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A B S T R A C T   

In this study, we developed a practical approach to augment elemental carbon (EC) emissions to improve the 
reproducibility of the most recent air quality with photochemical grid modeling in support of source-receptor 
relationship analysis. We demonstrated the usefulness of this approach with a series of simulations for EC 
concentrations over Northeast Asia during the 2016 Korea-United States Air Quality study. Considering the 
difficulty of acquiring EC observational data in foreign countries, our approach takes two steps: (1) augmenting 
upwind EC emissions based on simulated upwind contributions and observational data at a downwind EC 
monitor considered as the most representative monitor for upwind influences and (2) adjusting downwind EC 
emissions based on simulated downwind contributions, including the effects of updated upwind emissions from 
the first step and observational data at the downwind EC monitors. The emission adjustment approach resulted in 
EC emissions 2.5 times higher than the original emissions in the modeling domain. The EC concentration in the 
downwind area was observed to be 1.0 μg m− 3 during the study period, while the simulated EC concentration 
was 0.5 μg m− 3 before the emission adjustment. After the adjustment, the normalized mean error of the daily 
mean EC concentration decreased from 48 % to 22 % at ground monitor locations. We found that the EC 
simulation results were improved at high altitudes, and the contribution of the upwind areas was greater than 
that of the downwind areas for EC concentrations downwind with or without emission adjustment. This implies 
that collaborating with upwind regions is essential to alleviate high EC concentrations in downwind areas. The 
developed emission adjustment approach can be used for any upwind or downwind area when transboundary air 
pollution mitigation is needed because it provides better reproducibility of the most recent air quality through 
modeling with improved emission data.   
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1. Introduction 

Elemental carbon (EC) is a part of PM2.5 (particulate matter with an 
aerodynamic diameter<2.5 ㎛) that is often referred to as black carbon 
(BC) (Andreae and Gelencsér, 2006; Petzold et al., 2013). Previous 
studies have reported that relatively low concentrations of EC are pre
sent in the atmosphere, compared to those of other major PM2.5 con
stituents (Cheng et al., 2016; Krall et al., 2013; Qiu et al., 2016). For 
example, during the Korea-United States Air Quality (KORUS-AQ) 
campaign period in South Korea, the average EC concentration (1.2 μg 
m− 3) was lower than the average concentrations of secondary inorganic 
air pollutants such as ammonium (4.9 μg m− 3), sulfate (6.7 μg m− 3), and 
nitrate (8.1 μg m− 3) (Lee et al., 2020). Furthermore, studies in Northeast 
Asia over the last two decades have reported that observed and simu
lated annual average EC concentrations ranged from 0.3 to 5.4 μg m− 3, 
while concentrations of other PM2.5 components were much higher than 
these values (He et al., 2004; Kondo et al., 2006; Park and Cho, 2011; 
Viana et al., 2007; Wang et al., 2014). However, health studies have 
indicated that EC poses a higher risk to human health than other PM2.5 
constituents when an equal amount of air pollutants is inhaled (Bae 
et al., 2019; IARC, 2016; Janssen et al., 2011; Lee et al., 2017; Morawska 
et al., 2005; Rappazzo et al., 2015). 

As a primary air pollutant with a low reactivity and long residence 
time in the atmosphere, EC can be transported over long distances across 
regions (Khan et al., 2006; Shu et al., 2017; Wolff, 1981; Yu et al., 2004). 
Therefore, to manage this highly adverse air pollutant, it is essential to 
understand the fate of EC using some analytical approaches such as 
source-receptor relationship (SRR) analysis (Blanchard et al., 2019; 
Wagstrom and Pandis, 2011; Yamagami et al., 2019). Previous studies 
have used three-dimensional photochemical models and observations to 
estimate the effects of the long-range transport of EC between regions 
(Aamaas et al., 2011; Kang et al., 2006; Li et al., 2016; Wagstrom and 
Pandis, 2011; Xing et al., 2020). 

An emissions inventory that reflects human activities and natural 
events is one of the core inputs to three-dimensional photochemical 
models and, therefore, key information to be used for SRR studies (Fiore 
et al., 2009; Fowler et al., 2005). However, developing a representative 
emissions inventory that accurately reflects human activities and natu
ral events is not an easy task, especially in recent years. This is because it 
takes great effort and time to build a reliable emissions inventory, but 
emissions change over time along with human activities and natural 
events. For example, the Regional Emission inventory in ASia (REAS) 
v3.1, one of the most frequently used and up-to-date emissions in
ventories for photochemical modeling in Northeast Asia, indicated that 
BC emissions in China were 3.5 × 105 tons for the most recent inventory 
year of 2015, which is>3.0 × 105 tons reported for 2010 (Kurokawa and 
Ohara, 2020). Further, according to the national emissions inventory of 
South Korea, the Clean Air Policy Support System (CAPSS), the most 
recent emissions inventory reported that EC emissions were 10 % lower 
for the most recent inventory year of 2019 than the 1.6 × 104 tons re
ported for 2016 (NAIR, 2022). As shown by these examples, even the 
most recent emissions inventories do not necesarrily reflect the rapid 
changes in real-world emissions as it is inevitable to have a time lag 
between the years that emissions inventory data represent and the year 
when a bottom-up emissions inventory is published. This time lag can 
cause a poor reproducibility of modeled air quality for years more recent 
than the inventory year due to the difficulty of reflecting changes in 
emission activities (Frey and Zheng, 2002; Zhao et al., 2011). 

