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1 | INTRODUCTION

The persistence of coral reefs relies on their capacity to main-
tain complex three-dimensional framework structures and retain
their vertical growth potential. These attributes are necessary for
reefs to sustain the continuity of their ecological functions and
the irreplaceable services they provide (Graham & Nash, 2013).
Beyond supporting an incredibly rich diversity of organisms, the
heterogeneous calcium carbonate (CaCO,) architecture of reefs
plays a central role in attenuating wave energy, offering protec-
tion against shoreline erosion and mitigating the risk of flooding
(Ferrario et al., 2014; Perry et al., 2018). This structure arises from
the long-term accumulation of carbonate, derived from the calcifi-
cation of corals and other calcifying organisms, which on average
outpace the effects of physical, chemical, and biological break-
down processes (Perry et al., 2008).

In the natural biogeological development of coral reefs, ero-
sion and subsequent rubble and sand generation are inherent and
important processes (Perry & Hepburn, 2008). However, intensify-
ing degradation and loss of habitat due to combined anthropogenic
stressors have exacerbated erosion, threatening the delicate balance
between constructive and erosional forces on contemporary reefs
(Molina-Hernandez et al., 2020; Perry et al., 2013). Today, many reefs
exhibit diminished growth potential following transitions in commu-
nity compositions and, going forward, may not be able to keep pace
with rising sea levels (Kuffner et al., 2019; Perry et al., 2018; Webb
et al,, 2023; Yates et al., 2017). Numerous factors contribute to this
precarious situation, and they range in scale from acute local or re-
gional stressors to chronic global issues (Wolff et al., 2018).

The factors that impede coral calcification often also accelerate
erosion, causing the balance between these opposing processes
to shift in favor of net framework loss (Perry et al., 2008). Thermal
anomalies causing large-scale coral mortality, for instance, leave
substrate free for rapid colonization by opportunistic bioeroding
species such as endolithic sponges (Chaves-Fonnegra et al., 2018).
Ocean acidification (OA) is recognized to further accelerate the
rate at which bioeroders chemically dissolve reef substrates while
simultaneously reducing the rate at which many coral species can
precipitate CaCO, (Enochs et al., 2016; Silbiger & Donahue, 2015).
Waters enriched in nutrients and organic matter can impede coral
health and calcification while providing an energy source for the ex-
cavating activities of heterotrophic bioeroders (DeCarlo et al., 2015;
Holmes, 2000; Webb et al., 2017). As rates of erosion have begun
to exceed rates of calcification, increasingly more framework is
being reduced to coral rubble (Alvarez-Filip et al., 2009; Morris
et al., 2022).

Today, coral rubble and the extensive beds they form are a
common sight on reef landscapes. While their generation can have

lasting effects on reef communities and structural complexity
(Kenyon et al., 2023; Rogers et al., 2018; Wolfe et al., 2021), they
also provide an emerging complex microhabitat that can support
a high density and diversity of reef organisms with varying func-
tional roles (Enochs & Manzello, 2012). Regardless of whether dead
standing corals remain affixed to the reef framework or break apart
and transition into rubble, they undergo a continuous post-mortem
transformation driven by a succession of multiphyletic colonizers
(Kenyon et al., 2023; Rasser & Riegl, 2002; Scoffin, 1992). Initially,
a microbial biofilm grows over the newly dead coral, followed
by the rapid colonization of epilithic and endolithic microorgan-
isms including cyanobacteria, algae, and fungi (Sanchez-Quinto &
Falcon, 2021). These primary colonizers lay the foundation for more
complex organisms to slowly move in. As time progresses, various
encrusting and macroboring invertebrates, such as sponges, bryozo-
ans, worms, bivalves, and small crustaceans, settle in and alter this
newly available habitat (Wolfe et al., 2021). It typically takes years
(>5) before a mature internal bioeroder community is established
(Kiene & Hutchings, 1994). Micro- and macro-boring taxa chemically
and physically erode rubble fragments, while secondary calcifiers
(non-coral calcifying invertebrates and calcareous algae) modify and
encrust their surfaces, cementing pieces of detached reef together
through calcareous overgrowth and thereby contributing to frame-
work stability (Davidson et al., 2018; Enochs et al., 2021; Silbiger
& Donahue, 2015). The significance of these opposing processes
and their contribution to carbonate persistence will change and
evolve as coral cover decline generates newly available substrate for
these framework altering groups (Glynn & Manzello, 2015; Hughes
et al., 2018). Kline et al. (2019) suggested that the pH threshold at
which reefs transition into net dissolution is dependent on the ratio
of living to dead coral on the reef.

As coral reefs shift toward having a greater relative abundance of
rubble, it is imperative to advance our understanding of the role col-
onized dead coral fragments will play in future reef carbonate bud-
gets (Romano de Orte et al., 2021). Research on rubble fragments or
rubble beds in the context of OA is limited. For instance, three stud-
ies robustly capture the effect of OA on Hawaiian rubble (Silbiger
& Donahue, 2015; Stubler & Peterson, 2016; Yates & Halley, 2006),
but each solely addresses a single aspect of bioerosion rather than
considering the distinct impacts on the chemical and total compo-
nents. More studies have concentrated on quantifying bioerosion
rates by monitoring unaltered CaCO, blocks deployed on the reef
for an extended period (Dee et al., 2023; Enochs et al., 2021; Silbiger
& Donahue, 2015; Tribollet & Golubic, 2005). However, despite
thoroughly documenting the impacts of initial colonization, these
studies do not capture the erosive potential of a mature endolithic
community, likely resulting in an underestimation of the ecologically
relevant effects of macrobioerosion.
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Our approach here, is to conduct a comprehensive examina-
tion of bioerosion and calcification rates within a well-established
natural rubble community of bioeroders and secondary calcifi-
ers. To explore the impacts of changing ocean chemistry, rubble
fragments were placed in a dynamic OA replication system sim-
ulating diurnal pH oscillations, which has been shown to modu-
late both dissolution and calcification responses to OA (Enochs
et al., 2018; Morris et al., 2022). The three different scenarios
included contemporary pH (8.05+0.025 pH diel fluctuation), el-
evated OA (7.90+0.025), and high OA (7.70+0.025). The future
levels are broadly consistent with projections by 2050 and 2100
under SSP5-8.5 (van Hooidonk et al., 2020), which represent a
plausible emission pathway associated with the world's economy
heavily reliant on fossil fuel development (Taking the Highway)
(Riahi et al., 2017). Our multifaceted approach, integrating physi-
cal, chemical, and digital techniques, allowed us to establish a ho-
listic understanding of the framework altering processes of these
increasingly significant rubble communities.

