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ABSTRACT 

Statistical modeling of earthquake occurrences is studied. 

First a statistical method of detecting dependent events 

and aftershocks using spatial an d temporal information 

was developed and applied to Japan and California earthquake 

catalogs. On the basis of a statistics 

where r is the distance b e tweer two events, k is the no:~al 

earthquake rate and tis the time interval between the events, 

a decision was made whether a pair of events were dependent. 

The theoretical distribution of s for a catalog c onsi sting of 

only independent events was compared to the actual catalogs. 

On the basis of the differences between the distributions , the 

number of inferred dependen t events was determined. 

This discrimination t echnique was applied to the earth­

quake catalogs of Northern Japan (1926-1960) and Southern 

California (1934-1960). Thirty percent of all events in the 

Japan catalog and 42 percent of events in the Southern Ca li­

fornia logs were identified as depe~dent events. 

The statistical properties of the catalogs without de­

pendent events were examined, in particular with respect to 

the Poisson process. Some small discrepancies with the 

Poisson process still existed using a decision threshold of 

s = 0.02. Clusters of events were found that could not be 

related to any large magnitude main event. 
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For modeling of earthquake and aftershock occurrences a 

compound Poisson-Markov process was examined. The state 

variable for the Markov model was assumed to be the accumu-

lated strain energy E. Suitable functions A(E) and T(Xjc), 

the rate and transition probabilities respectively, were 

chosen to duplicate the known decay relation for aftershock 

sequences and the frequency magnitude relation. It was found 

that in order for large E to accumulate it was necessary for 

energy to be put into the model in sudden bursts. 

Tne model was simulated on a computer using a random num-­

ber generator. Catalogs generated in this way departed from 

the real catalog in only one manner, namely that large after­

shocks inhibit rather than trigger subsequent a ftershocks. 
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I. INTRODUCTION 

The main thrust of this project his been to produce sta­

tistical mode ls for earthquake occurrences. Such theoretical 

models enable one to reduce large data sets to th eore tical 

parameters that describe the earthquake occurrences. These 

can be used for prediction of earthquake occurrences and 

risk analysis. Furthermore, they can be related to physical 

phenomena that control the occurrences. 

The theoretical model i ng of earthquake occurrences first 

of all requires identification of "independent events" or 

"prime earthquakes" as opposed to aftershocks strongly de­

pendent on these "independent events." Although the total 

number of earthquakes is of interest in generating synthetic 

catalogs, the "prime earthquakes" are most important in risk 

analysis. Under this project our studies were primarily 

channeled to two specific topics: 

1. Developing a statistical method for identifying 

dependent events and aftershocks, and 

2. Generating a compound Poisson-Markov model of 

earthquake occurrences. These are described in 

detail in the next two sections. 
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II. A STATISTICAL .METHOD OF IDENTIFYING DEPENDENT 

EVEN'rS AND EARTHQUAKE AF'TERSHOCI<S 
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Introduction 

The occurrences of shallo~ earthquakes are not random in 

time and space. The existence o f aftershock sequences and 

earthquake swarms have been known for a long time. Statistical 

studies of earthquake occurrences have shown that they are in 

gross disagreement with the Poisson process (Shlien a nd 

Toks6z, 1970; Utsu, 1972; and Vere-Jones and Davies, 1966). 

The main cause of this disagreement is attributed to clustering 

of these ev.qnts due to the presence of aftershocks and 

earthquake swarms. 

There are at least two reasons why it is important to 

be able to detect and remove the earthquake clusters from 

the catalogs. First the clustering has a large first order 

effect on the statistics of earthquake occurrences that 

may conceal less dominant patterns in the earthquake catalog 

such as perio'dicities and gaps in earthquake activity. 

Second, in estimating the seismic risk in a region one may 

wish not to include related events such as aftershocks and 

swarms, since these events have lesser effect than the ma in 
and 

shocks/ their inclusions affect the recurrence times. 

Attempts have been made by Knopoff and Gardner (1972), 

Keilis-Borok et al. (1972), and Utsu (1969) to remove these 

aftershocks. These have relied on the same basic approach 

for eliminating the dependent events. The earthquake catalog 

was searched for large magnitude events and then all other 
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events that were listed within some prescribed distance anu 

time of the large earthquake were removed from the catalog. 

This scheme was not effective in eliminating earthquake swarms 

which are not necessarily related to any specific high 

magnitude event. Shimazaki (1 973 ) applied a more statistical 

scheme but based on temporal information only. 

In this paper we investigate an alternative approach 

which includes both space and time information (but not the 

magnitude constraints) for identifying dependent events. 

