
1 Estimating time-variation in confounded processes in population 
2 dynamics modeling: a case study for snow crab in the eastern 
3 Bering Sea 

4 Cody Szuwalski 

5 Population dynamics models used to provide management advice for harvested natural resources often es-
6 timate population processes that can be mutually confounded. These processes (e.g., natural mortality 
7 (M ) and catchability (q)) are often assumed to be time-invariant, but this assumption can be violated in 
8 real populations. Not allowing for time-variation in these processes can result in retrospective patterns in 
9 estimated biomass, which can result in errors in management advice. Allowing for time-variation in these 

10 processes can also result in errors in management advice if the estimated time-variation does not refect the 
11 true underlying variation. Here I present a population dynamics model for snow crab in the eastern Bering 
12 Sea that tests diferent combinations of implementation of time-variation in M and q. The North Pacifc 
13 Fisheries Management Council did not adopt any of the models with time-variation in M or q for man-
14 agement because the estimated variability in M and q was difcult to explain with any known mechanism 
15 and management advice difered by nearly an order of magnitude among models. The large diferences in 
16 management advice reported here underscore the importance of evidence-based approaches to incorporating 
17 time-variation in population processes into stock assessment models. 
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18 Introduction 

Modeling the dynamics of populations often requires making simplifying assumptions to produce tenable 
models. For example, in fsheries stock assessments, population processes like natural mortality (M ), catch-
ability (q), growth, and maturity are often assumed to be time-invariant. However, these assumptions have 
been shown to be false for some populations. For example, Wilberg et al. (2009) collated published evidence 
for changes in catchability for harvested marine population, Stawitz et al. (2019) demonstrated considerable 
variabilty in growth for stocks in the Bering Sea, and Jacobsen and Essington (2018) cataloged changes in 
natural mortality for forage fsh in European waters. 

Addressing the potential that other confounded processes are not driving observed changes in a stock is a 
key concern when estimating time-variation in stock assessment. Similar changes in the observed indices of 
abundance can be caused by changes in natural mortality, selectivity, growth, or catchability (e.g., Thompson, 
1994). For example, a decline in biomass in the terminal year of the time series can arise from increased 
natural mortality, decreased selectivity or catchability, or decreases in growth. This confounding can lead 
to the dilemma of ‘Kill them or hide them?’ when assessing stocks in which there are unexpected declines 
(Taylor and Methot, 2013). Data to distinguish between mortality events and changes in selectivity are often 
difcult to procure and, even when the data are possible to collect, may arrive after the point in time at 
which they are needed to establish management advice (e.g., the next year’s survey data). In spite of this, 
the analyst must make modeling decisions about how to reconcile changes in observed abundance or biomass 
to provide management advice. 

Given the above issues, population dynamics models used to manage harvested natural resources often seek 
to strike a balance between simplicity and complexity in modeling assumptions that appropriately captures 
the processes important in determining sustainable harvests (e.g., natural mortality, growth, selectivity, 
catchability, and maturity) while respecting the information content in the data. In general, three pieces of 
information are needed in harvest control rules that produce catch recommendations: biomass at the time 
of the next fshery, a target biomass, and a target fshing mortality. Broadly speaking, these pieces represent 
the current status of a fshery, the target status for a fshery, and the pathway for how to achieve the target 
from the current situation. Oftentimes the biomass and fshing mortality targets are based on maximum 
sustainable yield calculations (e.g., Schaefer, 1954) or proxies thereof (e.g Clark, 1991). 

Each of these pieces of information can be infuenced by the assumptions about population processes made 
while developing a population dynamics model. Assuming time-invariance in the population processes that 
infuence estimates of current biomass when those processes are actually varying can produce retrospective 
patterns and lead to inefective management advice (e.g., NOAA, 2009). Assuming time-invariance in the 
population processes that determine the management targets for biomass and fshing mortality may be 
reasonable if the forcing of these processes is stationary because the targets should represent the mean state 
of the system. However, if the environmental forcing of these processes is non-stationary (i.e. the mean 
changes over time), changes in population processes result in changes in management quantities (Thorson 
et al. 2015) and decisions must be made about the time period used as a reference to calculate management 
targets (NPFMC, 2007). 

Snow crab in the eastern Bering Sea is one such stock that appears to have time-variation in some population 
processes (e.g., natural mortality in Murphy et al. 2018; catchability in Somerton et al. 2013) and models 
have been proposed for other stocks of snow crab that include time-varying M (Shibata et al., 2021). The 
eastern Bering Sea population is at least at risk of non-stationarity in some population processes (particularly 
those related to ice extent like recruitment; Szuwalski et al., 2020). Consequently, we use it here as a case 
study to explore the potential to estimate time-variation in confounded population processes. 

