


























of one or more ... o suaassny 11 oa YLvedl vOolume Vv

= exp(-ka(x,t) dx d4dt) (1)

) is the rate of earthquake cccurrcnces at time t
n x (Keilis-Borok et al. 1972). Assuming a
rodel in time then

) = k(x) (2)

J in consideration is completely arbitrary. If
1 the fact that an earthquake occurred in a
lume, then the probability of any other independent
eveur appearing in the same region P(V|E) should be P (V).
1 the other hand, if there is a definite clustering of
rents in time and space then the observed prokability P (V)
suld definitely be larger if the volume contains the given
rent, To determine whether events are occurring independently
' not it is necessary to compare P (V) with its theoretical
.stribution. .Using this approach Keilis-Borok et al. (1972)
‘'oved the interrelatedness of earthquake occurrences.
The volume should be shaped such that it would most
kely include an event related to é given earthquake if one
ists. In this study, the particular volume that was
lected was one that wouid detect both distant related

ents occurring within a short time of the given event and




evernts that occurred considerably later:. The region

ined by the equations

b = mr2tk < o

—

. (4
r <R (4)

< <
0 <t < Tax
and t are the distance and time intervals between
events, k 1s the average seismicity associated with

a and o, Rmax’ and lm were the thresholds chosen

ax

nce. The region is illustrated schematically in
1.
0 determine whether a specific event could be related
arlier event a search was made for all past events
ing all the relations given in (4). 1If such an earlier
ould be found, then the specific event was assumed to
adent. In cases of earthquake swarms or aftershock
2s, it was not uncommon to be able to relate the specific
> several previous events. Using a suitable bookkeeping
ce all the events associated with a specific cluster
rorded.
1e procedure would of course relate independent events
1ally. By applying equation (1) and letting

Q | A

tax = wkR2 ' (5)
max _




s a chosen constant, then the probability of a spurious

etected at any specific point is
JA) = 1 - exp(~a(fn 2 + 1)) (6)
1t is derived in the appendix. In this investigation

. were given the values: o = 0.02, A = 100, and

41 degrees. These yield P(a,ad) = 0.10.

>n to Japan and Southern California Earthauakes

above scheme was applied to two local earthquake
or which data was available over an extensive
time. The two areas were (1) the area covering
2rn end of Hokkaido and the Northern section of
1paﬁ, for the period 1926-1960 and (2) Southern
t 1934-1963. These areas are shoWn in Figures 2a and 2b.
rere obtained from the Japan Meteorological Agency
low éarthquake catalog and the catalog of earthguakes
n Califofnia.
seismic rate k in equation (4) was eétimated from
number of events in rectangular sectors 1° latitude
itude for Northern Japan and 0.5° by 0.5° for
alifornia. (Small changes'in the area of the sectors
sphericity of the earth were neglected.) At any
t the seismic rate k was determined using a bilinear

ion. The k parameter used in equation (4) was that







The = distribution of the actual catalogs definitely

. @eparts from the model of completely independent events. About

30 percent of the events in the JMA catalog and 42 percent of

the events in the catalog of earthgquakes in Southern California

had en s value helow o = 0.02. To climinate the dependent events,

all events that had ans value below a = 0.02 were categorically

rlassified as dependent events and removed from the catalog.

This scheme would eliminate 10 percent of the events in a

ratalog consisting entirely of statistically independent everts.
The Southern California catalog of earthquakes was different

‘rom the JMA catalog in the sense of covering a smaller area

ind reporting events down to magnitude 3. Since the JMA catalog

lid not report many events below magnitude 5 in the 1926-1960 time

veriod, it was less dominated by earthguake swarms and aftershocks.

The statistical properties of the filtered catalog were

ompared with those of the original catalog and with those of

Poisson process. The autocorrelation function C(k) was

valuated using egquation (7)

N-k

J o(n(i) - <n(i)>) (n(i+k) - <n(i+k)>)
i=1

(7)
C(k) =

(N-k) var (n(i))

here n{i) is the number of events in the i th non-overlapping
ime unit (here 0.2 months), <.> denotes the arithmetic mean
nd var (.) denotes the variance of the term in parentheses.