We first describe the basic method to identify related 

events and determine the theoretical properties of this 

discriminant. We then apply this scheme to the Japan 

Meteorological Agency (JMA) shallow earthquake catalog of 

Northern Japan (1926-1960) and to a catalog of earthquakes 

in Southern California (1934-1963). 

Detection of Dependent Events 

The discrimination scheme that was studied can be 

most easily understood geometrically. Let earthquakes be 

represented by points in a three dimensional space in which 

the vertical axis is time and the horizontal coordinates 

are related to the spatial position of the epicenter. If 

the events occur independently in time and space then one can 

make quantitative predictions of the spacing of these points 

on the basis of the seismicity distribution. In particular the 
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probability of one or more points falling in a given volume V 

is given. by 

P(V) = exp(-Jvk(x,t) dx dt) (1) 

where k(x,t) is the rate of eart hquake occurrences at time t 

and position x (Keilis-Borok et al. 1972). Assuming a 

stationary model in time then 

k(x,t) = k(x) (2) 

The volum~ Vin consideration is completely a rbitrary. If 

one is given the fact that an earthquake occurred in a 

specific volume, then the probability of any other independent 

event appearing in the same region P(V!E) should b e P(V). 

On the other hand, if there is a definite clustering of 

events in time and space then the observed probability P(V) 

would definitely be larger if the volume contains the given 

event. To determine whether events are occurring independently 

or not it is necessary to compare P(V) with its theoretical 

distribution. -Using this approach Keilis-Borok et al. (1972) 

proved the interrelatedness of earthquake occurrences. 

The volume should be shaped such that it would most 

likely include an event related to a given earthquake if one 

exists. In this study, the particular volume that was 

selected was one that would detect both distant related 

events occurring within a short time of the given event and 



nearby events that occurred conside rably later; The region 

was defined by the equations 

r < R 
- • max . ( 4) 

0 < t < T 
max 

where rand tare the distance and time intervals between 

the two events , k is the average seismicity associated with 

the area and a., Rmax, and 'l'max were the thresholds chosen 

in advance. The region is illustrated schematically in 

Pigure 1. 

To determine whether a specific event could be related 

to an earlier event a search was made for all past events 

satisfying all the relations given in (4). If such an earlier 

event could be found, then the specific event was assumed to 

be dependent. In cases of earthquake swarms or aftershock 

sequences, it was not uncommon to be able to relate the specific 

event to several previous events. Using a suitable bookkeeping 

procedure all the events associated with a specific cluster 

were recorded. 

The procedure would of course relate independent events 

occasionally. By applying equation (1) and letting 

ex A 

Tmax = nkR 2 . (5) 
max 
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where A is a chosen constant, then the probability of a spurious 

cluster detected at any specific point is 

P(a,A) = 1 - exp(-a(!n A+ 1)) (6) 

This result is derived in the appendix. In this investigation 

a., A, Rmax were given the values: a= 0.02, A= 100, and 

l\nax = 1.41 degrees. These yield P(a,A·) = 0.10. 

~ication to Janan and Southe rn California Earthauakes 

The above scheme was applied to two local earthquake 

catalogs for which data was available over an extensive 

period of time. The two areas were (1) the area cover ing 

the Southern end of Hokkaido and the Northern section of 

Honshu, Japan , for the period 1926-1960 and (2) Southern 

California 1934-1963. These areas are shown in Figures 2a and 2b. 

The data were obtained from the Japan Meteorological Agency 

(Jl'liA.) shallow earthquake catalog and the catalog of earthquakes 

in Southern California. 

The seismic rate kin equation (4) was estimated from 

the total number of events in rectangular sectors 1° latitude 

by 1° longitude for Northern Japan and O.S 0 by O.S 0 for 

. Southern California. (Small changes in the area of the sectors 

due to the sphericity of the earth were neglected.) At any 

given point the seismic rate k was determined using a bilinear 

interpolation. The k parameter used in equation (4) was that 

,. 
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associated ·with the epicenter of tl:c: earlier event. This 

approximation is valid provided that k does not vary rapidly 

in the area of interest. By requiring t hat r in equation (4) 

is less than 12 degrees , the error in this approxima tion was 

kept small . 

The initial k estimate was based on both dependent and 

independent events . In cases where aftershocks dominate the 

catalog it may be desirable to apply the discrimination scheme 

twice on the entire catalog. On the second pass, the k 

estimates would be based on only the events that were classified 

as independent in the first pass . 