To reduce the uncertainties of bottom-up emissions inventories, 
including the time lag between the model year and the inventory year, 
many researchers have adopted top-down approaches that reflect the 
most recent status of air pollution to adjust past emissions contained in 
emissions inventories with observations, such as those from satellite 
measurements (Bae et al., 2020; Kim et al., 2014; Stavrakou et al., 2013; 
Zhang et al., 2018). Other studies have adopted more resource- 
consuming inverse modeling techniques with observed and simulated 

data for the entire study area (Hu et al., 2009a; Hu et al., 2009b; Jor
quera and Castro, 2010). However, approaches that rely on country- 
specific EC observational data can be challenging in Northeast Asia 
because country-specific EC observations are hard to acquire, especially 
for scientists from outside the region. Nevertheless, it is critical to have 
emissions inventories as accurate as possible to ensure that observed air 
pollutant concentrations are reproducible with modeling to support SRR 
analysis as the credibility of SRR analyses is dependent on the perfor
mance of air quality modeling. 

In this study, to overcome the restricted access to EC observations for 
different areas (i.e., country-specific EC observations), we propose a 
two-step emission adjustment method to improve the reproducibility of 
EC simulations and demonstrate its utility by using the proposed method 
to adjust EC emissions over Northeast Asia. First, we utilized modeled 
region-by-region EC contributions to adjust the EC emissions in upwind 
regions. As EC has suitable physicochemical characteristics for repre
senting the impact of the emission source (Heintzenberg and Winkler, 
1991; Ogren and Charlson, 1984), the EC emissions adjustment over 
upwind regions where observed EC concentrations were not secured was 
performed based on a downwind monitoring site that can represent 
upwind influences. Second, we conducted an observation-based EC 
emission adjustment to modeling results for the downwind area in South 
Korea because EC observations in South Korea were relatively easy to 
acquire for this study. To find an optimal adjustment method, we 
explored three optimization tools that aim to minimize the differences 
between observed and modeled EC concentrations. To demonstrate the 
effectiveness of our approach, we compared the modeled results both 
with or without the application of the emission adjustment approach 
developed in this study. Additionally, we compared the changes in 
regional EC emissions and in upwind/downwind contributions to EC 
concentrations over South Korea before and after the adjustment. To 
validate the approach proposed in this study, modeled results with EC 
emissions before and after the adjustment based on surface observations 
were compared to airborne measurements during the KORUS-AQ 2016. 

2. Materials and methods 

2.1. Observation data 

Meteorological Assimilation Data Ingest System (MADIS) data were 
used to evaluate the reproducibility of simulated 10-m wind speeds and 
2-m temperatures. We used observed air pollutant concentration data 
from both the National Ambient Air Quality Monitoring Network 
(NAAQMN) in China and the South Korean Air Monitoring Stations 
(AMS) to evaluate simulated PM2.5 and 8-h ozone (O3) at the surface 
level. We used data from six supersites in South Korea to evaluate the 
model performance for EC concentrations before and after the EC 
emission adjustment. These six supersites regularly measure concen
trations of individual PM2.5 components, including EC. The locations of 
the meteorological stations and air pollutant monitoring stations that 
collected the data used in this study are shown in Fig. 1. The EC emis
sions from upwind areas outside South Korea (e.g., China, North Korea) 
affect the EC concentrations in South Korea because it is located in the 
mid-latitude region of the northern hemisphere and is, thus, influenced 
by westerly winds, as shown in Fig. A1 (Uno et al., 2020; You et al., 
2021). Therefore, we defined South Korea as a “downwind area” and 
foreign regions as “upwind areas” (Fig. 1). Detailed descriptions on the 
EC observational data and sampling method are provided in Appendix 
A. 

The Baengnyeong supersite (37◦57′52.9″ N, 124◦38′02.4″ E) is 
located on Baengnyeong Island in the Yellow Sea, approximately 200 km 
east of the Shandong Peninsula of China and the northwestern tip of 
South Korea (NGII, 2022). There are few domestic anthropogenic 
emission sources in and around the Baengnyeong supersite. Therefore, 
its observational data are useful for analyzing the effect of the long- 
range transport of air pollutants (Kim et al., 2021b; Kim, 2000; Lee 
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et al., 2015a,2015b; Lee et al., 2019a,2019b; Sung et al., 2017). For this 
study, we assumed that the Baengnyeong supersite could sufficiently 
reflect the contribution of major upwind regions to South Korea. We 
used the Seoul, Gwangju, Daejeon, and Ulsan supersites (located in the 
inland of South Korea) to adjust EC emissions over the downwind area. 
The EC concentration at the Jeju supersite was less affected by upwind 
concentrations than that at the Baengnyeong supersite and had a lower 
downwind concentration than at other supersites (Lee et al., 
2015a,2015b; So et al., 2019). Because the main contributor of EC 
concentration in the Jeju supersite could not be clearly defined, we only 
used the data from this supersite to evaluate the model performance. 

To evaluate the model performance for EC aloft, we used BC obser
vations over South Korea that were measured using a DC-8 aircraft. To 
compare our simulated EC concentrations with aircraft observational 
data (averaged at 60-s intervals), we interpolated simulated EC con
centrations at 1-h intervals and assumed a linear change over time. The 
BC observations with the DC-8 aircraft only included the concentrations 
of particles with diameters ranging 100–550 nm. In CMAQ simulations, 
particles are divided into three modes—Aiken, accumulation, and coarse 
modes—according to their size (Binkowski and Roselle, 2003; Binkow
ski, 1999). The fraction of each mode was considered when the simu
lated concentrations of aerosol were calculated (EPA, accessed on May 
16, 2022). The mean and standard deviation of simulated EC particle 
diameters in the accumulation mode were 0.21 µm and 1.80 µm, 
respectively. In this study, to consider the diameter of EC particles in the 
accumulation mode, only 36 % of the simulated EC concentrations (i.e., 
the percentage of particles in the accumulation mode over all particles) 
were used for a comparison with the aircraft-measured BC concentra
tions. The comparison considered the modal particle size distribution 
adopted by Ensberg et al. (2013). We selected specific days to compare 
aircraft-measured and simulated EC concentrations by considering the 
effect of upwind and downwind emissions. May 17–18, 2016 and May 

25 and 27, 2016 were selected as representative days with a strong in
fluence of upwind and downwind emissions in South Korea, respectively 
(NIER, 2017; Cho et al., 2021; Choi et al., 2019; Crawford et al., 2021; 
Kim et al., 2021a). 