2 | MATERIALS AND METHODS

2.1 | Sample collection

Dead coral fragments colonized by multi-phyletic assemblages
were collected by SCUBA at two sites in the Upper Florida Keys:
Cheeca Rocks and Little Conch (depth: 3-5m) on October 27,
2022. Cheeca Rocks (24.8966N, 80.6169 W) is a patch reef off
Islamorada characterized by regionally high coral cover (~25%)
(Webb et al., 2023). The rubble samples were collected from dense
rubble beds composed of branching Porites spp. Little Conch
(24.9476N, 80.4445W) is a relatively flat reef off Plantation Key
and is characterized by high turf and rubble cover and low coral
cover. The collected rubble fragments from this location were
morphologically different from those collected at Cheeca Rocks,
originating from massive Orbicella spp. Only pieces of rubble with-
out any live coral were collected. Ninety rubble fragments were
selected for the experiment (Porites spp.=45, Orbicella spp.=45).
The community observed on collected rubble included encrust-
ing sponges, secondary calcifiers including CCA (crustose coral-
line algae), Peyssonelia and Halimeda, non-encrusting invertebrates
such as bivalves and small crustaceans, filamentous, and turf
algae. Internal bioeroders included boring bivalves, sipunculids,
phoronids, sponges (encrusting and boring), and a diverse assem-

blage of polychaete worms.

2.2 | Experimental design

Rubble fragments were placed in seawater filled tubs and trans-
ported (2.5-h transit) to the University of Miami Cooperative
Institute for Marine and Atmospheric Studies (CIMAS) and the
NOAA Atlantic Oceanographic and Meteorological Laboratory
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(AOML) Experimental Reef Lab (ERL) where they were distrib-
uted across nine independent aquarium systems. Each rubble
fragment was cleared of motile fauna (if present) and placed on
the lid of a pre-tagged petri dish to enable identification of each
individual fragment. A detailed description of the ERL aquaria
setup can be found in Enochs et al. (2018). Briefly, it included
completely independent aquaria systems (75L glass tanks,
58cmW x58cmLx27cmH), each with high-resolution, real-time
control of pH and temperature. Incoming seawater was pumped
from Biscayne Bay, UV sterilized, passed through 1 pum filter,
and flowed into each tank system at a rate of 250 mLmin%. Two
mass flow controllers per tank control the venturi injection of
CO, gas and CO,-free air, while aquarium pH is measured using
a solid-state pH electrode (Durafet, Honeywell). Temperature is
measured using a high-resolution resistive temperature detec-
tor (TTD25C, ProSense) and maintained at a constant level via
a 400W submersible heater and a solenoid-operated titanium
chiller coil in each aquarium system. Each tank contains a high-
intensity LED light array (EcoTech Marine Radion XR30 G5 Pro)
that mimics natural diel fluctuations (peak photosynthetically ac-
tive radiation of 250mmolm2s™) and a flow pump to mimic wave
energy. Each tank system is controlled via custom computer algo-
rithms and a graphical user interface, facilitating dynamic (time-
dependent) treatments, controlled treatment ramping, and natural
diel oscillations.

The rubble fragments were acclimated to the indoor laboratory
setting for 10days using conditions similar to those at their collec-
tion sites (27.5°C and 8.05+0.02 pH diel fluctuation). The rubble
was then exposed to a gradual 1-week pH ramping period to target
treatment conditions. Treatments consisted of one contemporary
(8.05+0.025) and two future OA mean pH conditions (elevated:
7.90+0.025; and high: 7.70+0.025) representing potential mid and
end of century conditions (IPCC; Portner et al., 2019). Three repli-
cate tanks were used per treatment, with each tank containing five
rubble pieces from each coral species (n=10 per tank), distributed
at random in the tank space and turf facing upward. All treatments
followed 24 h sinusoidal pH oscillations that mimicked natural reef
environments (Albright et al., 2013), with minimum pH occurring
at 06:00h and maximum pH at 18:00h. Treatment conditions were
maintained for a total of 55days.

Temperature and pH were logged every 5 min. Durafet pH elec-
trodes were calibrated weekly using water samples analyzed for
pH (8454 UV-Vis Spectrophotometer, Agilent Cary). Additionally,
seawater samples (500mL) were collected weekly from each tank
for analysis of spectrophotometric pH, total alkalinity (A; Apollo
SciTech, AS-ALK2), and dissolved inorganic carbon (DIC; Apollo
SciTech, AS-C3) as per the manufacturer's guideline (two seawa-
ter replicates; calibrated with certified reference materials (batch#
198), Scripps Institution of Oceanography) (Dickson et al., 2007).
Parameters were used to calculate other carbonate system variables

such as pCO, (patm) and aragonite saturation state (Q using the

)
arag
package seacarb (Gattuso et al., 2015) in the R software environ-

ment (v4.3.0; R Core Team 2023).
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2.3 | Response measurements

Following the acclimation period, each rubble piece was incubated in
both light and dark conditions, computed tomography (CT) scanned,
and buoyant weighed. Measurements were used to assess pre-
treatment dissolution and calcification rates, as well as net produc-
tion/respiration and nutrient uptake/release rates. These analyses
were repeated after 55days to quantify rubble response under the
effect of OA.

