

1 **Characteristics of thunder and electromagnetic pulses from volcanic lightning at**
2 **Bogoslof Volcano, Alaska**

3

4 Matthew M. Haney^{1*} (0000-0003-3317-7884), Alexa R. Van Eaton² (0000-0001-6646-
5 4594), John J. Lyons¹ (0000-0001-5409-1698), Rebecca L. Kramer² (0000-0002-4873-
6 1983), David Fee³ (0000-0002-0936-9977), Alexandra M. Iezzi³ (0000-0002-6782-7681),
7 Robert P. Dziak⁴ (0000-0001-8775-3416), Jacob Anderson⁵ (0000-0001-6447-6778),
8 Jeffrey B. Johnson⁵ (0000-0003-4179-8592), Jeff L. Lapierre⁶ (0000-0002-7176-9808),
9 and Michael Stock⁶ ()

10

11 ¹U.S. Geological Survey, Alaska Volcano Observatory, Anchorage, AK, USA

12 ²U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, WA, USA

13 ³Geophysical Institute, University of Alaska Fairbanks, Alaska Volcano Observatory,
14 Fairbanks, AK, USA

15 ⁴NOAA Pacific Marine Environmental Laboratory, Newport, OR, USA

16 ⁵Boise State University, Department of Geosciences, Boise, ID, USA

17 ⁶Earth Networks Inc., Germantown, MD, USA

18 * Corresponding author: mhaney@usgs.gov

19

20 Acknowledgments: The authors wish to thank the World Wide Lightning Location
21 Network (<http://wwlln.net>), a collaboration among over 50 universities and institutions,
22 for providing lightning location data used in this paper. Thanks to Vaisala
23 (<http://www.vaisala.com>) for providing lightning location and peak current data. This

24 paper is NOAA-PMEL contribution number ##.

25

26 **Keywords:** Volcano Monitoring, Volcanic Lightning, Explosive Volcanism, Infrasound

27

28 **Abstract**

29 We combine global detections of volcanic lightning with infrasound and hydroacoustic
30 data to investigate novel indications of plume electrification in ground-based, geophysical
31 data streams during the 2016-17 eruption of Bogoslof Volcano, Alaska. Such signals offer
32 additional ways to diagnose the occurrence of volcanic lightning, and therefore whether
33 eruptive activity is likely producing significant amounts of ash. We discuss three signatures
34 of lightning activity: volcanic thunder, electromagnetic pulses arising from lightning-
35 induced voltages in cabling, and hydroacoustic signals associated with volcanic lightning.
36 Observations of these phenomena provide additional insights into volcanic lightning
37 activity and yield several detections not previously contained in global lightning catalogs.

38

39

40 **1. Introduction**

41 Electrification of volcanic plumes is a consequence of grain-scale processes at the volcanic
42 vent that are associated with large, explosive, ash-producing eruptions [Mather and
43 Harrison, 2006]. Although its origins can be traced back to the scale of grains,
44 electrification leads to discharge in the form of lightning that can be measured globally.
45 The ability of worldwide networks of lightning sensors operating in the 3-30 kHz band to
46 detect volcanic lightning has made a baseline of volcanic eruption detection possible, even

47 in remote regions. The drawback of the global networks is that only the most energetic
48 strokes can be detected, which are often classified as plume lightning [Behnke and McNutt,
49 2014]. Less energetic strokes, especially those close to the vent, and continual radio
50 frequency emissions require local lightning mapping array installations [Thomas et al.,
51 2007]. Detections of volcanic lightning, in addition to their value for monitoring, also offer
52 a window into the dynamics of volcanic plumes [Behnke and Bruning, 2015; Van Eaton et
53 al., 2016].

54

55 Recent major eruptions in Alaska have produced detectable volcanic lightning on both
56 local and global lightning sensors, including the 2006 Augustine [Thomas et al., 2007] and
57 2009 Redoubt [Behnke and McNutt, 2014] eruptions. Bogoslof, a mostly submarine
58 volcano in the Bering Sea, Alaska, produced a prolific amount of volcanic lightning during
59 its eruption sequence from December 2016 to August 2017 [Van Eaton et al., this issue],
60 which was detected globally. Coombs et al. [this issue] provide an overview of the entire
61 eruption sequence. Detections on global lightning networks were used in real-time at the
62 Alaska Volcano Observatory for monitoring the eruption of Bogoslof [Coombs et al., 2018].
63 In fact, of the 70 explosive events that occurred over the course of the eruption, one event
64 was detected by volcanic lightning only [Coombs et al., 2018].

65

66 Although volcanic lightning has received a great deal of attention in recent years, the
67 associated phenomenon of volcanic thunder had not been documented until the Bogoslof
68 eruption [Haney et al., 2018]. This is in contrast to meteorological thunder, which has been
69 studied using combined lightning and infrasound data sets [Assink et al., 2008; Johnson et

70 al., 2011]. The omission for the volcanic case is in large part due to the difficulty of
71 unequivocally identifying thunder signals in acoustic data during eruptive activity, since
72 eruptions themselves radiate intense sound waves due to the ejection of magmatic products
73 at the vent. For the Bogoslof eruption, an array of microphones located 60 km from the
74 volcano allowed precise direction-of-arrival information to be derived from acoustic waves
75 during the eruption. Analysis of the directional information indicated some of the sound
76 waves originated from a different direction than the volcanic vent, thereby implicating
77 thunder as their source [Haney et al., 2018]. Moreover, the distance of the microphone
78 array from the volcano (60 km) placed it within the range where measurements of thunder
79 signals can be expected [Campus and Christie, 2009].

80

81 Volcanic thunder turns out to be only one manifestation of volcanic lightning in ground-
82 based geophysical data streams, such as infrasound data. In their study of Tungurahua
83 Volcano in Ecuador, Anderson et al. [2018] highlighted the occurrence of electromagnetic
84 pulses, or glitches, in infrasound data due to volcanic lightning. Similar glitches have been
85 observed in seismic data during the 1992 eruption of Mount Spurr by McNutt and Davis
86 [2000]. In the following sections, we apply a detection algorithm to continuous acoustic
87 data to produce a lightning catalog based on glitches for the entire Bogoslof eruption. We
88 also present new observations of volcanic thunder not shown previously by Haney et al.
89 [2018] and investigate the source of lightning-related signals measured on a moored
90 hydrophone on the northeast slope of Bogoslof. Taken together, these observations give a
91 more complete picture of electrical activity during the 2016-17 Bogoslof eruption and
92 provide further insight into the imprint of volcanic lightning on geophysical data streams.

93 Such knowledge can be used in real-time monitoring of explosive volcanic eruptions
94 worldwide, in order to detect the occurrence of volcanic lightning as early as possible.

95

96 **2. Data and Methods**

97 We focus primarily on acoustic data from a 4-element microphone array named OKIF on
98 the eastern slope of Okmok Volcano (Figure 1). These data have also been analyzed and
99 described by Fee et al. [2019, this issue], Lyons et al. [2019, this issue], and Schwaiger et
100 al. [2019, this issue]. Here, the 4 individual elements are referred to as OK01, OK02, OK03,
101 and OK04. The sensors comprising the array are Chaparral 25Vx microphones sampled in
102 time at 100 Hz. This sample rate means that both infrasound (< 20 Hz) and audible acoustic
103 (>20 Hz) signals are recorded. At the time of the eruption, each sensor was connected to a
104 wind reduction system consisting of a series of porous hoses [Petersen et al., 2006]. The
105 digitizer is located near the central node (OK04) and the other 3 elements (OK01, OK02,
106 and OK03) are connected to the digitizer via cabling set beneath thick vegetation, but not
107 buried in soil. The array has an aperture of approximately 100 m and has a triangular shape
108 with one of the array elements at the center (OK04). In addition to the Okmok microphone
109 array, we also analyze data from a moored hydrophone located 7 km to the northeast of
110 Bogoslof (Figure 1). The hydrophone instrumentation is similar to the deployment
111 described by Bohnenstiehl et al. [2013].

112

113 At a range of 60 km from the volcano, the 4-element Okmok array is the closest
114 microphone array in the AVO network to Bogoslof. In fact, the data from the Bogoslof
115 eruption at the Okmok array are among the closest microphone array recordings of any

116 volcanic eruption in Alaska. Only the array located at frequently-active Cleveland volcano
117 in Alaska has captured explosive activity at closer range (15 km). Thus, although the wind
118 and temperature structure of the atmosphere can strongly affect sound propagation over the
119 60 km range from the Okmok array to Bogoslof [Schwaiger et al., 2019a; Iezzi et al., 2019;
120 Schwaiger et al., 2019b], the recordings give a rare opportunity in Alaska to make detailed
121 array measurements of an acoustic eruption wavefield.

122

123 We process the acoustic waves measured on the Okmok array using least-squares
124 beamforming [Olson and Szuberla, 2005]. In this method, we cross-correlate all possible
125 pairs of acoustic elements and find the time-delay corresponding to the maximum value of
126 normalized cross-correlation. When the normalized cross-correlation exceeds a certain
127 value (e.g., 0.5), we accept the time-delay measurement as being of high quality. If enough
128 delay times meet this criterion to uniquely determine a slowness vector, we form a vector
129 of the delay times and linearly relate them to apparent slowness across the array:

130

$$131 \quad \vec{\Delta t} = G \vec{s} = G[s_{NS}, s_{EW}]^T \quad (1)$$

132

133 where s_{NS} and s_{EW} are the values of apparent slowness in the north-south and east-west
134 directions, respectively, and G is a matrix of apparent distances [Haney et al., 2018]. For
135 the 4-element Okmok array, as many as 6 delay time measurements could contribute to the
136 lefthand side of equation (1). Thus, G could be as large as a 6-by-2 matrix. To find the
137 apparent slowness across the array, we multiply both sides of equation (1) by the transpose
138 of G and solve the equation in the least-squares sense. Once s_{NS} and s_{EW} have been obtained,

139 we find the trace velocity across the array using

140

141
$$v = 1/\sqrt{s_{NS}^2 + s_{EW}^2} \quad (2)$$

142

143 and the backazimuth θ with

144

145
$$\theta = \tan^{-1}(s_{EW}/s_{NS}) \quad (3)$$

146

147 where error estimates can also be found on these parameters [Szuberla and Olson, 2004].

148 An additional consideration for beamforming is choice of frequency band. Previously,

149 Haney et al. [2018] beamformed acoustic data in the 4-8 Hz band to detect volcanic thunder.

150 Such a choice was a tradeoff between higher frequencies with better signal-to-noise for

151 thunder versus the use of lower frequencies for which good coherence can be maintained

152 across the microphone array. In the Results section, we show beamforming over several

153 frequency bands to illustrate which parts of the spectrum are dominated by the eruptive

154 source versus volcanic thunder.

155

156 In addition to beamforming, we also process the microphone array data with a multichannel

157 short-term average/long-term average (STA/LTA) filter to detect broadband

158 electromagnetic pulses, or glitches, induced by lightning. Such glitches have been recently

159 measured by Anderson et al. [2018] during an eruption of Tungurahua Volcano in Ecuador.