The snow crab fshery has been managed with individual transferable quotas since 2005 and retains large male 
crab with carapace width greater than 101 mm (Figure 1). Catches were highest in the 1990s, after which 
the stock biomass declined sharply and the stock was declared overfshed in 1999. The stock was declared 
‘rebuilt’ in 2011 once the estimated biomass exceeded the biomass management target. The National Marine 
Fishery Services (NMFS) summer trawl survey is a key information source in the stock assessment for snow 
crab. Crab cannot be aged, so true cohorts are not known, however groups of crab of similar size clearly 
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68 move through the population and are dubbed ‘pseudocohorts’. Large ‘pseudocohorts’ have appeared in the 
survey three times since 1982 (Figure 1 and Figure 2). 

The most recent large pseudocohort was spawned around 2010 and frst selected by the survey gear in 2015 
(Szuwalski et al., 2020). By 2018, it was the largest pseudocohort ever observed in the eastern Bering Sea. 
However, in 2019, it was much smaller than expected given estimated growth, natural mortality, and fshing 
removals (Figure 2). This strongly implies time-variation in some population process and catchability or 
natural mortality are key suspects given previous research. However, there are few data to decisively indicate 
which process is varying over time. No survey was performed in 2020 as a result of the coronavirus pandemic, 
so the managing body was in the unprecedented position of setting the overfshing level (i.e. the level of catch 
beyond which overfshing would occur, which is used to set allowable biological catches) in a year with no 
survey data and in the context of a large drop in the previous year of survey data that could be attributed 
to changes in either natural mortality or catchability. 

Here I present iterations of the assessment method used for snow crab that incorporate time-variation in 
natural mortality and/or catchability. I then compare the resulting fts to the data, evaluate the character and 
credibility of the estimated time-variation in q and M, and examine the knock-on efects in other confounded 
processes like maturity and recruitment. I conclude by presenting the diferences in management-related 
quantities (e.g., F35% and B35%), summarizing the discussion the management body held concerning these 
models, and discussing potential paths forward. 

Methods 

The integrated size-structured model currently used (referred to here as the ‘status quo’ model) was developed 
by Turnock (2015) following Fournier and Archibald’s (1982) methods, with many similarities to Methot 
(1990). The population dynamics in the status quo model tracks the number of crab of sex s, maturity 
state m, during year y at width w, Ns,m,y,w. A terminal molt occurs in which crab move from an immature 
to a mature state, after which no further molting occurs. The mid-points of the size bins tracked in the 
model span from 27.5 to 132.5 mm carapace width, with 5 mm size classes. Parameters estimated within the 
assessment include those associated with recruitment, natural mortality (subject to a fairly informative prior), 
fshing mortality, selectivity (fshery and survey), survey catchability, and probability of having undergone 
terminal molt. Weight at size, discard mortality, bycatch mortality, and parameters associated with the 
variance in growth and proportion of recruitment allocated to size bin were estimated outside of the model 
or specifed. Growth parameters were estimated outside of the model based on measurements of pre-molt 
and post-molt carapace width for crab captured in the wild just prior to molting. Survey biomass indices 
and size-composition data, directed fshery biomass and size-composition data, and bycatch biomass and 
size-composition data were ft to within the assessment. The assessment spans the years 1982 to 2020. See 
appendix A for a complete description of the population dynamics and model code is available on a github 
repository linked at the end of this manuscript. 

The output of three models are compared to the status quo here: “Vary M ”, “Vary q”, and “Vary both”. Each 
of these models builds on the status quo model and alters the way in which natural mortality (“Vary M ”), 
catchability (“Vary q”), or both processes (“Vary both”) are modeled. “Vary M ” adds a vector of deviations 
to the existing estimated parameters for mature natural mortality of both sexes (i.e. a ‘dev_vector’ in 
AutoDiferentiating Model Builder; Fournier et al., 2012). The vector of deviations includes an additional 
parameter for each year included in the assessment (1982-2020) for each sex. “Vary q” estimates a catchability 
parameter for each year from 1989-2020 for each sex. The estimated vectors of q are bounded by 0.2 and 1.0 
based information from experimental net efciency work for Bering Sea snow crab that suggests catchability 
should be within this range (Somerton et al., 2013). “Vary both” combines these changes into a single model. 
A smoothing penalty is added to the negative log likelihood of each model to facilitate model convergence. 
The smoothing penalty is the squared norm of the second diference of each vector of additionally estimated 
parameters multiplied by a user-defned weighting factor. The weights for the smoothing penalties were 
chosen by trial and error, with the aim of making them as small as possible while still avoiding convergence 
issues. 
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117 Retrospective analyses were performed in which the terminal year of data was removed sequentially from the 
model ftting, then estimated management quantities (e.g., mature male biomass [MMB]) were compared 
between the model with the complete data set (i.e. 1982-2020) and models with successive ‘peels’ of the data 
to identify retrospective patterns. A retrospective pattern is a consistent directional change in assessment 
estimates of management quantities in a given year when additional years of data are added to an assessment. 
Mohn’s rho (which computes the average diference between the reference case and the peels over the period 
of retrospective analysis; Mohn, 1999) was calculated for each model to quantify the retrospective patterns 
in the estimate of the terminal year of biomass. 