2.3.1 | Rubble morphology

The surface area and volume of each rubble fragment were deter-
mined by non-destructive CT using a Siemens SOMATOM Volume
Zoom set to a 0.1 mm slice width and spiral scan. Rubble samples
were maintained in seawater throughout the scanning process,
both before and after the duration of the experiment. CT scans
were reconstructed from image stacks using Amira (Thermo Fisher
Scientific, Massachusetts, USA). Custom-made coral aragonite den-
sity reference materials were analyzed throughout the scanning
process, using the same scan and reconstruction parameters. The
skeletal density of rubble samples was inferred from grayscale val-
ues by linear regression of coral standards of known density (Porites
lobata: 1.1285gcm®, Pseudodiploria clivosa: 1.568gcm?® and Acropora
palmata: 2.063Ogcm3) (Groves et al., 2018; Manzello et al., 2018,
2021). Surface areas and volumes of pre- and post-scans were
measured by creating three-dimensional isosurfaces following the
boundary between the water and each rubble piece using Amira.
Orthogonal slice images were generated to confirm rubble coral spe-
cies and to verify the presence of a well-established community of

macro-bioeroders.

2.3.2 | Short-term incubations

Each rubble fragment was placed separately into custom-built,
clear and dark acrylic incubation chambers (0.75L) to represent the
two light treatments (light and dark). The chambers were placed
on submersible stirring units in the aquaria for temperature con-
trol. Each stirring unit contained a submersible motor that created
continuous water movement in each chamber via magnetic stir
bars. Every incubation spanned a duration of 2h and water samples
were collected prior to and after the incubation period to deter-
mine initial and final water conditions. Initial water conditions were
sampled immediately before each round of incubations by collect-
ing bulk tank treatment water including 40 mL for nutrients analy-
sis, 250mL for analysis of A, and 175mL for the analysis of pH,
density and DIC. After 2h, chambers were opened, and subsam-
ples were taken from each chamber to determine post-incubation
water conditions. Samples for A, pH, and DIC were preserved in
sealed borosilicate bottles with mercury chloride (6.5%) (150 and
100pL HgCl, for 250 and 175mL samples respectively). From the

250mL sample for the determination of A}, two replicate filtered
water samples (each 50g) were analyzed within 36 h of collection
using a potentiometric titrator (Metrohm 855 Robotic Titrosampler
equipped with 800 Dosino pump and Tiamo software). If A; val-
ues for replicates were more than 4pmol apart, a third replicate
(from the same sample origin) was analyzed. Analytic precision,
determined from absolute differences in measurements between
replicates, was ~1.4+0.9 umol (mean +SD). The mean of replicates
was used for further calculations. The 40mL samples for deter-
mination of all nutrients (including nitrate, nitrite, phosphate and
ammonium) were filtered through 0.45pm Acrodisc filters dur-
ing collection and stored frozen until analysis was carried out on
a SEAL AutoAnalyzer 3. Oxygen measurements were performed
with the Witrox 4 O, meter (Loligo Systems) in bulk tank seawa-
ter before incubations and after 2h in each incubation chamber.
Control incubations, containing seawater but no rubble samples,
were performed in replicate for each treatment and light level (n=4
pre-treatment and n=12 post-treatment) to correct calcification/
dissolution signals from rubble incubations. Defaunated clean rub-
ble fragments were not used as controls as they quickly become
colonized by microorganisms and any chemical signal recorded
from these incubations would not accurately represent processes
from the community that was being evaluated.

2.3.3 | Long-term mass change

Each rubble fragment was weighed pre, mid and post-experiment
using the buoyant weight technique (Dodge et al., 1984; Spencer
Davies, 1989) within a temperature-controlled seawater tank.
Samples were suspended on a stainless-steel platform attached to
the analytical balance with hydrophobic tungsten wire (0.05mm).
Mass was measured using a calibrated analytical balance (0.0001g
precision, Ohaus). Prior to each measurement, temperature and sa-
linity were recorded by a high-accuracy temperature probe (model,

Digi-Sense).
24 | Rates
241 | Short-term incubation processes

Net chemical dissolution/calcification

Rates of dissolution and calcification were determined using the
alkalinity anomaly technique (Chisholm & Gattuso, 1991; Smith
& Key, 1975) involving measured changes in A; associated with
dissolution or precipitation in seawater during 2h incubation.
Concurrent measured changes in nutrient concentration were used
to correct A; change (Jacques & Pilson, 1980; Wisshak et al., 2013)
as ammonium, nitrate and phosphate are naturally modified by the
rubble inhabitants and affect A;. The mass of altered calcium car-
bonate (AMc,co,, in pg) was calculated using the equation below
(Zundelevich et al., 2007):
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AMc,co, =0.5% [AA;+PO,—NH, + (NO3 +NO, )| x Vo,
X psw X 100,

where AA; is the change in A; over the incubation period associ-
ated with dissolution/precipitation, Vg, is the volume (L) of sea-
water in the incubation chamber (minus rubble volume) and pg,, is
seawater density (~1022kgm™3). The multiplication factor “100”
represents the molecular mass of CaCO,. Rates are commonly
expressed as mass of removed/gained substrate per unit surface
area of the removing organism per unit of time. However, due to
the internal nature of bioerosion and since the rubble from each
location had similar average surface areas but varying volumes,
we standardized the rates to rubble volume instead (mgcm'3h'l).
For ease of comparison with existing literature in the discussion,
we still standardized rates to surface area while noting that due
to the varying surface-to-volume ratios among rubble fragments,
this resulted in a pronounced difference in results between the
two rubble coral species and likely led to an underestimation of
rates. Net calcification over 24 h was calculated as the sum of 12
dark h and 12 light h.