160 The electromagnetic pulse associated with a lightning stroke generates a strong disturbance

161 in the electric potential field that propagates outward at the speed of light. This is the same

162 disturbance measured directly by sensors in global lightning location networks, either
163 operated by Vaisala [Said et al., 2010] or the World Wide Lightning Location Network or
164 WWLLN [Hutchins et al., 2012]. The propagating disturbance can in turn interfere with
165 geophysical equipment such as cabling, leaving a characteristic imprint on the data stream.
166 For comparison to lightning data, we utilize both WWLLN and Vaisala catalogs for the
167 Bogoslof eruption in our analysis. Both catalogs provide location and origin times of
168 detected strokes, with the Vaisala catalog additionally giving measurement of peak current
169 of the stroke.

170

171 We detect glitches on the Okmok microphone array by applying a short-term-average/long-
172 term-average (STA/LTA) filter to the envelope of the acoustic data in the 35-45 Hz band.
173 We choose this frequency band since it is where the glitches have the highest signal-to-
174 noise ratio (SNR), with other forms of acoustic signals (e.g., background noise, Bogoslof
175 events) being diminished in this band. Since the Okmok data are sampled at 100 Hz, we
176 are only able to analyze the glitches up to 50 Hz; it is possible the glitches have even better
177 SNR in higher frequency bands. Wind noise is a persistent problem in all frequency bands
178 and, when it is present, detections of the glitches are hindered. For the length of the STA
179 and LTA time windows, testing on individual glitches has shown that 0.5 sec and 2.5 sec,
180 respectively, yield accurate timing since the duration of the glitches is on the order of 1 sec
181 or less. A trigger is declared when the STA/LTA ratio exceeds a particular value for 3 of
182 the 4 elements of the Okmok microphone array, and when there has been no trigger for 1 s
183 previously. In a subsequent quality control step, we also require that trigger have a
184 maximum over a time window from 2 seconds before the trigger to 4 seconds after that

185 occurs within +/-0.4 sec of the trigger time. These last steps result in triggers that are
186 relatively well-recorded and isolated from other triggers. However, there is the possibility
187 that multiple glitches closely spaced in time are filtered out.

188

189 **3. Results**

190 Before discussing volcanic lightning catalogs derived from electromagnetic glitches, we
191 first describe a new observation of volcanic thunder from the Bogoslof eruption that was
192 not discussed in Haney et al. [2018]. This constitutes the third documented instance of
193 volcanic thunder during the Bogoslof eruption, the others occurring on March 8 and June
194 10, 2017 [Haney et al., 2018]. We focus on the eruptive event of May 17, 2017 (Event 39),
195 which was the first activity at Bogoslof following a 2-month-long hiatus. The main portion
196 of the event lasted for over an hour and was clearly recorded on the Okmok microphone
197 array. In Figure 2, we plot several parameters from this event derived from acoustic and
198 lightning data. Panels A though C of Figure 2 show detections from least-squares
199 beamforming in 3 non-overlapping frequency bands: 1-2 Hz, 2-4 Hz, and 4-8 Hz. We plot
200 backazimuth of the detection from the array, with a backazimuth of 0° pointed toward the
201 volcano. Negative backazimuths correspond to locations to the west of Bogoslof, and
202 positive backazimuths indicate eastward locations. Backazimuths of lightning locations
203 from the Vaisala catalog, relative to the Okmok array, are shown in panel D of Figure 2.
204 To simplify the plot, we've only shown backazimuths for lightning strokes with absolute
205 values of peak current greater than 5 kA. We do so in light of the results of Haney et al.
206 [2018], which suggested volcanic thunder should only be measurable at the Okmok array
207 for lightning strokes exceeding that peak current value. Strokes with smaller peak current

208 are not expected to produce measurable volcanic thunder at 60 km range, since lightning
209 peak current has been shown to scale with acoustic power [Assink et al., 2008]. The yellow
210 shaded time periods in panels A-D are from Wech et al. [2018] and indicate when the
211 volcano was inferred to be actively erupting. Finally, panel E of Figure 2 is a spectrogram
212 of the acoustic data from the central element of the array (OK04).

213

214 As seen in Figure 2, the different frequency bands are sensitive to sources with varying
215 backazimuths over the course of the eruptive event. We conclude from panel A that the
216 lowest frequency band from 1-2 Hz is dominated by the volcanic eruption process related
217 to mass ejection at the vent. The time of detections in panel A match closely with the
218 eruption times shaded in yellow from Wech et al. [2018]. In fact, the existence of coherent
219 low frequency infrasound from Bogoslof was the basis for the interpretation of eruption
220 activity by Wech et al. [2018]. Panel B shows that the 2-4 Hz band is sensitive to the same
221 eruptive process as in panel A; however, it is also sensitive to another phenomenon which
222 continues in the 2 time periods after the volcano stops erupting (marked with red arrows in
223 Figure 2). We interpret this pattern as being due to volcanic thunder continuing in the
224 eruption plume after activity has ceased. We base this partly on the patterns observed by
225 Haney et al. [2018], but also on the fact that the backazimuths systematically shift toward
226 the west as indicated by the red arrows. The shift to the west agrees with the backazimuths
227 of lightning strokes relative to the Okmok array in panel D. In particular, note that by 8:00
228 UTC the backazimuths in panels B and D have both deviated from the direction of the
229 volcano by 30°, clearly indicating the signals are not being produced at the volcanic vent.
230 This is a much larger backazimuth deviation than observed for the June 10 event by Haney

231 et al. [2018], which was on the order of 3° . The time moveout of the red arrows in panel B
232 are approximately 2 degrees per minute, which corresponds to a speed of ~ 10 m/s for a
233 source at 60 km range. Panel C shows that in the 4-8 Hz band, volcanic thunder dominates
234 over eruption infrasound, since the same backazimuth patterns for thunder are present as
235 in Panel B. Especially interesting is that the 4-8 Hz detections begin at a time coincident
236 with the onset of lightning detections. This suggests that the primary source of infrasound
237 in this frequency range for Event 39 was from volcanic thunder. Note that such frequency
238 partitioning is not necessarily the same for each eruptive event. As shown by Haney et al.
239 [2018], the June 10, 2017 eruptive event generated significant infrasound in the 4-8 Hz
240 band prior to the onset of lightning due to the eruptive process. The May 17 eruptive event
241 had overall lower frequency content than the June 10 eruption, enabling volcanic thunder
242 to be even more visible in the 4-8 Hz band.

243

244 In Figure 3, we plot spectrograms of the 4 elements of the microphone array during the 15-
245 20 minutes following the cessation of eruptive activity on May 17. This is the time period
246 when the backazimuths of acoustic detections dramatically shifted to the west. The diffuse
247 signals between 0-20 Hz during the time period from 7:55-8:00 UTC are excellent
248 examples of individual volcanic thunder claps. However, there are impulsive broadband
249 signals during this time period, three of which are indicated by arrows in Figure 3. We
250 interpret these as the electromagnetic pulses, or glitches, due to volcanic lightning strokes,
251 similar to the ones reported by Anderson et al. [2018]. Prior to 7:55 UTC in Figure 3, there
252 are a multitude of these glitches and they only become easily individually identifiable in
253 the plot after 7:55 UTC. A couple basic properties of the glitches are apparent in Figure 3.

254 First, although the glitches are broadband, they have a particularly high signal-to-noise
255 ratio in the 35-45 Hz band. In this high frequency band, other signals are comparatively
256 absent. Secondly, the glitches show up most clearly on element OK01, less clearly on
257 elements OK02 and OK03, and are not even discernable on element OK04.

258

259 This pattern of relative amplitudes among the 4 elements of the array was observed for
260 glitches throughout the Bogoslof eruption and has a simple explanation based on the
261 geometry of the Okmok microphone array, as shown in Figure 4. Volcanic lightning mostly
262 occurred to the north of the array, in the vicinity of Bogoslof [Van Eaton et al., this issue].
263 The northerly origin of the lightning maximizes the apparent distance of the cable run from
264 the digitizer (closely located to central element OK04) to OK01 in the direction of the
265 lightning. The longer apparent distance from OK01-OK04 translates into a larger voltage
266 drop across the ends of the cable, induced by the electromagnetic pulse of the lightning,
267 than the voltages induced on the shorter apparent distances of the OK02-OK04 and OK03-
268 OK04 cable runs. Since OK04 is itself virtually co-located with the digitizer, negligible
269 voltage is induced. From the geometry of the array, we can estimate that the induced
270 voltage on element OK01 should be approximately twice the induced voltages on OK02
271 and OK03. Shown in the inset of Figure 4 is an example of a single electromagnetic glitch
272 on all four elements during the June 10, 2017 eruption. Indeed, in agreement with the
273 estimate, the amplitude of the glitch on OK01 is about two times larger than on OK02 and
274 OK03. No glitch is evident on element OK04. These patterns suggest a controlling factor
275 of the glitch amplitude was the projection of the cable run in the direction of the lightning
276 stroke, an idea also invoked by McNutt and Davis [2000] to explain glitches in seismic

277 data during the 1992 eruption of Mount Spurr.

278

279 Here we exploit the occurrence and pattern of glitches for the bulk processing of the 4
280 Okmok array elements over the entire 8-month-long Bogoslof eruption sequence, with the
281 goal of defining a lightning catalog for Bogoslof based on glitches. To detect the glitches,
282 we use the STA/LTA approach discussed previously and widely used in producing event
283 triggers and automatically picking first breaks in seismic data processing. We apply the
284 algorithm to envelopes of 35-45 Hz bandpassed acoustic data on the Okmok array. We
285 have computed 2 different catalogs: one requiring an STA/LTA ratio of 2.8 to trigger,
286 called Glitch Catalog A, and the other using a lower value of 2.3 for the ratio, called Glitch
287 Catalog B. The value of 2.3 is the same as used in standard real-time processing of seismic
288 data at AVO [Dixon et al., 2012] and will generally yield more detections than the value
289 of 2.8. A detail is that the STA/LTA algorithm we employ also requires a quiet time before
290 a trigger (1 second), and so in some rare cases the use of a lower STA/LTA triggering ratio
291 can result in a new trigger being generated immediately before a trigger obtained with a
292 higher ratio, thereby arresting the later trigger. However, in general, lower values of
293 STA/LTA ratio result in more triggers. The tradeoff in the two catalogs is that Glitch
294 Catalog A, which uses the ratio of 2.8, has fewer false detections. Glitch Catalog B, with a
295 ratio of 2.3, detects more glitches and is preferable for retrospective data analysis, but
296 results in more false detections (i.e., false alarms). Thus, the STA/LTA ratio used in Glitch
297 Catalog A would likely be better suited for real-time implementation, when false alarms
298 are a greater concern. We discuss and analyze both catalogs in the remainder of this section.