2.2. Air quality simulation 

Meteorological modeling was performed using Weather Research 
and Forecasting (WRF) version 3.9.1 (Skamarock and Klemp, 2008). We 
used Final Operational Global Analysis data as the initial conditions for 
the WRF simulation (NCEP, 2000) and processed the simulation results 
using Meteorology-Chemistry Interface Processor version 4.3 to 
generate input data for the Community Multiscale Air Quality model 
(CMAQ). Natural emissions from the Northeast Asia region were 
determined using the Model of Emissions of Gases and Aerosols from 
Nature (MEGAN) version 2.04. For anthropogenic emissions, we 
considered the spatio-temporal and chemical characteristics in emission 
processing with the Sparse Matrix Operator Kernel Emission version 3.1 
(Houyoux et al., 2000). We used CAPSS 2016 for anthropogenic emis
sions over South Korea, while KORUS v5 was used for anthropogenic 
emissions over Northeast Asia excluding South Korea (Choi et al., 2020; 
Jang et al., 2020). 

CMAQ version 5.3.2 was selected as the three-dimensional photo
chemical grid model for the air quality simulation in this study (Appel 
et al., 2021; Byun and Schere, 2006). The simulation domain included 
South Korea, China, and Japan (Fig. 1), and the horizontal grid resolu
tion of the modeling domain was 27 km. For the air quality simulation, 
SAPRC07 and AERO6 were utilized as the gas-phase chemical mecha
nism and the aerosol module, respectively (Binkowski and Roselle, 
2003; Carter, 2010). The meteorological and air quality simulation 
period was set from April 1 to May 31, 2016 to ensure a sufficient spin- 
up time because the KORUS-AQ period (defined as May 2016 in this 

Fig. 1. Maps of upwind and downwind areas in the modeling domain. Locations of South Korean Air Monitoring Stations (AMS) and supersites are depicted with red 
triangles and orange stars, respectively. Locations of Chinese National Ambient Air Quality Monitoring Network (NAAQMN) stations are denoted with blue triangles. 
Green diamonds depict the locations of Meteorological Assimilation Data Ingest System (MADIS) sites. The map contains the definition of 17 analysis regions: 
Beijing–Tianjin–Hebei (BTH), Chungcheong (CC), Other Chinese areas in the domain (COT), Honam (HN), Jilin–Heilongjiang (JH), Japan (JP), Gangwon (KW), 
Liaoning (LIA), Mongolia (MG), North Korea (NK), Near Beijing (NRB), Russia (RU), Seoul Metropolitan Area (SMA), Taiwan (TW), Vietnam (VT), Yangtze River 
Delta (YRD), and Youngnam (YN). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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study) was used as the study period for analysis. The detailed configu
rations of WRF and CMAQ are shown in Table B1. 

The integrated source apportionment method (ISAM) is a tagging 
method used to quantify the contributions of emission sources within 
SRR analyses (Environment Protection Agency, 2021). We used the 
ISAM of CMAQ to quantify the contribution of each region to EC emis
sions. For ISAM, the six supersites in South Korea were set as receptors 
for contribution analyses. We defined contributions that originated from 
the downwind area as “downwind contribution” and contributions that 
originated from the upwind area as “upwind contribution.” We defined 
the upwind/downwind contribution rate as the percentage of the up
wind/downwind contribution to the simulated EC concentration (i.e., 
the total contribution from all sources). In previous studies, the contri
bution rate was used to show the relative contribution of a source to the 
total EC concentration at a receptor area (Chen et al., 2015; Cheng et al., 
2021; Lan et al., 2018; Lu et al., 2019; Zhang et al., 2019). 

2.3. Model performance evaluation 

For model performance evaluation of the meteorological simulation, 
we used the root mean square error (RMSE) and the index of agreement 
(IOA) as indicators of agreenment between the observed and simulated 
data at the MADIS sites. The IOA is one of the performance benchmark 
indices for the meteorological model used by Emery et al. (2001), who 
also introduced the normalized mean error (NME) and correlation co
efficient (r) as benchmark indices for the air quality model. For model 
performance evaluation of the air quality simulations, we calculated the 
RMSE, r, and NME of PM2.5 and 8-h O3 concentrations at the monitors of 
Chinese NAAQMN and South Korean AMS. Finally, we used the NME 
and normalized mean bias (NMB) to quantify the effect of the EC 
emission adjustment method on the model performance for EC con
centrations at the six supersites in South Korea. The detailed 

descriptions and benchmark values of the performance statistics that we 
used in this study have been previously discussed by Emery et al. (2001, 
2017). We evaluated the simulated aloft EC concentrations with the 
aircraft measurements before and after EC emission adjustment, as 
described in Section 2.1. 

2.4. Emission adjustment method 

The first step of our proposed emission adjustment approach 
required the quantification of the EC contribution of upwind areas to a 
downwind monitoring site that can represent the influence of the up
wind area. To quantify the contributions of EC emissions over Northeast 
Asia, we used CMAQ-ISAM with 17 regions (12 upwind regions and 5 
downwind regions) for tagging in this study. These are shown in Fig. 1 
based on administrative boundaries and locations/availability of the 
supersites. 

