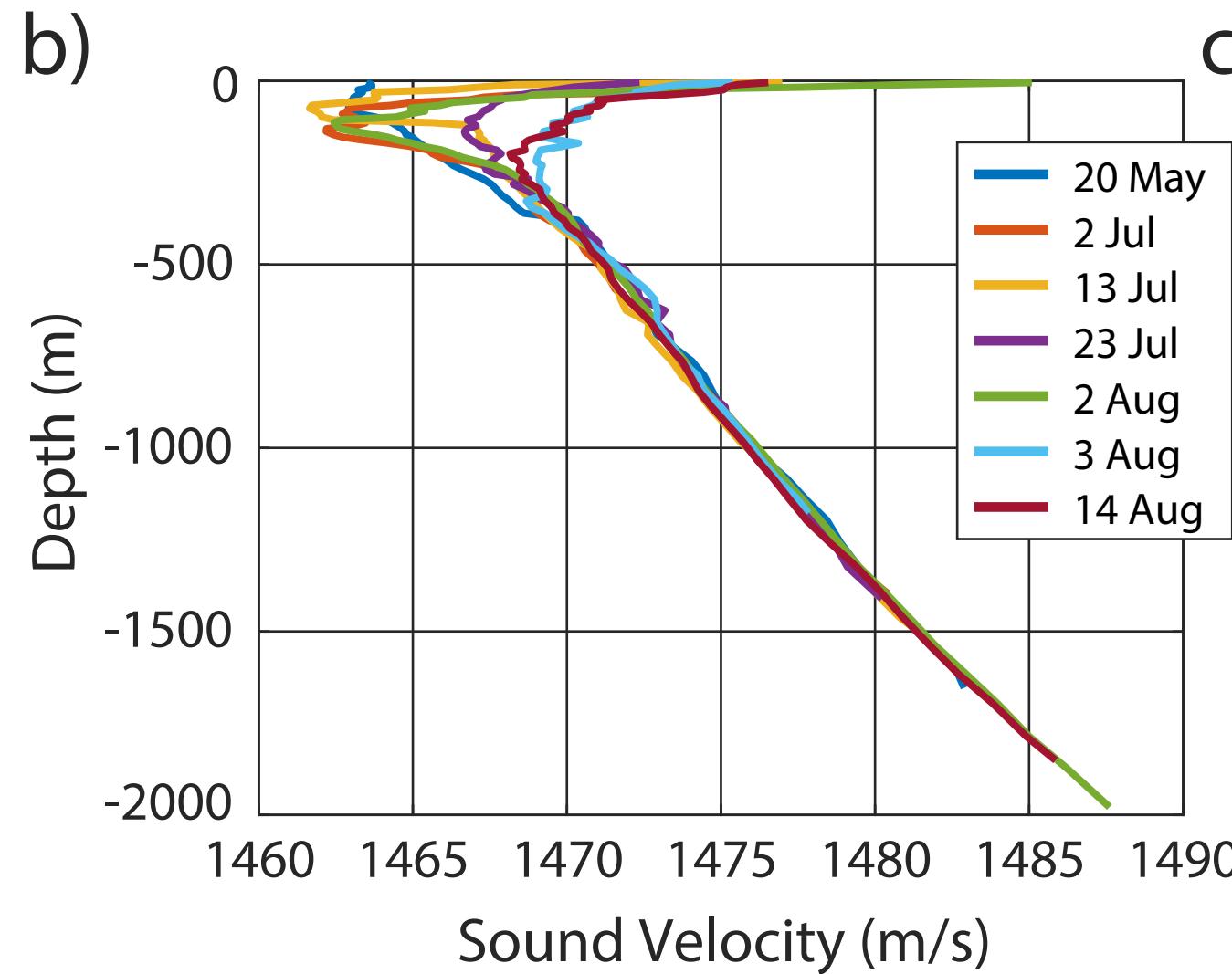
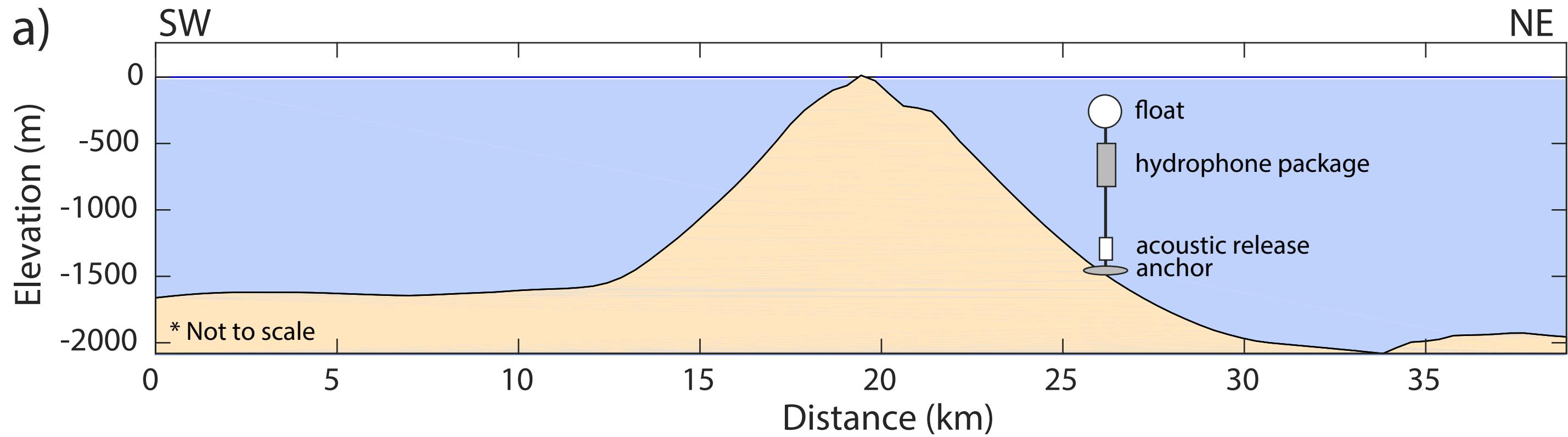
1096

1097 Figure 10: Spectrograms of explosions and post-eruptive diffuse signals recorded in
1098 hydroacoustic (top) and seismic (bottom) data on a) 24 June, b) 27 June, c) 5 July,
1099 and d) 27 August 2017. Note that the 27 August explosion had significant clipping
1100 (strong broad-band lines).

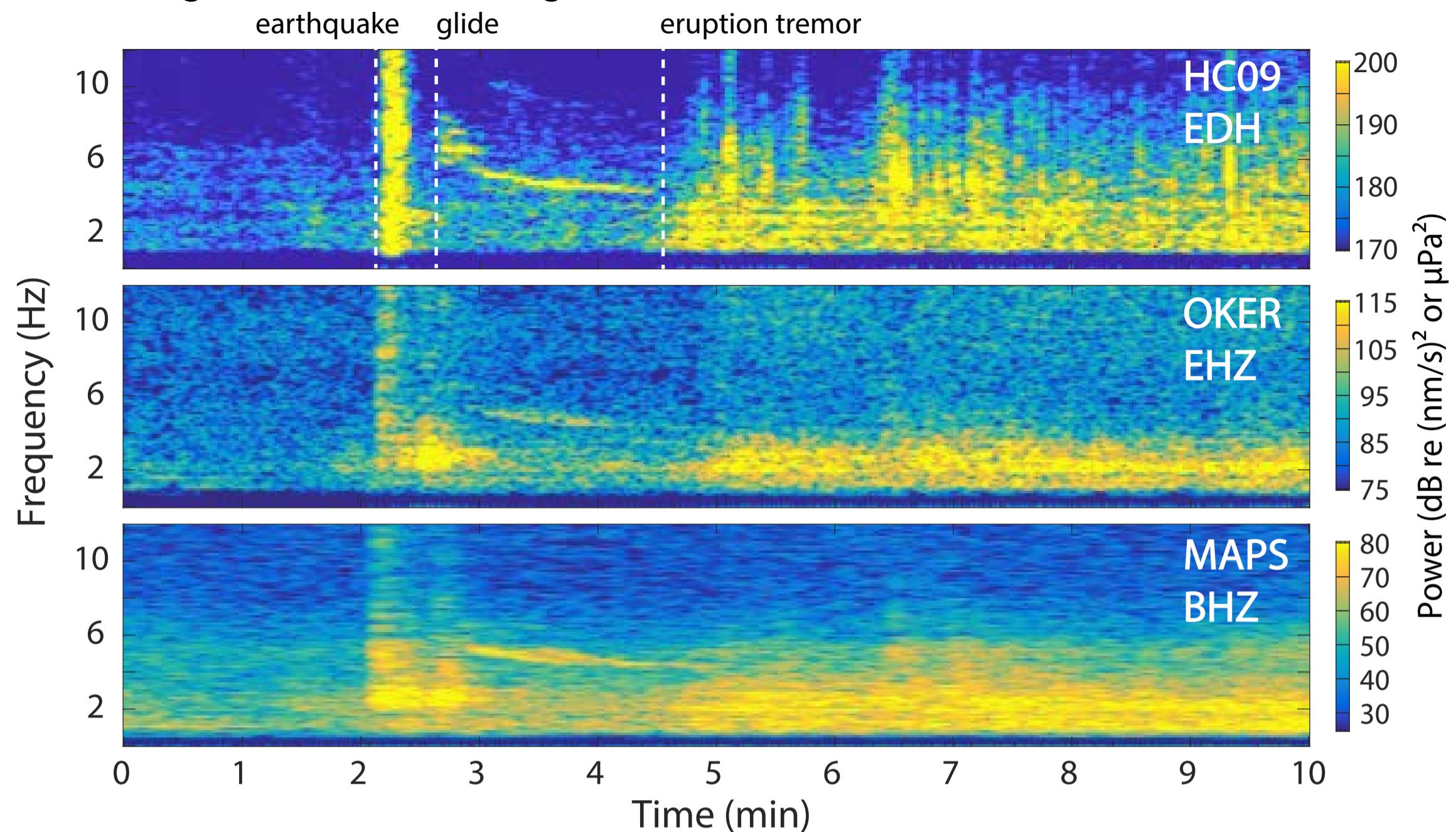
1101
1102 Figure 11: Eruption timeline showing normalized RMS amplitude, daily earthquake
1103 counts, explosions, and eruption phases. RMS amplitude was calculated using 12-
1104 hour windows with 3 hours of overlap and normalized for each channel separately.
1105 Seismic data were filtered between 2-15 Hz. Hydroacoustic data were filtered
1106 between 2-75 Hz. Red, yellow, and blue indicate RMS amplitude measured on MAPS,
1107 OKER, and HC09, respectively. Red and blue bars show the daily earthquake counts
1108 from the matched-filter catalogs of MAPS (left axis) and HC09 (right axis),
1109 respectively. Major seismic swarms are labeled. Explosions are shown as gray
1110 vertical lines at the onset time, and eruption phases are divided by black vertical
1111 lines.