299

300 The application of the STA/LTA detector over the entire Bogoslof eruption results in 514
301 triggers for Glitch Catalog A and 1309 triggers for Glitch Catalog B. Of the 514 and 1309
302 raw triggers for the two catalogs, 399 and 814 triggers, respectively, occur during time
303 periods of volcanic lightning already known from the existing WWLLN and Vaisala
304 catalogs. As a result, we conclude these are true detections. We define these time windows
305 for each of the 31 Bogoslof events with WWLLN or Vaisala lightning based on the first
306 and the last strokes from the combined WWLLN/Vaisala catalog. However, for Glitch
307 Catalog A, we have examined the raw triggers that occurred outside of these time windows
308 and find that 23 of the remaining 115(=514-399) triggers are in fact new volcanic lightning
309 strokes not represented in the WWLLN/Vaisala catalogs. For Glitch Catalog B, we find
310 that 48 of the remaining 451(=1309-814) triggers are new volcanic lightning strokes. We
311 discuss some of these new strokes later in this section. In fact, 4 of the new strokes occurred
312 during an eruptive event for which no strokes were previously known to exist in the
313 WWLLN or Vaisala catalogs (Event 56 on July 2, 2017). Thus, Glitch Catalog A finally
314 consists of 422 total volcanic lightning strokes (422/518 or 81% detection success rate),
315 and Glitch Catalog B consists of 862 (862/1309 or 66% detection success rate). Table 1
316 gives a summary of the number of detections for both catalogs over all Bogoslof events
317 with glitches.

318

319 The remaining glitch triggers are false detections insofar as we cannot unequivocally
320 associate them with instances of volcanic lightning. Many of them are related to
321 meteorological lightning that occurred over the course of the 8-month-long eruption.
322 Meteorological lightning is rare in the Aleutian Islands compared to other regions;

323 however, a significant meteorological lightning storm occurred in the Aleutians on July 16
324 and 17, 2017 and contributed many of the false detections. A small amount of
325 meteorological lightning occurred at a low background rate throughout the 8 months as
326 well. We hold off on addressing the possibility of filtering out these detections of
327 meteorological lightning for future work.

328

329 In Figure 5, we plot envelopes all 422 glitch detections comprising Glitch Catalog A in a
330 6 second time window around the glitch (2 seconds pre-trigger and 4 seconds post-trigger).
331 By taking the mean over all the glitches, we obtain the average envelopes shown in Figure
332 6. The average envelopes bear out the relative amplitude pattern discussed previously;
333 namely, that glitches on element OK01 are on average larger than OK02 and OK03, and
334 that glitches barely exist on OK04. Note that the amplitude on element OK02 is slightly
335 larger than OK03 in Figure 6. This may be due to the average backazimuth of volcanic
336 lighting over the entire eruption coming from the direction of Bogoslof, which is roughly
337 8 degrees west of north. The overall preference for incident azimuths coming slightly from
338 the west increases the apparent distance along the OK02 cable run relative to OK03,
339 thereby increasing the average glitch amplitude. Also note that the glitch amplitude on
340 OK01, being close to 200 counts, corresponds to an induced voltage of approximately 0.5
341 mV given the digital conversion of the Q330 digitizer at the Okmok array of 419430
342 counts/V. We note this value but do not currently have a model to explain the coupling of
343 the propagating electromagnetic wave from the lightning stroke with the induced voltage.

344

345 Shown in Figure 7 are time histories of glitch peak amplitude for two of the Bogoslof
346 events, using Glitch Catalog B. In panels A and B, glitch detections are plotted for the
347 January 31, 2017 eruption (Event 29) and May 17, 2017 eruption (Event 39), respectively.
348 The yellow shaded areas are the time windows determined from the first and last volcanic
349 lightning strokes in the combined WWLLN/Vaisala catalog. Several new strokes are
350 detected before the WWLLN/Vaisala time window for the May 17 event. No such early
351 strokes are found for the January 31 event; however, the glitch catalog includes several
352 strokes prior to 8:00 UTC which were not detected by WWLLN.

353

354 Given the detection times in Glitch Catalog A and Glitch Catalog B, we have attempted to
355 associate the glitches with individual strokes in the Vaisala catalog. To do so, we find the
356 closest origin time of a Vaisala stroke to a glitch detection and associate them if they are
357 within 1 second of each other. In this fashion, 286 of the 422 detections in Glitch Catalog
358 A can be associated with individual Vaisala strokes. Similarly, 528 of the 862 detections
359 in Glitch Catalog B can be associated. In Figure 8A, we have plotted the time difference
360 between the Vaisala origin time and the glitch detection time for the associated strokes in
361 Glitch Catalog B. On average, the difference is observed to be a small time delay on the
362 order 0.1 seconds. We interpret this time delay as due to the time it takes for the STA/LTA
363 filter to be activated once encountering a glitch. In Figure 8B, we show normalized
364 histograms of Vaisala-computed peak currents for the Vaisala strokes associated with
365 Glitch Catalogs A and B, as well as for all the Vaisala strokes. The associated strokes are
366 observed to be enriched in higher peak currents, suggesting that the glitches tend to be from
367 strokes with higher peak current. This dependence is further explored in Figure 9, which

368 shows linear regressions on a log-log plot between glitch amplitude on all 4 array elements
369 and peak current for the associated strokes in Glitch Catalog A. The regressions show a
370 weak dependence between glitch amplitude and peak current for elements OK01, OK02,
371 and OK03, although the scatter means other factors must play a role in determining the
372 glitch amplitude as well.

373

374 We show details of previously unknown volcanic lightning strokes in Figures 10 and 11
375 for the June 10 and July 2, 2017 eruptions. Panel A of Figure 10 depicts a known volcanic
376 lightning stroke that occurred at approximately 13:12 UTC on June 10. Volcanic thunder
377 arrives about 3 minutes later due to the 60 km range from Bogoslof, shortly after 13:15
378 UTC. Note that the signal prior to the glitch in Figure 10A is volcanic thunder from an
379 earlier stroke not shown in the plot. In panels B, C, and D of Figure 10, we show new
380 strokes found from glitch detections at 11:14, 11:44, and 13:25 UTC. Each of these strokes
381 is followed by volcanic thunder about 3 minutes later, further confirming that the glitches
382 are produced by volcanic lightning. The 11:14 UTC stroke is particularly notable since it
383 occurs over an hour before the first WWLLN or Vaisala stroke for this event. Data from
384 lightning sensors in Dutch Harbor and Adak indicates the 11:14 UTC stroke was intra-
385 cloud, not cloud-to-ground. Although both the 11:14 and 11:44 UTC strokes occurred
386 before the strongest phase of the June 10 event, note that unrest for the event started at 9:58
387 UTC, over an hour before the 11:14 UTC stroke. Figure 11 shows 4 glitch detections for
388 the July 2, 2017 eruption, an event for which there were no detected strokes by WWLLN
389 or Vaisala. Infrasound propagation between Bogoslof and the Okmok array was poor for
390 this event, so we also plot the Okmok seismic station OKER to illustrate the strongest

391 portion of the eruptive event. Although the first detection appears to occur near the
392 beginning of the event, Tepp and Haney [this issue] discuss the fact that subtle precursors
393 had been ongoing for about an hour before the first glitch detection.

394

395 In Figures 12 and 13, we give details of signals observed on the hydrophone at Bogoslof
396 (Figure 1) that coincide with volcanic lightning strokes during the June 10, 2017 eruptive
397 event. Figure 12 shows a high frequency (50-300 Hz) hydroacoustic signal associated with
398 the new stroke detected in the glitch catalogs at 11:14 UTC. The signal is clearly associated
399 with the lightning stroke since no other similar signals are observed during the half-hour
400 around the time of 11:14 UTC. Previously, hydroacoustic signals associated with lightning
401 have been reported in the Gulf of Mexico [Arnold et al., 1984; Hill, 1985] and interpreted
402 as due to lightning striking the ocean surface. We find an alternative explanation for the
403 lightning-related hydroacoustic signals at Bogoslof: that the sound wave from thunder
404 generated in the atmosphere undergoes acoustic reflection/transmission at the air-ocean
405 interface and then propagates to the hydrophone. We base this inference on a few
406 observations. The first is that the hydroacoustic wave is typically delayed by approximately
407 10 seconds relative to the electromagnetic glitch on the Okmok array, as shown in Figure
408 13 for the stroke at 13:12 UTC on June 10, 2017. A delay of 10 seconds, if the
409 hydroacoustic wave is excited by a lightning strike to the ocean surface, would correspond
410 to a travel distance of 15 km in the ocean. Taking into account the WWLLN and Vaisala
411 lightning locations, which consistently place the 13:12 UTC stroke to the northeast of the
412 volcano and close to the hydrophone, the distance (15 km) corresponding to a 10 s delay is
413 too far from the hydrophone to correspond to a lightning strike on the ocean surface.

414 Secondly, as mentioned previously, data from a lightning sensors in Dutch Harbor and
415 Adak indicate that the 11:14 UTC stroke was intra-cloud, not cloud-to-ground. Therefore,
416 the hypothesis of a lightning strike to the ocean surface does not apply to the 11:14 UTC
417 stroke, which clearly produced a signal associated with lightning (Figure 12). Finally, it is
418 worth noting that the transmission coefficient of a pressure wave passing from air into
419 water at normal incidence is 2 [Brekhovskikh, 1980; p. 11]. Thus, a pressure wave is in
420 fact amplified during acoustic transmission from air into water. This is in contrast to the
421 transmission coefficient from water into air, which is close to zero at normal incidence.

422

423 Given these considerations, our preferred interpretation of the hydroacoustic signals is that
424 they are simply underwater recordings of high frequency volcanic thunder in the near
425 source region. The 10 second delay time can be explained by the thunder source being
426 distributed at an altitude of a few kilometers. Additional delay on the order of 1-2 seconds
427 can then be accommodated by propagation within the ocean from the surface to the
428 hydrophone, which was located at 231 m depth.

429

430 **4. Discussion**

431 The glitch-based catalogs we have developed have both advantages and disadvantages
432 when compared to the WWLLN and Vaisala catalogs. Overall, the glitch catalogs, both A
433 and B, have a similar detection rate as WWLLN. Simply in terms of the total number of
434 detected volcanic lightning strokes during the eruption, WWLLN (670) falls in between
435 Glitch Catalog A (422) and Glitch Catalog B (862). As seen in Table 1, many of the events
436 with the largest number of strokes are similar between the catalogs. However, note that

437 several eruptive events not displayed in Table 1 had WWLLN strokes but zero glitch
438 detections and that those events tended to occur during the winter, in December 2016 and
439 January 2017. For some of those events, telemetry for the Okmok microphone array was
440 down and data were not received. However, there were several events without detected
441 glitches in the winter even when the data were transmitted successfully. This leads to the
442 observation that the glitch catalogs performed better during the summer while the global
443 catalogs, both WWLLN and Vaisala, detected more strokes during the winter. One example
444 of this is that the glitch catalogs detected strokes for the July 2, 2017 event (Figure 11)
445 which went undetected by both WWLLN and Vaisala. We attribute this seasonal
446 dependence to the higher level of storm and wind noise on the acoustic channels during the
447 winter, which inhibits the STA/LTA detection. Future work is warranted on better glitch
448 detector algorithms than the STA/LTA approach we have utilized in this study. Anderson
449 et al. [2018] have suggested the use of a median filter, a type of nonlinear signal processing
450 that can be used to both accentuate and suppress short-duration, impulsive signals.