If we assume that the observed EC concentration at a downwind 
region is equal to the sum of EC concentrations contributed by upwind 
and downwind EC emissions, the source-receptor relationship can be 
expressed as a matrix of equation (1), as shown in Fig. 2. Then, this 
matrix of equations can be used to find an optimal solution for a monthly 
regional EC emission adjustment factor to minimize observation–model 
differences. The multiplication of matrix A (i.e, regional EC contribu
tions) and vector X (i.e., adjustment factors for EC emission sources) 
result in vector B, which contains the difference between the observed 
EC concentration and the residual term. In Fig. 2, i is the index of 
supersites and m is the number of supersites used at each emission 
adjustment step. Note that m is 1 in the first step because the Baeng
nyeong supersite that can explicitly address the upwind contribution 
was the only supersite used, while the second step in the emission 
adjustment uses 4 supersites (i.e., the Seoul, Deajeon, Gwangju, and 
Ulsan supersites), where EC concentrations are determined from both 

Fig. 2. (1) System of equations used to derive the adjusting factors (Fj
mm) for regional elemental carbon (EC) emissions based on the modeled contributions (Cj

mmdd,i) 
from CMAQ-ISAM simulations and observed EC concentrations (OBSmmdd,i). Twelve emission source regions (n) in the upwing regions and one site (m), the 
Baengnyeong supersite, were used during the first step of the emission adjustment, i.e., n = 12 and m = 1. In the second step of emission adjustment, five emission 
source regions in the downwind area and four supersites (the Seoul, Deajeon, Gwangju, and Ulsan supersites) were used, i.e., n = 5 and m = 4. (2) The residual term 
(εmmdd, i) accounts for the difference between the modeled concentrations from the base simulation (MODmmdd,im ) and the sum of the contributions (Cjn

mmdd,im ) for 
emission source regions on day dd of month mm at supersite im. 
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upwind and downwind contributions. j is the index of emission source 
regions and n is the number of emission source regions at each emission 
adjustment step (i.e., 12 to account for the upwind regions in the first 
step and 5 for downwind regions in the second step). mmdd represents a 
given day (dd) of a the month (mm). OBSmmdd,i is the daily mean 
observed EC concentration on mmdd at supersite i. Cj

mmdd,i is the daily 
mean EC contribution from the emissions from region j on mmdd at 
supersite i. Fj

mm is the monthly EC emission adjustment factor on mm for 
the source region j. As indicated in equation (2) in Fig. 2, εmmdd, i rep
resents the residual term, which accounts for the contributions of the 
initial condition, boundary condition, and emissions from other regions 
beyond the 17 emission source regions defined for the CMAQ-ISAM 
simulation on day dd of month mm at supersite i. 

Three optimization methods were tested to solve the matrix to derive 
adjustment factors: the generalized reduced gradient method (GRGM), 
pseudoinverse matrix (PMTRX), and regression function (REGF). GRGM 
assumes a non-linear relationship between the contributions and the 
adjustment factors by region, while PMTRX and REGF assume a linear 
relationship. We applied GRGM because a non-linear relationship be
tween EC contribution and emission adjustment factors can exist 
because the air pollutant concentration is determined not only by 
emissions but also various conditions, including meteorology and at
mospheric processes such as depositions. GRGM has been used to solve 
non-linear problems in previous studies (Chai et al., 2015; Geem and 
Geem, 2007; Kim et al., 2007). We utilized the GRGM solver that is 
named as “GRG Nonlinear” available in Microsoft Excel. The GRGM 
solver calculates an optimal (maximum or minimum) value for a for
mula in an objective cell (Dauda et al., 2022). In this study, adjustment 
factors were calculated to minimize the difference between the observed 
and calculated EC concentrations using the solver. 

Simultaneously, EC also shows a strong linear relationship between 
concentration and emission because it is a primary air pollutant (Fisher 
and Sokhi, 2000; Kiesewetter et al., 2013; Kim et al., 2020). Thus, we 
evaluated PMTRX and REGF, which have been used in previous studies 
to solve the linear objective function and minimize errors (Cho et al., 
2008; Kublanovskaya, 1966; Matveev, 1974; Shu and Lam, 2011). To 
derive the emission adjustment factor by region (defined as vector X in 
Fig. 2) in PMTRX, we multiplied both sides of the equation in Fig. 2 with 
the transposed matrix of A (i.e., At). Subsequently, the product of A and 
At was multiplied with the pseudo inversion matrix. The detailed solving 
process of deriving a solution through the PMTRX is shown in Appendix 

C (Fig. C1). In REGF, we used the “regress” function in the Interactive 
Data Language program (L3HARRIS, accessed on April 6, 2022). We 
adopted an additional post-processing for REGF results as we expected 
that EC concentrations adjusted by REGF would be lower than the 
observed concentrations, while correlation coefficients seemed to be 
reasonable (not shown here). In the post-processing step, we multiplied 
the regional adjustment factors with the ratio of the observed and ex
pected EC concentrations that was estimated with REGF to minimize the 
mean error. Appendix C provides the detailed process used for the REGF 
(Fig. C2). 

We employed three methods for solving the matrix within the two- 
step emission adjustment for upwind and downwind regions. The first 
step (i.e., upwind emission adjustment) was performed over EC emis
sions from 12 upwind regions. As described in Section 2.1, the EC 
observation at the Baengnyeong supersite represents the foreign impact 
(Jo et al., 2020; Lee et al., 2015a,2015b). The second step (i.e., down
wind emission adjustment) was performed for the modeling result ob
tained after using upwind EC emissions that were adjusted in the first 
step. The objective functions for the Seoul, Daejeon, Gwangju, and Ulsan 
supersites were solved simultaneously to adjust the EC emissions of the 
downwind regions. Fig. 3 shows the schematic of the two-step EC 
emission adjustment. 

Previous studies have applied the method of estimating the uncer
tainty of upwind contribution based on a simulation uncertainty at the 
Baengnyeong supersite (Bae et al., 2021; Kim et al., 2021c). These 
studies adopted a two-step adjustment for contributions but did not 
provide regional emission adjustments. In this study, we combined a 
foreign contribution adjustment using the Baengnyeong supersite and a 
domestic contribution adjustment at the four inland supersites as a two- 
step approach for adjusting EC emissions. 