Net production, respiration, and nutrient cycling

As outlined above, measurements of A; were corrected for the ef-
fect of nutrient release by respiration. The contribution of DIC to
respiration can be quantified because respiration derived DIC does
not impact AA; and calcification/dissolution modifies the A:DIC at
a 2:1 ratio. The contribution of respiration to the observed DIC con-

centrations was calculated as follows:

AATSS = AROPNC change in A; due to dissolution with °?*N¢

=adjusted for nutrients,

AArTes" =0 change in A; due to respiration,

ADIC®* = AASPSNC /2 change in DIC due to dissolution,

ADIC™ = ADIC® — ADIC®*  change in DIC due to respiration,

where ADIC™P, AO,, and Anutrients rates (in pmol kgth™) were
converted to fluxes (umolecm™h™), with an enclosed water volume
of ~0.75L (minus rubble volume) (seawater density ~1022kgm™) and
each respective rubble volume.

2.4.2 | Long-term bioerosion

Total bioerosion

Total bioerosion rates were determined using the buoyant weight tech-
nique (Dodge et al., 1984). Temperature and salinity were used to cal-
culate seawater density and convert buoyant weight to total skeletal
mass. As with the incubations, changes in mass were standardized to
rubble volume, obtained from CT scans. This method usually assumes
organic components of the coral skeleton to have a density equal to
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that of the ambient seawater (i.e., growth of sponge or algal tissue
would not change the buoyant weight) (Dodge et al., 1984). Here, rub-
ble pieces may have been colonized by calcareous organisms that pro-
duce more additional surficial carbonates. As such, our measurements
of rubble erosion are potentially conservative underestimates.

Mechanical bioerosion
Mechanical bioerosion by macroborers was calculated by subtracting

chemical bioerosion from total bioerosion (Schénberg et al., 2017).

2.5 | Statistical analysis

2.51 | Rubble coral species morphology

Statistical analyses were performed using the R software (R Core
Team, 2020). Variations in morphological attributes (densities, vol-
umes, and surface area) between the two rubble coral species and
scenarios were assessed using generalized linear models (GLMs).
GLMs with Gaussian distribution were run using the package ‘glm-
mTMB’ (Brooks etal.,2017). For post-treatment density, a generalized
linear mixed model (GLMMs) was run with tank as a random effect.
All model residuals were diagnosed using the package “DHARMa”"
(Hartig, 2020). Final models were then checked for overdispersion

and zero-inflation; none of the final models required correction.

2.5.2 | Short-term incubation processes

GLMMs were run to examine the effects of pH, light, rubble coral
species on post-treatment chemically quantified incubation re-
sponse metrics (calcification/dissolution rates, photosynthesis,
respiration, nutrient fluxes). Tank was treated as a fixed random
effect. Two types of GLMMs were employed based on the distribu-
tion of the data examined, either Gaussian (identity link function)
or Gamma (log link function). Response variables analyzed with
Gamma GLMMs which contained negative values were shifted be-
fore analysis and then transformed back to original before graphing.

GLMMs with Gaussian distribution were also run to examine pre-
treatment hourly and 24 h calcification/dissolution rates and com-
pare them to contemporary post-treatment rates. Light and rubble
coral species were set as fixed effects and tank and rubble ID as
fixed random effect.

Three GLMMs with Gaussian distribution were conducted to
look at the effect of rubble density on 24 h-chemical calcification
and dissolution rates. The first model incorporated rates from all
pH scenarios, rubble coral species, and density as fixed effects.
Subsequently, two additional GLMMs were performed, separating
data from contemporary and OA scenarios. In all three models, the
factor ‘tank’ was included as a random effect

For all GLMMs, residuals were diagnosed using the package
“DHARMa” and final models were checked for overdispersion and
zero-inflation.
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2.5.3 | Long-term bioerosion

Additional GLMMs were run to examine the effect of OA treatment,
rubble coral species and density on 24h mechanical and total bio-
erosion rates. Tank was again treated as a fixed random effect. Both
mechanical and total bioerosion rates were analyzed using Gamma
distribution after all rates were shifted to positive. Residuals were
also diagnosed using the package “DHARMa”. Final models were
then checked for overdispersion and zero-inflation; none of the final

models required correction.

3 | RESULTS

3.1 | Carbonate chemistry across treatment

Target pH values for the three treatments were reached after 1week
ramping and were maintained throughout the experiment (Table 1;
Figure 1). Durafet probe error, calculated as the difference between
measured pH (Durafet) and spectrophotometric pH determined from
water samples revealed that the probes were stable and accurate
throughout the experiment (standard deviation contemporary=0.059;
elevated=0.047; high=0.027). Variability in measured and calculated
carbonate chemistry parameters were as expected, and nutrient con-

centration across treatments were comparable (Table 1).

3.2 | Rubble morphology

Orthogonal slice images of each rubble piece revealed high levels
of bioerosion in every fragment (Figure S1). Worm scars and bi-
valves were the predominant traces in the scans (Figure 2c,d.e,f),
as well as sponge bioerosion pits (Figure 2e, bioerosion pattern at

the surface of the coral skeleton). The orthogonal slice images from

Aquaria Contemporary Elevated
Temp (°C) 27.5+0.02 27.5+0.07
Salinity 34.82+0.65 34.78+0.64
A (pmolkg™) 2425+25 2424 +24
pH, 8.06+0.07 7.90+0.04
pCO, (patm) 414 +79 640+72
CO§" (umolkg™) 252.4+36.3 189.4+19.4
HCO; (pmolkg™) 1849 +68.5 2007 +46.0
DIC (pmolkg™) 2112+487.7 2214 +40.9
Q0 4.06+0.59 3.05+0.31
NO; (umol LY 0.11+0.19 0.11+0.08
poi* (umol LY 0.049+0.037 0.060+0.030
Si(OH), (umol LY 3.74+2.19 4.38+1.50
NH} (pmolL™?) 0.37+0.36 0.46+0.40
NO; (umol LY 0.34+0.30 0.57+0.36