The overfshing level (OFL) is the level of catch beyond which overfshing would be deemed to occur in a given 
year. The OFL is one of the key pieces of management advice that arises from the assessment and serves 
as the starting point for specifying an ‘acceptable biological catch’, which constrains removals in the fshery. 
The OFL was calculated using spawner-per-recruit proxies for biomass and fshing mortality reference points 
(e.g., Clark, 1991) and a sloped control rule. After ftting the assessment model to the data, the model was 
projected forward 100 years using the estimated parameters under no exploitation and constant recruitment 
to determine ‘unfshed’ MMB-per-recruit. For models in which time-variation was implemented, the average 
of the fnal seven years of the process was used in projections. The bisection method was used iteratively 
to identify a fshing mortality that reduced the MMB-per-recruit to 35% of the unfshed level (i.e. F35% and 
B35%). Calculations of F35% were made under the assumption that bycatch fshing mortality was equal to 
the estimated average value. 

Calculated values of F35% and B35% were used in conjunction with a sloped control rule to adjust the 
proportion of F35% that is applied based on the status of the population relative to B35% (Amendment 24, 
NMFS; NPFMC, 2007). 

 Bycatchonly if MMB ≤ MMB35 
0.25 

= F M
35( MB −α)

F   MMB35  OF L −  if0. 1 25 < MMB <  (1) α MMB35 
1F35 ifMMB > MMB35 

Where MMB is the projected MMB in the current survey year after fshing at the FOFL, MMB35% is the 
equilibrium MMB at the time of mating resulting from fshing at F35%, F35% is the fshing mortality that 
reduces the MMB-per-recruit to 35% of unfshed levels under constant recruitment, and α determines the 
slope of the descending limb of the harvest control rule (set to 0.1 here as specifed by the NPFMC). 

Results 

All models produced a positive-defnite Hessian and had maximum gradient components less than 0.004, 
except “Vary both”, which had a maximum gradient component of 0.01 for one of the recruitment deviations 
for males (the rest were < 0.004). The smallest viable smoothing penalties tested were 1 and 10 for natural 
mortality and catchability (respectively) when they were the only additional time-varying process in the 
assessment. When both processes were allowed to vary, the smoothness penalty for natural mortality had to 
be increased to 15 or the model did not converge. 

Fits to the data 

Models “Vary M ”, “Vary q”, and “Vary both” all ft the survey MMB better than the status quo model (Fig-
ure 3 and Table 1), particularly in recent years (Figure 4). The status quo model missed the input confdence 
intervals of 5 of the last 6 years of survey MMB, but additional estimated time-variation improved these fts. 
Fits to the catch data, growth data, and all size-composition data sources can be seen in the supplemen-
tary materials. In general, the fts were similar across models, except for the survey size-composition data, 
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better fts than models that did not. Retrospective patterns in the status quo model (Mohn’s rho = 0.36) 
were improved substantially by allowing additional time-variation in either natural mortality or catchability 
(Figure 5). 

Estimated population processes and derived quantities 

Estimated population processes and derived quantities varied among models. The trajectories of the time 
series of estimated MMB varied strongly among models, and model “Vary both” produced the largest his-
torical estimates of MMB (Figure 6). The shapes of the estimated curve representing the probability of 
undergoing terminal molt for males were similar among models, but the magnitude of the probabilities var-
ied, most strongly for males in the 70-90 mm carapace width range (Figure 7). ‘Vary both’ estimated the 
highest fraction of sub-industry-preferred size (i.e. <101 mm carapace width) crab undergoing terminal molt. 
Trajectories of estimated fshing mortality were similar across models, but variability within years existed 
due to difering estimates of population size (Figure 7). Patterns in estimated recruitment were similar for 
all models, but the relative magnitudes varied (Figure 7). 