3. Results and discussion 

3.1. Model performance evaluation for the base simulation 

3.1.1. Meteorological model performance 
Table 1 shows the results of model performance evaluation for 10-m 

wind speeds and 2-m temperatures at the MADIS sites located in China 
(33 sites) and South Korea (26 sites) in May 2016. For the MADIS sites in 
China, the RMSEs for wind speeds and temperatures were 0.20 m s− 1 

and 0.51 ◦C, respectively while the IOAs were > 0.9 for both. For the 

Fig. 3. Illustration of the two-step adjustment approach used in this study for emissions of elemental carbon (EC). Red (“U”) and blue (“D”) bars represent simulated 
upwind and downwind contributions, respectively. Hashed bars depict simulated contributions with EC emission adjustment. “OBS” (black circle) denotes observed 
EC concentrations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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MADIS sites in South Korea, the RMSEs for 10-m wind speeds and 2-m 
temperatures were 0.59 m s− 1 and 1.11 ◦C, respectively. The IOAs for 
both meteorological variables were > 0.9. These performance statistics 
indicate that meteorological model performance met the performance 
goal proposed by Emery et al. (2001). 

3.1.2. Air quality model performance 
The observed monthly mean EC concentrations at each supersite 

ranged from 0.6 to 1.3 μg m− 3. The RMSEs and correlation coefficients at 
each supersite ranged from 0.2 to 0.8 μg m− 3 and 0.3–0.9, respectively 
while the NMEs ranged between 30 % and 62 %. For NMEs, while all 
sites met the air quality model performance criteria (<75 %) proposed 
by Emery et al. (2017), four out of the six sites did not meet the per
formance goal (<50 %) (Table 2). It is worth noting that the meteoro
logical model performance met its benchmark goal, while the simulated 
EC concentration did not meet the performance criteria entirely. This 
implies that the EC emission inputs used in the present study had more 
uncertainty than the meteorological inputs. 

The correlation coefficients between the observed and simulated 
concentrations for the daily mean PM2.5 and 8-h O3 in China at the 
NAAQMN sites for May 2016 were 0.59 and 0.71 while the NMEs were 
21.0 % and 22.2 %, respectively. For South Korea, the correlation co
efficients and NMEs for PM2.5 concentrations at air monitoring stations 
(AMS) sites were 0.86 and 28.9 % while those for 8-h O3 concentration 
were 0.84 % and 8.2 %, respectively, as shown in Appendix B (Fig. B1). 
The simulated PM2.5 and 8-h O3 concentrations in this study satisfied the 
performance goals proposed by Emery et al. (2017). 

3.2. Results of EC emission adjustment 

3.2.1. Upwind emission adjustment 
In May 2016, the monthly mean observed and simulated (without 

adjustment) EC concentrations at the Baengnyeong supersite were 1.0 
and 0.4 μg m− 3, respectively. After the first step of EC emission adjust
ment, the monthly mean simulated EC concentrations at the Baeng
nyeong supersite were 0.9 μg m− 3 by GRGM, 0.9 μg m− 3 by REGF, and 
1.1 μg m− 3 by PMTRX. The RMSE of the daily mean simulated EC 
concentration without adjustment was 0.7 μg m− 3. This was reduced to 
0.5 μg m− 3 by GRGM, 0.5 μg m− 3 by REGF, and 0.6 μg m− 3 by PMTRX. 
The NME of the daily mean simulated EC concentration decreased from 
60 % before adjustment to 37 % by GRGM, 37 % by REGF, and 50 % by 
PMTRX. Our results demonstrate that among the three methods that we 
tested, PMTRX provided the greatest improvement in the monthly mean 
error but the smallest improvements to RMSE and NME. PMTRX 
revealed its shortcomings when improving simulated concentrations on 
a smaller time scale (i.e., daily or hourly) than the emission adjustment 
time scale (monthly). Further, the correlation coefficient was 0.59 by 
REGF, matching that of the base simulation, while it decreased to 0.05 
by GRGM and 0.11 by PMTRX (Fig. 4). The simulated EC concentrations 
after emission adjustment for May 22–26 were underestimated 
compared with the observed concentrations regardless of the emission 
adjustment method used. Lamb et al. (2018) reported that the EC con
centration temporarily increased because of wildfires in Siberia during 
the period. As this study derived the adjustment factors for upwind re
gions considering the upwind contribution and observation concentra
tion for the entire adjustment period, the effect of emission adjustment 
may be limited if the EC concentration changes rapidly because of 
uninventoried natural events such as wildfires. 

We adjusted the EC emissions of the upwind area based on our 
contribution analysis at the Baengnyeong supersite (as described in 
Section 2). The effect of the upwind emission adjustment propagated to 
other supersites in the downwind area. After the first step of EC emission 
adjustment, the underestimation of the average EC concentration at all 
supersites in South Korea was mitigated by 0.4–0.5 μg m− 3 (40–50 %) 
except at the Ulsan supersite (Fig. B2). The Ulsan supersite had the 
lowest correlation coefficient (− 0.22) for the upwind contribution rate 
among the six supersites in South Korea. As the Baengnyeong and Ulsan 
supersites had distinct characteristics in the upwind contribution rate, 
the improvement on EC simulation uncertainty after adjusting the up
wind EC emission may have been limited at the Ulsan supersite. 