1112
1113
1114 Table 1: Seismic & Hydroacoustic Observations of Near or At Sea-surface Eruptions

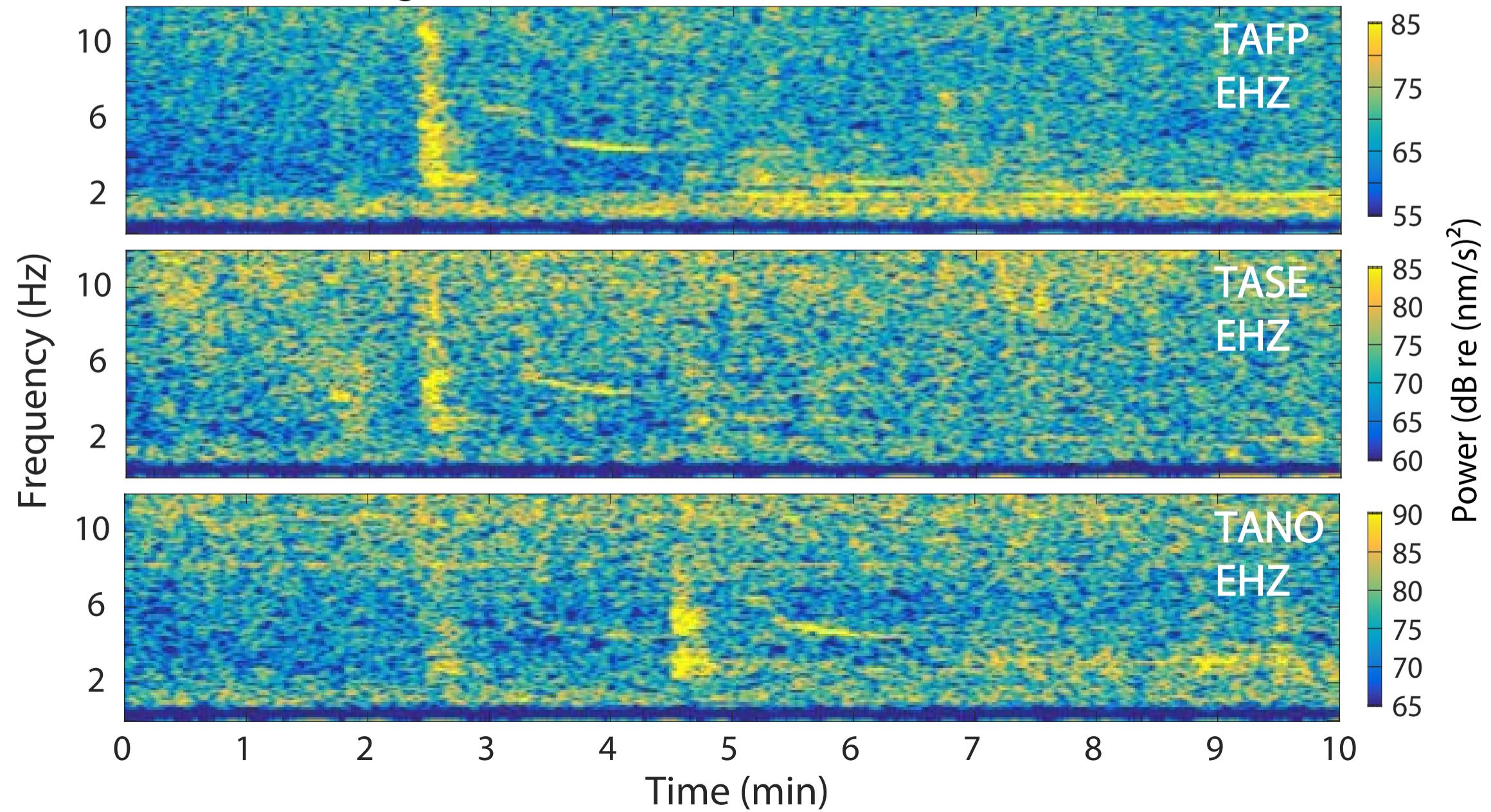

1115
1116 Table 2: Seismic Station Information and Data Return
1117 * Data return for one year starting 1 September 2016. For analog short-period
1118 stations, data return is estimated as the percentage of calibration pulses, sent once
1119 every 12 hours, that are returned with the proper ID.

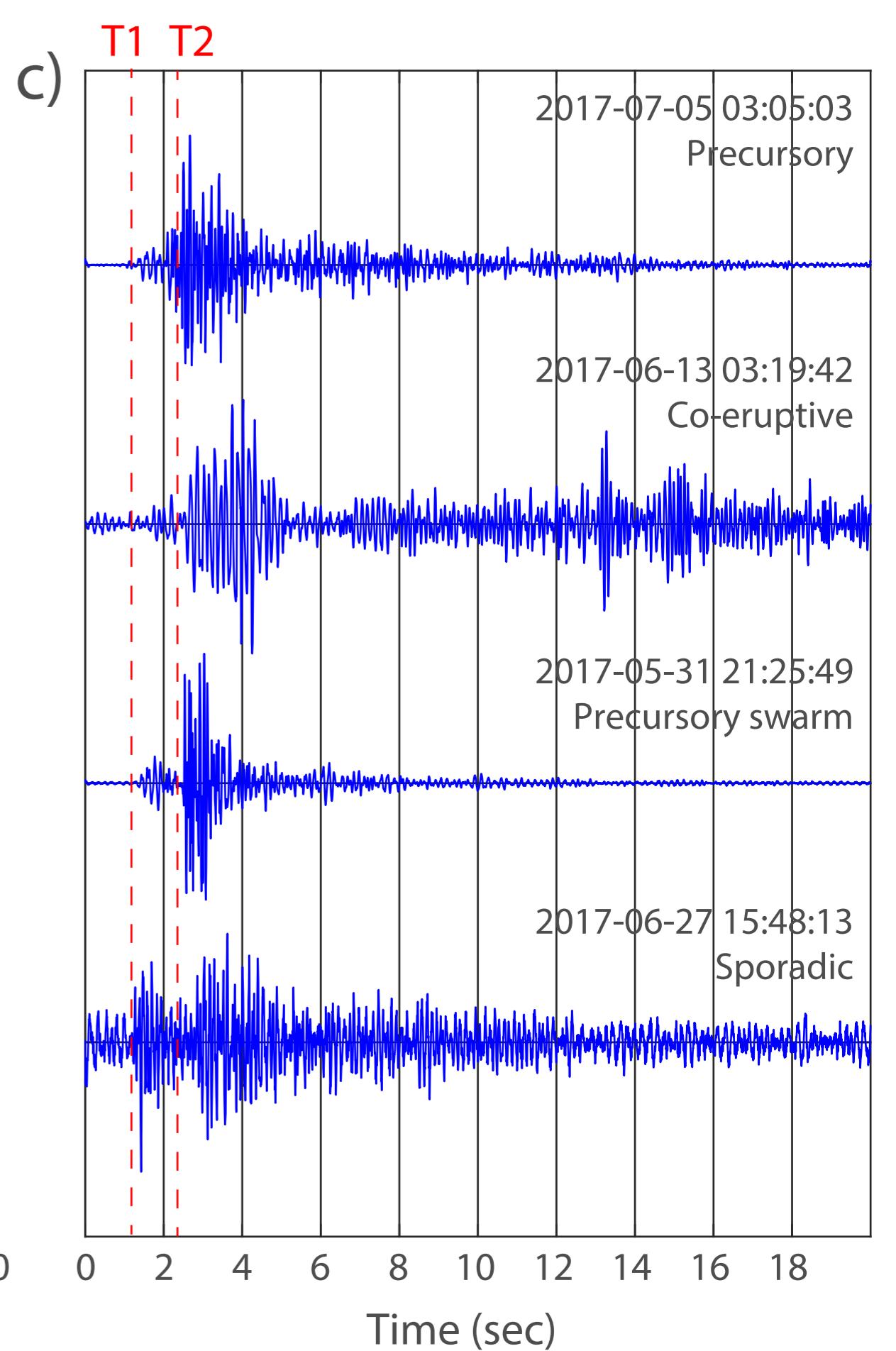
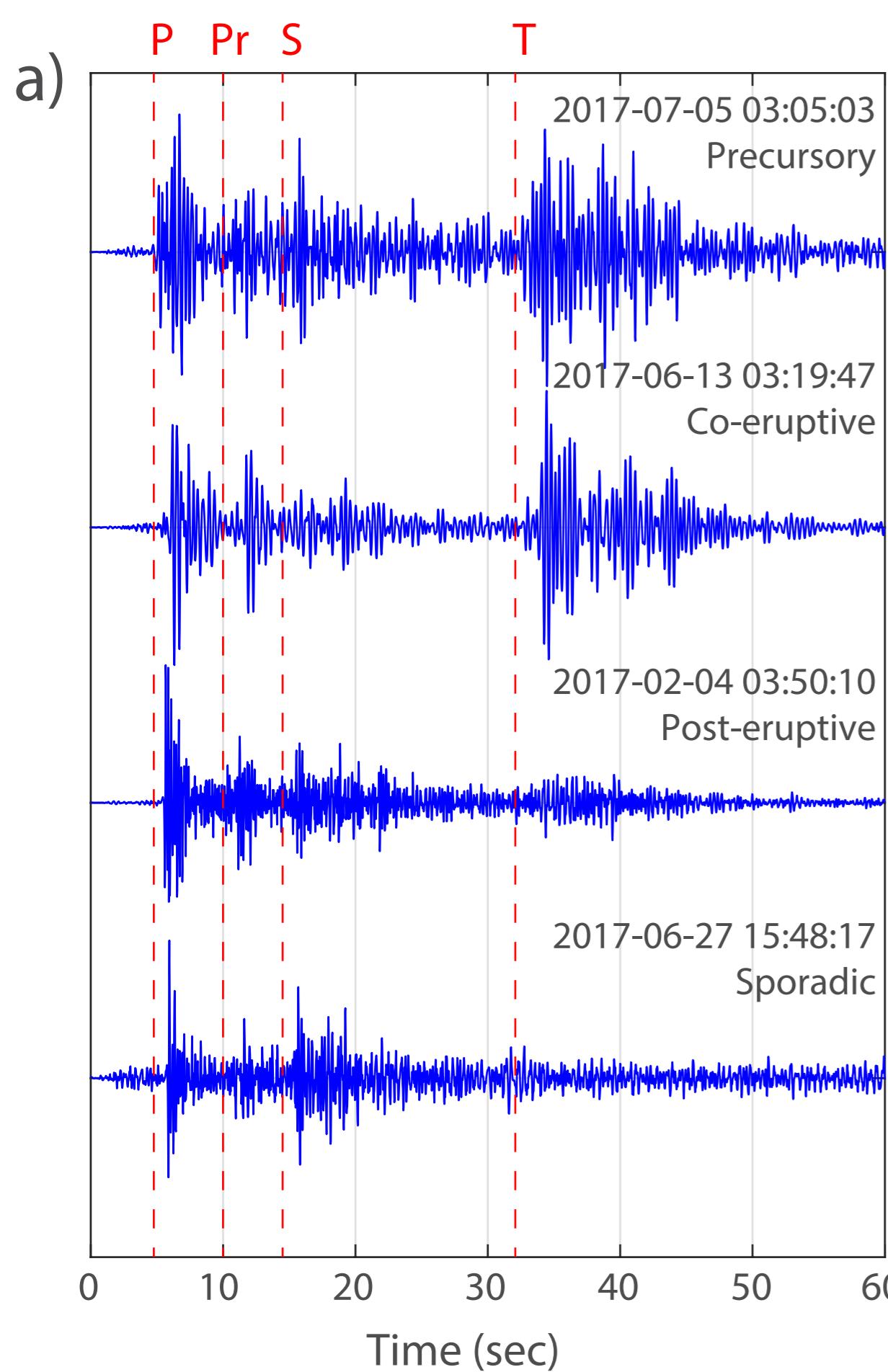