451

452 Our detection of volcanic thunder for the May 17, 2017 eruption (Event 39) shown in
453 Figure 2 brings the total number of Bogoslof events with documented volcanic thunder to
454 three, including the previously reported observations for the March 8 (Event 37) and June
455 10 (Event 48) eruptions by Haney et al. [2018]. The time frame between March 8 and June
456 10 appears to have been optimal for volcanic thunder observations, reflecting a tradeoff
457 between more lightning occurring in the winter and early spring [Van Eaton et al., this
458 issue] versus better acoustic propagation and lower wind noise in the late spring into
459 summer. A notable exception to this was Event 40 on May 28, 2017, which produced a

460 sizable number of lightning detections in all the catalogs. However, lower level winds at
461 Bogoslof during Event 40 were directed toward the northwest, away from Okmok, which
462 hindered acoustic propagation.

463

464 Besides the Okmok microphone array, we have looked into whether glitches appeared on
465 other regional microphone arrays and seismic stations. The two closest microphone arrays
466 to Bogoslof, after the one at Okmok, are located near Cleveland and Akutan volcanoes.
467 However, those arrays are sampled at a lower rate (50 Hz) than the Okmok array, which
468 detracts from glitch detection and observations of high frequency thunder signals. It may
469 also be that those arrays do not have good line-of-sight views of Bogoslof and the lower
470 atmosphere above the volcano. In contrast, Bogoslof Volcano can be seen visually from
471 the Okmok microphone array in clear viewing conditions. Regarding seismic data streams,
472 we have detected glitches from the network located at Okmok, similar to the observations
473 at Mt. Spurr by McNutt and Davis [2000]. However, the glitches appear mostly on analog
474 short-period stations, which can have a complicated telemetry path prior to digitization.
475 Thus whether the glitches are occurring at the seismic station or at its radio repeater isn't
476 straightforward to establish. Moreover, the cabling details (e.g., cable orientation and
477 length) are not known for the seismic stations as they are for the Okmok microphone array.
478 This is on account of the array requiring such geometrical information to be known for
479 array processing, in contrast to single seismic stations. In any case, a future investigation
480 of glitches in seismic data streams is warranted despite these additional complexities.

481

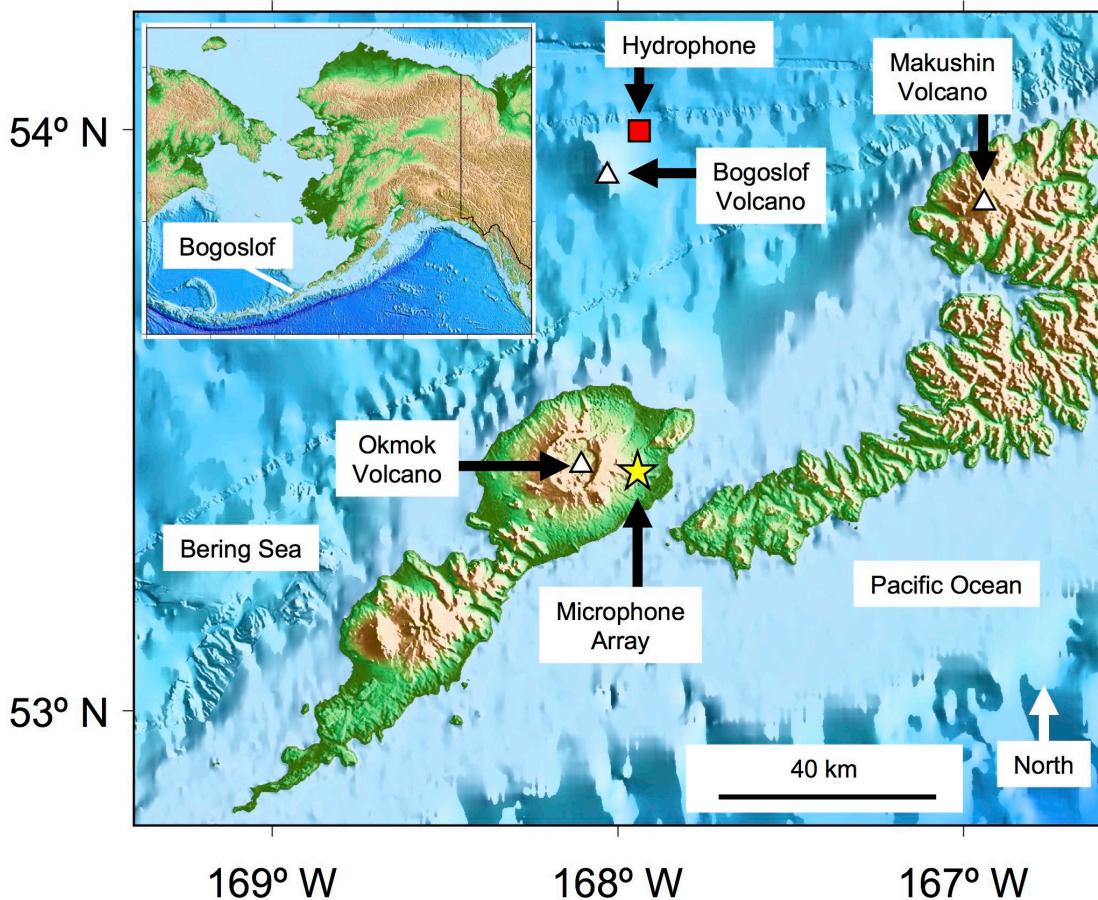
482 **5. Conclusion**

483 We have investigated the signature of volcanic lightning in ground-based, geophysical data
484 streams during the 2016-17 Bogoslof eruption. The eruption was a prolific producer of
485 volcanic lightning over the course of its 8-month-long duration, and a microphone array
486 located at 60 km range enabled the observation of volcanic thunder and electromagnetic
487 pulses, or glitches, produced by volcanic lightning. We developed two new catalogs based
488 on the properties of glitches and found several new strokes which went undetected by the
489 WWLLN and Vaisala catalogs. We further investigated lightning-associated signals on a
490 moored hydrophone located on the northeast slope of Bogoslof. Taken together, these
491 observations give a more complete picture of electrical activity during the 2016-17
492 Bogoslof eruption. These findings should be helpful for diagnosing the occurrence of
493 volcanic lightning in real-time, ground-based geophysical data streams during eruptions
494 monitored by volcano observatories.

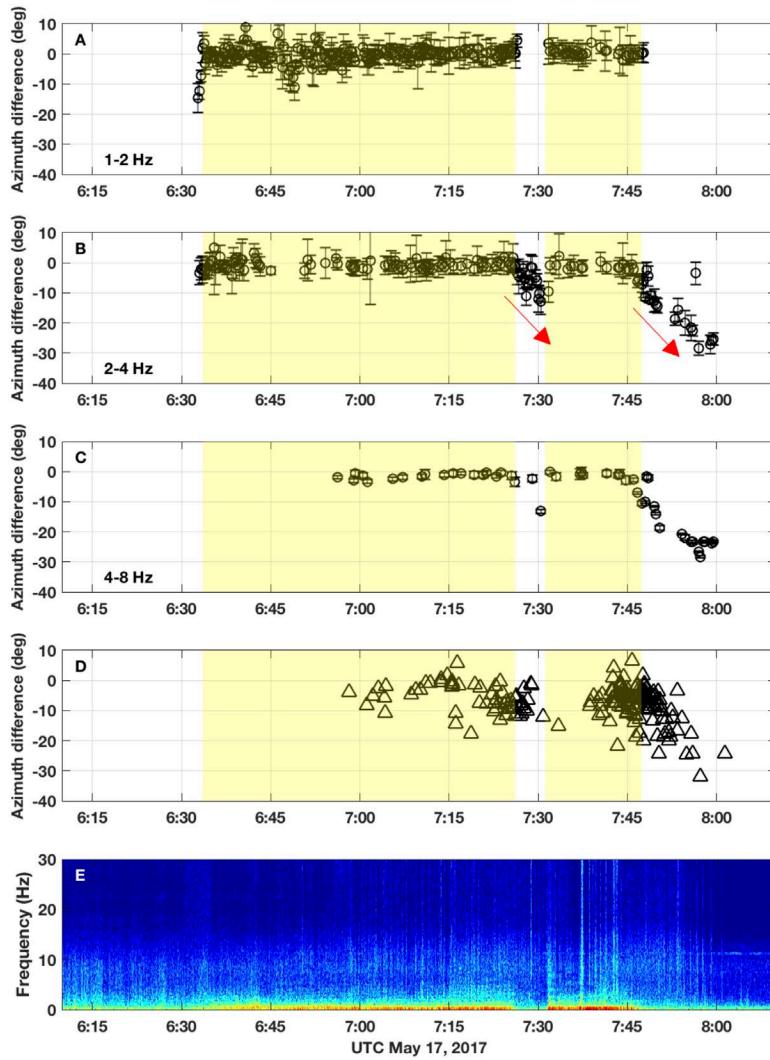
495

496

497 **Table 1: Eruptive events with glitch-detected strokes compared to WWLLN catalog.**

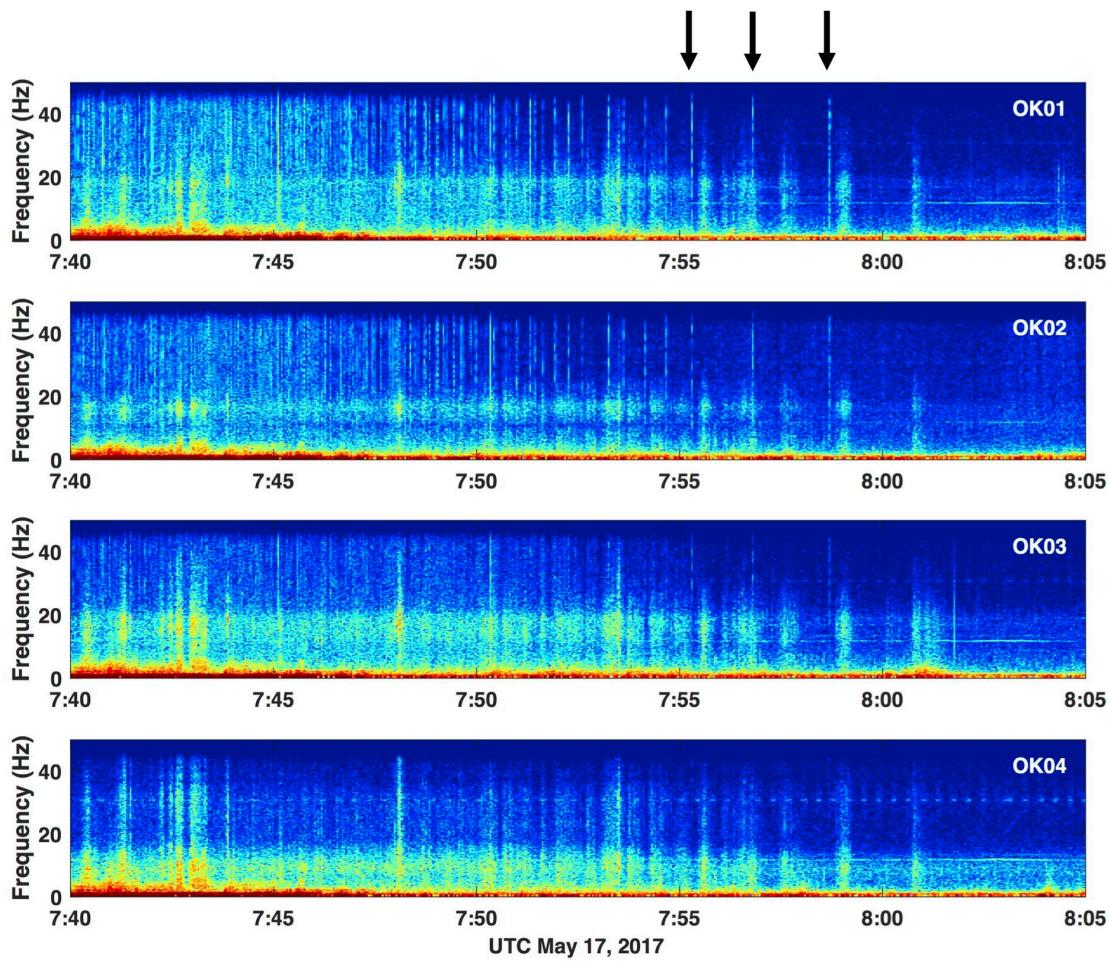

498 Number of glitch-detected strokes are given for Glitch Catalog A along with the

499 number from Glitch Catalog B in parenthesis.