Little Conch rubble revealed that three fragments (two from the
high treatment and 1 from the elevated one) originated from brain
corals, rather than Orbicella spp. These fragments had lower densi-
ties and were removed from further analysis. The average pre- and
post-experiment density of the Porites rubble (Cheeca Rocks) frag-
ments were 1.62+0.10 and 1.5410.10gcm3 and was comparable
to the Orbicella rubble (Little Conch), which was 1.67 +0.14 and
1.59 +0.15gcm?®. Pre- and post- densities of rubble in the elevated
scenario were found to be on average lower (Porites: 1.58 +0.08
to 1.52+£0.10gcm?; Orbicella: 1.60+0.12 to 1.52+0.12gcm?, see
Figures S2 and S3) than other rubble pieces despite random as-
signment of each rubble fragment to each treatment but this was
not found to be significant (Table S2). Average surface area be-
tween coral types or treatments was not significantly different
between Porites rubble (98.2117‘5cm2) and Orbicella fragments
(95.0+12.1cm?. Volume was significantly different between
coral types (GLM, z=6.185, p<.001) with an average volume of
40.2+10.7 cm?® for Porites rubble and 54.9 +10.8cm? for Orbicella
rubble (Figure S2; Table S2). This difference was not significant be-
tween treatments.

3.3 | Short-term incubation processes

3.3.1 | Calcification and dissolution rates

Daily and hourly rates of net calcification/dissolution in the pre-
treatment incubations did not differ significantly from the rates
in the contemporary post-treatment (Table S3). Post-treatment
rates differed significantly from pre-treatment rates (GLMM,
z=10.319, p<.001), between OA treatments (GLMM, p<.001),
but not between rubble species. Light and dark hourly carbon-
ate alteration differed from each other in both pre-treatment and
post-treatment phases (GLMM, pre: z=14.389, p<.001; post:

TABLE 1 Mean and standard deviation
of all weekly measured parameters
throughout the experiment (55 days).
pCO,,HCO;, CO3", and @, were
calculated from the measured total
alkalinity (A;) and dissolved inorganic

carbon (DIC) samples using Seacarb.

High
27.5+0.05
34.74+0.64
2425+21
7.70+0.08
1094+170
129.7+25.7
2152+71.3
2311+54.8
2.09+0.42
0.10+0.03
0.042+0.015
3.84+1.27
0.34+0.20
0.42+0.62
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FIGURE 1 pH (total scale) measured in

each tank for each hour within the diurnal

cycle averaged across the 55 days of

treatment conditions. The three treatment

groups include mean pH +amplitude

of diel pH oscillations: 8.05+0.025, 8.0 9
7.90+0.025, 7.70+0.025. For each
treatment, data from each replicate

tank were pooled together and used to
calculate the mean pH for each hour
point. Error bars around each point depict
standard deviation. Each shape represents
one of the tank replicates in each pH
treatment (n=55).

pH
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FIGURE 2 CT scans of coral rubble
showing 3D reconstructions (a, b),
orthogonal slices (c, d), and bioerosion
traces (e, f) from two example rubble
samples; a Porites spp. (top) and an
Orbicella spp. (bottom) fragment collected
at Cheeca Rocks and Little Conch reefs,
respectively.

z=19.766, p <.001). Net calcification rates decreased in light in-
cubations with decreasing pH, while net dissolution increased in
dark ones. This led to a shift from net daily calcification (stand-
ardized across 24 h) in the contemporary treatment to net disso-
lution past a pH of 7.96 for Porites rubble and 7.98 for Orbicella
rubble (Figure 3). An interaction between light regime and rubble
coral species was found indicating that light affected rates from
the two rubble species differently (GLMM, Light x coral species:
7=-3.49, p=<.001).

Net daily calcification in the pre-treatment phase was not sig-

nificantly different between rubble coral species (or locations)

ohm
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20 mm

25 mm
—

but was higher on average in Porites spp. (0.070+0.127 mgcm ™
24 h™) versus Orbicella spp. (0.027 +0.127 mgecm ™2 24 h™Y). Rates
of net calcification decreased under the OA scenarios (pre- vs. el-
evated post-experiment; Porites spp.: 0.12+0.15 to -0.07 +0.08
and Orbicella spp.: 0.02+0.05 to -0.07 £0.06 mgcm™ 24h™%),
Rates decreased even further in the high OA treatment (pre- vs.
high post-experiment; Porites spp.: 0.05+0.11 to -0.09+0.08
and Orbicella spp.: 0.04+0.06 to -0.13+0.07mgcm™ 24h™%).
Net dissolution rates increased in higher density rubble (z =
-2.339, p = .019) but only in the contemporary scenario (see
section 3.4).
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FIGURE 3 Chemical accretion and dissolution rates (mg CaCO, cm™3 24 h™) of Orbicella spp. (Little Conch) and Porites spp. (Cheeca Rocks)
rubble pieces before treatment (pale blue boxplots) and post treatment (contemporary in blue, elevated in orange and high in red). Net
chemical rates over 24 h represent the sum of dark and light rates over 12h (photoperiod=12:12) (wider boxplots). The post-treatment net
24 h-standardized chemical rates are represented in bold. Net dark (moon) and light (sun) rates are represented by the thinner boxplot and
were calculated by multiplying the hourly rate by 24. The two regression lines at the bottom represent net 24 h-standardized chemical rates
(in mg CaCO3cm'3 24h7Y) versus pH measured in the incubation chambers. They indicated the threshold pH at which rubble fragments shift
from net calcification to net dissolution. Circles depict pre-treatment data and black points show post-treatment data.

