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ARTICLE INFO ABSTRACT

Handling Editor: Xavier Querol In this study, we developed a practical approach to augment elemental carbon (EC) emissions to improve the
reproducibility of the most recent air quality with photochemical grid modeling in support of source-receptor

Keywords: relationship analysis. We demonstrated the usefulness of this approach with a series of simulations for EC

Elemental carbon concentrations over Northeast Asia during the 2016 Korea-United States Air Quality study. Considering the

Source-receptor relationship
Air quality model

Emission adjustment
Korea-United States Air Quality

difficulty of acquiring EC observational data in foreign countries, our approach takes two steps: (1) augmenting
upwind EC emissions based on simulated upwind contributions and observational data at a downwind EC
monitor considered as the most representative monitor for upwind influences and (2) adjusting downwind EC
emissions based on simulated downwind contributions, including the effects of updated upwind emissions from
the first step and observational data at the downwind EC monitors. The emission adjustment approach resulted in
EC emissions 2.5 times higher than the original emissions in the modeling domain. The EC concentration in the
downwind area was observed to be 1.0 pg m™ during the study period, while the simulated EC concentration
was 0.5 pg m~° before the emission adjustment. After the adjustment, the normalized mean error of the daily
mean EC concentration decreased from 48 % to 22 % at ground monitor locations. We found that the EC
simulation results were improved at high altitudes, and the contribution of the upwind areas was greater than
that of the downwind areas for EC concentrations downwind with or without emission adjustment. This implies
that collaborating with upwind regions is essential to alleviate high EC concentrations in downwind areas. The
developed emission adjustment approach can be used for any upwind or downwind area when transboundary air
pollution mitigation is needed because it provides better reproducibility of the most recent air quality through
modeling with improved emission data.

Abbreviations: EC, elemental carbon; BC, black carbon; PM, s, particulate matter (diameter <2.5 um); KORUS-AQ, Korea-United States Air Quality; SRR, source-
receptor relationship; REAS, Regional Emission inventory in Asia; CAPSS, Clean Air Policy Support System; MADIS, Meteorological Assimilation Data Ingest System;
NAAQMN, National Ambient Air Quality Monitoring Network; WRF, Weather Research and Forecasting; CMAQ, Community Multiscale Air Quality; ISAM, Integrated
Source Apportionment Method; RMSE, root mean square error; IOA, index of agreement; NME, normalized mean error; GRGM, generalized reduced gradient method;
PMTRX, pseudoinverse matrix; REGF, regression function; PBL, planetary boundary layer.
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1. Introduction

Elemental carbon (EC) is a part of PMs 5 (particulate matter with an
aerodynamic diameter<2.5 pm) that is often referred to as black carbon
(BC) (Andreae and Gelencsér, 2006; Petzold et al., 2013). Previous
studies have reported that relatively low concentrations of EC are pre-
sent in the atmosphere, compared to those of other major PM; 5 con-
stituents (Cheng et al., 2016; Krall et al., 2013; Qiu et al., 2016). For
example, during the Korea-United States Air Quality (KORUS-AQ)
campaign period in South Korea, the average EC concentration (1.2 pg
m~%) was lower than the average concentrations of secondary inorganic
air pollutants such as ammonium (4.9 pg m~3), sulfate (6.7 pg m~>), and
nitrate (8.1 pug m~3) (Lee et al., 2020). Furthermore, studies in Northeast
Asia over the last two decades have reported that observed and simu-
lated annual average EC concentrations ranged from 0.3 to 5.4 pg m >,
while concentrations of other PM; 5 components were much higher than
these values (He et al., 2004; Kondo et al., 2006; Park and Cho, 2011;
Viana et al., 2007; Wang et al., 2014). However, health studies have
indicated that EC poses a higher risk to human health than other PM3 5
constituents when an equal amount of air pollutants is inhaled (Bae
etal., 2019; IARC, 2016; Janssen et al., 2011; Lee et al., 2017; Morawska
et al., 2005; Rappazzo et al., 2015).