1120
1121 Table 3: Major Seismic Swarms
1122 * Swarms are numbered with a letter followed by a number: P=precursory,
1123 S=general swarm, A=post-eruptive ("after"), T=tremor
1124 ** "un" signifies an explosion that was unnumbered in the catalog of Coombs et al.
1125 (2019)

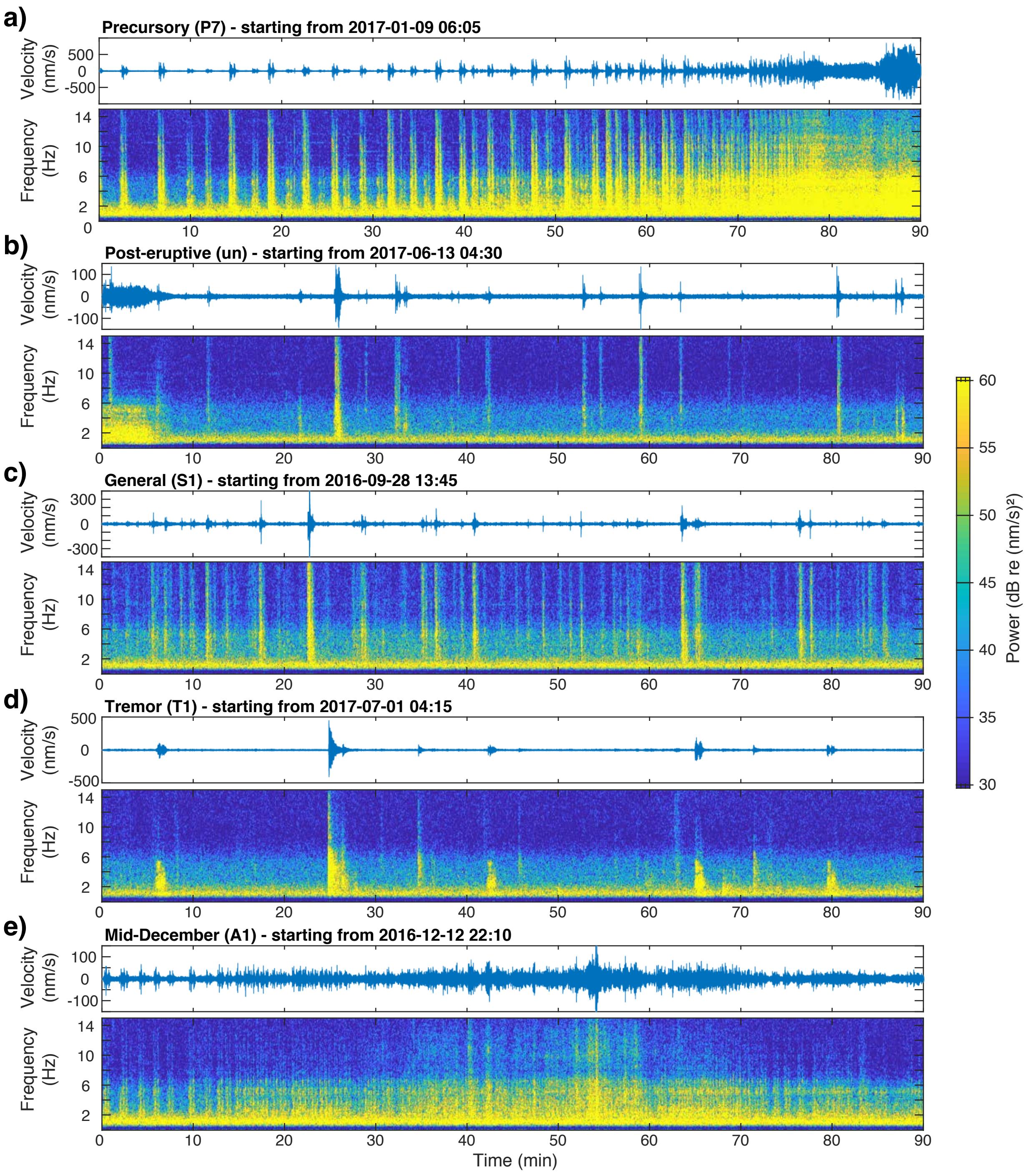
1126
1127 Table 4: Major Hydroacoustically-recorded Swarms
1128 * Swarms are numbered with an "H" to indicate hydroacoustically-recorded and a
1129 letter followed by a number: P=precursory, S=general swarm, A=post-eruptive
1130 ("after"), T=tremor
1131 ** "un" signifies an explosion that was unnumbered in the catalog of Coombs et al.
1132 (2019)