The scheme was tested initially on a synthetic earthquake 

catalog which had the same spatia l seismic distributions as in 

the origina l Japan and California c atalogs. The synthetic 

catalogs were generated by a Monte Carlo scheme using a random 

number generator. All the events in the synthetic c atalog 

were generated independently of each other by a Poisson model 

so that there were no aftershocks or swarms. ·Accordingly, 

the probability distribution function of the decision parameter 

- s should be the same as a given in equ ~tion (6). I n Figure 3, 

the probability functions of s determined from the synthetic 

and original c a talogs are indicated by 'o' and 'x' respectively. 

The smooth curve is the theoretical distribution for the 

independent events. The s distribution determined from the 

synthetic catalogs are in close agreement with the theoretical 

model. 
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The s distribution of the actual catalogs definitely 

departs from the model of completely independent events. About 

30 percent of the events in the JMA catalog and 42 percent of 

the events in the catalog of earthquakes in Southern Ca lifornia 

hadm s value below a= 0.02. To eliminate the dependent events , 

all events that had ans value belm.·1 a = 0. 02 were categorically 

classified as dependent events and removed from the cata log. 

This scheme would eliminate 10 pe rcent of the events in a 

catalog consisting entirely of statistically independent everts. 

The Southern California catalog of earthquakes was different 

from the J.MA cntalog in the sense of covering a smaller area 

and reporting events down to magnitude 3. Since the JMA catalog 

did not report many events below magnitude 5 in the 1926-1960 time 

period, it was less dominated by earthquake swarms and aftershocks.

The statistical propertie s of the filtered catalog were 

compared with those of the original catalog and with those of 

a Poisson process. The autocorrelation function C(k) was 

evaluated using equation (7) 

N-k 
I (n(i) - <n(i)>) (n(i+k) - <n(i+k)>) (7) 
i=l 

C (k) = 
(N-k) var (n (i) ) 

where n(i) is the nurr~er of events in the i th non-overlapping 

time unit (here 0.2 months), <.> denotes the arithmetic mean 

and var (.) denotes the variance of the term in parentheses. 

If the Poisson assumptions are satisfied then C(k) fork 
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different from zero should be normally distributed about zero 

1 with variance (Box and Jenkins, 1970). The Poisson N-k 

index of dispersion defined as the ratio of the variance to 

mean of n(i) should be unity. 

In Figures 4 and 5 the autocorrelation functions were 

plotted for the original and filtered catalogs in Japan and 

California. The removal of the dependent events reduced the 

high autocorrelation peaks. The autocorrelation function of 

the filtered JMA catalog appears to be generally within the 

95 percent statistical limits indi~ated, however the auto­

correlation function of the Southern California catalog has 

a positive trend which is still apparent in the 

second pass. The large peak at 20 months lag (Figure 5) in 

the original catalog corresponded to the time interval between 

the Kern County earthquake (21 July 1952) and the Santa Rosa 

earthquake (19 March 1954) which had many aftershocks. 

The greater difficulty in whitening the statistical 

properties of the Southern California catalog can be explained 

by the much more extensive aftershock sequences. For example, 

the Kern County aftershock sequence beginnihg July 1952 

extended over 40 months in the catalog. In Figure 6, the 

number of earthquakes per month in the vicinity of the Manix 

fault, (34.0-35.0N, il6.5-117.0W) California was plotted for 

the original and filtered catalogs. The aftershock sequences 

to the earthquake 10 July 1947 are very prominent in the original 
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catalog, are still noticeable in the first pass, and are barely 

discernable in the second pass. 

The Poisson index of dispersion was calculated as a 

function of the time interval using equations (8) and (9). 

var 
D (kt) = ·(n (kt) ) 

(8) 
<n(kt)> 

k-1 
. var{n(kt)) = k var {n{t)) + 2 I {k-j) C(j) (9) 

j=l 

where n(t) is the number of events in a time interval t. 

The Poisson index of dispersion is very sensitive to regul a r 

departures of the autocorrelation function from the expe cted 

zero value. In Figures 7a and 7b the Poisson index of dispersion 

is plotted ve.rsus time for the JMA and Southern California 

catalogs. For a Poisson process D(t) has a certain 

distribution about 1. If there are M non-overlapping 

intervals of le.ngth t, MD (t) is x2 distributed with M-1 

degrees of freedom. The filtered JMA catalog was found 

acceptable with the Poisson model at a 95% significance for 

t less than 4 months but the filtered California catalog 

(2nd pass) was still unacceptable at the 95% level for all 

t greater than a month. 