Estimated natural mortality across models varied widely (Figure 8). Both ‘Vary both’ and ‘Vary M ’ esti-
mated higher natural mortality in recent years compared to historical estimates, but estimates from ‘Vary 
both’ increased sharply starting in 2017 and ended with estimates in 2020 nearly double that of ‘Vary M ’. 
Estimates of mean natural mortality were smaller for models in which natural mortality was allowed to vary 
over time than for those in which natural mortality was constant over time. The shapes of the estimated 
survey selectivity curves were similar among all models; the largest changes were seen in the catchability 
coefcient (see supplementary fgures). Models in which catchability was time-varying estimated average 
catchabilities similar to the experimentally implied catchability. However, the variability in estimated catch-
ability for these models was large, with estimated values ranging from ~0.2 to ~1 (Figure 8). 

Diferences in estimated population processes and fts to the data resulted in large diferences in management 
advice (Table 2). The terminal year of estimated MMB varied from 43,290 t to 133,510 t, with models 
estimating time-varying M returning much lower MMB than those that did not. The corresponding target 
biomasses (B35%) were also much lower for models incorporating time-varying M because the projections 
used to calculate B35% are based on the terminal years of estimated M, which were quite high (Figure 8). An 
additional efect of increases in estimated M (and changes in the probability of terminally molting; Figure 7) 
were large increases in F35% (Table 2). In spite of large diferences in the estimated MMB, the management 
advice from ‘Vary q’ was only 10% more than ‘Vary M ’ (77.08 vs. 70.88 kt). This similarity in OFLs is a 
function of the large F35% and small B35% from ‘Vary M ’ relative to ‘Vary q’. However, if both processes 
were allowed to vary in the assessment (‘Vary both’), the calculated OFL was 81% smaller than the when 
only one process was allowed to vary. Furthermore, if the smoothness penalty used for ‘Vary both’ was used 
in ‘Vary M ’, the calculated OFLs were similar, suggesting relatively unstable estimation of time-varying M. 

Discussion 

Time-variation in M and/or q appears to be an issue for snow crab, but data to inform changes in population 
processes over time are lacking. Allowing M or q to vary over time within the assessment lead to improved 
fts to the data and reductions in retrospective patterns, but the management advice difered by almost 
an order of magnitude depending on what processes were allowed to vary and how the processes were 
constrained within the estimation process. Further, estimates of time-varying natural mortality among 
assessment variants and other published models ft to the same data (Murphy et al., 2018) were quite 
diferent in character (Figure 8). Ultimately, the Crab Plan Team, which is the frst level of peer review 
for the assessments used for crab in the eastern Bering Sea, chose not to endorse models that allowed time-
varying q or M for use in management because the estimates of q and M varied more drastically than seemed 
reasonable and there was no clear mechanism to support the variability. 

which there are several years in which models that allowed for additional time-variation produce much
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202 Improvements in ft and reductions in retrospective patterns with additional model fexibility is an expected 
outcome and is not unique to either snow crab or size-structured models. Szuwalski et al. (2019) demonstrated 
a similar outcome in a simulation study based on a cod-like life history with age-structured assessment 
models. Retrospective patterns were induced by simulating data with time-variation in growth, selectivity, 
or natural mortality and ftting assessment models that did not model time-variation in those processes. 
Next, assessment models that allowed either growth, selectivity, or natural mortality to vary over time were 
ft to the data. Implementing any of these time-varying processes reduced the magnitude of retrospective 
patterns, but management advice resulted in over- or under-exploiting the stock if the incorrect process 
was allowed to vary. One of the main recommendations of the paper was that an understanding of what 
process is time-varying is recommended before implementation of time-variation in integrated assessments. 
The lack of a mechanistic understanding for changes in snow crab was the primary reason the models with 
time-variation in M and/or q were not used in management. 

Much efort has been expended exploring methods to estimate time-variation in natural mortality and se-
lectivity in recent years (e.g., Miller and Hyun, 2017; Jiao et al. 2012; Jacobsen et al. 2019). The CAPAM 
special issue on selectivity (Maunder et al., 2014) presented papers on methodology for using random-efects 
to estimate time-variation in selectivity (Nielsen and Berg, 2014) and best practices in modeling time-varying 
selectivity (Martell and Stewart, 2014). Simulation studies have been used to suggest that estimating M 
at a minimum should be the default in stock assessment (Johnson et al., 2014). More recently, Aldrin et 
al. (2021) suggested that accounting for variability across time using simple models improves performance 
over time-invariant M. 