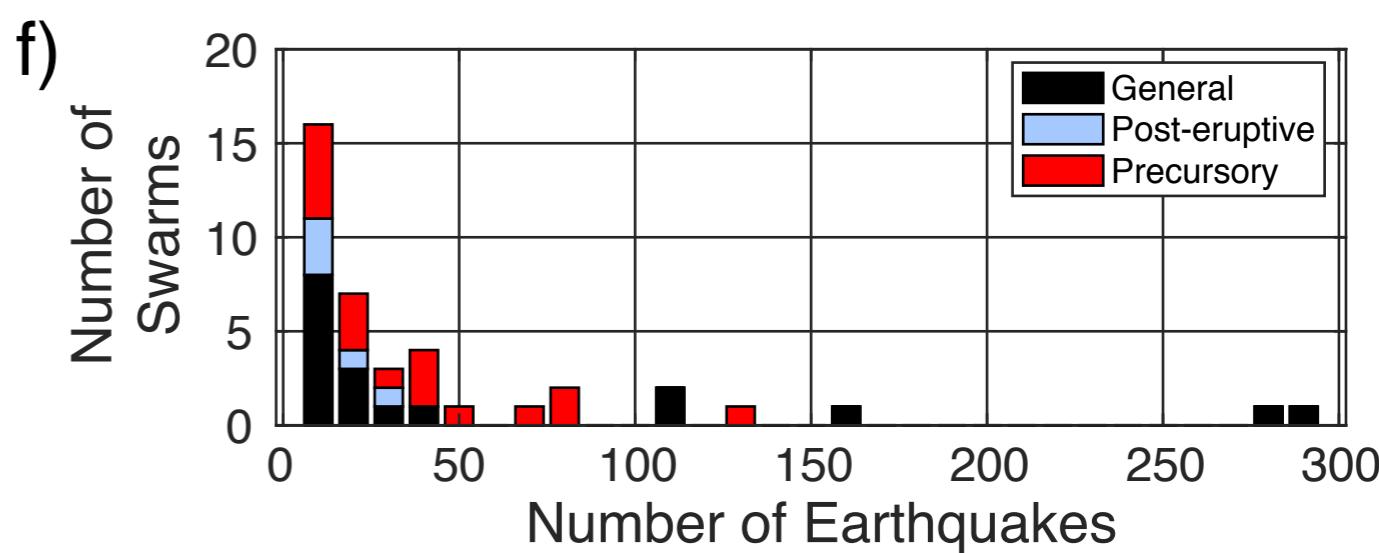
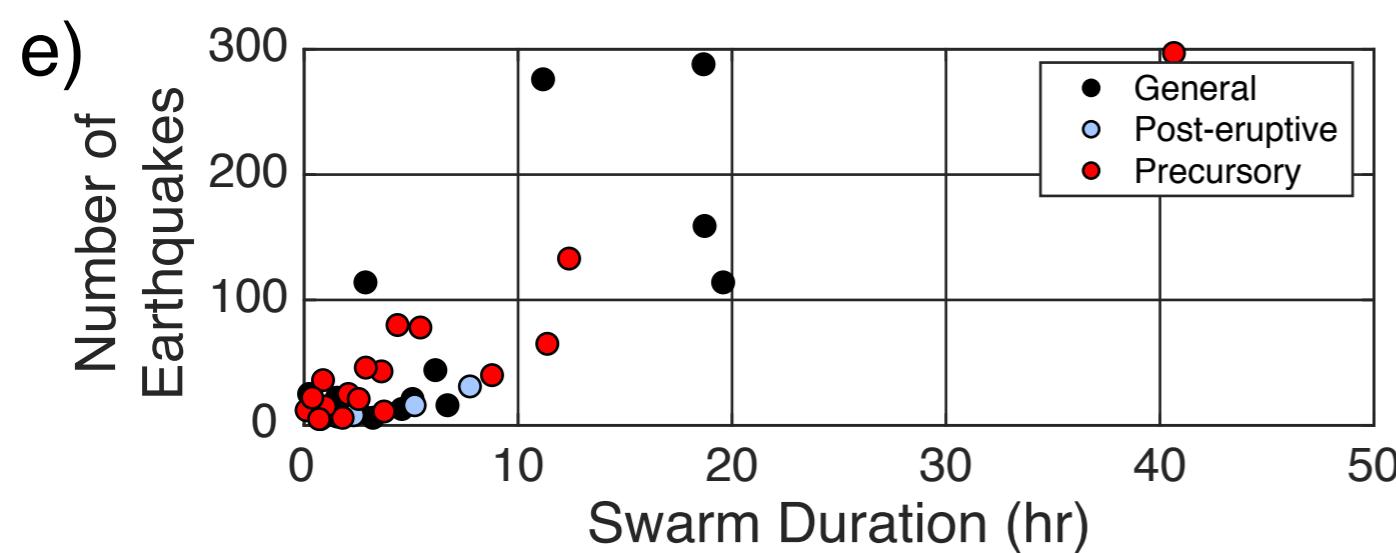
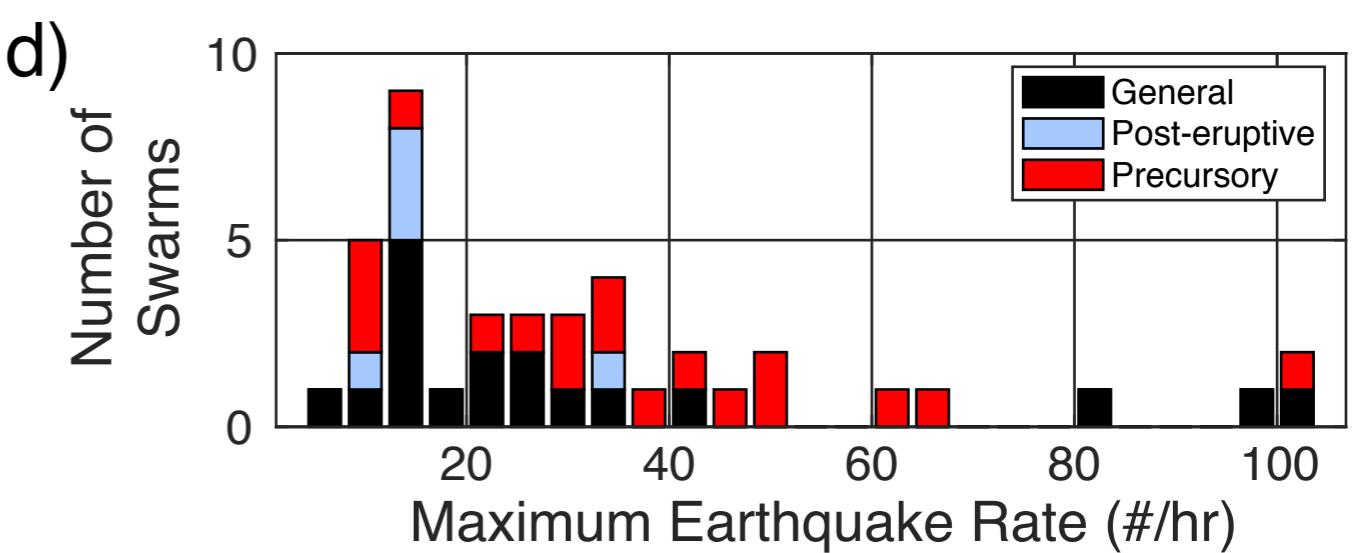
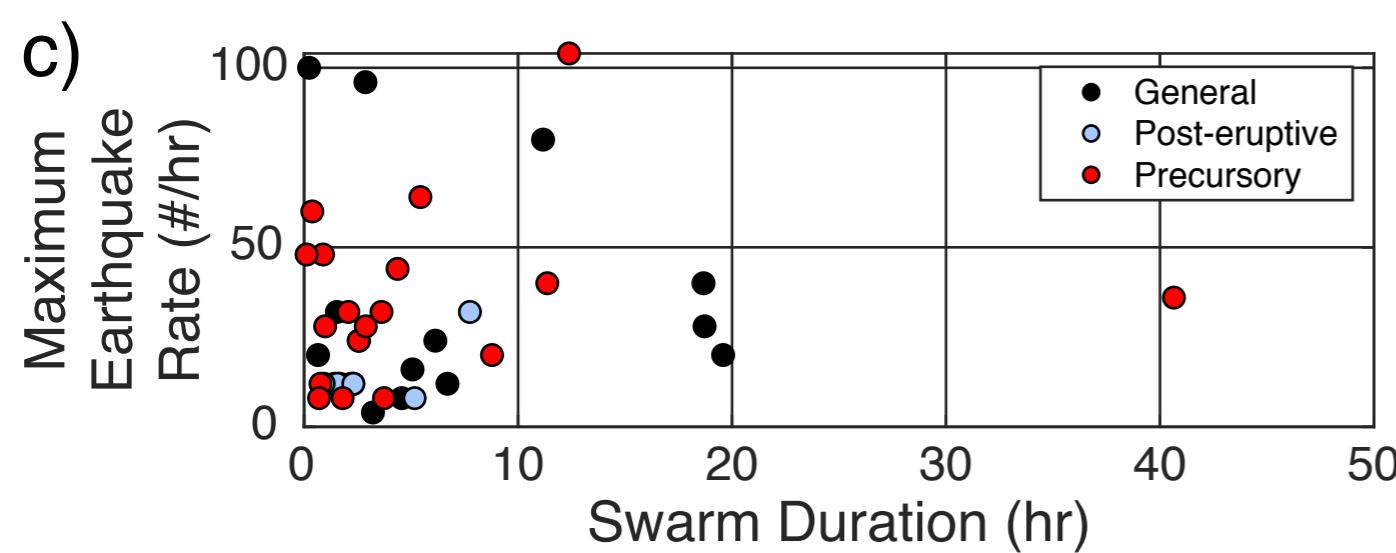
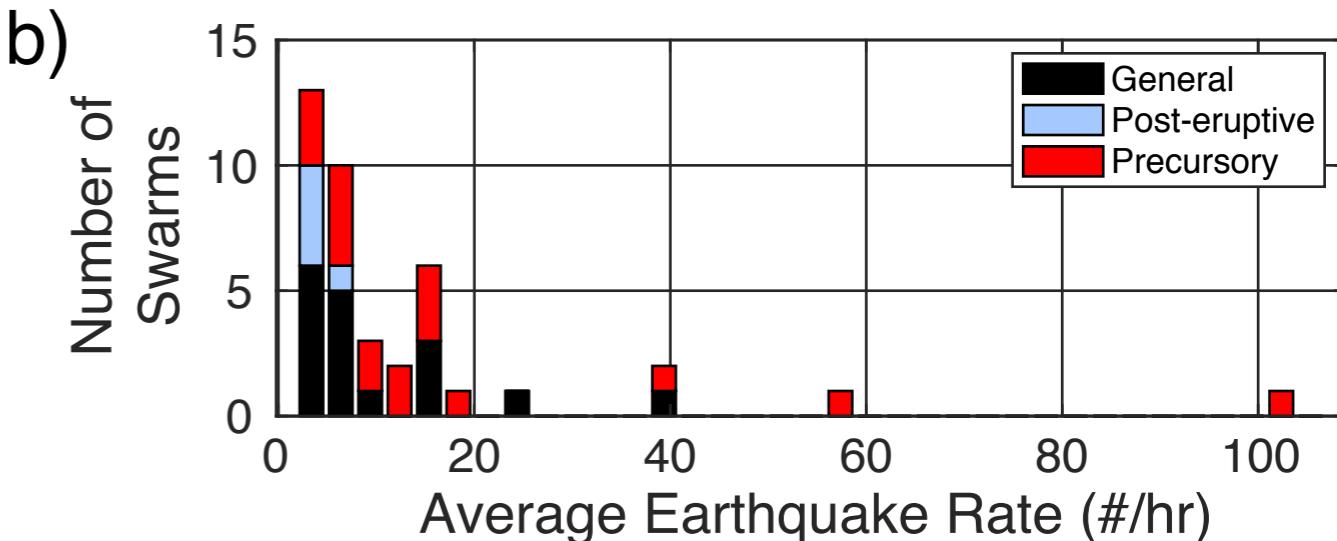
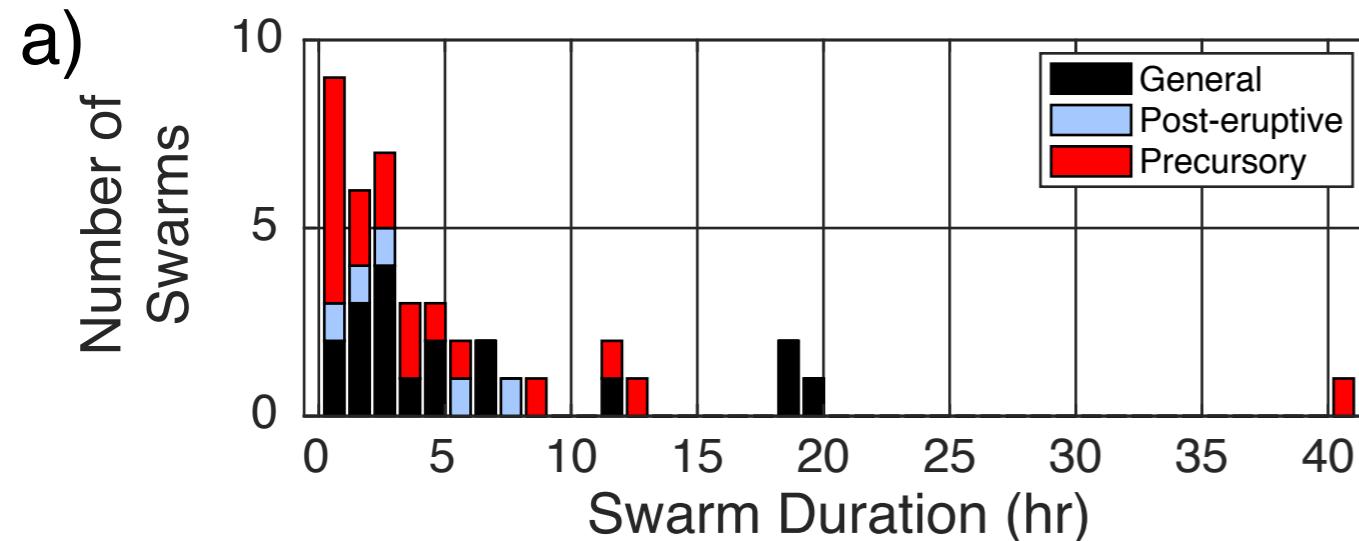