In order to be able to evaluate quantitatively the 
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efficiency of any particular discriminant of independent 

from related events it is necessary to know in advance in 

which category any particular event belongs. Unfortunately 

this information is unknown due t o the lack of any precise 

defini tion of an aftershock. The statistical properties of 

aftershock sequences and earthquake swarms are so variable 

that no exact definition seems possible. 

The catalog of earthquake s in Southern California can 

be made more Poisson-like at the expense of losing more 

independent events, by raising the t hreshold a. Whether 

this is desirable depends on the actual application that one 

has in mind. If too large an a is used then D(t) may become 

less than 1, •indicating a lack of events occurring within 

short times of each other. 

In this study, it was found that large clusters of 

earthquakes are not necessarily associated with large events 

and vice-versa. For example, in South~rn California a 

cluster of 38 events with magnitudes between 2 and 3 were 

found to occur at 35.7N 118.3W beginning 10 May 1935. The 

largest event in that area, magnitude 4.0 occurred one month 

later and was followed by only two aftershocks. Conventional 

methods of detecting aftershocks that use the magnitude of 
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the main shock would fail to detect that cluster. Instances 

of magnitude 5.0 earthquakes occurring with two or less after­

shocks were not found to be e xceptional in the California 

catalog. Similar cases were found in the JMA catalog. None 

of the events were reported to be deep. 

Conclusions 

A statistical method of detecting dependent events 

and aftershocks using spatial and ~emporal information 

was applied to portions of the Japan Meteorological Agency 

shallow earthquake catalog 1926-1960 and the catalog of 

earthquakes in Southern California 1934-1963. Applying 

a decision rule 

s = 1rr 2 kt < 0.02 

r < ✓2 degrees 

1 
t < 

nk 

30 percent of the events in the J~..A catalog studied were 

found to be dependent and 42 percent of the events in 

the catalog of earthquakes in Southern California. On 

similar catalogs consisting of independent events only 

10 percent of the events would satisfy the above dependent 

criteria . 
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Elimination of the dependent events gave the J.fv!.A catalog 

a more Poisson appearance. However, the filtered Southern 

California catalog still had a non-Poisson component. 

It was observed that large clusters of events were not 

always associated with large earthquakes and vice-versa. 

The presence of large afte rshock sequences in earthquake 

catalogi introduces transient effects that one may wish to 

eliminate. For example the twenty month peak in the auto­

correlation function for the SouthAi~ California area (Figcre 5) 

was the result of two aftershock sequences spaced bventy 

months apart. In searching for seismicity gaps in space and 

time, the presence of clusters of dependent events will bias 

the results. For such studies the elimination of the dependent 

events from earthquake catalogs would be valuable. 
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Appendix 

The probability of the decision parameters exceeding 

the threshold can be determine d analytically assuming 

complete independence of events in time and space. The 

conditions given by equation (10) 

r < R max 
aA 

t < T == 
max 1rkR 2 (10} 

max 

define the region shmvn in Figure 1. Assuming that k is 

the average density of events in this region of volume V 

then the probability of one or more events occurring in this 

region is given by equation (11) 

P(V) = 1 - exp(-kV) (11) 

(Keilis-Borok, 1972). It remains to determine the volume V 

of this region. 

2 1Tr (t) dt + 1TTR 2 
max 

a 
dt + tk 1TTR 2 

max 

= ~ 1n (T /T) + x. max 1TTR 2 
. max (12) 
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where T = a 
If we allow T to be a function of k 

rrkR 2 max 
max 

such that 

then the volume is g1ven by 

a 
V = k {tnA + 1) 

and the probability of finding one or more events in the 

volume is 

P {a:) •- 1 - exp ( -a { tnA + 1) ) 
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Figure Captions 

Fig. 1 Decision region to accept the hypothesis that a 

pair of events belong to the same cluster. t 

is the time interval and r is the distance 

between the events. 

Fig. 2a Number of earthquakes per year (upper number) 

and mean magnitude (lower number) of earthquakes in 

1° by 1° rectangu l ar sectors in Northern ~~pan. 

Fig. 2b Number of earthquakes per year and mean 

magnitude of earthquakes in 0.5° by 0.5° 

rectangular sectors in Southern California. 

Fig. 3 The incremental probability distribution of the 

decision statistics for Northern Japan (left) 

and Southern California (right). The 'x' -s 

were determined from the actual catalogs, the 

1 0 1 -s were determined from a synthetic catalog 

and the smooth curve is the theoretical distribution 

assuming independent events. 

Fig. 4 Autocorrelation function of the number of 

earthquakes per 0.2 months determined from the 

original JMA catalog (top) and from the 

filtered JMA catalog (bottom). 