In spite of the efort spent estimating time-varying catchability, selectivity, and natural mortality individually, 
less efort has been spent understanding the feasibility of estimating time-variation in multiple confounded 
processes within a stock assessment. This is perhaps because the confounding of processes like natural 
mortality and catchability is recognized as a central challenge in assessment even without considering time-
variation (Maunder and Piner, 2014). It has also been shown to be difcult to estimate time variation in 
a single population process with the data often available for population dynamics modeling, much less two 
(Johnson et al., 2014, Lee et al., 2011). However, moving forward, the need to estimate time-variation in 
multiple processes will likely be an increasingly prevalent problem as populations respond to a changing 
environment (Szuwalski and Hollowed, 2016). Changes in distribution (Pinksy et al., 2013), recruitment 
(Szuwalski et al., 2015), growth (Audzijonyte et al., 2020), and natural mortality (Audzijonyte et al., 2016) 
are already being observed in harvested marine populations. If appropriate ways of incorporating multiple 
processes varying over time into assessment cannot be found, the knock-on efects of retrospective patterns 
and erroneous management advice will become increasingly common. This may result in an eroded potency 
of previously efective management (Hilborn et al., 2021). 

Given the outcomes of this analysis, it is not clear if the estimation of time-variation in confounded processes 
is a problem we can model our way out of with the currently available data for snow crab. Completing these 
sorts of analyses with a wider range of life histories, population processes considered (e.g. growth), and data 
availabilities (both real world and simulated) could be useful to better understand the potential for estimating 
time-variation in confounded processes in stock assessment. Identifying methods for specifying smoothness 
parameters would be useful for practical implementation of time-varying processes in stock assessment given 
their impact on the analysis presented here. More longitudinal data are likely needed to directly inform 
the estimation of time-variation in confounded processes, but the continuous tagging, laboratory, and net 
efciency studies that would be needed to provide these data will be expensive. So, cost-beneft analyses 
aimed at understanding the value of information derived from the needed studies to estimate time-variation 
in confounded processes should also be performed. These analyses could include management strategy 
evaluations aimed at understanding the improvement in management outcomes coming from assessments 
that can estimate time-variation in confounded processes and simpler strategies that do not attempt to do 
so. 
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344 Appendix A: Population dynamics model description 

345 Numbers of sex s of shell condition v and maturity state m at width w in the initial year of the assessment, 
Ns,v,m,y=1,w , were calculated from an estimated vector of numbers at width w by sex s and maturity state 
m for males, λs,m,l and numbers at width w by sex s and shell condition v for females (i.e. 2 vectors for each 
sex were estimated). Estimated vectors of initial numbers at size by maturity for females were calculated 
by splitting the estimated vectors at size by the observed proportion mature in the frst year of the survey. 
Shell condition is diferentiated in the input data for the assessment, but is aggregated over when likelihoods 
are calculated, so the brief description in the main text does not include shell condition. 

 Ωobs 
s,wλs,1,w if v = new; m = mat, s = fem  1 − Ωobs

s,wλs,1,w if v = new; m = imat, s = fem 
Ns,v,m,y=1,w = (2) λs,2,w if v = old; m = mat, s = fem 0 if v = old; m = imat 

Initial numbers at size for males were all assumed to be new shell. 

 λs,1,w if v = new; m = mat, s = male λs,2,w if v = new; m = imat, s = male 
Ns,v,m,y=1,w = (3) 0 if v = old; m = mat, s = male 0 if v = old; m = imat, s = male 

The dynamics after the initial year were described by: 

 
Ω s,wκs,w ′ Q s,imat,y,w′ Xs,w ′ ,w if v = new; m = mat 1 − Ωs,wκs,w ′ Qs,imat,y,w′ Xs,w ′ ,w + Recϵ

yPrw if v = new; m = imat 
Ns,v,m,y+1,w = (4) Q if s,mat,y,w ′  v = old; m = mat (1 − κs,w ′ )Qs,imat,y,w′ if v = old; m = imat 

Where Ωs,w was the probability of having undergone terminal molt at width w for sex s (a freely estimated 
vector for both males and females constrained by penalties on smoothness), κs,w ′ was the probability of 
molting for an immature crab of sex s at width w (set to 1 for all immature crab and zero for all mature 
crab), and Xs,w,w’ was the size transition matrix describing the probability of transitioning from size w’ to 
size w for sex s. Qs,m,y,w’ was the number of crab of sex s, maturity state m, and width w surviving natural 
and fshing mortality during year y: 

�
Q Z

s,m,y,w = Ns,v,m,y,we s,v,m,y,w (5) 
v 

Where Ns,v,m,y,w represented the numbers, N, of sex s during year y of shell condition v and maturity state m 
at width w. Zs,v,m,y,w represented the total mortality experienced by the population and consisted of the sum 
of instantaneous rates of natural mortality by sex and maturity state, M s,m , and fshing mortality, Fs,f,y,w 

from each fshery. Each fshing mortality was subject to selectivity by width w, which varied between sexes 
s and fsheries f (and by year y if specifed). Ms,m was specifed in the model based on a maximum assumed 
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372 

365 age of 20 and Then et al.’s (2015) empirical study on relationships between life history characteristics and 
natural mortality. A multiplier γnatM,m was estimated subject to constraints (this formulation efectively 
specifed a mean and standard deviation for a prior distribution for M). 

