Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic‐Hydrothermal Fluid Chemistry
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic‐Hydrothermal Fluid Chemistry

Filetype[PDF-13.50 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Geochemistry, Geophysics, Geosystems
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The Hinepuia volcanic center is made up of two distinct edifices aligned northwest to southeast, with an active cone complex in the SE. Hinepuia is one of several active volcanoes in the northern segment of the Kermadec arc. Regional magnetic data show no evidence for large‐scale hydrothermal alteration at Hinepuia, yet plume data confirm present‐day hydrothermal discharge, suggesting that the hydrothermal system may be too young to have altered the host rocks with respect to measurable changes in magnetic signal. Gravity data are consistent with crustal thinning and shallow mantle under the volcanic center. Following the discovery of hydrothermal plumes over Hinepuia, the submersible Shinkai 6500 was used to explore the SE cone and sample hydrothermal fluids. The chemistry of hydrothermal fluids from submarine arc and backarc volcanoes is typically dominated by water‐rock interactions and/or magmatic degassing. Chemical analyses of vent fluids show that Hinepuia does not quite fit either traditional model. Moreover, the Hinepuia samples fall between those typically ascribed to both end‐member fluid types when plotted on a K‐Mg‐SO4 ternary diagram. Due to evidence of strong degassing, abundant native sulfur deposition, and H2S presence, the vent sampled at Hinepuia is ultimately classified as a magmatic‐hydrothermal system with a water‐rock influence. This vent is releasing water vapor and magmatic volatiles with a notable lack of salinity due to subcritical boiling and phase separation. Magmatic‐hydrothermal fluid chemistry appears to be controlled by a combination of gas flux, phase separation processes, and volcano evolution and/or distance from the magma source.
  • Source:
    Geochemistry, Geophysics, Geosystems, 18(10), 3646-3661
  • DOI:
  • ISSN:
    1525-2027
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.2