1133
1134 Table 5: Major Co-eruptive Earthquake Swarms

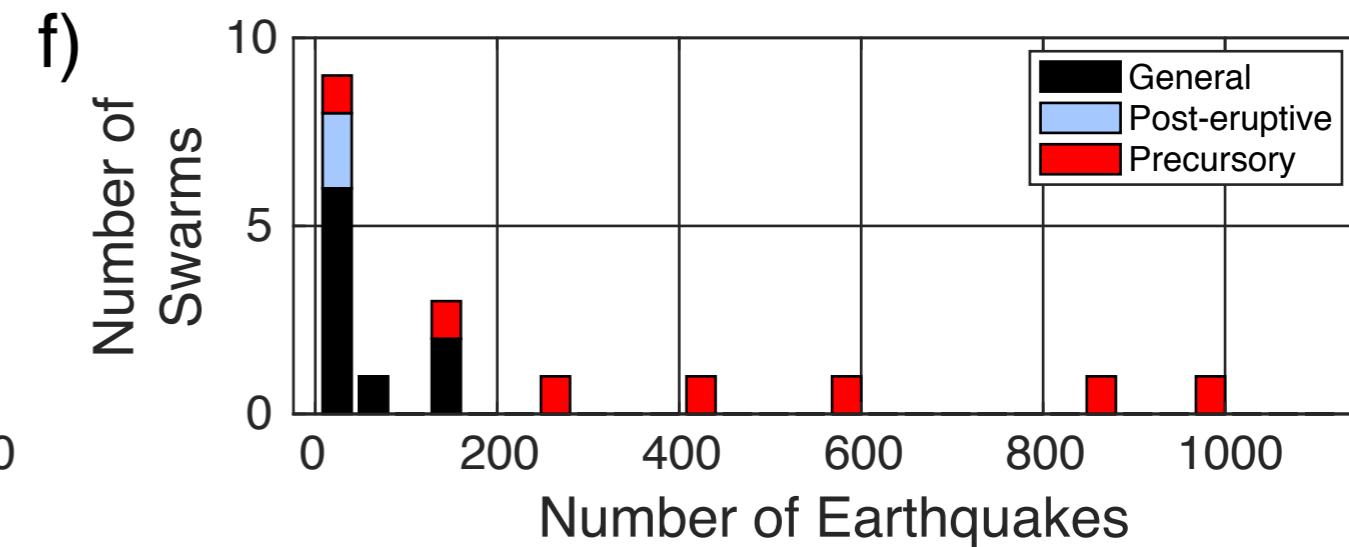
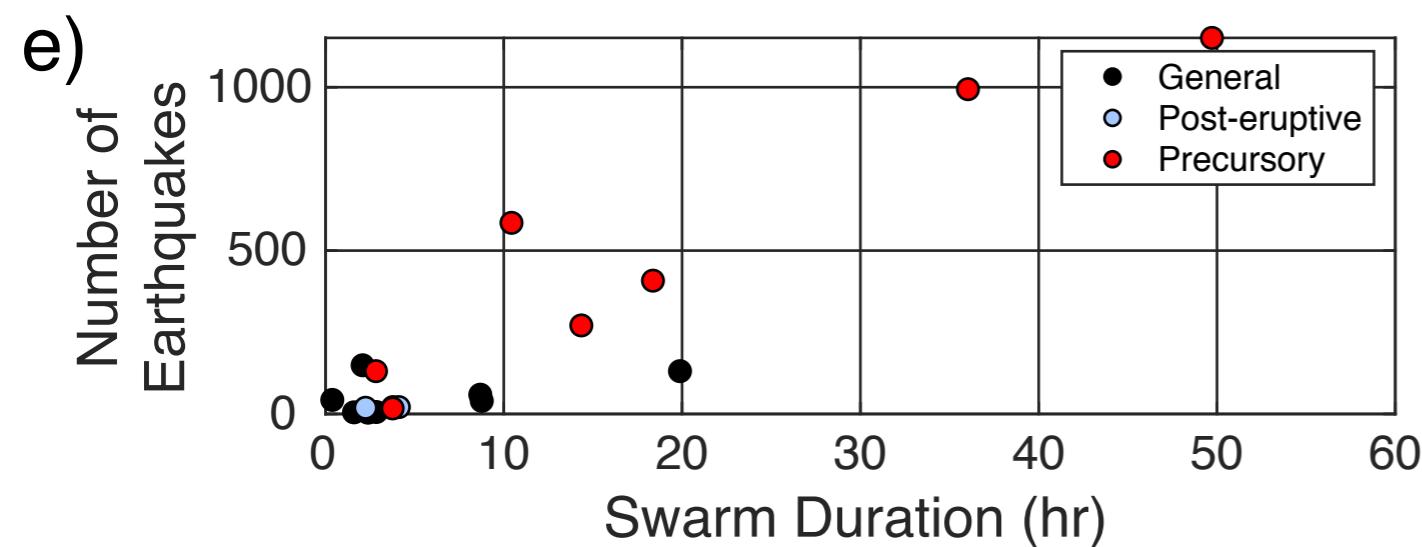
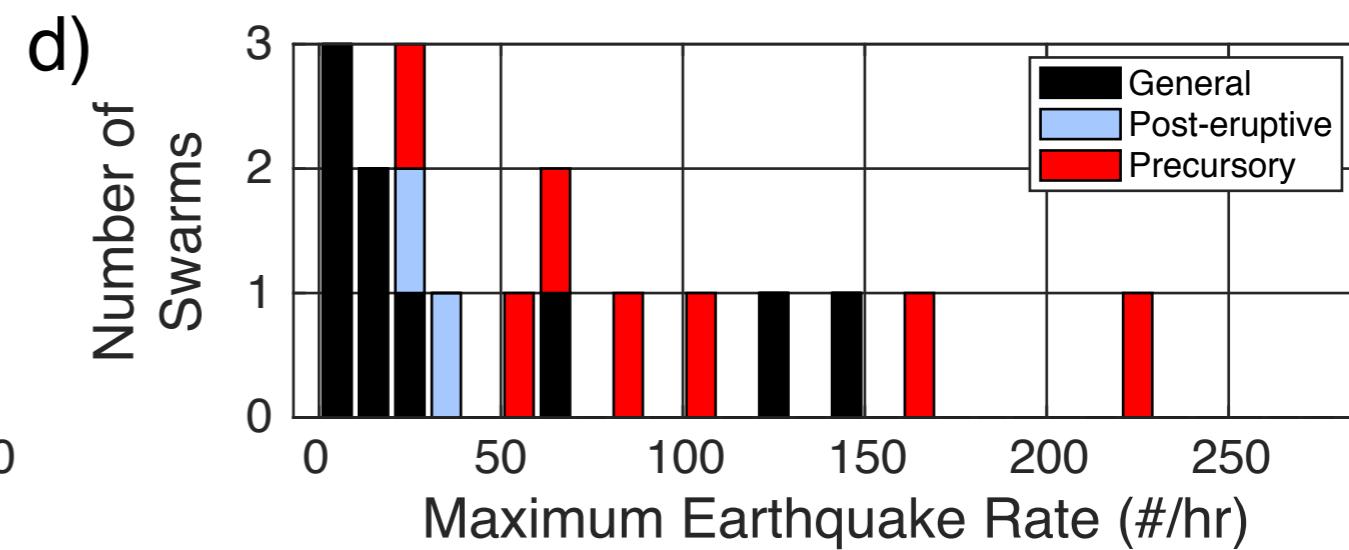
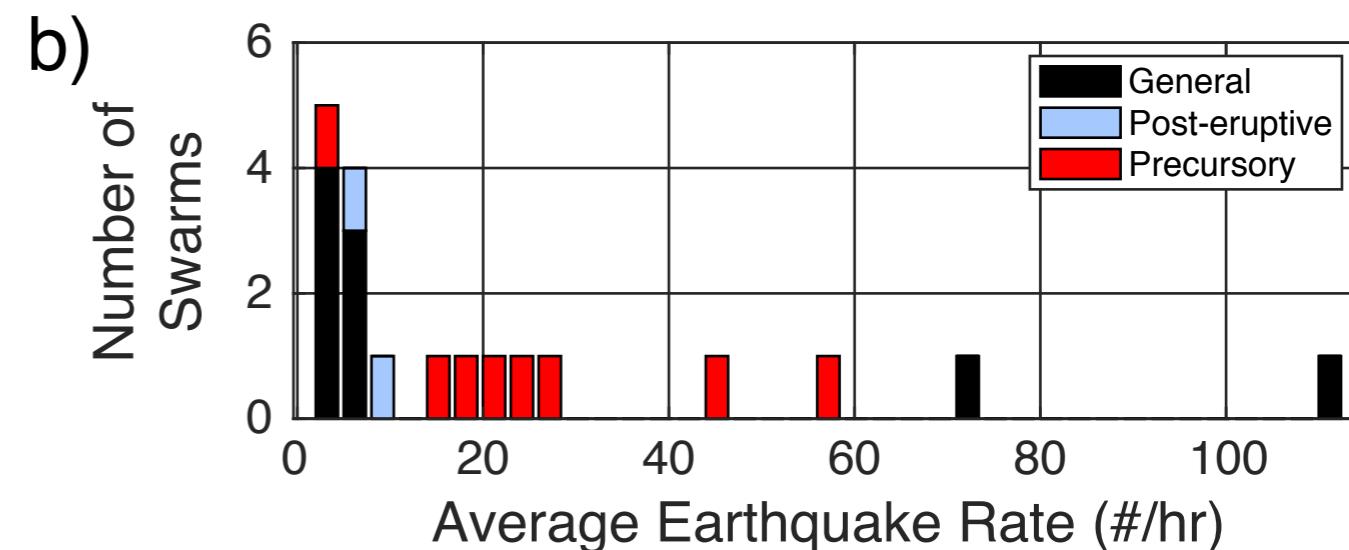
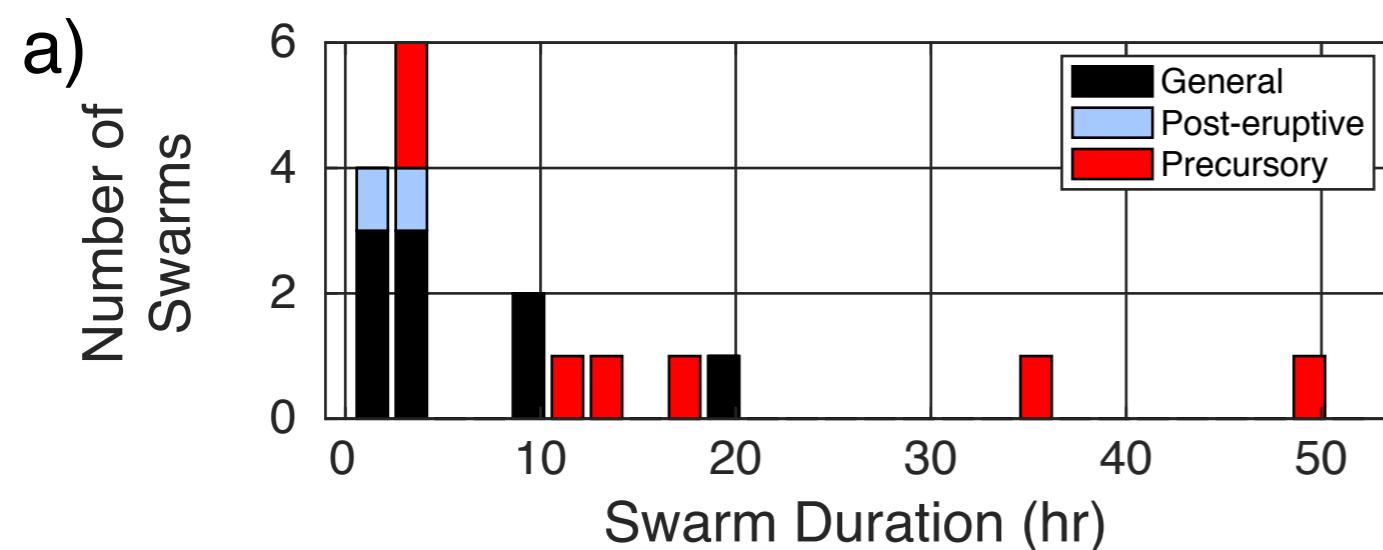
1135
1136
1137