3.3.2 | Net production, respiration, and
nutrient cycling

Net community calcification (NCC) increased with net community pro-
duction (NCP). In general, rubble communities were net photosynthe-
sizing and net calcifying during the day (Figure 4: circle in the upper
right quadrants) and were net respiring and net dissolving at night
(Figure 4 triangles in the lower left quadrants). Some exceptions were
communities in the OA treatments: photosynthesizing and dissolving
during the day (lower right quadrants). A few communities residing in
the Porites rubble calcified at night while net respiring (upper left quad-
rant). Overall, NCP and NCC processes occur over a broader range in
Porites rubble compared to the communities inhabiting Orbicella rubble.

OA treatments did not have a significant impact on net com-
munity respiration (NCR) and NCP rates (Table S3). NCP differed
significantly between rubble species (GLMM, z=4.93, p<.001)

with Orbicella spp. having lower O, production rates during light
incubations (GLMM, Light x Orbicella spp., z=-6, p<.001). NCR did
not differ significantly between species, but the factor light was
also found to impact species differently with higher NCR measured
in Orbicella spp. light incubations (i.e., less uptake of DIC occurred).

NO, and NO, fluxes were significantly different between dark
and light incubations (Figure 5). Both Porites and Orbicella rub-
ble took up less NO, during dark incubations (GLMM, z=-4.483,
p<.001) and switched from being a source of NO, in dark incu-
bations overall to being a sink in light ones (GLMM, z=-2.647,
p <.008). Uptake of NO, was lower for Orbicella rubble during light
incubations (Light x Orbicella spp., z=2.628, p <.009). Significant re-
duced production and increased uptake of NO, occurred in the high
OA scenario for both rubble coral species (GLMM, High: z=-3.044,
p=.002). NH, fluxes increased on average in OA treatments, espe-
cially in Orbicella rubble, but this was not significant (Figure 5).
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FIGURE 4 Net community calcification (NCC) and net community respiration measured from the difference in A; and DIC respectively.
Circles and triangles represent day and night rates respectively. Pale blue color represents data collected before the rubble was put in
treatment (pre-treatment) and blue, orange and red colors depict rates measured after 55 days in treatment (post-treatment). Negative and
positive y values show net dissolution and net calcification, respectively. Negative and positive x-axis values are net respiration and net
photosynthesis. A}, total alkalinity; DIC, dissolved inorganic carbon; NCP, net community production.

3.4 | Long-term bioerosion rates

Total bioerosion rates differed between coral types (GLMM,
7=3.923, p=.036) and pH treatments (GLMM, elevated: z=2.22,
p=.0264; high: z=2.007, p=.0447) (Table S4). They increased under
the two OA scenarios (Figure 6) with the highest values recorded in
the elevated scenario (-0.86+0.56 and -1.18+0.35 mgcm_3 24h7
for Porites and Orbicella rubble respectively). Total bioerosion and
its mechanical component (calculated by subtracting chemical rates
from total rates) increased in lower density rubble (GLMM, total:
z=-6.1171, p<.001; mechanical: z=7.202, p <.001) but mechanical
bioerosion rates did not differ significantly between pH treatments

and rubble coral species (Figure 7).

4 | DISCUSSION

In all scenarios, rubble fragments underwent net CaCO, loss during
the experiment due to bio-erosional processes outpacing calcification.
Our findings indicate that contemporary internal bioerosion in heavily
colonized coral rubble was high compared to previous reports (Davies

& Hutchings, 1983; Osorno et al., 2005; Yeung et al., 2021) and will in-
crease in a higher CO, world with severe implications for net reef frame-
work persistence. Contemporary net total bioerosion averaged at 0.83
and 1.88kgm'2year'1 for Porites and Orbicella fragments, respectively,
which suggest they contributes significantly to carbonate budgets,
especially on degraded reefs. These high rates of bioerosion hold par-
ticular significance in regions like Florida, where most reefs are either

experiencing net erosion or are in a state of stasis (Morris et al., 2022).

4.1 | OA enhanced bioerosion rates

Net bioerosion rates increased under OA conditions compared to
the contemporary scenario. This acceleration was chemically driven
with enhanced dissolution and reduced secondary calcification.

41.1 | Chemical dissolution and calcification rates

Results from rubble incubations in different pH treatments indi-
cated that the ongoing increase in pCO, increase in the earth's
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atmosphere will cause epi- and endolithically colonized coral rubble
to shift from net calcification to net dissolution. The tipping point in
this study, where rubble fragments, on average, transitioned into net
dissolution, was met at pH=7.96-7.98. These levels are predicted
to be reached in the early 2040s under SSP5-8.5 (van Hooidonk
et al., 2020). Here, rates ranged from 0.001 to 0.004mgcm'3h'1
during light incubations and -0.002 to 0.008mgcm>h™! during
dark incubations (light: 1.05 to 8.85mmol CaCO, m™? 24h™%; dark:
-5.15 to -15.9mmol CaCO, m2 24h™Y), which was comparable with
previous alkalinity anomaly studies on rubble from both experimen-
tal settings (Silbiger & Donahue, 2015) and in situ studies (Yates &
Halley, 2006). It is of note however, that rates from the current study
were normalized to the surface area of each rubble, while Silbiger
and Donahue (2015) normalized rates to the surface area of an as-
semblage of rubble, and Yates and Halley (2006) normalized their
rates to planar surface area.

Net calcification rates recorded on/in rubble were negatively
correlated with OA. Previous studies investigating the response
of polychaetes, molluscs, and CCA to acidification have found
that they respond negatively to decreases in pH (Diaz-Pulido
et al., 2012; Kuffner et al., 2008) due to chemical conditions not
being conducive to CaCO;, precipitation. Net dissolution rates, on
the other hand, increased as pH lowered. Rates of chemical disso-
lution have been shown to increase with OA for bioeroders whose
boring activity include a chemical component. Excavating sponges
for instance, dissolve coral skeleton around a fragment of CaCQO,,
termed a chip, and then remove it mechanically (Webb et al., 2019).
Enochs et al. (2016) found a positive relationship between the

boring activity of annelids and OA. While the mechanisms of car-
bonate dissolution are not well known for all annelid taxa, similar to
boring bivalves, they are likely to involve both chemical dissolution
and mechanical abrasion (Davies & Hutchings, 1983; Schénberg
et al., 2017). Reduced pH would be conducive to easier dissolution

by both mechanisms.