E the Poisson assumptions are satisfied then C(k) for k




1 zero should be normally distributed about zer
ﬁ%E (Box and Jenkins, 1970). The Poisson
srsion defined as the ratio of the variance to
mean of n(i) should be unity.

In Figures 4 and 5 the autoccrrelation functions were
plotted for the original and filtered catalogs in Japan and
California. The removal of the dependent events reduced the
high autocorrelation peaks. The autocorrelation function of
the filtered JMA catalog appears to be generally within the
95 percent statisticél limits indicated, however the auto-
correlation function of the Southern California catalog has
a positive trend which is still apparent in the
second pass. The large peak at 20 months lag (Figure 5) in
the original catalog corresponded to the time interval between
the Kern County earthquake (21 July 1952) and the Santa Rosa
earthquake (19 March 1954) which had many aftershocks.

The greater difficulty in whitening the statistical
roperties of the Southern California catalog can ke explained
y the much more extensive aftershock sequences. For example,
he Kern.County aftershock sequence beginning July 1952
xtended over 40 months in the catalogl In Figure 6, the
iamber of earthquakes per month in the vicinity of the Manix
ault, (34.0-35.0N, 116.5-117.0W) California was plotted for
1e original and filtered catalogs. The aftershock sequences

> the earthquake 10 July 1947 are very prominent in the original










the main shock would fail to detect that cluster. Instances
of magnitude 5.0 earthquakes occurring with_two or less after-
shocks were not found to be exceptional in the California
catalog. Similar cases were found in the JIMA catalog. None

of the events were reported to be deep.

Conclusions

A statistical method of detecting dependent events
and aftershocks using spatial and temporal information
was applied to portions of the Japan Meteorological Agency
shallow earthquake catalog 1926-1960 and the catalog of
earthgquakes in Southern California 1934-1963. Applying

a decision rule

S = mr?kt < 0.02

r < Y2 degrees

1

t <

30 percent of the events in the JMA catalog studied were
found to be dependent and 42 ?ercent of the events in

the catalog of earthgquakes in Southern California. On
similar catalogs consisting of independent events only

10 percent of the events would satisfy the above dependent

criteria.




nation of the dependent events gave the JMA catalog

sson appearénce. However, the filtered Southern
catalog still had a non-Poisson component.

5 observed that large clusters of events were not

>ciated with large earthquakes and vice-versa.

cesence of large aftershock sequences in earthquake

1itroduces transient effects that one may wish to
For example the twenty month peak in the auto-

1 function for the Southein California area (Figure 5)

ult of two aftershock sequences spaced twenty

t. In searching for seismicity gaps in space and

resence of clusters of dependent events will hias

. For such studies the elimination of the dependent

. earthquake catalogs would be wvaluable.










Appendix

The probability of the decision parameter s exceeding
the threshold can be determined analytically assuming
complete independence of events in time and space. The

conditions given by equation (10)

S = Tr®Rt < «

r < R
max
A
t < Tpax = wkRr2 (10)
max

define the region shown in Figure 1. Assuming that k is
the average density of events in this region of volume V
“then the probability of one or more events occurring in this

region'is given by equation (11)

P(V) = 1 -~ exp(-kV) (11)

(Keilis—Borok,'l972). It remains to determine the volume V

of this region.

Tmax , ,
vV = fT Trc(t)dt + ﬁTRmax
T
‘max o -,
= f — +
T tk dt TrTRmax

a 2
i zn(Tmax/T) + WIR

ax (12)







ig. 1

ig. 2a

ig. 2b

Figure Captions

Decision region to accept the hypothesis that a
pair of events belong to the same cluster. t
is the time interval and r is the distance

between the events.

Number of earthquakes per year (upper number)
and mean magnitude (lower number) of earthquakes in

1° by 1° rectangular sectors in Northern Japan.

Number of earthguakes per year and mean
magnitude of earthguakes in 0.5° by 0.5°

rectangular sectors in Southern California.

The incremental probability distribution of the

decision statistic s for Northern Japan (left)

and Southern California (right). The 'x' -s

were determined from thé actual catalogs, the

‘o' -s were determined from a synthetic catalog

and the smooth curve is the theoretical distribution

assuming independent events.