3.2.2. Downward emission adjustment 
The monthly mean EC concentrations averaged over all supersites 

ranged from 1.0 to 1.2 μg m− 3 upon the completion of the two-step EC 
emission adjustment by each method. Compared with the EC concen
tration before the emission adjustment (0.5 μg m− 3), the results from the 
simulations with adjusted emissions showed that the mean error 
decreased between observed EC concentration (1.0 μg m− 3) and simu
lated EC concentrations (Fig. 5). The RMSEs for the daily mean EC 
concentration averaged over all supersites improved in the order of 
REGF (0.26 μg m− 3), GRGM (0.28 μg m− 3), and PMTRX (0.33 μg m− 3) 
and decreased to approximately half of that in the simulation before the 
emission adjustment (0.57 μg m− 3). After the emission adjustment, the 
NMEs for EC concentrations averaged over all supersites improved as 
follows: 22.2 % by REGF, 22.8 % by GRGM, and 24.5 % by PMTRX. The 
correlation coefficients were as follows: 0.79 for REGF, 0.69 for GRGM, 
and 0.61 for PMTRX. A prominent difference in the improvement of the 
simulated EC concentration for each method could be driven by the 
difference in EC emissions after adjustment. We found that REGF was 
deemed to be the optimal method for EC emission adjustment in 
Northeast Asia in terms of the NME, correlation coefficient, and RMSE. 
The performance statistics at each supersite when we used REGF are 
summarized in Table B2. 

After the second step of EC emission adjustment, the NMEs at 

Table 1 
Model performance statistics for 10-m wind speeds and 2-m temperatures at 
MADIS sites in China and South Korea during May 2016.  

Region Variable Observed 
mean 

Simulated 
mean 

RMSE IOA 

China 10-m wind 
speed 

3.27 m s− 1 3.30 m s− 1 0.20 m 
s− 1  

0.96 

2-m 
temperature 

20.67 ◦C 20.60 ◦C 0.51 ◦C  0.97 

South 
Korea 

10-m wind 
speed 

2.77 m s− 1 3.10 m s− 1 0.59 m 
s− 1  

0.95 

2-m 
temperature 

16.24 ◦C 17.33 ◦C 1.11 ◦C  0.92 

Performance goals for 10-m wind speeds by Emery et al. (2001): RMSE ≤ 2 m s− 1 

and IOA ≥ 0.6. Performance goals for 2-m temperatures by Emery et al. (2001): 
IOA ≥ 0.7. The number of MADIS sites in China and South Korea are 33 and 26, 
respectively. 

Table 2 
Model performance statistics for elemental carbon (EC) concentrations at each 
supersite in South Korea during May 2016.  

Sites Observed 
mean 
(μg m¡3) 

Simulated mean 
(μg m¡3) 

RMSE 
(μg 
m¡3) 

R NME 
(%) 

Baengnyeong  1.04  0.42  0.73  0.59  60.06 
Seoul  1.32  0.84  0.74  0.36  42.10 
Daejeon  1.24  0.55  0.78  0.78  55.95 
Gwangju  1.07  0.51  0.64  0.85  52.32 
Jeju  1.07  0.41  0.75  0.33  62.22 
Ulsan  0.64  0.52  0.21  0.80  26.31 

RMSE (root mean square error), r (correlation coefficient), NME (normalized 
mean error). 
Performance goals for 24 h EC by Emery et al. (2017): NME ≤ ±50 %. 
Performance criteria for 24 h EC by Emery et al. (2017): NME ≤ ±75 %.  
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Fig. 4. (a) Time series plot and (b-e) 
scatter plots of the observed and 
simulated daily mean elemental car
bon (EC) concentrations after the first 
step of EC emission adjustment at the 
Baengnyeong supersite in South Korea 
during May 2016. Legend labels in the 
time series plot and plot titles of the 
scatter plots indicate the source of EC 
concentration data used in each plot: 
observations (“OBS”), base case 
simulation (“Base”), and simulations 
based on adjusted EC emissions using 
the generalized reduced gradient 
method (“GRGM”), pseudoinverse 
matrix (“PMTRX”), and regression 
function (“REGF”).   

Fig. 5. (a) Time series plot and (b-e) scatter plots of the observed and simulated daily mean elemental carbon (EC) concentrations upon the completion of the second 
step of EC emission adjustment as average values across all supersites in South Korea during May 2016. Legend labels in the time series plot and plot titles of the 
scatter plots indicate the source of EC concentration data used in each plot: observations (“OBS”), base case simulation (“Base”), and simulations based on adjusted 
EC emissions using the generalized reduced gradient method (“GRGM”), pseudoinverse matrix (“PMTRX”), and regression function (“REGF”). 
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supersites improved by 10–30 % compared with those in the simulation 
before the emission adjustment, except at the Ulsan supersite. Before the 
emission adjustment, the NMEs at the Baengnyeong, Daejeon, Gwangju, 
and Jeju supersites did not meet the performance goal proposed by 
Emery et al. (2017). After EC emission adjustments, the NMEs at these 
supersites were < 50 %, indicating that the developed method accom
plishes sufficient performance improvement to satisfy the performance 
goal (Fig. B3). When compared with the NME of the simulation before 

the emission adjustment, the NMEs at the Ulsan supersite degraded by 5 
% with GRGM and 39 % with REGF. At the Ulsan supersite, the observed 
monthly mean EC concentration of 0.6 μg m− 3 was approximately half of 
the average EC concentration (1.1 μg m− 3) at the other five supersites 
before the emission adjustment. Unlike other supersites, the simulated 
EC concentration at the Ulsan supersite was overestimated after the first 
EC emission adjustment. To minimize underestimation, the second EC 
emission adjustment was performed simultaneously at all supersites. 

Fig. 6. Vertical profiles and scatter plots for black carbon (BC) concentrations measured by the DC-8 aircraft on (a) May 17 and 18, 2016 and (f) May 25 and 27, 
2016. (b–e, g–j) Scatter plot data represent daily averaged BC concentrations. Legend labels and plot titles indicate the source of EC concentration data used in each 
plot: observations (“OBS”), base case simulation (“Base”), and simulations based on adjusted EC emissions using the generalized reduced gradient method (“GRGM”), 
pseudoinverse matrix (“PMTRX”), and regression function (“REGF”). 
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Therefore, the reproducibility improvement of simulations for EC con
centrations at the Ulsan supersite may have been limited. 