4.1.2 | Total and mechanical bioerosion

Incubation based rates represent the chemical component of all
processes altering the rubble framework (only 7%-14% in Porites
rubble and 4%-17% in Orbicella rubble of total mass change was
due to dissolution) and they are not inclusive of the dominant in-
fluence of mechanical erosion resulting from macroboring taxa. Net
total erosion of rubble (chemical+mechanical) already occurred in
contemporary pH. This points to the importance of the contribu-
tion of macroborers that utilize non-chemical dissolution techniques
to enter the substrate. Worm and bivalve mechanical bioerosion, as
well as the mechanical chip production component of sponge bio-
erosion surpassed net calcification even in the contemporary treat-
ment, where net total bioerosion rates reached an average of 0.2
and O.3gcm'3 year ! for Porites and Orbicella fragments respectively.
Mechanical bioerosion was not significantly impacted by pH but in-
creased significantly as density decreased. This resulted in highest
bioerosion being recorded under the elevated scenario. Total bioero-
sion was therefore affected both by pH from its chemical compo-
nent and density from its mechanical component.
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FIGURE 6 Boxplot depicting chemical (post-treatment), mechanical, and total framework altering rates in g CaCO3cm'3year'1 inthe 3
pH scenarios. Chemical rates are converted from hourly to yearly for the purposes of comparison, and values should be treated with caution

given the disparity in temporal resolution.

4.2 | Impact of density on bioerosion rates

The effect of density on bioerosion has been discussed in previous
studies with mixed results. This is mostly due to different micro- and
macro-eroding taxa having different bioerosion techniques result-
ing in varying responses to the density of the skeleton they inhabit.
While some studies have found no significant correlation between
micro- or macrobioerosion rates and coral skeletal densities (DeCarlo
etal.,2015; Tribollet et al.,2002; Tribollet & Golubic, 2005), others fo-
cusing only on excavating sponges consistently found a positive cor-
relation (Hernandez-Ballesteros et al., 2013; Highsmith et al., 1983).
At similar sponge tissue growth rates, denser materials would re-
quire the removal of a greater mass of material compared to more
porous substrates. Molina-Hernandez et al. (2022) investigated the
impact of external bioerosion on recently deceased coral heads and
found greater loss of substrate height on corals with lower density;
the loss being attributed mostly to grazing by parrotfish. Conversely,
some studies focusing on internal macroboring as a whole (e.g., by bi-
valves, worms, sponges) suggested that bioerosional damage to reef

corals was positively correlated with skeletal density (Cosain-Diaz
et al.,, 2021; Hernandez-Ballesteros et al., 2013; Highsmith, 1981;
Highsmith et al., 1983; Hutchings, 1986). This relationship was ex-
plained by bioeroders preferring to settle on and penetrate denser
corals for protection. It is important to highlight that in most of these
studies, boring sponges accounted for more than 70% of the skeletal
excavation. Additionally, some of these studies quantified bioerosion
in live corals which would impact colonizing capacity by micro and
macroborers (Holmes, 2000). Moreover, the aforementioned studies
used bioerosional damage to quantify the volume and percentage of
CaCO,4 removed through bioerosion, whereas in this study we quan-
tify the real-time rate at which bioeroding communities remove coral
skeleton mass. This likely explains the different findings; it is possible
that worms and bivalves prefer settling on denser coral skeletons for
protection, but that their mechanical boring activity is facilitated in
less dense material.

The chemical component of the overall bioerosion by macrobor-
ers represents a relatively small percentage (4%-17% in the present
study and 5%-14% in bioeroding sponges) (De Bakker et al., 2018)
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but it is the way dissolution is utilized to excavate that will ultimately
determine if total bioerosion rates are positively or negatively cor-
related with density. Excavating sponges dissolve the coral skeleton
around a CaCO, chip to then expel it through their oscula (Webb
et al., 2019). No physical scraping or abrasion is utilized in this bio-
eroding technique and therefore total erosion (including mechanical)
is positively correlated with density. The main boring mechanism of
worms and bivalves on the other hand is abrasion (Hutchings, 2008).
In this case, mechanical scraping is made easier in less dense sub-
strate and as it contributes to a higher percentage of total bioerosion
rates, the latter will be negatively correlated with density.

In the present study, results showed that the relationship be-
tween density and rates of bioerosion differed in direction depend-
ing on whether the bioerosion was chemical or mechanical in nature.
Chemical dissolution was higher in denser skeletons while mechani-
cal rates increased in less dense rubble fragments. Although this re-
lationship held true for mechanical and total rates in all treatments,
it did not in OA treatments for chemical rates. This is likely due to
water chemistry facilitating dissolution to the point where rubble
density has a diminished impact on boring capacity.

Overall, this suggests that density and probably the skeletal
structure of corals too (e.g., microskeletal architecture, porosity, and

mineralogy) play an important role in determining the magnitude

of the effects of OA on carbonate erosion. Given that OA also in-
duces the formation of lower-density coral structures, we hypoth-
esized that future generations of rubble will support lower density
and thus heightened susceptibility to rapid mechanical erosion. OA
will therefore both indirectly exert an impact on rates of mechani-
cal bioerosion, and directly enhance rates of chemical dissolution,
further deepening the imbalance in favor of net habitat loss (Mollica
et al., 2018).