Fig. 5 Autocorrelation function of the number of 

earthquakes per 0.2 months determined from the 

original catalog of earthquakes in Southern 

California (top) and from the filtered catRlog 

o~ earthquakes in Southern California (bottom). 

Fig. 6 The number of earthquakes per month in a sector 

0.5° by 0.5° in the area centered at the Manix 

fault (34.0 - 34.0 N 116.5 - 117.0 W). The 

top graph was d e termined from the original catalog; 

the middle graph was determined from the filtere d 

catalog for which the seismic rate k include d all 

events, and the bottom graph was determined from 

the filtered catalog for which the seismic rate 

k only included independent events. 

Fig. 7a· Poisson index of dispersion as a function of time 

~nterval determined from the original and 

filtered JMA catalogs 1926-1960. 

Fig. 7b ·Poisson index of dispersion as a function of time 

interval, determined from the original and 

filtered catalogs of earthquakes in Southern 

California 1934-1963. 
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IN'l'RODUCTION 

With the ever growing amount of earthquake data becoming 

• available, statistical models of earthquake occurrences have 

been gaining greater importance . Sta tistical models allow 

one to reduce large data sets of earthquake occurrences to 

sta~istical parameters that describe these occurrences in a 

given region. They can be used to predict earthquake occur­

rences, maximum ground motions and earthquake hazard at a 

given region (Cornell 1968; Algermissen 1969; Milne & 

Davenport 1969). 

Recently there has been considerable interest in deve lop­

ing a Markov model of earthquake occurrences (Aki 1956; 

Filson 1973; Knopoff 1971; Knopoff et al. 1972; and Vere­

Jones, 1966, 1970). Unlike models based on the Poisson 

model (Shlien & Toks5z 1970), the Markov model, as will be 

shown, · can be used to explain both the frequency magnitude 

distribution and the occurrence of aftershocks. More flexi­

bility is offered by the Markov process allowing one to put 

a greater physical basis on the mathematical model. 

According to Mogi's hypothesis (1967) when a large 

event occurs, a major portion of the accumulated strain energy 

is released. The remaining part of this energy is released 

more gradually by a series of aftershocks in the source 

region. The release of this energy by aftershocks follows 

some definite empirical relations and can be modelled by a 

Markov process. 
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The basis of th~ Markov process is a state variable c 

which describes the state of the process at any given instant 

of time, and a transition function T(X! c ) which determines 

the probability of the system changing from state c to 

state X assuming that a transition h as occurred. The 

probability of a transition occurring at ant instant of 

time is given by the function ~ (c) which depends only on 

the state variable c. The fund amental assumption of the 

Markov process is that the state variable c contains all 

the possible information that we can know about the sysi_em 

at any instant of time and the future evolution of this 

variable depends only on its present state and not on how 

it had reache d this state. 

In applying this mode l to aftershock occurrences , it i s 

assumed that the state variable is the amount of accumulated 

strain energy to be release d. An aftershock represents a 

transition from state c to a lower state X. The magnitude 

of the earthquake is directly related to the difference of 

energies between these two states. 

The model has been intensely studied in the earthquake 

literature. The mathematical impl{cations of the model were 

examined by Aki (1956, and Vere-Jones (1966, 1970). The main 

mathematical difficulty was finding a suitable transition 

function T(X!c) that duplicated the frequency magnitude 

relation of earthquakes and aftershocks. Knopoff (1971) and 

Knopoff et al. (1972) applied this model to a la.boratory 

model of earthquake occurrences. Filson (1973) has tested 



33. 

thi~ model on the eaithquake sequence associated with the 

eruptions in the Galapagos Islands. 

In this paper we find suitable transition functions 

and T(X!E) that duplicate the known empirical relations 

on aftershock occurre nces. The model is tested by Monte 

Carlo simula tion using a random number generator. In the 

second part of the pa per th e mo del is extended to describe 

both the occurrences of independent earthquakes and their 

associated aftershocks by embedd ing the Markov p r oce ss into 

a stationary branching Poisson ?recess. 

MARKOV MODEL 

The statistical characte ristics of this model are 

determined by two functions >..( c )dt, the probability of a 

transition occurring from state c in an infinitesimal time 

interval between t and t + dt, and T(XjE)dX, the probabi­

lity of jumping from energy state E to an energy level 

between X and X+dX given that a jump occurred. Kolmogorov 

(1931) showed that the probability of being in state Eat 

time t, P(E~t) is a solution of the integrodifferential 

equation 

~(E)P(c,t)+ aP(E,t) = /P(X,t)A(X)T(X!c)dX (1) 
at 

. In order to test the suitability of this Markov model it was 

necessary to determine ihe nature of the~e functions A(E) and 



34. 
.I 

T(xlc). The mathematical difficulties involved in solving 

equation (1) limit one to simple functions using a trial and 

error procedure, and to applying computer simulations u sing 

Monte Carlo methods. 