Autocorrelation function of the number of
earthquakes per 0.2 months determined from the
original JMA catalog (top) and from the

filtered JMA catalog (bottom).
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INTRODUCTION

With the evef growing amount of earthquake data beccoming
“available, statistical models of earthquake occurrences have
been gaining greater importance. Statistical models allow
one to reduce large data sets of earthquake occurrences to
statistical parameters that describe these occurrences in a
given region. They can be used to predict earthquake occur-
rences, maximum ground motions and earthquake hazard at a
given region (Cornell 1968; Algermissen 1969; Milne &
Davenport 1969).

Recently there has been considerable interest in develop-
ing a Markov model of earthquake occurrences (Aki 1956;
Filson 1973; Knopoff 1971; Knopoff et al. 1972; and Vere-
Jones, 1966, 1970). Unlike models based on the Poisson
model (Shlien & Toks®z 1970), the Markov model, as will be
shown, can be used to explain both the frequency magnitude
distribution and the occurrence of aftershocks. More flexi-
bility is offered by the Markov process allowing one to put
a greater physical basis on the mathematical model.

According to Mogi's hypothesis (1967) when a large
event occurs, a major portion of the accumulated strain'energy
is released. The remaining part of this energy is released
more gradually by a series of aftershocks in the source
region. The release of fhis energy by aftershocks follows
some definite empirical relations and can be modelled by a

Markov process.







del on the earthguake sequence associated wiﬁh the
ns in the Galapagos Islands.
< this paperAwe find suitable transition functions
and T(X|e) that duplicate the known empirical relations
on aftershock occurrences, The model is tested by Monte
Carlo simulation using a random number generator. In the
second part of the paper the model is extended to describe
both the occurrences of independent earthquakes and their
associated aftershocks by embedding the Markov process into

a stationary branching Poisson nrocess.

MARKOV MODEL

The statistical characteristics of this model are
determined by two functions A(e)dt, the probability of a
transition occurring from state ¢ in an infinitesimal time
interval between t and t + dt, and T(Xle)dX, the probabi-
lity of jumping from energy state & to an energy level
between X and X+dX giyen that a junp occurred. Kolmogorov
(1931) showed that the probability of being in state € at

time t, P(e,t) is a solution of the integrodifferential

equation .

9P (e,t)

le = SP(X,t) )M (X)T(X]|e)dx (1)

Ale)P(e, )+

.In order to test the suitability of this Markov model it was

necessary to determine the nature of these functions A(e) and






r At (5)

e n(t) is the expected number of aftershocks in the
interval At, and r and p are empirical constants which
be adjusted to a given area and to the time unit (Utsu

). An illustration of the degree to which an aftershock

ance obeys this law is illustféted by the Nobi earthquake

891 where the aftershock sequence appears to have lasted

1early 80 years (see Utsu 1969, Fig. 5). Following

~Jones (1966), we use these two relationships [equations
and (5)] to determine the functions A(e) and T(X|e).
3oth the energy and time distribution of earthquakes
itions (4) and (5)] obey the power laws (Pareto distri-
ms). These laws introduce certain mathemétical diffi~
les. For example, according to equation (4) the number
irthquakes becomes unbounded as E approaches zero. In

- to be able to normalize the function to a probabilistic

cibution it was necessary to ignore all earthquakes

7 a certain magnitude. In this case we chose magnitude

‘or a cut-off limit since below this magnitude many

iquakes are not detected or reported. Thus it shall be

wed that the probability density functiqn of the energy
ised in an earthquake is a truncated Pareto distribution

-B-1
CE E
E

p(E)

v

E, :
(6)
E _

(o]

= 0

A

v C, the normalization coefficient, is determined from

-~







-B+1 -B+1
E - F
. B max (o] (9)
E = ‘
B-1 E—B - E -B
max o)

Assuming the model that the energy released in an earth-
quake is equal to the difference between the encrgy states
X and €, the freguency distribution of E = €-X 1s completely
determined by the transition probabilities T(XIE)‘. On the
contrary T(X]e) is not uniquely determined from the fre-
quency distribution of E. More information is needed on how
the energy released by an éartnquake depends on the energy
state €. If the frequency magnitude distribution is invari-
ant with the state of energy of the crust, then there must
be no such dependency. Detection of secular changes of b
in the frequéncy magnitude relation have been very difficult
to verify on account of the large amount of data reguired
in a small area. Lomnitz (1966) and Hamilton (1966) have
indicated that there is no information to the contrary of the
hypothesis of "magnitude stability" and that the ﬁean magni-
tude of earthquakes is independent of time. Such "magnitude
stability" must also imply that b is independent of time.