As a primary air pollutant with a low reactivity and long residence
time in the atmosphere, EC can be transported over long distances across
regions (Khan et al., 2006; Shu et al., 2017; Wolff, 1981; Yu et al., 2004).
Therefore, to manage this highly adverse air pollutant, it is essential to
understand the fate of EC using some analytical approaches such as
source-receptor relationship (SRR) analysis (Blanchard et al., 2019;
Wagstrom and Pandis, 2011; Yamagami et al., 2019). Previous studies
have used three-dimensional photochemical models and observations to
estimate the effects of the long-range transport of EC between regions
(Aamaas et al., 2011; Kang et al., 2006; Li et al., 2016; Wagstrom and
Pandis, 2011; Xing et al., 2020).

An emissions inventory that reflects human activities and natural
events is one of the core inputs to three-dimensional photochemical
models and, therefore, key information to be used for SRR studies (Fiore
et al., 2009; Fowler et al., 2005). However, developing a representative
emissions inventory that accurately reflects human activities and natu-
ral events is not an easy task, especially in recent years. This is because it
takes great effort and time to build a reliable emissions inventory, but
emissions change over time along with human activities and natural
events. For example, the Regional Emission inventory in ASia (REAS)
v3.1, one of the most frequently used and up-to-date emissions in-
ventories for photochemical modeling in Northeast Asia, indicated that
BC emissions in China were 3.5 x 10° tons for the most recent inventory
year of 2015, which is>3.0 x 10° tons reported for 2010 (Kurokawa and
Ohara, 2020). Further, according to the national emissions inventory of
South Korea, the Clean Air Policy Support System (CAPSS), the most
recent emissions inventory reported that EC emissions were 10 % lower
for the most recent inventory year of 2019 than the 1.6 x 10* tons re-
ported for 2016 (NAIR, 2022). As shown by these examples, even the
most recent emissions inventories do not necesarrily reflect the rapid
changes in real-world emissions as it is inevitable to have a time lag
between the years that emissions inventory data represent and the year
when a bottom-up emissions inventory is published. This time lag can
cause a poor reproducibility of modeled air quality for years more recent
than the inventory year due to the difficulty of reflecting changes in
emission activities (Frey and Zheng, 2002; Zhao et al., 2011).

To reduce the uncertainties of bottom-up emissions inventories,
including the time lag between the model year and the inventory year,
many researchers have adopted top-down approaches that reflect the
most recent status of air pollution to adjust past emissions contained in
emissions inventories with observations, such as those from satellite
measurements (Bae et al., 2020; Kim et al., 2014; Stavrakou et al., 2013;
Zhang et al., 2018). Other studies have adopted more resource-
consuming inverse modeling techniques with observed and simulated
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data for the entire study area (Hu et al., 2009a; Hu et al., 2009b; Jor-
quera and Castro, 2010). However, approaches that rely on country-
specific EC observational data can be challenging in Northeast Asia
because country-specific EC observations are hard to acquire, especially
for scientists from outside the region. Nevertheless, it is critical to have
emissions inventories as accurate as possible to ensure that observed air
pollutant concentrations are reproducible with modeling to support SRR
analysis as the credibility of SRR analyses is dependent on the perfor-
mance of air quality modeling.

In this study, to overcome the restricted access to EC observations for
different areas (i.e., country-specific EC observations), we propose a
two-step emission adjustment method to improve the reproducibility of
EC simulations and demonstrate its utility by using the proposed method
to adjust EC emissions over Northeast Asia. First, we utilized modeled
region-by-region EC contributions to adjust the EC emissions in upwind
regions. As EC has suitable physicochemical characteristics for repre-
senting the impact of the emission source (Heintzenberg and Winkler,
1991; Ogren and Charlson, 1984), the EC emissions adjustment over
upwind regions where observed EC concentrations were not secured was
performed based on a downwind monitoring site that can represent
upwind influences. Second, we conducted an observation-based EC
emission adjustment to modeling results for the downwind area in South
Korea because EC observations in South Korea were relatively easy to
acquire for this study. To find an optimal adjustment method, we
explored three optimization tools that aim to minimize the differences
between observed and modeled EC concentrations. To demonstrate the
effectiveness of our approach, we compared the modeled results both
with or without the application of the emission adjustment approach
developed in this study. Additionally, we compared the changes in
regional EC emissions and in upwind/downwind contributions to EC
concentrations over South Korea before and after the adjustment. To
validate the approach proposed in this study, modeled results with EC
emissions before and after the adjustment based on surface observations
were compared to airborne measurements during the KORUS-AQ 2016.