To find suitable functions f or\( £) and T(x!c) we uti­

lize some observed properties of earthquakes. The function 

T(x!c) controls the energy (magnitude ) distribution of earth­

quakes while the function \(c) control s the rate that the 

earthquakes occur in time. The magnitude distribution 

follows Gutenberg arid Richter 1 s frequency magnitude relation 

(Richter 1958) 

log N(M) = a - bM (2) 
10 

where N(M) is the number of earthquakes with magnitudes 

exceeding M, and a and bare empirical constants . Magnitude 

M can be converted to energy E using (Richter 1958) 

log 10 E = 11.8 + 1.5M {3) 

From (2) and (3), it follows that the number of shocks having 

energy E or greater is 

{ 4) 

where B = b/1.5, and log A =a+ 11.Bb/l.5. 10

The rate of earthquake occurrences is constant except 

during an aftershock sequence or earthquake swarm. During an 

aftershock sequence the rate of earthquakes decays with 

time t according to Omori's law 

' 
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(5) 
n(t) -

where n(t) is the expected number o f aftershocks in the 

time interval 6t, and rand pare empir ical constants which 

must b e adjusted to a given area and to the time unit (Utsu 

1969). An illustration of the degree to which an aftershock 

sequence obeys this l aw is illustrated by the Nobi earthquake 

of 1 891 where the aftershock sequence appears to have lasted 

for nearly 80 years (see Utsu 1969, Fig. 5). Following 

Vere-Jones (196 6), we use these two relationships [equations 

(4) and (5)) t o d etermine the functions ~(E) and T(Xjs). 

Both the energy and time distribution o f earthquakes 

[equa tions (4) and (5)) obey the power l aws (Pareto distri­

butions). These laws introduce c ertain mathematical diffi­

culties. For e xamp le, according to equation (4) the number 

of earthquakes becomes unbounded as E appro a ches zero. In 

order t o be able to normalize the function to a probabilistic 

distribution it was neces sary to i gnore all earthquakes 

below a certain magnitude. In this case we chose magnitude 

4.0 for a cut-off limit since belo~ this magnitude many 

earthquakes are not detected or reported. Thus it shall be 

assumed that the probability density function of the energy 

released in an earthquake is a truncated Pareto distribution 

-B-1 
p{E) = CE E > E 

0 (6) 
= 0 E < E 

0 

where C, the normalization coefficient, is determined from 
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. ro 
• f p (E) 

E 
0 

and (7) 

The mean energy of the distribution can be easily dete r mined 

to be 

BE 
E - 0 (8) 

B-1 

provided B > 1. When B is~l, E becomes infinite. This is 

unphysical since if it were true it would imply that the 

average energy released by earthquakes is infinite. In orde r 

to ensure that Eis - bounded it was necessary that eithe r b 

in Gutenberg and Richter's frequ e ncy magnitude relation is 

greater than 1.5 or that the magnitude of earthq uake s never 

exceeds a specified ·value. On account of the fact that b 

values below 1.5 are very common and that no earthquake of 

magnitude 9 or greater has been reported, the latter assump­

tion was preferred and used in this treatment. 

Taking M and E to be the maximum magnitude and max max 

correspondi-ng energy of the largest possible earthquake 

then 

C = B 

and 
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-B+l -B+l 
E - F, 

B max 0 ( 9) 
E - B-1 -B ·-B 

E - E max 0 

Assuming the model that the energy released in an earth­

quake is equal to the difference between the energy stat.e s 

X and E, the frequency distribution of E = E-X is completely 

determined by the transition probabilities T(XIE) On the 

contrary •r (XIE) is not uniquely determined from the fre-

quency distribution of E. More information is needed on how 

the energy released by an eartnquake depends on the energy 

state E. If the frequency magnitude distribution is invari-

ant with the state of energy of the crust, then there must 

be no such dependency. Detection of secular changes of b 

in the frequency magnitude relation have been very difficul t 
-

to verify on account of the large amount of data required 

in a small area. Lomnitz (1966) and Hamilton (1966) have 

indicated that there is no information to the contrary of the 

hypothesis of "magnitude stability" and that the mean magni­

tude of earthquakes is independent of time. Such "magnitude 

stability" must also imply that bis independent of time. 