3.2.3. EC concentrations aloft after emission adjustment 
May 17 and 18, 2016 reportedly showed relatively high effects of 

downwind emissions on air quality in South Korea during the KORUS- 
AQ 2016 period (Lamb et al., 2018; Peterson et al., 2019). The mean 
BC concentration from aircraft measurement for those days was 0.4 μg 
m− 3, while the simulation before the emission adjustment under
estimated this value by 0.1 μg m− 3. After the two-step EC emission 
adjustment, the mean simulated EC concentrations for this period were 
0.2 μg m− 3 by REGF, 0.3 μg m− 3 by GRGM, and 0.3 μg m− 3 by PMTRX, as 
shown in Fig. 6(a). In particular, the differences in the simulated EC 
concentrations before and after the EC emission adjustment were 
noticeable at altitudes < 2.5 km. Additionally, the closer the aircraft was 
to the surface, the bigger the difference of EC concentrations before and 
after the EC emission adjustment was. As downwind emissions were the 
main factor determining air quality of South Korea during this period, 
the effect of the adjusted EC emission was primarily observed in lower 
layers. 

On May 25 and 27, 2016, the effect of upwind emissions on air 
quality in South Korea was relatively high (Tang et al., 2019; Travis 
et al., 2022; Yu et al., 2020). The mean BC concentration measured by 
aircraft for those days was 0.6 μg m− 3. The mean simulated EC con
centration was 0.2 μg m− 3 in the simulation before the emission 
adjustment. After the two-step EC emission adjustment, the simulated 
EC concentrations ranged from 0.4 μg m− 3 (GRGM) to 0.5 μg m− 3 

(PMTRX), as shown in Fig. 6(b). Unlike May 17 and 18, 2016, the dif
ference in the simulated EC concentrations before and after the EC 
emission adjustment was remarkable within an altitude of 3.5 km, which 
is higher than the altitude identified on May 17 and 18, 2016 (i.e., 2.5 
km). This result was attributed to a combination of long-range transport 
effects originating from the adjusted upwind EC emission and the impact 
of adjusted downwind EC emission. The vertical mixing and long-range 
transport path of air pollutants could vary according to the mechanical 
options used in a meteorological model, such as the planetary boundary 
layer (PBL) scheme (Chatani et al., 2014; Jeong and Kim, 2021; Lee 
et al., 2019a,2019b; Mao et al., 2006; Moon et al., 2011). Our results 
indicate that future studies should adjust regional EC emissions 
considering the PBL scheme and analyze the impact of long-range 
transport accordingly. 

3.3. Comparison of EC adjusted emissions 

In this study, the EC emissions from Northeast Asia in May 2016, 

representing a sum of EC emissions (percentages of the domain wide 
total emissions) were 6.9 × 104 tons: 6.5 × 104 tons (94 %) from China, 
and 0.08 × 104 tons (1 %) from South Korea. The highest adjusted EC 
emission was obtained with the GRGM (3.9 × 105 tons), followed by 
that with PMTRX (3.4 × 105 tons) and REGF (1.7 × 105 tons) (Fig. 7). 
After the adjustment, EC emissions increased 2.5–5.7 times compared 
with the original EC emissions depending on the adjustment method 
used. The EC emissions adjusted with REGF (the optimal adjustment 
method identified in this study) increased from the original EC emissions 
in all regions (Fig. 7). These results imply that the EC emissions in the 
emissions inventory over Northeast Asia have been significantly 
underestimated. 

The underprediction of EC concentrations owing to the uncertainty 
of EC emissions over Asia has been reported in previous studies. Wang 
et al. (2016a,2016b) showed that the inverse modeled EC emissions over 
China were approximately 1.8 times those of a bottom-up emissions 
inventory and that the use of the inverse modeled EC emissions 
improved the accuracy of daily model simulations. Luo et al. (2023) 
reported that the uncertainty of EC emissions was still large (±221.68 
%) after estimating EC emissions inversely as there is no direct EC 
observation in Beijing-Tianjin-Hebei. In Japan, simulated EC concen
trations were underestimated because of a problem of boundary con
ditions resulting from the underestimation of EC emissions in upwind 
areas (Chatani et al., 2018). 

While the total EC emissions of upwind and downwind areas in the 
modeling domain increased to 5.7 times the original emissions after 
adjustment, the increase in EC concentrations in South Korea was much 
lower, only 2.0 times the EC concentration before the emission adjust
ment. This may be because the contribution of each emission region to 
the EC concentration in South Korea varied by region. For instance, the 
region referred to as “Rest of China” that included LIA, JH, and COT had 
the greatest EC emission increase regardless of the adjustment method, 
while contribution of that region to the EC concentration at the 
Baengnyeong supersite was < 10 % (0.04 μg m− 3). This is explained by 
the emission-to-contribution relationship generally being inversely 
proportional to the distance between the source and receptor area 
(Rissman et al., 2013; Su et al., 2018). This implies a necessity for further 
studies to develop a new method based on observations in source regions 
for a more accurate adjustment of their emissions. 