Date of eruptive event	Glitch-detected strokes	WWLLN strokes
March 8, 2017 (Event 37)	100 (220)	200
May 17, 2017 (Event 39)	73 (135)	39
January 31, 2017 (Event 29)	49 (95)	54
August 7, 2017 (Event 63)	49 (89)	4
May 28, 2017 (Event 40)	39 (87)	66
February 17, 2017 (Event 33)	32 (62)	35
June 10, 2017 (Event 48)	25 (46)	7
December 22, 2016 (Event 7)	16 (34)	60
January 24, 2017 (Event 26)	13 (25)	13
January 27, 2017 (Event 28)	6 (10)	1
July 2, 2017 (Event 56)	4 (4)	0
January 15, 2017 (Event 20)	3 (5)	3
December 16, 2016 (Event 4)	2 (4)	6
January 4, 2017 (Event 15)	2 (13)	11
January 26, 2017 (Event 27)	2 (5)	7
February 20, 2017 (Event 36)	2 (5)	2
August 27, 2017 (Event 66)	2 (6)	0
January 9, 2017 (Event 17)	1 (7)	20
January 20, 2017 (Event 24)	1 (0)	1
June 13, 2017 (Event 49)	1 (2)	0
June 27, 2017 (Event 54)	0 (6)	2
February 18, 2017 (Event 35)	0 (2)	13

500

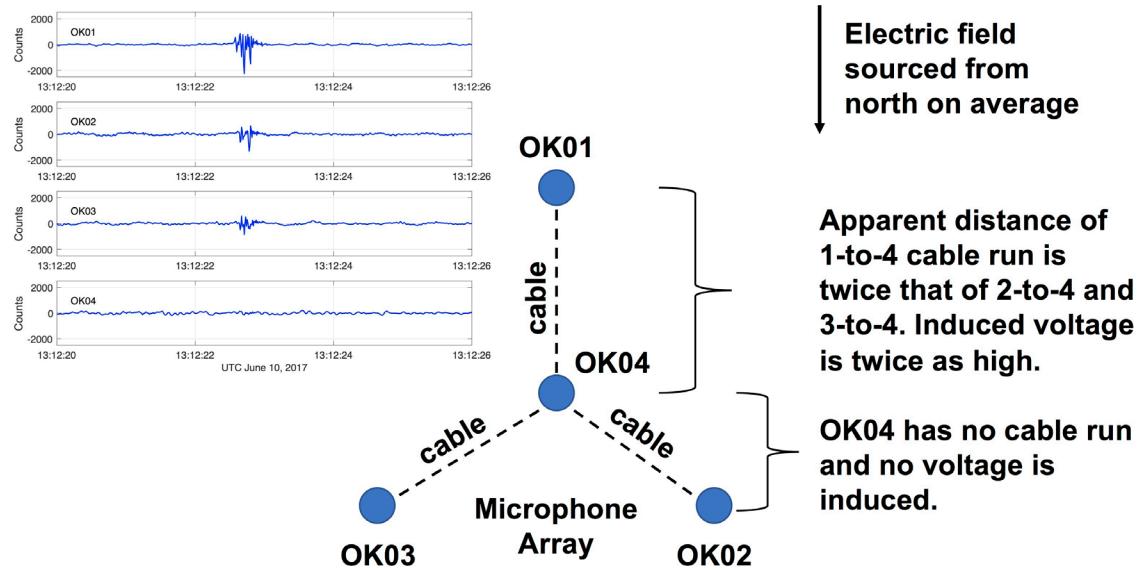
501



505 Figure 1: Regional map of Bogoslof Volcano and neighboring islands with inset showing
 506 the location of Bogoslof in the Alaska region. The microphone array located on the
 507 eastern slope of Okmok Volcano is indicated with a yellow star. A red square shows the
 508 location of a moored hydrophone 7 km northeast of Bogoslof.

514 Figure 2: Measurements from the May 17, 2017 eruptive event, indicating the occurrence
 515 of volcanic thunder. Panels A-C depict backazimuths of detections on the Okmok
 516 microphone array in 1-2, 2-4, and 4-8 Hz bands. Panel D shows backazimuths relative to
 517 the Okmok microphone array of Vaisala lightning locations with peak current greater than
 518 5 kA. In Panels A-D, a backazimuth of 0° points at Bogoslof. Yellow regions in panels A-
 519 D are times of eruptive activity from *Wech et al. [2018]*. Red arrows in Panel B show
 520 moveout of volcanic thunder signals. The lightning origin times are delayed by their
 521 Vaisala location assuming a nominal acoustic speed of 335 m/s. Panel E is a spectrogram
 522 of acoustic data from the central element of the array.

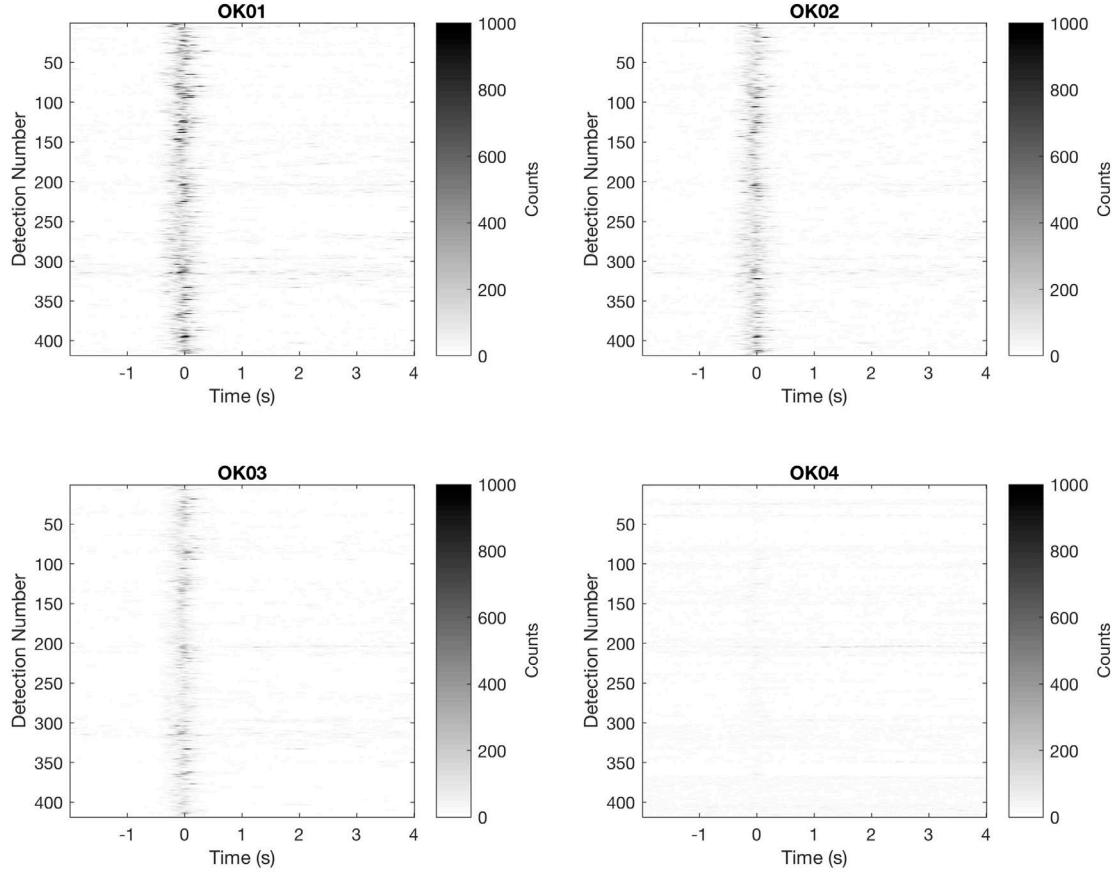
524



525

526 Figure 3: Waning portion of the May 17, 2017 eruptive event showing broadband
527 glitches on elements 1-3 of the microphone array. The three final electromagnetic pulses from
528 lightning, or glitches, are indicated with arrows.

529


530

532
533
534
535
536
537
538
539

Figure 4: Schematic of the Okmok microphone array and representative glitch signal from eruptive event on June 10, 2017. Text within the figure provides a first-order explanation for the relative amplitudes of the glitches on the 4 elements of the microphone array.