4.3 | Variation in rubble metabolic processes

Due to the different rubble coral species originating from separate
sites with distinct environments, it is difficult to disentangle the
effect of morphology from location on response rates. It is likely
that both the distinct environmental conditions found at the off-
shore Little Conch and the inshore Cheeca Rocks sites and the dif-
ferent morphologies had an influence on both the micro- and the
macro- communities in rubble. For instance, inshore sites in the
Florida Keys experience high seasonal variability characterized by
periods of exacerbated OA (Palacio-Castro et al., 2023) with im-
plications for the OA sensitivities of organisms establishing there.

Previous work on microerosion indicated that distance to the
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shore impacted micro-eroder community with microbioerosion in-
creasing offshore (Tribollet et al., 2002; Tribollet & Golubic, 2005).
Additionally, higher cryptofaunal abundance has been shown to
be linked to surface area to volume ratio with rubble derived from
branching coral (e.g., Acropora, Porites) hosting a greater abun-
dance of organisms than massive coral fragments (e.g., Orbicella)
(Biondi et al., 2020; Wolfe et al., 2021, 2023). Because the main
aim of this research was to quantify the potential overall rubble
contribution to daily calcification/dissolution cycling and longer-
term bioerosion in future coral reef carbonate budgets, commu-
nity composition was not the subject of investigation. We can
therefore only tentatively infer that the higher variability in NCC
and NCP recorded in Porites rubble compared to Orbicella frag-
ments is a result of more diverse or different community. Whether
that is the result of epilithic or endolithic organisms (or both) can-
not be said here.

Microbial diversity studies indicate coral rubble's significant
role in organic matter decomposition and nutrient recycling, in-
cluding denitrification and nitrate reduction (Sanchez-Quinto
& Falcon, 2021; Sanchez-Quinto & Falcén, 2019). In the present
study, both rubble coral species acted as NH4’r and NOj sources
during the dark in contemporary and elevated treatments.
However, results between locations differed during light and dark
incubations with Porites rubble acting as NOj sinks during the day,

while Orbicella fragments behaved as sources. The latter is to be
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expected from net heterotrophic processes; however, in instances
of net autotrophy during the day, rubble acting as net sources of
NOj suggest that the consumption and transformation of organic
matter by microbial populations (e.g., Pfister & Altabet, 2019)
are masking the assimilation of dissolved organic nitrogen by pri-
mary producers. This difference found between locations points
toward the presence of distinct microbial communities, but fur-
ther research is needed at this point. In the context of OA, both
rubble coral species became net NOj sinks in the high treatment,
possibly due to reduced photosynthesis and/or a shift in micro-
bial processes from dominance of nitrification to higher denitri-
fication. The concurrent increase in NHj{ release also suggests a
shift in microbial processes. There is a scarcity of studies on coral
rubble microbial communities and OA. As rubble beds become in-
creasingly common on reefs, determining their role in recycling of
organic matter and nutrients in the context of climate change is
crucial to understand the increasingly important role they will play
on future reefs.

5 | RUBBLE PERSISTENCE AND
CONCLUSIONS

The fate of coral rubble on reefs is unknown, especially consid-

ering their existence is inherently tied to their source, coral. In
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FIGURE 8 Rubble persistence under contemporary, elevated, and high pH treatments. Thin lines represent yearly mass change
trajectories for each rubble fragment depending on initial mass, density, volume and respective bioerosion rate measured in this study. Thick
lines represent Loess regressions through all rubble fragments from each scenario. See Supporting Information for yearly mass calculation
methods. The change in shape of the rubble scan images depicted on the right side of each panel is purely conjectural, as the extent of their
mass loss does not inform their shape alteration. These mass projections do not account for grazing or fracturing resulting from foraging

invertebrates or wave action and are therefore likely underestimated.
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response to an increased frequency of disturbances on reefs,
coral rubble has become a more prevalent substrate component
on reef landscapes. Some of this rubble is likely to be reincor-
porated over time into the reef framework, but in other cases
rubble will remain detached from the underlying framework
structure and will likely become increasingly mobile as it loses
density and weight from bioerosion. This will subject rubble to
greater abrasion and physical reworking processes during the
transition into sediment grade material (de Kruijf et al., 2021;
Kenyon et al., 2020, 2023). By solely considering bioerosion
rates from this study, we estimated the approximate time re-
quired for the rubble to disintegrate (Figure 8). Differences in
rubble persistence between rubble fragments was high, with
some fragments disintegrating in under 5 years, while others still
weighing more than 10 g after 30years. On average, rubble mass
decreased by more than 70% in less than a decade across all sce-
narios, before levelling off slowly. This timeframe is likely over-
estimated as rubble would eventually become so porous that it
would fractionate into smaller fragments, accelerating disinte-
gration (Kenyon et al., 2020). Porites rubble mass leveled off at
around ~10g after 11 to 13years in the elevated and high OA
scenarios, with a delay of 5years observed under contemporary
pH conditions. Orbicella rubble eroded more rapidly in the ini-
tial 10years before slowly plateauing. In the elevated scenario,
rubble disintegrated in approximately 10 years. By the 13th year,
they decreased to 10 g on average in the high scenario, with an 8-
year delay in the contemporary scenario. These rough timelines
provide insight on the transition of rubble into sediment grain
material. It is worth noting, however, that these rates are not
inclusive of grazing or fracturing due to foraging invertivores or
wave action which would undoubtedly accelerate the disintegra-
tion process (Enochs et al., 2016; Kuffner et al., 2019; Morais
et al., 2022).

The high bioerosion rates recorded in this study indicate that
dead coral rubble significantly contributes to the carbonate bud-
gets of contemporary disturbed coral reefs, with potential for even
greater contributions in the future. OA will both directly enhance
rates of chemical dissolution and indirectly promote rates of me-
chanical bioerosion by impacting the density at which corals form
skeleton. These collective impacts will alter the persistence of reef
framework, with great repercussions for net reef framework per-
sistence, community structure, and functioning.
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