�
Zs,v,m,y,w = γnatM,mMs,m + Ss,f,y,wFs,f,y,w (6) 

f 

Selectivities in the directed and bycatch fsheries were estimated logistic functions of size. Diferent selec-
tivity parameters were estimated for females and males in the directed fsheries (Sfem,dir,w and Smale,dir,w , 
respectively), a single selectivity for both sexes was estimated for bycatch in the groundfsh trawl fshery 
(Strawl,w), and a retention selectivity was estimated for the directed fshery for males (Rdir,w; all females 
were discarded). 

1 
Smale,dir,w =  

1 + e−Sslope,m,d(Ww −S  
) (7)

50,m,d

1 
Sfem,dir,w = ) (8)

1 + e−Sslope,f,d(Ww −S50,f,d 

1 
Strawl,w = ) (9)

1 + e−Sslope,t(Ww −S50,t 

1 
Rdir,w = −S50,m,d 

) (10)
1 + e−Sslope,m,d(Ww 

Where Sslope,s,f was the slope of the logistic curve for sex s in fshery f and S50,s,f was the width at 50% 
selection for sex s in fshery f. Catches for all fsheries were modeled as pulse fsheries in which all catch was 
removed instantaneously (i.e. no natural mortality occurred during the fshery). Catch in fshery f during 
year y was calculated as the fraction of the total fshing mortality, Fs,f,y,w , applied to a given sex s in a 
fshery f times the biomass removed by all fsheries for that sex. 

� � �
= RwFmal ( + )Cmale,dir,y  e,dir,y,w 

w N e− δy Ms,m (1 − e− Fmale,dir,y,w Ftrawl,y,w 
male,w male,v,m,y,w )

Fmale,dir,y,w  
w v m 

+ Ftrawl,y,w 

(11) � � �
= Fmale,dir,y,w ( )C −δy Ms,m +

male,tot,y  wmale,w Nmale,v,m,y,we (1 − e− Fmale,dir,y,w F

F +
trawl,y,w )

male,dir,y,w  Ftrawl,y,w w v m 

(12) � � �
C = F

 fem,dir,y,w 
w N e− δ

+
y Ms,m (1 − e−(Ff em,dir ,w + ,y Ftrawl,y,w )

fem,dir,y fem,w  fem,v,m,y,w )
Ffem,dir,y,w Ftrawl,y,w w v m 

(13) � � � �
−δy Ms,m trawl,y,w)C −(F  

m+f,trawl,y = ws,wNs,v,m,y,we (1 − e ) (14) 
s w v m 

Where δy was the mid point of the fshery (all fsheries were assumed to occur concurrently and the midpoint 
was based on the directed fshery, which accounts for the vast majority of the fshing mortality) and ws,w 

was the weight at width w for sex s. Trawl data and discard data were entered into the model with an 
assumed mortality of 80% and 30%, respectively. Fully-selected fshing mortality parameters for fshery f 
were estimated as a logged average over a given time period (F log 

avg ) with yearly deviations around that mean 

(  log Fdev,y ).

( log logF F F  = e avg,f + dev,f,y )
f,y (15) 
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384 Selectivity for the survey was estimated for 2 eras in the base model: 1982-1988 and 1989-present. Selectivity 
was assumed to be logistic and separate parameters representing the carapace width at which selection 
probability equal 50% and 95% (s50,s,e and s95,s,e, respectively) were estimated for males and females in the 
second era (1989-present). Separate catchability coefcients (qs,e) were estimated for males and females in 
all eras. 

Ssurv,s,w,e =
q

 s,e 

1 + (19) Ww −s ) 
50,s,e

(16)
 

−log
e s95 −s,s,e 50,s,e 

Survey selectivity was informed by experimental surveys during the years 2009 and 2010. A portion of the 
NMFS summer survey tows were accompanied by an industry vessel using nephrops trawls with an assumed 
selectivity of 1 for all size classes. To represent the proportion of the population covered by the experiment, 
a vector was freely estimated for males, Sfree 

 (subject to a scaling parameter), and a logistic curve was 
estimated for

y

  females. 