540
541

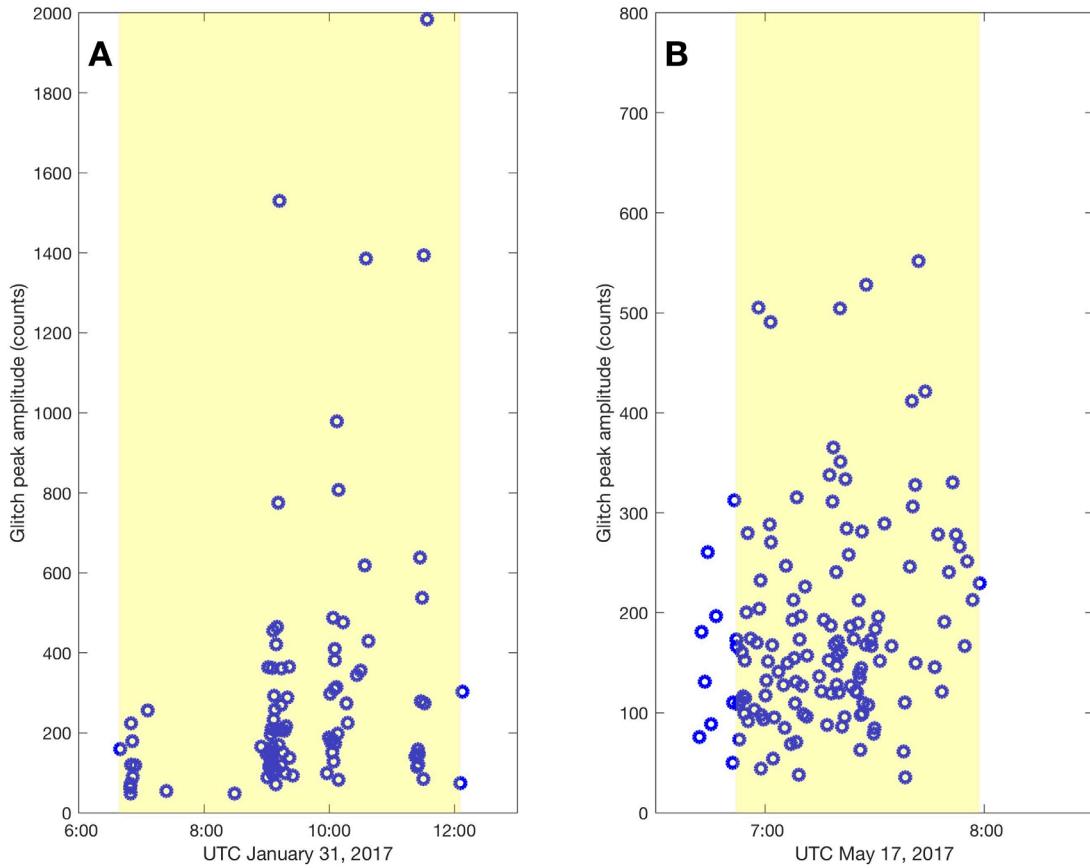
542

543

544 Figure 5: Glitch detections on the Okmok microphone array over a time period covering
545 the entire eruption from December 1, 2016 to September 1, 2017. Envelopes of 35-45 Hz
546 bandpassed acoustic data are plotted with time relative to the glitch envelope's peak. As
547 seen in Figure 4, the glitches are strongest on element OK01 and virtually nonexistent on
548 element OK04.

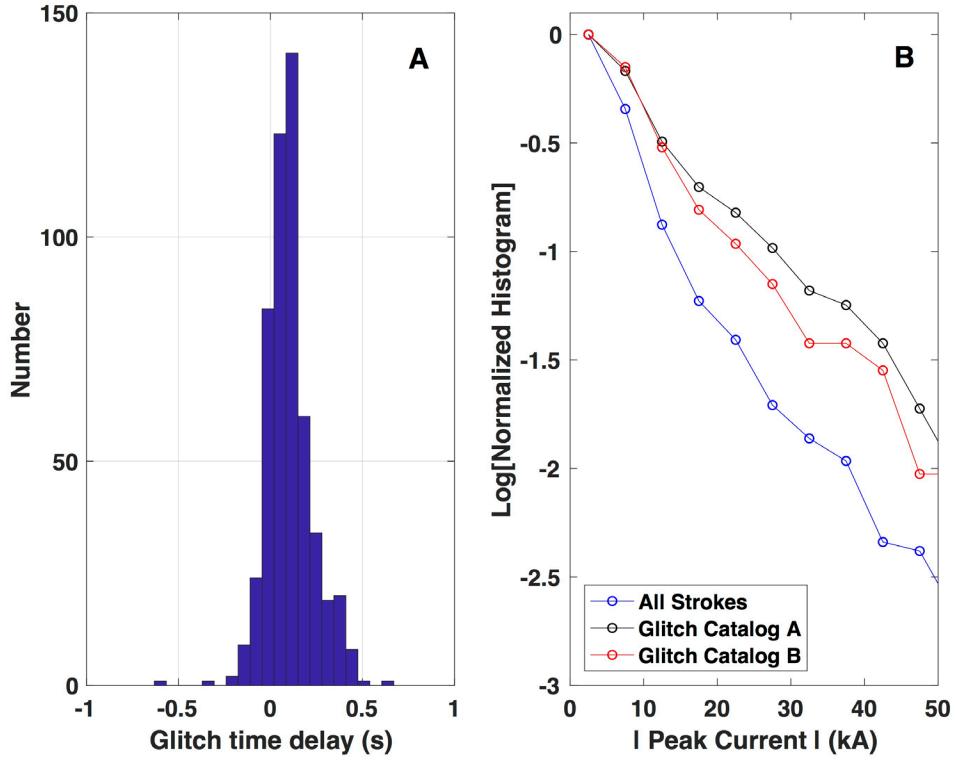
549

550

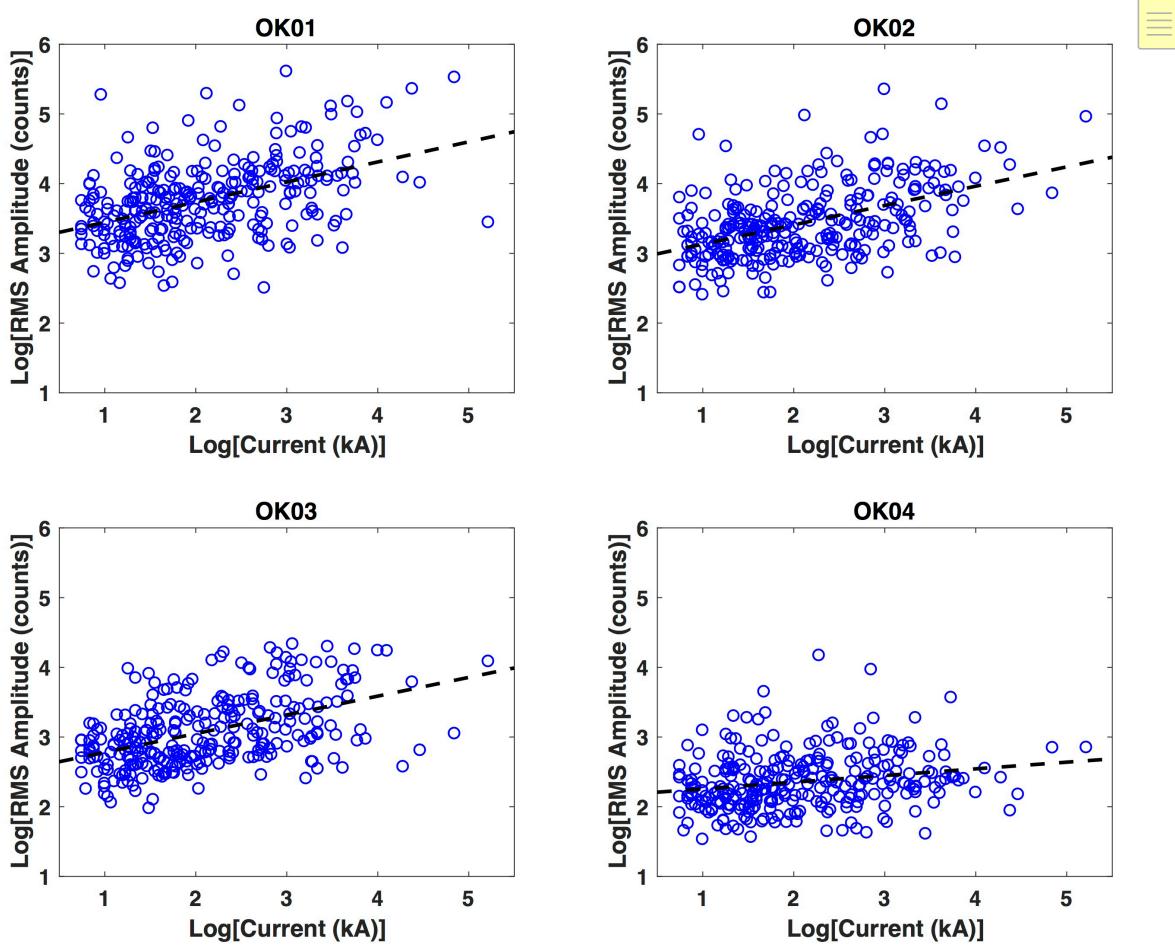

551

552
553

554
555
556 Figure 6: Average envelopes of the glitch detections shown in Fig. 5 for each of the 4
557 elements of the Okmok microphone array. The glitch envelope on OK01 is on average
558 approximately twice as large as on OK02 and OK03.
559

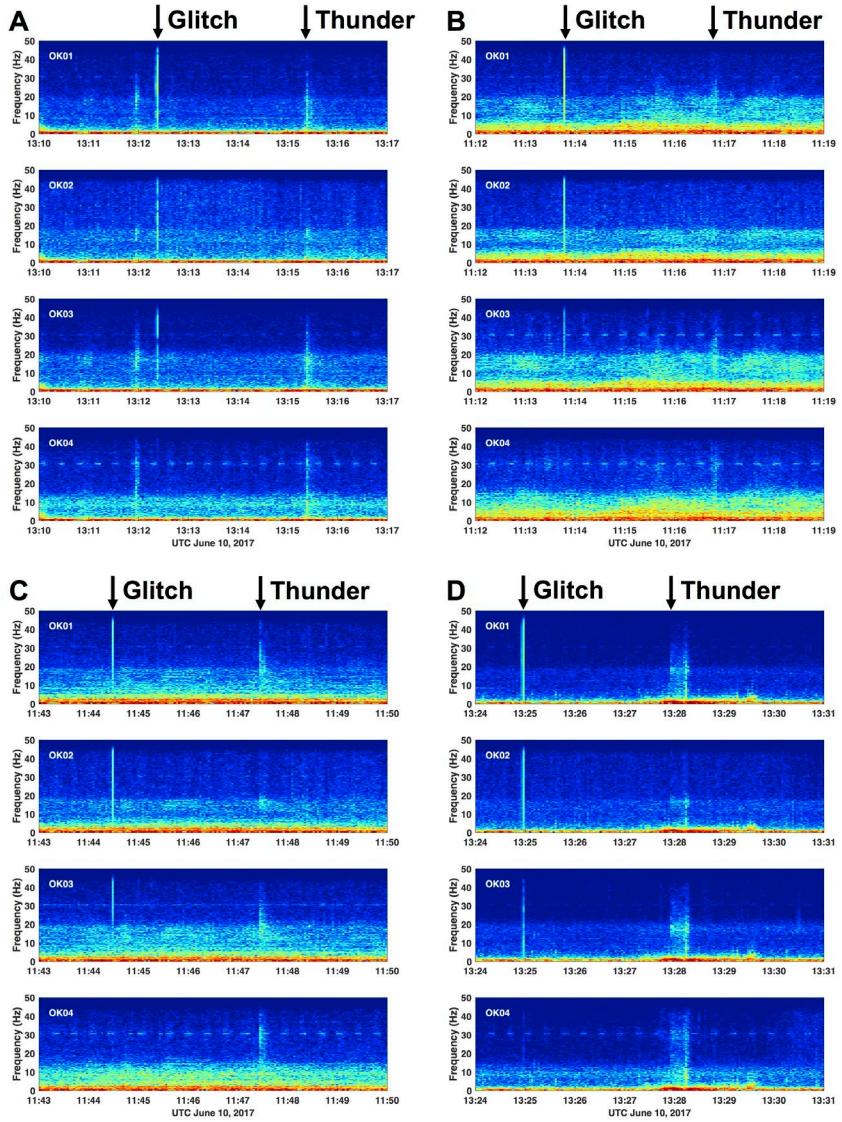

560
561

562
563 Figure 7: Peak amplitude of glitch detections versus time for two explosive eruptions of
564 Bogoslof on January 31 (Event 29) and May 17 (Event 39), 2017. The glitch peak
565 amplitude on OK01 is plotted on the y-axis, although panels A and B are at different
566 scales. The time between the first and last stroke detected from a combined
567 WWLLN/Vaisala catalog is shaded in yellow. Note that the glitches detected lightning
568 prior to 8:00 UTC during Event 29, which were not detected by WWLLN. The glitches
569 detected several strokes on May 17 in the minutes before the initial stroke in the
570 combined WWLLN/Vaisala catalog.