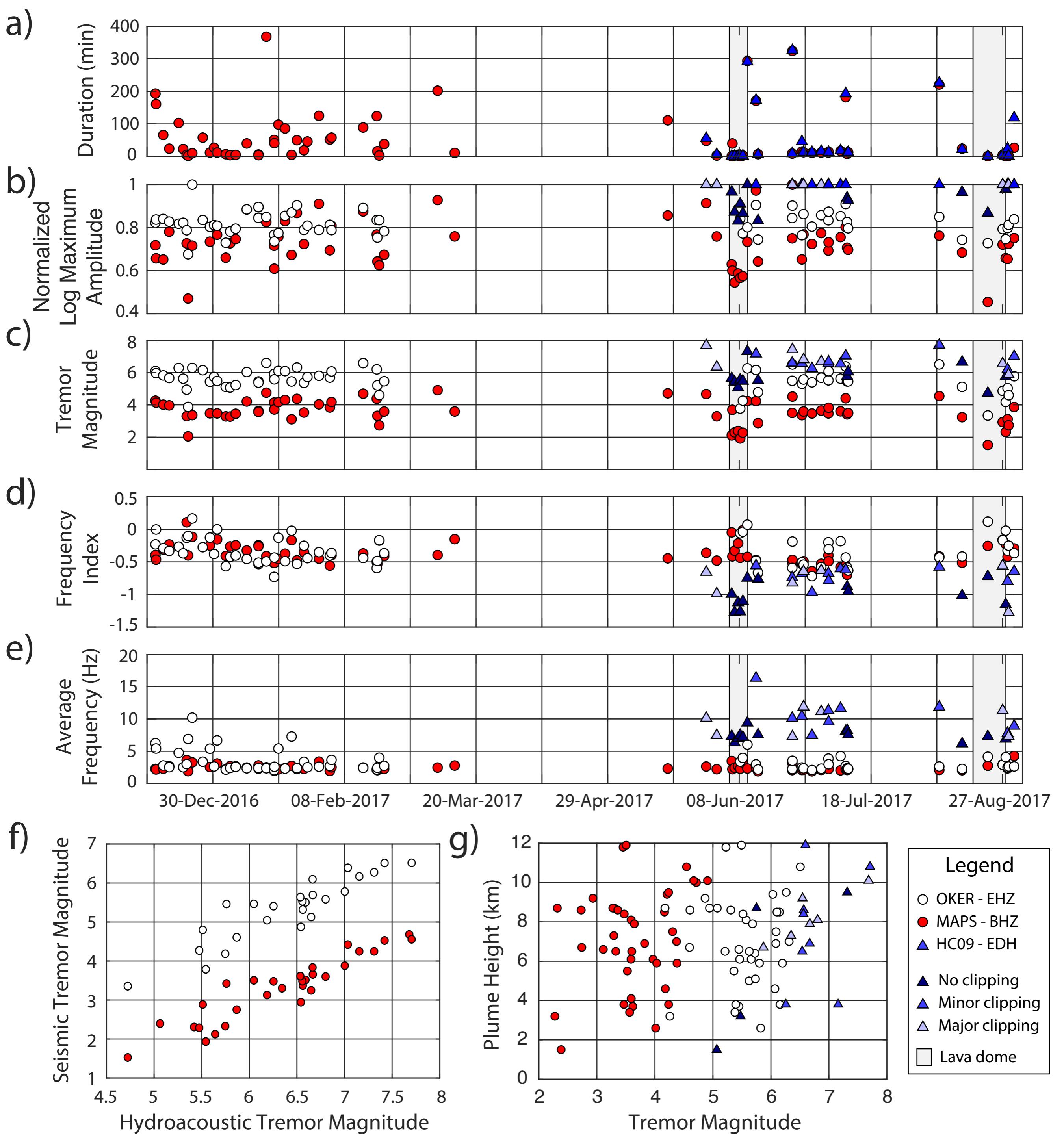


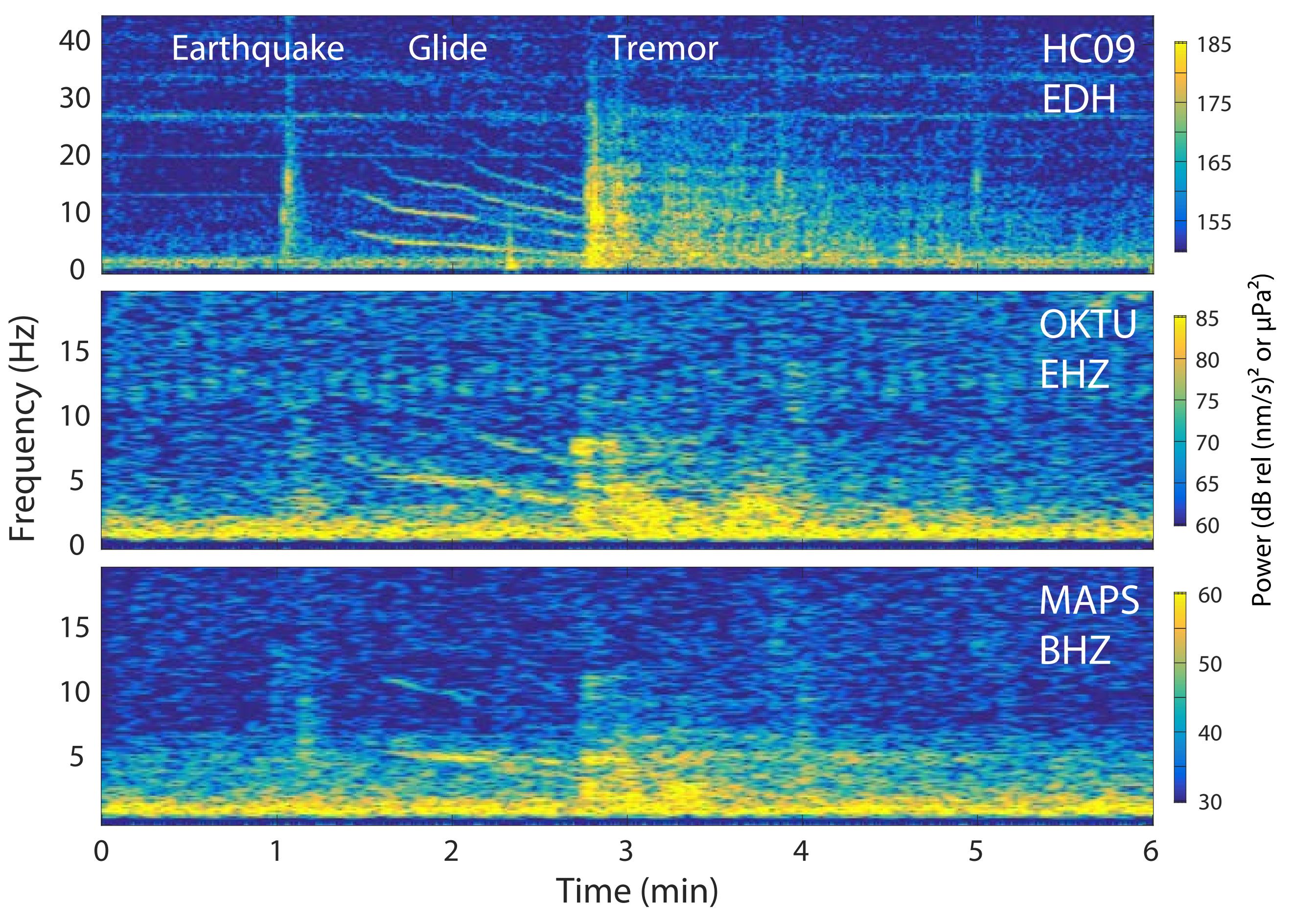



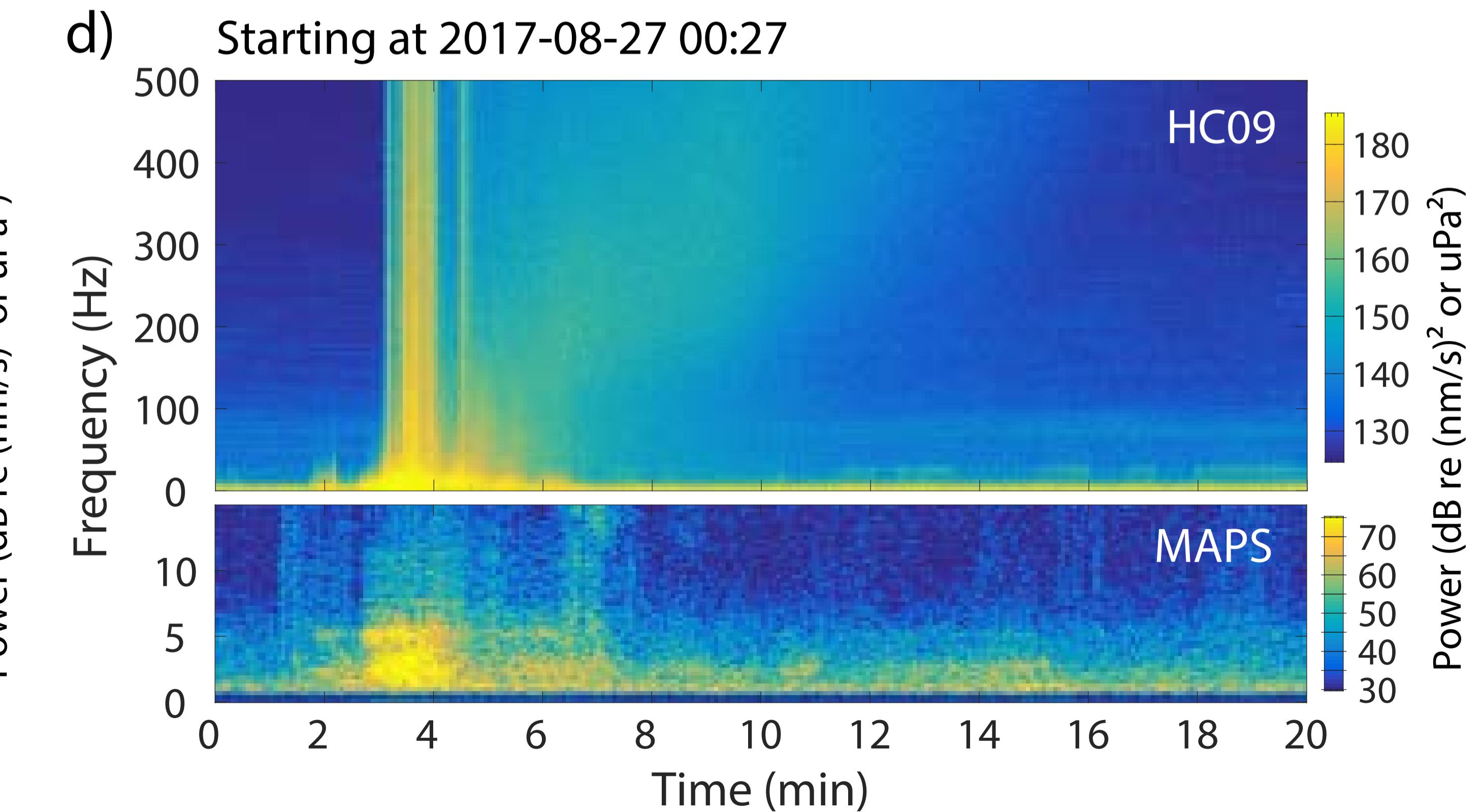
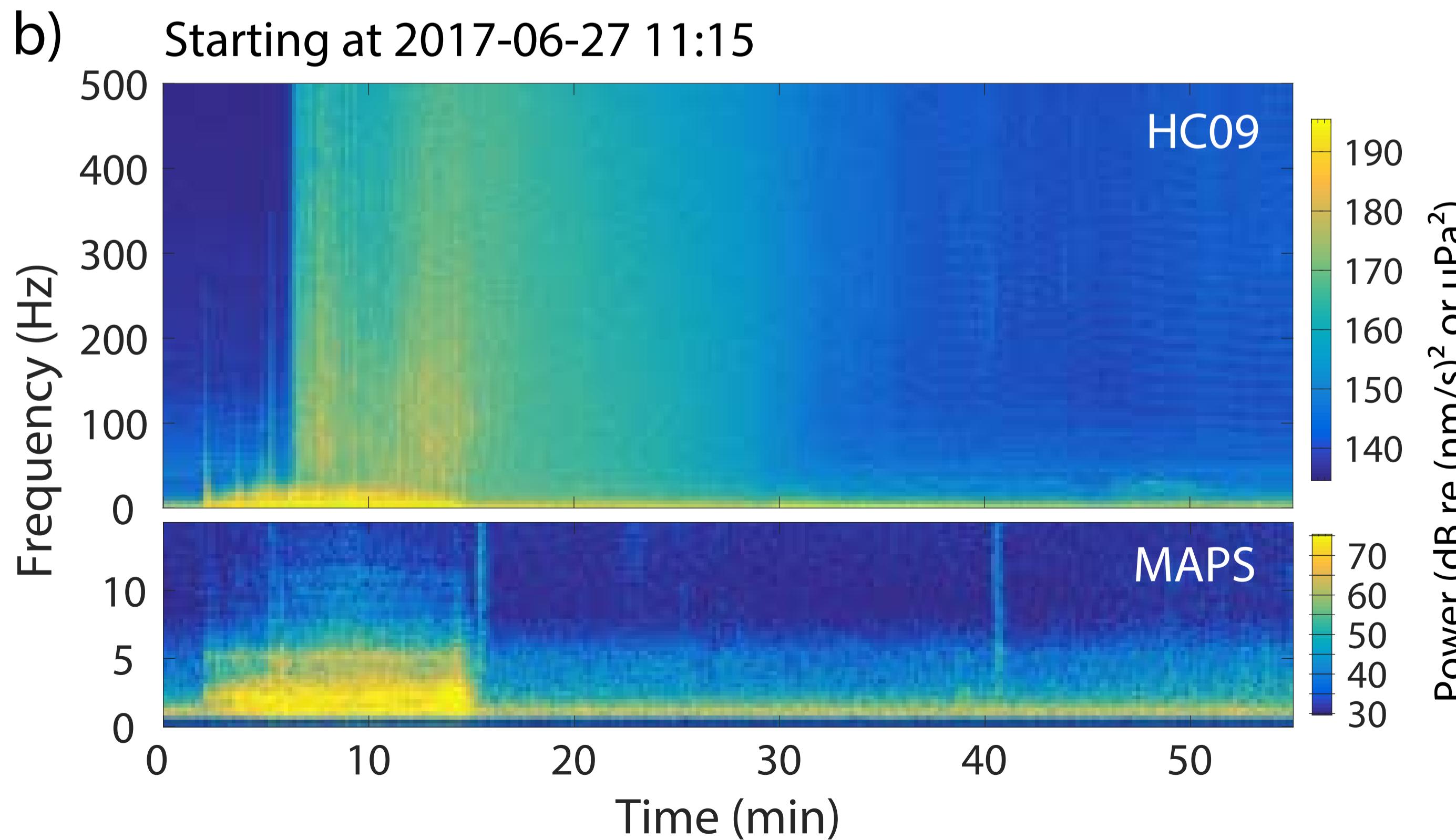
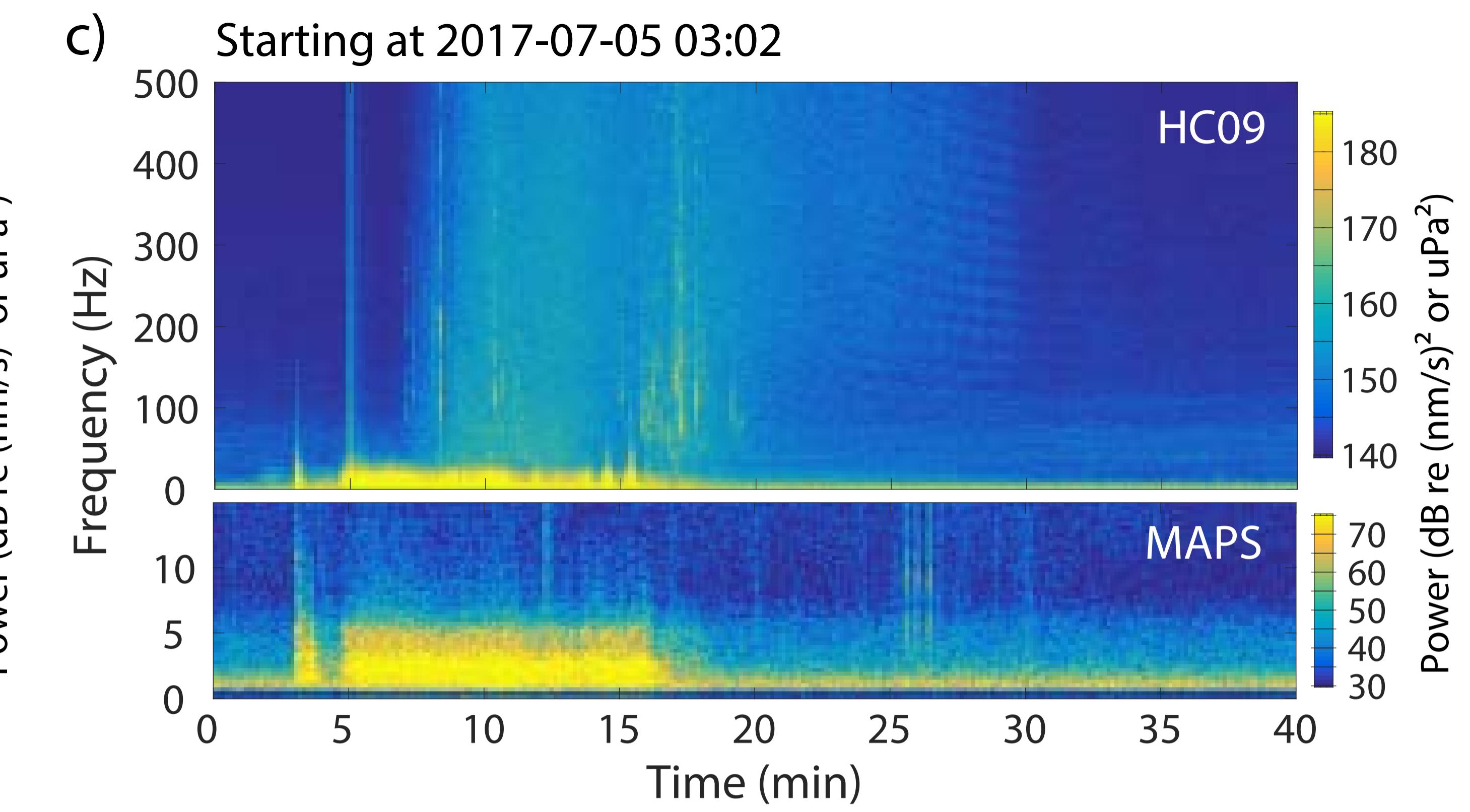