  qind,s,y ) if s = female
S =

L −s

 
l 50,s,y

1+
−log(19) 

s95 − 50ind,s,w,y e ,s,y s ,s,y (17) 
q Sfree 

ind,s,y y if s = male 

Based on this logic, after identifying the fraction of the crab at length covered by the experimental surveys, the 
size composition of the NMFS data collected simultaneously with the experimental trawls can be calculated 
by multiplying the numbers at carapace width ‘available’ to the experimental trawls by the overall survey 
selectivity, Ssurv,s,w,y. The predicted numbers at size for the NMFS and industry data from the selectivity 
experiment were calculated by multiplying the respective selectivities by the survey numbers at size 

Snmfs,s,w,y = Sind,s,w,ySsurv,s,w,y (18) 

Mature male and female biomass (MMB and FMB, respectively) were ft to in the objective function and 
were the product of mature numbers at length during year y and the weight at size, ws,w : 

�
MMBy = wmale,wNmale,v,mat,y,l (19) 

 �l,v
FMBy = wfem,wNfem,v,mat,y,l (20) 

l,v 

w βwt,s 
s,l =αwt,sww  (21)

Mature biomass can be calculated for diferent time through out the year, in which case the numbers at size 
are decremented by the estimated natural mortality. Parameters αwt,s and βwt,s were estimated outside of 
the assessment model and specifed in the control fle. 

Molting and growth occur before the survey. Immature crab were assumed to molt every year with an 
estimated probability of having undergone terminal molt based on carapace width w (in all the scenarios 
presented here, the probability of molting was 1 for all immature animals). For crab that molt, the growth 
increment within the size-transition matrix, Xs,w,w’ , was based on a linear relationship between predicted pre-
and post-molt carapace width, (W ˆ  pre and Ŵ  post

s,w s,w , respectively) and the variability around that relationship 
was characterized by a discretized and renormalized gamma function, Ys,w,w’ . 

Y
Xs,w,w ′ = � s,w,w ′ (22) 

′ 
w ′ Ys,w,w 

ˆ

)
 ( ¯

= (∆
−  Ls,w Ww  −2.5) 

Y β
s,w,w ′  w,w ′  s (23) 
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ˆ  Lpost + β pr
s,1hatW e 

s,w = αs s,w (24)

∆  
w,w ′ = L̄w ′ + 2.5 − Ww (25) 

Ŵ post,1 
s,l was the predicted post-molt carapace width and ∆w,w ′ is the molt increment at size. 

An average recruitment for the assessment period (1982-present) and yearly deviations around this average 
were estimated for both males and females. This modeling assumption was implemented because there 
appear to be diferences between sexes in recruitment to the model and not allowing for these diferences 
resulted in large retrospective patterns. Each year’s estimated recruitment was allocated to size bins based 
on a discretized and renormalized gamma function with parameters specifed in the control fle. 

( )Rec Recavg,s+Recdev,y,s
y,s = e (26) 

(∆ )α /β −∆ /β

Prw = 1 rec rec e 1  ′ � ,w rec 

 ,w (27)
(∆1 ′ )αrec/β − ′r ( ∆

,w ece 1  ,w /βrec)
w ′ 

For models in which separate vectors of recruitment deviations were estimated for males and females, a 
separate average recruitment was also estimated (in log space). Each vector of deviations was also subject 
to a smoothing penalty, but were not linked directly in any way (e.g., priors on the ratio of estimated male 
to female average recruitment). 

Three general types of likelihood components were used to ft to the available data. Multinomial likelihoods 
were used for size-composition data, log-normal likelihoods were used for indices of abundance data, and 
normal likelihoods were used for catch data, growth data, priors, and penalties. Multinomial likelihoods 
were implemented in the form: 

� �
= eff L obs

x λx Nx,y px,y,lln(p̂x,y obs 
,l/px,y,l) (28)

y l 

Lx was the likelihood associated with data component x, where λx represented an optional additional weight-
ing factor for the likelihood, Neff 

x,y was the efective sample sizes for the likelihood, pobs  was the observed 
proportion in size bin  comp

x,y,l

 l during year y for data onent x, and p̂x,y,l was the predicted proportion in size 
bin l during year y for data component x. 

Log normal likelihoods were implemented in the form: 

� ( (ˆ )= ln Ix,y  − 2ln(Ix,y))  

Lx  λx (29)2(ln(CV 2 
x,y + 1)) 

y 

Lx was the contribution to the objective function of data component x, λx was any additional weighting 
applied to the component, Î  

x,y was the predicted value of quantity I from data component x during year y, 
Ix,y was the observed value of quantity I from data component x during year y and CVx,y was the coefcient 
of variation for data component x during year y. 