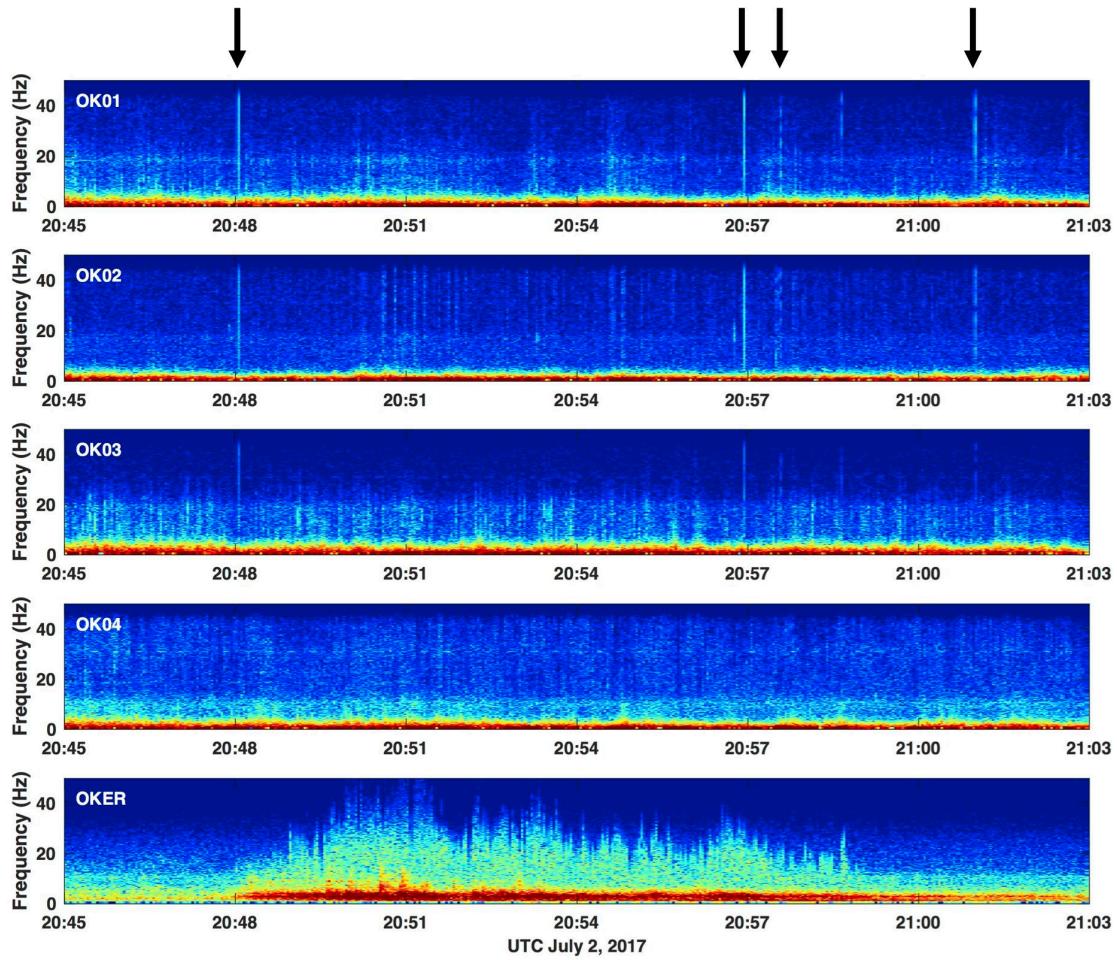

571
572

573
574

575
576 Figure 8: (A) Time delay between glitch detections and their association in the Vaisala
577 catalog. The overall small, positive delay time is the result of the filtering action of the
578 STA/LTA filter and shows the precision of the relative times between the glitches and the
579 Vaisala catalog. (B) Logarithmic plot of normalized histograms versus peak current for
580 the entire Vaisala catalog (blue), the subset of the catalog associated with Glitch Catalog
581 A (black), and Glitch Catalog B (red). The normalized histogram from the glitch-
582 associated strokes is seen to be enriched in higher peak current strokes compared to the
583 entire catalog, suggesting that the strokes detected by the glitches are preferentially
584 stronger than the ones that were not detected. This effect also explains why Glitch
585 Catalog A is more enriched in higher peak current strokes than Glitch Catalog B.
586


587
588
589

590
591


592 Figure 9: Logarithmic regression of the root-mean-square glitch amplitude versus the
593 Vaisala peak current. A weak positive correlation exists on OK01, OK02, and OK03,
594 with a power law exponent of approximately 0.25. Element OK04 has less, if any,
595 dependence since it is not as susceptible to the voltages induced by the lightning
596 discharge. This is further evidence, in addition to Figure 8B, that the strength of the
597 lightning stroke has an general effect on the amplitude of the electromagnetic glitch,
598 although other factors may exist.

599

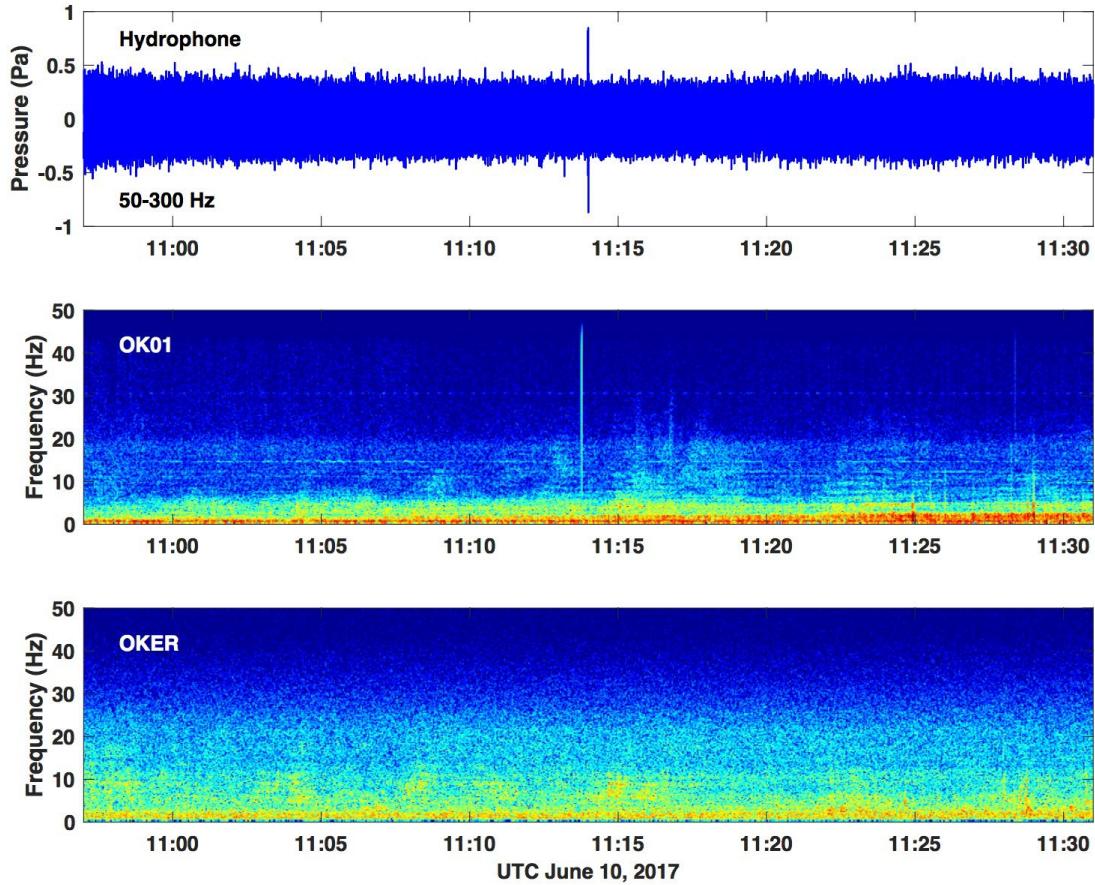
603 Figure 10: Examples of glitches and associated thunder signals during the June 10, 2017
 604 eruptive event. Panel A shows a glitch from a known stroke in the WWLLN/Vaisala
 605 catalogs at approximately 13:12:15 UTC. Panels B-D show new strokes detected with
 606 glitches that do not exist in the WWLLN/Vaisala catalogs. In all panels, volcanic thunder
 607 is observed to arrive roughly 3 minutes after the glitch, further confirming the new
 608 detections in panels B-D. In panel A, volcanic thunder from a stroke prior to the time
 609 window arrives before the glitch.

611

612

613

614 Figure 11: Volcanic lightning detected from glitches during the July 2, 2017 eruption
615 (Event 56). These detections were noteworthy because no strokes exist for this event in
616 the combined WWLLN/Vaisala catalog. Sound propagation from Bogoslof to the Okmok
617 array was poor on July 2 and as a result no eruptive infrasound or volcanic thunder
618 appears in the microphone array data. Okmok seismic station OKER is included at the
619 bottom to indicate times of strong eruptive activity.