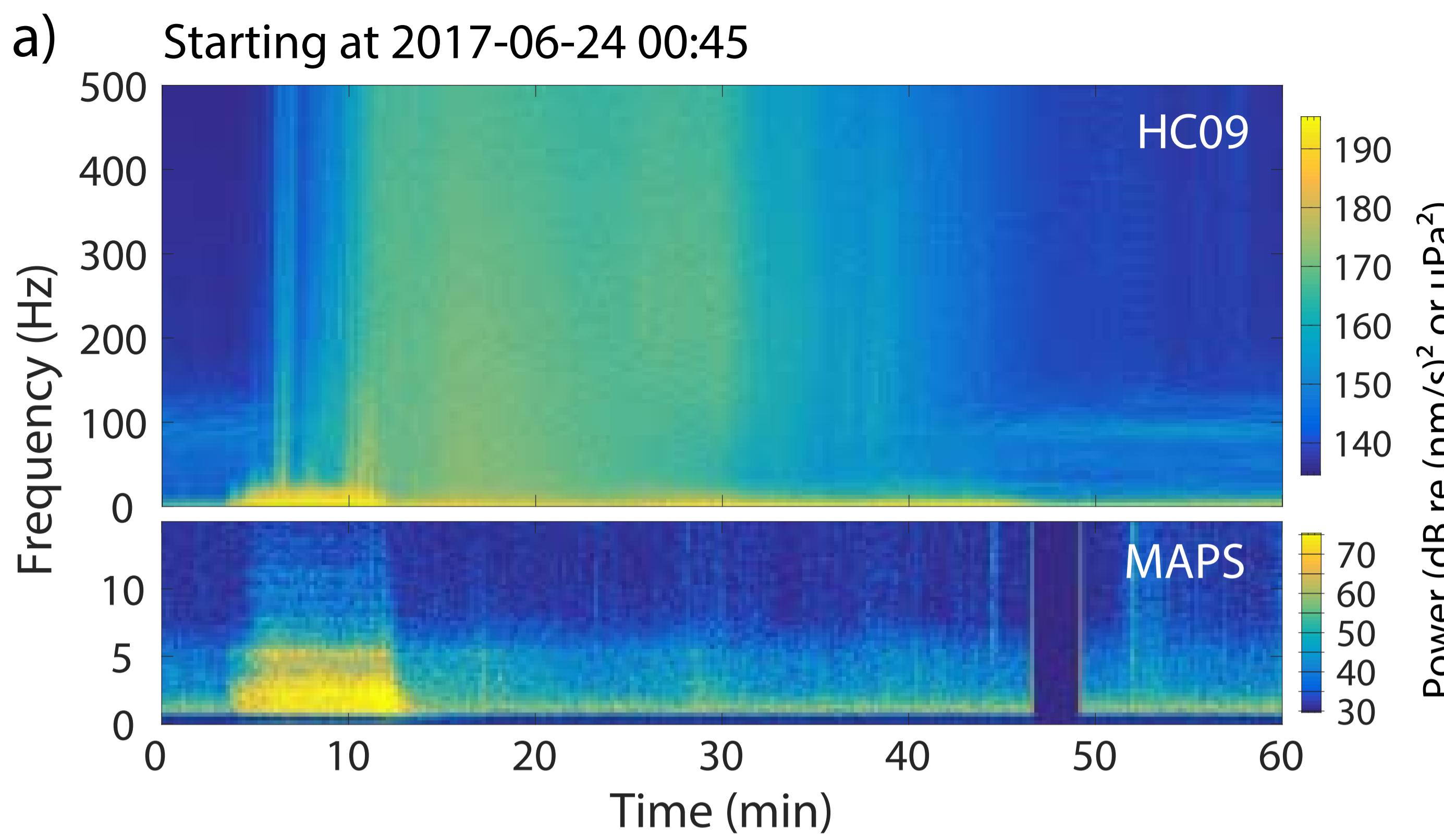

Local & Regional stations starting from 01:27

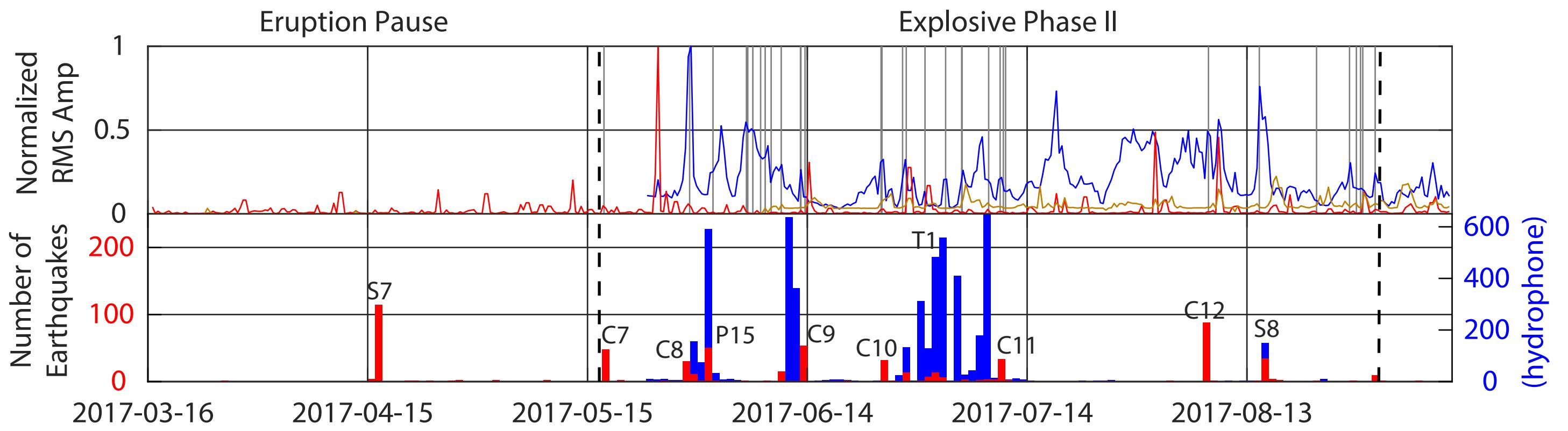
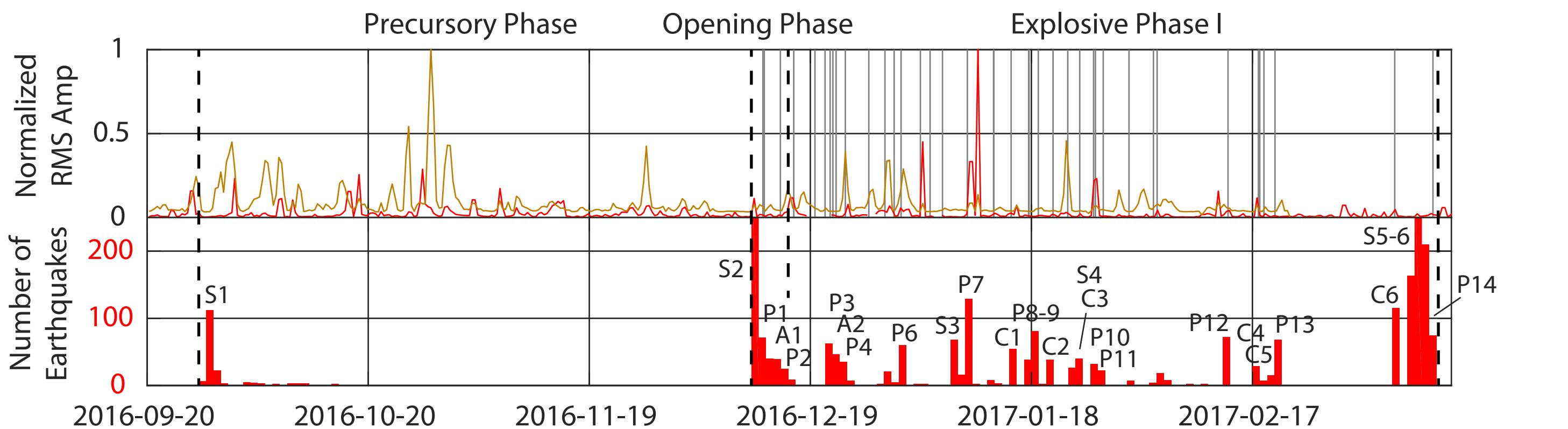