To test the "magnitude stability" we examined the after­

shock sequence of the Kern County earthquake of 21 July 1952. 

The magnitudes of aftershock versus the sequence number of 

the event as listed in the catalog of earthquakes of Southern 

California are shown in Fig. 1. The lower graph of the same 
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figure shows the time versus sequence number plot. The first 

200 reported events were on the average larger by one magni­

tude unit than the remaining events in the sequence. How­

ever, since the first 200 events were occurring within 

minutes of each other it is possible that the lower magni­

tude events were either masked out by the larger events or 

simply ignored . . After the first few days of the ~ftershock 

sequence no magnitude instability was apparent despite the 

dramatic decrease in the aftershock rate. 

With the 11 magnitude stability" and the othe r assump tions 

stated earlier we chose the probability transition function 

to be 

E > t -X > E max o 

= 0 £-X < E ( 10) 
0 

= 0 e:-X > E 
max 

where C is the normalization constant given by equation (9). 

The A(e:) function was determined on the basis of Omori's 

law [equation (5)). It was assumed that at the end of an 

aftershock sequence the variable e:,is zero. To determine 

A(£) the energy was determined as a function of time t by 

integrating Omori's law and then substituting this relation 

back into Omori's law. Thus 
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= - -p+l rEt (11) 

p-1 

Solving fort 

t = [ E (~--l~l/(p-1) (12) 
rE _/ 

and substituting t back into equation (5) gives 

~13) 

where 

q -=_p­
p-1 

and 

_ -1/(p-l)cp-l)p/(p-l) D - r --
E Cl 

With the functions A(E) and T(X!E} now known, we were 

able totes~ this model by computer simulation using Monte 

Carlo methods. (Further details o~ the simulation method 

are given in the next section.) The distribution of a sample 

aftershock sequence is shown in Fig. 2a. In this simulation 

the total energy of all the aftershocks is equivalent to that 

of one magnitude 8.7 earthquake . . The frequency magnitude slope 
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b = 1.0 and Omori's law parameter p = 1.25 were specifie d. 

The occurrence time and magnitude of each event were deter­

min e d by random numbers. The rate paramete r F(c) wu.s corrl­

puted to the event on the basis of availu.ble energy ( c ). 

The Markov model as it presently stu.nds explains the 

known statist ica l properties o f the aftershock occurrences. 

However , the mode l does not indicate how the strain energy 

E accumulates or how a n aftershock sequence ever starts. 

During the occurrence of an aftershock seq uence , th e rate of 

occurrence o f aftershocks, \, varies over several orde~3 of 

magnitude according to Omori 1 s law. Since A depends upon 

the amount o f strain energy to be r e leased , c, and f urther­

more since the d ependenc e goes as a high power of c (equa­

tion 13), this implies tha t the strain energy must also vary 

considerably. An aftershock sequence starts very c a ta­

strophically. Just before the ma in shoe~ seismic activity 

may be unnoticeable. The model must be extended in orde r to 

simulate the occurrence of the main shoc k. This is dis­

cussed in the next section. 

POISSON-MARKOV MODEL 

In order to build a model that would explain both the 

independent earthquakes and the ir associated aftershocks (if 

any), the Markov process was embedded into a branching Poisson 

process (Cox & Miller, 1965; Lewis, 1964). 
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It was assumed that independent. events occur randor.',ly 

according to a Poisson process with rate A. The magnitudes 

of the independent events were distributed according to 

Gutenbe rg and Richter's frequency magnitude relation but not 

necessari ly with the same b value a s in the Markov mode l. 

A constant fraction f of the energy of each independent 

event was diverted into the aftershock r e servoir E of the 

.Markov model. If a large magnitude independent event occurred , 

then sufficient energy was available to generate aftershocks. 

This e"ergy was released gradu~lly according to Ofuor i 1 s law 

and Gutenberg-Richter 's relation as formulated into the 

Markov model. 

The simulation model was implemented on the computer 

as follows. Random numbers, u1 , u , . 2 u3 ... uniformly dis­

tributed between O and 1 were obtained from a random number 

generator. The time interval t to the next Poisson event 

was determined from 

(14) 

where ln is natural loganthm. 

This transformation ensures that the time intervals between 

the events are exponentially distributed. The magnitude of 

this event was determined from 

ln(u2 ) 
M - M . (15) 

nu.n b. 
1 

where M. is the minimum magnitude considered, min 
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ensuring a linear log N (freque ncy) versus M (magnitude) 

relation. The energy equivalent to this magnitude was deter­

mined from equati6n (3). A fixed fraction f of this energy 

was added to the aftershock energy reservoir£ . 