To test the "magnitude stability" we examined the after-
shock sequence of the Kern County earthquake of 21 July 1952,
The magnitudes of aftershock versus the sequence number of
the event as listed in the catalog of earthquakes of Southern

California are shown in Fig. 1. The lower graph of the same




ire shows the time versus sequence number plot. The first
reborted events were on the average larger by one magni-
> unit than thevremaining events in the sequence. How-

c, since the first 200 events were occurring within

1tes of each other it is possible that the lower magni-

> events were either masked out by the larger events or
>ly ignored. After the first few days of the aftershock
1ence no magnitude instability was apparcnt despite the
watic decrease in the aftershock rate.

With the "magnitude stability" and the other assumptions

:ed earlier we chose the probability transition function

e
sl - . oyy Bl ; > -
T(Xeg ) C(E X) 4Emax e -X> EO
= 0 €e-X < E (10)
o]
= 0 e-X > E

max

e C is the normalization constant given by equation (9).
The A(e) function was determined on the basis of Omori's
[equatfon (5)1. It was assumed that at the end of an
rshock sequence the variable €,is zero. To determine
thebenergy was determined as a function of time t by

grating Omori's law and then substituting this relation

into Omori's law. Thus













ensuring a linear log N (frequency) versus M (magnitude)
rélation. The energy equivalent to this magnitude was deﬁer*
mined from equation (3). A fixed fraction £ of this energy
was added to the aftershock energy reservoir ¢ .

The aftershock process was simulated as follows. The
rate function A was determined from eguation (12). The

time interval to the next aftershock was determined from
t = —1n(Ui)/A (16)

and the magnitude from

[

1In (U )
i+l (17)

a

M= Mmin - b

The magnitude of the aftershock was converted back to
energy and subtracted from €. Pfovided € was not less than
zero, ) was recalculated and the next aftershock was generated.
In our Monte-Carlo simulation of this process we chose
the following parameters: Poisson rate A = 0.1; Omori param-
eters [equation (5)] p = 4/3, r = 2; fraction of cnergy
going into aftershocks f = 0.4; b values for the frequency-
magnitude relationship {[equation (2)1 for aftershocks ba =
1.1, forvindependent events bi = 0.9; and maximum and minimum
magnitudes Mmax = 8.0 and Mmin = 4.0; Sample plots of two
such simulations are given in Figs, 3 and 4.
Two examples of catalogs of events generated by this

process are shown in Fig. 3. The magnitudes of events (both

independent earthquakes and aftershocks or Markov dependent



are shown as a function
es after large independent earthquakes are quite
The sequences very much resemble the actual earth-
atalogs. They have nearly all the statistical
aristics of earthquake catalogs. Omori's law was
or the large aftershock sequence, and the frequency-
ie relation was similar to actual events as shown in
Cumulative log N versus M plots are very much like
>tained from earthquake data. The constant value
agnitude 4 is because, in the simu;ation, M = 4 was
3 the minimum magﬁitude and no earthquakes were
ced below this value.
thquake swarms were not generated in this model.
>]1 could be modified to gecnerate an ecarthguake swarm
:ion of energy for a fixed period of time into ¢ at

int rate. The added energy would increase the rate

:nts generated for that time yielding the appearance

of an earthquake swarm.

CONCLUSIONS

A stochastic model was developed to describe both the
magnitude and time occurrences of affershocks and eérthquakes.
The aftershock occurrences were simulated by a continuous
state, continuous time, jump Markov process where the state

variable was the unreleased strain energy. The transition
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