Distant stations starting from 01:34:30





Volcano	Location	Eruption Dates	Nearest Seismic Station (km)	Nearest Hydrophone (km)	Nearest Acoustic Sensor (km)	Reference
Capelinhos	Azores	Sep 1957 - Oct 1958	20	local	local	Richards, 1963
Surtsey	Iceland	Nov 1963 - Jun 1967	22	N/A	N/A	Pálmsaon, 1966; Sigtryggson & Sigurðsson, 1966
Myojin-sho	Japan	Sep 1952 - Oct 1953	N/A	8600	N/A	Dietz and Sheehy, 1954
		Jan - Jul 1970	N/A	3000	N/A	Johnson and Norris, 1972
Nishinoshima	Japan	Feb - Nov 2015	1.5 (ocean-bottom seismometer)	N/A	local	Shinohara et al., 2017
Hunga Tonga - Hunga Ha'apai	Tonga	Mar 2009	global	160	N/A	Bohnenstiehl et al., 2013
		Dec 2014 - Jan 2015	N/A	9000	1845	Smink, 2017
Bogoslof	Alaska	Sep 2016 - Aug 2017	50	7	60	This study
Sholan	Red Sea	Apr - Dec 2011	regional	N/A	N/A	Xu et al., 2015
Jadid	Red Sea	Dec 2012 - Sep 2013	regional	N/A	N/A	Xu et al., 2015

Station	Sensor Type	Network	Percent Data Return*	Major outage start time	Major outage end time
OKER	Short-period	Okmok	65.9	21 Feb 2017, 19:27	8 Jun 2017, 00:36
OKRE	Short-period	Okmok	48.5	21 Feb 2017, 19:27	8 Jun 2017, 00:36
OKTU	Short-period	Okmok	63.6	21 Feb 2017, 19:27	8 Jun 2017, 00:36
OKFG	Broad-band	Okmok	89.7	18 Dec 2016, 07:04	21 Dec 2016, 21:08
MAPS	Broad-band	Makushin	95.0	18 Dec 2016, 07:19	21 Dec 2016, 20:20
MGOD	Broad-band	Makushin	94.4	18 Dec 2016, 07:19	21 Dec 2016, 20:24
MREP	Short-period	Makushin	68.1	21 Feb 2017, 19:27	8 Jun 2017, 00:36
MSW	Short-period	Makushin	N/A	7 Sep 2016, 11:38	12 Sep 2016, 20:32

Number*	Analyst Start	Analyst End	MAPS Start	MAPS End	# of events (MAPS)	Average rate (#/hr)	Max rate (#/hr)	Associated Explosion #**	Merged into tremor?
S1	9/28/2016 5:55	9/28/2016 23:52	9/28/2016 5:46	9/29/2016 1:21	114	5.82	20	-	-
S2	12/11/2016 0:30	12/12/2016 1:45	12/11/2016 5:20	12/12/2016 0:00	288	15.43	40	-	-
P1	12/12/2016 4:15	12/12/2016 13:05	12/12/2016 4:15	12/12/2016 15:10	40	4.55	20	1?	Y
A1	12/12/2016 21:27	12/13/2016 9:18	12/12/2016 22:07	12/13/2016 5:52	31	4	32	2	Y
P2	12/14/2016 20:40	12/14/2016 21:55	12/14/2016 20:57	12/14/2016 21:50	36	40.75	48	3	Y
P3	12/21/2016 10:36	12/21/2016 16:00	station outage	-	-	-	-	un	Y
A2	12/21/2016 17:15	12/21/2016 18:25	station outage	-	-	-	-	un	Y-short
P4	12/21/2016 19:54	12/22/2016 1:05	12/21/2016 20:37	12/22/2016 0:59	80	18.32	44	7	Y
P5	12/30/2016 2:40	12/30/2016 8:30	partial station outage	-	-	-	-	12	Y
P6	12/30/2016 21:45	12/31/2016 7:27	12/31/2016 3:44	12/31/2016 7:21	43	11.89	32	13	Y
S3a	1/7/2017 5:55	1/7/2017 16:30	1/7/2017 6:57	1/7/2017 9:09	11	5	12	-	-
S3b	-	-	1/7/2017 10:20	1/7/2017 16:28	44	7.17	24	-	-
P7	1/8/2017 19:02	1/9/2017 7:24	1/8/2017 19:01	1/9/2017 7:24	133	10.74	104	17	Y
P8	1/17/2017 11:43	1/17/2017 14:27	1/17/2017 12:21	1/17/2017 15:00	25	12.1	32	21	Y-ish
P9	1/18/2017 11:27	1/18/2017 22:18	1/18/2017 10:56	1/18/2017 22:18	65	5.72	40	23	Y
S4	1/23/2017 5:50	1/23/2017 7:25	1/23/2017 5:51	1/23/2017 7:23	22	14.35	32	-	-
P10	1/26/2017 10:24	1/26/2017 10:36	1/26/2017 10:24	1/26/2017 10:38	25	107.14	100	un	Y
P11	1/27/2017 16:47	1/27/2017 17:17	1/27/2017 16:47	1/27/2017 17:10	22	57.39	60	28	Y
P12	2/13/2017 15:36	2/13/2017 16:13	2/13/2017 13:38	2/13/2017 20:07	21	8.24	24	32	-
P13	2/19/2017 20:42	2/20/2017 2:08	2/19/2017 20:41	2/20/2017 2:07	78	14.36	64	36	Y
S5	3/10/2017 2:50	3/10/2017 23:00	3/10/2017 2:53	3/10/2017 21:36	159	8.5	28	-	-
S6	3/11/2017 4:00	3/11/2017 15:25	3/11/2017 3:02	3/11/2017 14:12	276	24.72	80	-	-
P14	3/11/2017 18:16	3/13/2017 11:31	3/11/2017 18:45	3/13/2017 11:41	297	7.31	36	38	-
S7	4/15/2017 23:34	4/16/2017 2:15	4/15/2017 23:44	4/16/2017 2:36	114	39.77	96	-	-
P15	5/31/2017 16:00	5/31/2017 22:25	5/31/2017 19:26	5/31/2017 22:19	46	15.95	28	41	-
T1	7/1/2017 3:17	7/1/2017 5:35	7/1/2017 3:17	7/1/2017 5:35	12	5.22	12	-	-
S8	8/15/2017 8:10	8/15/2017 16:05	8/15/2017 8:52	8/15/2017 13:56	21	4.14	16	-	-

Number*	Analyst Start	Analyst End	HC09 Start	HC09 End	# of events	Average rate (#/hr)	Max rate (#/hr)	Associated Explosion #**	Merged into tremor?
HA1	29-May-17 1:14	29-May-17 13:24	29-May-17 2:55	29-May-17 11:36	59	6.79	24	40	-
HS1	29-May-17 15:17	30-May-17 9:18	29-May-17 15:19	30-May-17 11:12	131	6.59	64	-	-
HS2	30-May-17 16:24	30-May-17 23:34	30-May-17 15:19	31-May-17 0:05	40	4.56	16	-	-
HP1	31-May-17 14:50	31-May-17 22:25	31-May-17 15:06	1-Jun-17 1:32	585	56.07	168	41	-
HA2	1-Jun-17 10:06	1-Jun-17 13:52	1-Jun-17 10:06	1-Jun-17 13:53	21	5.55	16	41	-
HP2	8-Jun-17 23:06	9-Jun-17 0:55	-	-	-	-	-	47	Y
HP3	11-Jun-17 10:39	13-Jun-17 1:26	11-Jun-17 12:11	13-Jun-17 0:13	994	27.59	104	49	-
HA3	13-Jun-17 4:41	13-Jun-17 9:56	13-Jun-17 4:41	13-Jun-17 8:48	21	5.1	20	49	-
HP4	23-Jun-17 21:26	23-Jun-17 23:14	-	-	-	-	-	51	-
HP5	26-Jun-17 23:42	27-Jun-17 0:39	26-Jun-17 21:49	27-Jun-17 0:39	131	46.24	284	53	-
HS3	29-Jun-17 5:36	29-Jun-17 6:03	29-Jun-17 5:31	29-Jun-17 5:54	43	112.17	144	-	-
HP6	29-Jun-17 14:23	30-Jun-17 1:03	29-Jun-17 10:41	30-Jun-17 1:02	271	18.89	64	55	-
HP7a	30-Jun-17 16:37	2-Jul-17 19:37	30-Jun-17 17:01	2-Jul-17 18:44	1151	23.15	88	56	-
HP7b (RRE)	2-Jul-17 19:37	2-Jul-17 20:47	-	-	-	-	-	56	Y
HP8	4-Jul-17 4:14	4-Jul-17 21:09	4-Jul-17 2:46	4-Jul-17 21:08	408	22.21	56	57	-
HP9	6-Jul-17 12:16	8-Jul-17 17:43	6-Jul-17 13:09	8-Jul-17 17:44	862	16.39	220	59	-
HA4	7-Aug-17 21:16	7-Aug-17 23:39	-	-	-	-	-	63	-
HS4	15-Aug-17 4:15	17-Aug-17 15:01	15-Aug-17 4:28	15-Aug-17 6:33	149	71.52	120	-	-

Number	MAPS Start	MAPS End	# of events (MAPS)	Average rate	Max rate	Co-eruptive Explosion #
C1	1/15/2017 6:51	1/15/2017 12:00	44	8.54	68	20
C2	1/20/2017 22:17	1/20/2017 22:55	21	33.16	40	24
C3	1/24/2017 13:54	1/24/2017 14:35	22	32.2	56	26
C4	2/13/2017 16:31	2/13/2017 17:52	45	33.33	52	32
C5	2/17/2017 19:03	2/17/2017 21:09	27	12.86	28	33
C6	3/8/2017 7:20	3/8/2017 10:58	107	29.45	92	37
C7	5/17/2017 6:32	5/17/2017 8:04	39	25.43	44	39
C8	5/28/2017 22:18	5/28/2017 23:02	29	39.55	48	40
C9	6/13/2017 1:53	6/13/2017 4:35	27	10	32	49
C10	6/24/2017 3:18	6/24/2017 8:42	20	3.7	20	52
C11	7/10/2017 7:48	7/10/2017 10:33	22	8	24	60
C12	8/7/2017 16:54	8/7/2017 21:16	75	17.18	60	63