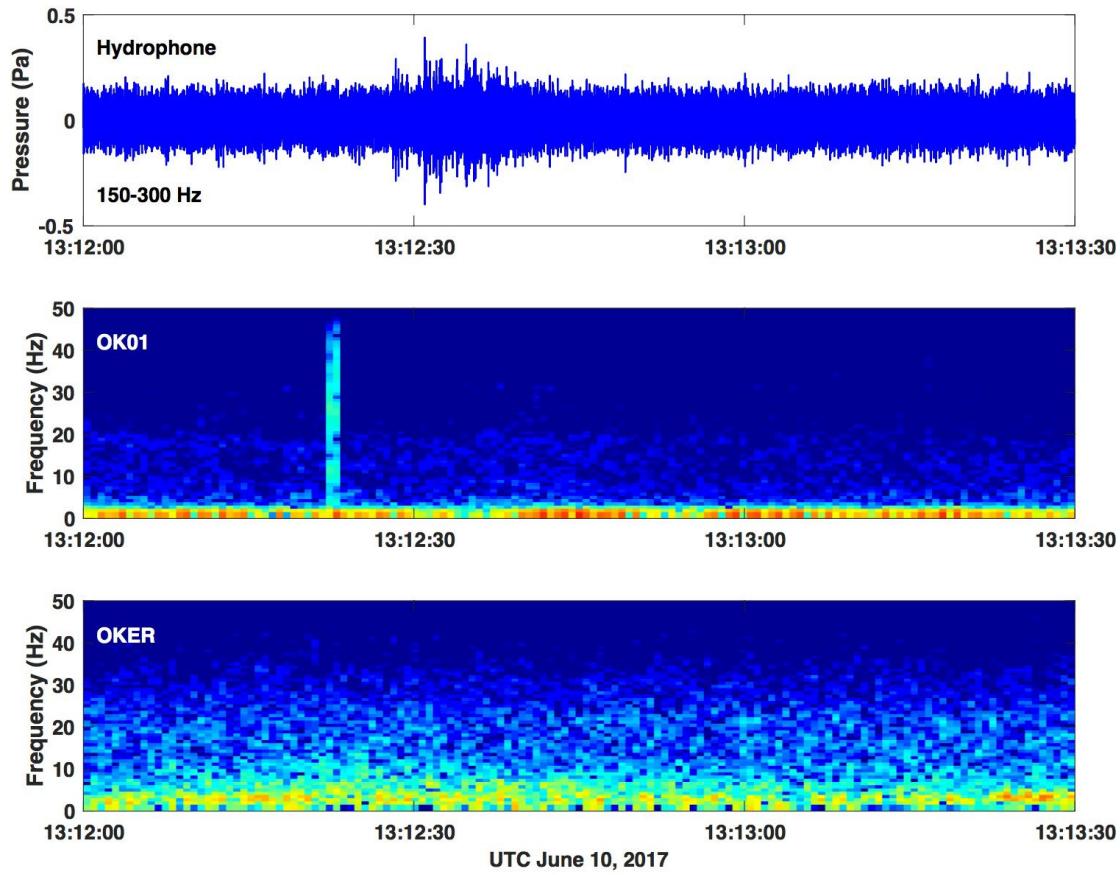

620

621

622

623

624
625



626
627
628

629 Figure 12: Hydroacoustic signal during the June 10, 2017 eruptive event associated with
630 the lightning stroke at approximately 11:14 UTC. The hydroacoustic signal exists in the
631 relatively high frequency band from 50-300 Hz and is clearly associated with the glitch
632 (which it follows by 10 seconds) since no other high amplitude, impulsive hydroacoustic
633 arrivals are observed during the 34-minute time window shown. Okmok seismic station
634 OKER is also displayed to show that no short duration, impulsive signals existed in
635 seismic data.

636
637
638

643 Figure 13: High-frequency (150-300 Hz) hydroacoustic signal following a volcanic
 644 lightning stroke during the June 10, 2017 eruption (Event 48). The hydroacoustic signal
 645 arrives approximately 10 s after the glitch. The glitch occurs within a second of the origin
 646 time of the associated stroke in the WWLLN/Vaisala catalogs. The 10 s time delay is too
 647 long to be explained by direct propagation in the water column from the lightning
 648 location to the hydrophone, and suggests the hydroacoustic signal originates as high
 649 frequency thunder that is acoustically transmitted from the atmosphere into the ocean.

651 **References**

652 Anderson, J. F., Johnson, J. B., Steele, A. L., Ruiz, M. C., and Brand, B. D. (2018). Diverse
653 eruptive activity revealed by acoustic and electromagnetic observations of the 14
654 July 2013 intense Vulcanian eruption of Tungurahua volcano, Ecuador. *Geophys.*
655 *Res. Lett.*, 45, 2976-2985.

656 Arnold, R. T., Bass, H. E., and Atchley, A. A. (1984). Underwater sound from lightning
657 strikes to water in the Gulf of Mexico. *J. Acoust. Soc. Am.*, 76(1), 320-322.

658 Assink, J. D., Evers, L. G., Holleman, I., and Paulssen, H. (2008). Characterization of
659 infrasound from lightning. *Geophys. Res. Lett.*, 35, L15802.

660 Behnke, S. A., and McNutt, S. R. (2014). Using lightning observations as a volcanic
661 eruption monitoring tool. *Bull. Volcanol.*, 76, 847. 10.1007/s00445-014-0847-1

662 Behnke, S. A., and Bruning, E. C. (2015). Changes to the turbulent kinematics of a volcanic
663 plume inferred from lightning data. *Geophys. Res. Lett.*, 42, 4232-4239.

664 Bohnenstiehl, D. R., Dziak, R. P., Matsumoto, H., and Lau, T.-K. A. (2013). Underwater
665 acoustic records from the March 2009 eruption of Hunga Ha'apai-Hunga Tonga
666 volcano in the Kingdom of Tonga. *J. Volcanol. Geotherm. Res.*, 249, 12-24.

667 Brekhovskikh, L. M. (1980). Waves in Layered Media. New York: Academic Press.

668 Campus, P., and Christie, D. (2009). Worldwide observations of infrasonic waves. In A.
669 Le Pichon, E. Blanc, & A. Hauchecorne (Eds.), *Infrasound monitoring for*
670 *atmospheric studies* (pp. 185–234). Netherlands: Springer.

671 Coombs, M. L., Wech, A. G., Haney, M. M., Lyons, J. J., Schneider, D. J., Schwaiger, H.
672 F., Wallace, K. L., Fee, D., Freymueller, J. T., Schaefer, J. R., and Tepp, G. (2018).

673 Short-term forecasting and detection of explosions during the 2016–2017 eruption
674 of Bogoslof volcano, Alaska. *Frontiers in Earth Science*, 6, 122, 17 pp.

675 Coombs, M., Wallace, K., and Cameron, C. (2019). Overview, chronology, and impacts of
676 the 2016-2017 eruption of Bogoslof volcano. *Bull. Volcanol.*, this issue.

677 Dixon, J., Stihler, S., Power, J., Haney, M., Parker, T., Searcy, C., and Prejean, S. (2013).
678 Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through
679 December 31, 2012, U.S. Geol. Surv. Data Ser., 789, 84.

680 Fee, D., Lyons, J., Haney, M., Wech, A., Waythomas, C., Diefenbach, A., Lopez, T., Van
681 Eaton, A., and Schneider, D. (2019) Seismo-acoustic evidence for vent drying
682 during shallow submarine eruptions at Bogoslof volcano, Alaska. *Bull. Volcanol.*,
683 this issue.

684 Haney, M. M., Van Eaton, A. R., Lyons, J. J., Kramer, R. L., Fee, D., and Iezzi, A. M.
685 (2018), Volcanic thunder from explosive eruptions at Bogoslof Volcano, Alaska,
686 *Geophys. Res. Lett.*, 45, 3429-3435.

687 Hill, R. D. (1985), Investigation of lightning strikes to water surfaces, *J. Acoust. Soc. Am.*,
688 78(6), 2096-2099.

689 Hutchins, M. L., Holzworth, R. H., Rodger, C. J., & Brundell, J. B. (2012). Far-field power
690 of lightning strokes as measured by the World Wide Lightning Location Network.
691 *Journal of Atmospheric and Oceanic Technology*, 29, 1102–1110.

692 Iezzi, A. M., Schwaiger, H. F., Fee, D., and Haney, M. M. (2019). Application of an
693 updated atmospheric model to explore volcano infrasound propagation and
694 detection in Alaska. *J. Volcanol. Geotherm. Res.*, 371, 192-205.

695 Johnson, J. B., Arechiga, R. O., Thomas, R. J., Edens, H. E., Anderson, J., and Johnson, R.
696 (2011). Imaging thunder. *Geophys. Res. Lett.*, 38, L19807.

697 Lyons, J., Fee, D., Haney, M., and Iezzi, A. (2019). Infrasound generated by the shallow
698 submarine eruption of Bogoslof volcano, Alaska. *Bull. Volcanol.*, this issue.

699 Mather, T. A. and R. G. Harrison (2006), Electrification of volcanic plumes, *Surv.
700 Geophys.*, 27, 387-432.

701 McNutt, S. R. and C. M. Davis (2000), Lightning associated with the 1992 eruptions of
702 Crater Peak, Mount Spurr Volcano, Alaska, *J. Volcanol. Geotherm. Res.*, 102,
703 45-65.

704 Olson, J. V., & Szuberla, C. A. L. (2005). Distribution of wave packet sizes in microbarom
705 wave trains observed in Alaska. *The Journal of the Acoustical Society of America*,
706 117(3), 1032–1037.

707 Petersen, T., De Angelis, S., Tytgat, G., & McNutt, S. R. (2006). Local infrasound
708 observations of large ash explosions at Augustine Volcano, Alaska, during January
709 11–28, 2006. *Geophysical Research Letters*, 33, L12303.

710 Said, R. K., Inan, U. S., & Cummins, K. L. (2010). Long-range lightning geolocation using
711 a VLF radio atmospheric waveform bank. *Journal of Geophysical Research*, 115,
712 D23108.

713 Schwaiger, H. F., Iezzi, A. M., and Fee, D. (2019a). AVO-G2S: A modified, open-source
714 Ground-to-Space atmospheric specification for infrasound modeling. *Computers
715 and Geosciences*, 125, 90-97.

716 Schwaiger, H., Lyons, J., Iezzi, A., Fee, D., and Haney, M. (2019b). Evolving infrasound

717 detections from Bogoslof volcano, Alaska: insights from forward modelling. *Bull.*
718 *Volcanol.*, this issue.

719 Szuberla, C. A. L., and Olson, J. V. (2004). Uncertainties associated with parameter
720 estimation in atmospheric infrasound arrays. *The Journal of the Acoustical Society*
721 *of America*, 115(1), 253–258.

722 Tepp, G. and Haney, M. (2019). Comparison of Short-term Seismic Precursors and
723 Explosion Parameters during the 2016-2017 Bogoslof Eruption. *Bull. Volcanol.*,
724 this issue.

725 Thomas, R. J., Krehbiel, P. R., Rison, W., Aulich, G., Edens, H., McNutt, S. R., Tytgat, G.,
726 and Clark, E. (2007). Electrical activity during the 2006 Mount St. Augustine
727 volcanic eruptions. *Science*, 315, 1097.

728 Van Eaton, A. R., Amigo, A., Bertin, D., Mastin, L. G., Giacosa, R. E., Gonzalez, J., et al.
729 (2016). Volcanic lightning and plume behavior reveal evolving hazards during the
730 April 2015 eruption of Calbuco volcano, Chile. *Geophysical Research Letters*, 43,
731 3563–3571.

732 Van Eaton, A., Schneider, D. J., Smith, C., Mastin, L., Haney, M., and Lyons, J. (2019).
733 Overview of volcanic lightning at Bogoslof: detection, characteristics and seasonal
734 effects. *Bull. Volcanol.*, this issue.

735 Wech, A., Tepp, G., Lyons, J., and Haney, M. (2018). Using earthquakes, T Waves, and
736 infrasound to investigate the eruption of Bogoslof volcano, Alaska. *Geophysical*
737 *Research Letters*, 45. <https://doi.org/10.1029/2018GL078457>

738