Normal likelihoods were implemented in the form: 

�
= (ˆ )2 Lx  λx Ix,y − Ix,y (30) 

y 

Lx was the contribution to the objective function of data component x, λx was represents the weight applied 
to the data component (and can be translated to a standard deviation), Î  

x,y was the predicted value of 
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437 quantity I from data component x during year y, Ix,y was the observed value of quantity I from data 
component x during year y. 

Smoothing penalties were also placed on some estimated vectors of parameters in the form of normal like-
lihoods on the second diferences of the vector with a user-specifed weight. Weightings of all likelihoods 
and penalties can be found in the .CTL fle in the github repository associated with this paper noted in the 
acknowledgements. 
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Table 1: Contribution to the objective function by individual like-
lihood component by modeling scenario. 

Likelihood 
component Status quo Vary q Vary M Vary both 

Recruitment 71.12 70.7 62.97 69.83 
deviations 
Initial numbers 2.83 2.86 2.81 2.59 
old shell males 
small length bins 
ret fshery length 194.07 189.63 182.27 180.54 
total fsh length 560.36 554.67 546.02 536.71 
(ret + disc) 
female fsh length 127.32 128.3 129.98 126.79 
survey length 2298.23 2275.79 2208.05 2228.97 
trawl length 169.34 164.05 151.31 165.36 
2009 BSFRF -45.58 -45.9 -46.92 -44.82 
length 
2009 NMFS study -36.62 -37 -37.86 -35.78 
area length 
M multiplier prior 34.55 40.78 11.44 13.14 
maturity smooth 45.6 42.6 29.55 34.71 
growth males 0 0 0 0 
growth females 0 0 0 0 
2009 BSFRF 0.49 0.03 0.09 0.15 
biomass 
2009 NMFS study 0.34 0.04 0.06 0.08 
area biomass 
cpue q 0.4 0.48 0.19 0.56 
retained catch 6.02 3.91 1.21 1.69 
discard catch 106.68 116.94 41.42 46.54 
trawl catch 11.64 5.62 7.85 5.53 
female discard 4 4.67 5.71 7.03 
catch 
survey biomass 215.85 126.53 79.96 77.08 
F penalty 23.97 21.48 23.83 22.32 
2010 BSFRF 5.53 2.93 3.4 1.56 
Biomass 
2010 NMFS 6.42 1.85 3.55 4.14 
Biomass 
Extra weight 273.98 274.43 267.88 265.7 
survey lengths 
frst year 
2010 BSFRF -24.2 -23.6 -22.6 -23.08 
length 
2010 NMFS -30.65 -29.33 -30.84 -31.08 
length 
smooth selectivity 1.22 1.3 1.26 1.22 
smooth female 0 0 0 0 
selectivity 
init nos smooth 32.25 32.84 31.03 31.17 
constraint 
Total 4055.16 3926.6 3653.62 3688.65 
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Table 2: Reported management quantities for each scenario consid-
ered. Reported MMB is for the fnal year, natural mortality (M) 
is the average over the entire time series for mature males, and 
average recruitment (avg_rec) is for males. 

Model MMB B35 F35 FOFL OFL M avg_rec 

Status quo 
Vary q 
Vary M 
Vary both 

133.51 
121.61 
43.29 
92.20 

121.47 
137.56 
17.85 
28.06 

1.23 
1.94 
6.29 

12.46 

1.23 
1.94 
6.29 
1.86 

88.90 
77.08 
70.88 
14.72 

0.29 
0.30 
0.59 
0.58 

103.91 
132.86 
152.61 
241.96 
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Figure 1: Graphical history of the snow crab fshery in the eastern Bering Sea. Mature biomass are the 
observed values inthe survey, retained catch are reported from fsh ticket data, and recruitment is the 
number of crab sized 40 to 55 mm carapace width observed in the survey. 
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Figure 2: Numbers at length from the survey. Top fgure shows the relative numbers at length over time in 
which the height of the polygon for a given year represents the number of crab observed in that size class. 
Bottom fgure shows the same data, but overlaid. Highlighted years show the recruitment of the 2010 cohort 
to the survey gear in 2015 and the subsequent reduction of the cohort in 2019 (red line). Dashed green line 
represents the approximate expected numbers at length given an application of growth, fshery removals, 
and natural mortality to the numbers at length from 2018. 
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Figure 3: Model fts to the observed mature male biomass at survey with associated confdence intervals. 
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the reference peel (black lines). 
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Figure 6: Predicted mature biomass at mating time. Dotted horizontal lines are target biomasses. 
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Figure 7: Estimated probability of having undergone terminal molt, directed fshing mortality, and recruit-
23ment. 
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Figure 8: Estimated time-varying natural mortality for mature males and catchability. 
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