3.4. Upwind and downwind EC contributions 

The upwind and downwind EC contributions were estimated with 
emissions adjusted with REGF, and their results were compared with 
those of the simulations before the emission adjustment at the six 

Fig. 7. Monthly elemental carbon emissions 
from selected regions in Northeast Asia for 
May 2016. NRB, BTH, YRD, and NK represent 
emissions from the corresponding areas 
defined in Fig. 1. “Rest of China” represents 
emissions from LIA, JH, and COT in Fig. 1. 
Note that the emissions from ‘Rest of China” 
were scaled with 1/10. “South Korea” repre
sents emissions from SMA, CC, HN, YN, and 
KW in Fig. 1. “Rest of domain” represents 
emissions from JP, TW, MG, RU, and VT in 
Fig. 1. Legend labels indicate the source of EC 
concentration data: base case simulation 
(“Base”) and simulations based on adjusted 
EC emissions using the generalized reduced 
gradient method (“GRGM”), pseudoinverse 
matrix (“PMTRX”), and regression function 
(“REGF”).   
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supersites in South Korea. For May 2016, the monthly mean upwind EC 
contribution at all supersites was 0.3 μg m− 3 before the emission 
adjustment and more than doubled (0.8 μg m− 3) after EC emission 
adjustment. The upwind contribution to the EC concentration at the 
Baengnyeong supersite was 0.4 μg m− 3 before the emission adjustment, 
while it was increased to 0.9 μg m− 3 after the emission adjustment. The 
monthly mean downwind contribution to simulated EC concentrations 
at all supersites was doubled from 0.2 to 0.4 μg m− 3 after the adjustment 
(Fig. 8). The monthly mean upwind EC contribution at all supersites, 
except at the Baengnyeong supersite, was 0.7 μg m− 3 after EC emission 
adjustment, showing an increase of 0.4 μg m− 3 compared with the 
simulation before the emission adjustment (0.3 μg m− 3). Excluding the 
Baengnyeong supersite, the monthly mean downwind EC contribution 
averaged over all supersites was 0.3 μg m− 3 before the emission 
adjustment, while it increased to 0.5 μg m− 3 after EC emission 
adjustment. 

The monthly mean upwind EC contribution rate averaged over all 
supersites increased to 65 % compared to the simulation before the 
emission adjustment (62 %). Even without considering the Baengnyeong 
supersite, the monthly mean upwind EC contribution rate averaged over 
the five supersites increased from 55 % to 59 % after EC emission 
adjustment. Regardless of the number of supersites, the upwind contri
bution rate to EC concentrations in the downwind area before and after 
the EC emission adjustment was over 50 %. Therefore, to reduce EC 
concentrations in the downwind area, it is critical to not only reduce 
domestic emissions but also to cooperate with regions in upwind areas. 
Moreover, even though the downwind EC contribution rate was reduced 
after emission adjustment, the overall EC emissions were larger after 
emission adjustment. Therefore, we expect that the required amount of 
domestic emission reductions based on the emissions inventory should 
be increased to accomplish the previous goal of EC concentration, such 
as achieving 30 % of the baseline concentration. 

4. Conclusions 

In this study, we designed and implemented a two-step emission 
adjustment approach to improve the reproducibility of air quality 
modeling to support source-receptor (i.e., upwind-downwind) rela
tionship analysis. Our approach required two steps because traditional 
emission adjustment with observations assume easy access to observa
tional datasets. Traditional approaches cannot be used when observa
tional data for one region is difficult to acquire. Thus, we designed a new 
approach where emission adjustment for one region is performed with 
observations in the other region. Then, a follow-up adjustment for the 
other region can be done with modeling using updated emissions from 
the first emission adjustment as well as observational data available for 
the other region. An objective function based on the described 
assumption was developed to generate emission adjustment factors by 
source region. At the same time, to find an optimal solution for the 
objective function in the form of a matrix, we evaluated three methods: 
GRGM, PMTRX, and REGF. Based on model performance statistics (NME 
and correlation coefficient), we selected REGF as the optimal method in 
this study. The mean errors compared with all supersites and aircraft 
observational data decreased after the EC emission adjustment with 
REGF. Also, the NME of the daily mean EC concentration averaged over 
all supersites decreased from 48 % to 22 %, while the correlation coef
ficient was maintained at 0.8. 

The EC emission adjustment alleviated the underestimation by 
increasing the simulated EC concentration at the surface and aloft nearly 
twofold. Therefore, the EC emission adjustment method with REGF is 
effective when applied with accurate SRR analyses and minimizes the 
uncertainties of bottom-up emissions inventories by mitigating the time- 
lag issue of emissions inventories. We used surface and aircraft mea
surements to examine the utility of the adjusted emissions as surface 
monitors provide hourly EC data for relatively long periods while 
aircraft measurements provide higher temporal resolution data and 

vertical profiles of EC concentrations for a limited number of days. 
After EC emission adjustment with REGF, the upwind and downwind 

contributions to EC concentrations averaged over all South Korean 
supersites increased to 0.8 μg m− 3 (0.3 μg m− 3 before adjustment) and 
0.4 μg m− 3 (0.2 μg m− 3 before adjustment), respectively. This is because 
the EC emission adjusted with REGF increased by 2.5 times compared 
with that of the emissions inventory in Northeast Asia. Additionally, the 
upwind contribution rates averaged over all supersites before and after 
the emission adjustment were 62 % and 65 %, respectively. This implies 
that the emission adjustment had no significant impact the upwind 
contribution rate, and the rate was higher than the downwind contri
bution rate regardless of emission adjustment. Thus, cooperating with 
regions in upwind areas is essential to improve the EC concentration in 
South Korea. We demonstrated that our two-step EC emission adjust
ment approach can provide more accurate estimates of up-to-date 
emission amounts even if upwind observation points are not readily 
available, although it would be desirable to secure upwind observational 
data to utilize more representative upwind contributions for the same 
approach. Addtionally, we will enhance our monthly-based approach to 
derive daily/hourly-based emission adjustment in a future study. We 
expect that the EC emission adjustment method proposed in this study 
can be successfully used by decision-makers to prepare an integrated air 
pollution policy. 
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Fig. 8. Upwind (red) and downwind (blue) contributions to the monthly mean 
elemental carbon (EC) concentrations at the six supersites and averaged across 
all supersites (“Averaged”) in South Korea for May 2016. Lefthand- and 
righthand-side bars of each paired bar represent the contributions before and 
after EC emission adjustment, respectively. Grey circles denote the observed EC 
concentrations. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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