The aftershock process was simulated as follows. The 

rate function A was determined from equation (12). The 

time interval to the n ext Rf tcrshock was determined from 

t = -1n (U. ) /'A ( 16) 
i 

and the magnitude from 

ln (U ) 

M = i+l ( 17) M . min b 
a 

The magnitude of the aftershock was converted back to 

energy and subtracted from£. Provided E was not less tha n 

zero,A was recalculated and the next aftershock was generated . 

In our Monte-Carlo simulation of this process we chose 

the following parameters: Poisson rate A= 0.1; Omori param­

eters [equation (5)] p = 4/3, r = 2; fraction of energy 

going into aftershocks f = 0.4; b values for the frequency­

magnitude relationship [equation (2)] for aftershocks b = 
a 

1.1, for independent. events b. = 0.9; and maximum and minimum 
l 

magnitudes M = 8.0 and M. = 4.0. Sample plots of two max min 

such simulations are given in Figs. 3 and 4. 

Two examples of catalogs of events generated by this 

process are shown in Fig. 3. The magnitudes of events (both 

independent earthquakes and aftershocks or Markov dependent 
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events) are shown as a function of · time. The aftershock 

sequences after large independent earthquakes are quite 

clear. The seque nces very much resemble the actual earth­

quake catalogs. They have nearly all the statistical 

chara cteristics of earthquake catalogs. Omori's law was 

valid for the large aftershock s e quence, a nd the frequency­

magnitude relation was similar to actual events as shown in 

Fig. 4. Cumu l ative log N versus M plots are very much like 

those obtained from earthquake data . 'I'he constan t value 

below magnitude 4 is because , in the simulation, M = 4 was 

taken as the minimum magnitude and no earthquakes were 

considered below this value. 

Earthquake swarms were not generated in this model. 

The model could be modified to generate an e arthquake swarm 

by addition of energy for a fixed period of time into cat 

a constant rate. The added energy would increase the rate 

A of events generated for tha t time yi e lding the appearance 

of an earthquake swarm. 

CONCLUSIONS 

A stochastic model was developed to describe both the 

magnitude and time occurrences of aftershocks and earthquakes. 

The aftershock occurrences were simulated by a continuous 

state, continuous time, jump Markov process where the state 

variable was the unreleased strain energy. The transition 



and rate functions were determined by constraining the model 

to preserve Omori 1 s relation on the decay of an aftershock 

sequence and Gutenberg and Ri ch ter 's frequency ma gnitude 

relation. It was found that the rate function must go 

as a high power of the strain energy and the transition 

function T( X j E) must be defined by a truncated Pareto 

distribution for E = E-X. 

In order to explain both the aftershock sequences and 

the main (independent) earthquakes, the Markov process was . 

embedded into a branching Poisson process . Independent 

events were assumed to occur as a stationary Poisson process 

with a truncated Pareto energy distribution. A fixed portion 

of the energy of the independent event was assumed to be 

unreleased and transferred to the energy reservoir E of the 

aftershocks. As a result a large main event could trigger 

a series of aftershocks which would release this energy 

according to a Markov process. 

The model is generally successful in describing the 

known statistical properties of earthquakes and aftershocks. 

The model differs from actual event occurrences in one 

particular respect, namely, that a'large magnitude after­

shock could completely exhaust the energy reservoir and 

stop all future occurrence of aftershocks associated with 

the given main event. This may not necessarily be the 

fault of the branching model but rather the artificial 

distinction between independent events which can generate 

aftershocks and the aftershocks which cannot. 
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Figure Captions 

Fig. l Top: magnitude versus sequence number of events 

in the Kern County area starting from January 1952. 

The arrow indicates the main shock. Bottom: time 

in months versus sequence number of events in the 

Kern County area. 

Fig. 2a Top: magn itude versus time (in arbitrary units ) 

of a simulated after~hock sequence. Bottom: 

percent of aftershocks which are yet to occur 

plotted as function of time (arbitrary units). 

Fig. 2b Cumulative frequ e r1cy ~agnitude distribution of the 

simulated aftershock sequence shown in Fig. 2a. 

Fig. 3 Two examples of computer simulation of earthquakes 

using the compound Poisson-Markov models. Magni­

tudes versus time of independent Poisson events 

(earthquakes) and their Markov dependent events 

(aftershocks) are shown. 

Fig. 4 Cumulative frequency magnitude distribution of 

events generated by computer simulations and shown 

in Fig. 3. 
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