2. Materials and methods
2.1. Observation data

Meteorological Assimilation Data Ingest System (MADIS) data were
used to evaluate the reproducibility of simulated 10-m wind speeds and
2-m temperatures. We used observed air pollutant concentration data
from both the National Ambient Air Quality Monitoring Network
(NAAQMN) in China and the South Korean Air Monitoring Stations
(AMS) to evaluate simulated PM5 s and 8-h ozone (O3) at the surface
level. We used data from six supersites in South Korea to evaluate the
model performance for EC concentrations before and after the EC
emission adjustment. These six supersites regularly measure concen-
trations of individual PM» 5 components, including EC. The locations of
the meteorological stations and air pollutant monitoring stations that
collected the data used in this study are shown in Fig. 1. The EC emis-
sions from upwind areas outside South Korea (e.g., China, North Korea)
affect the EC concentrations in South Korea because it is located in the
mid-latitude region of the northern hemisphere and is, thus, influenced
by westerly winds, as shown in Fig. A1 (Uno et al., 2020; You et al.,
2021). Therefore, we defined South Korea as a “downwind area” and
foreign regions as “upwind areas” (Fig. 1). Detailed descriptions on the
EC observational data and sampling method are provided in Appendix
A.

The Baengnyeong supersite (37°57'52.9" N, 124°38'02.4" E) is
located on Baengnyeong Island in the Yellow Sea, approximately 200 km
east of the Shandong Peninsula of China and the northwestern tip of
South Korea (NGII, 2022). There are few domestic anthropogenic
emission sources in and around the Baengnyeong supersite. Therefore,
its observational data are useful for analyzing the effect of the long-
range transport of air pollutants (Kim et al., 2021b; Kim, 2000; Lee
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Fig. 1. Maps of upwind and downwind areas in the modeling domain. Locations of South Korean Air Monitoring Stations (AMS) and supersites are depicted with red
triangles and orange stars, respectively. Locations of Chinese National Ambient Air Quality Monitoring Network (NAAQMN) stations are denoted with blue triangles.
Green diamonds depict the locations of Meteorological Assimilation Data Ingest System (MADIS) sites. The map contains the definition of 17 analysis regions:
Beijing-Tianjin-Hebei (BTH), Chungcheong (CC), Other Chinese areas in the domain (COT), Honam (HN), Jilin-Heilongjiang (JH), Japan (JP), Gangwon (KW),
Liaoning (LIA), Mongolia (MG), North Korea (NK), Near Beijing (NRB), Russia (RU), Seoul Metropolitan Area (SMA), Taiwan (TW), Vietnam (VT), Yangtze River
Delta (YRD), and Youngnam (YN). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

et al., 2015a,2015b; Lee et al., 2019a,2019b; Sung et al., 2017). For this
study, we assumed that the Baengnyeong supersite could sufficiently
reflect the contribution of major upwind regions to South Korea. We
used the Seoul, Gwangju, Daejeon, and Ulsan supersites (located in the
inland of South Korea) to adjust EC emissions over the downwind area.
The EC concentration at the Jeju supersite was less affected by upwind
concentrations than that at the Baengnyeong supersite and had a lower
downwind concentration than at other supersites (Lee et al.,
2015a,2015b; So et al., 2019). Because the main contributor of EC
concentration in the Jeju supersite could not be clearly defined, we only
used the data from this supersite to evaluate the model performance.
To evaluate the model performance for EC aloft, we used BC obser-
vations over South Korea that were measured using a DC-8 aircraft. To
compare our simulated EC concentrations with aircraft observational
data (averaged at 60-s intervals), we interpolated simulated EC con-
centrations at 1-h intervals and assumed a linear change over time. The
BC observations with the DC-8 aircraft only included the concentrations
of particles with diameters ranging 100-550 nm. In CMAQ simulations,
particles are divided into three modes—Aiken, accumulation, and coarse
modes—according to their size (Binkowski and Roselle, 2003; Binkow-
ski, 1999). The fraction of each mode was considered when the simu-
lated concentrations of aerosol were calculated (EPA, accessed on May
16, 2022). The mean and standard deviation of simulated EC particle
diameters in the accumulation mode were 0.21 uym and 1.80 um,
respectively. In this study, to consider the diameter of EC particles in the
accumulation mode, only 36 % of the simulated EC concentrations (i.e.,
the percentage of particles in the accumulation mode over all particles)
were used for a comparison with the aircraft-measured BC concentra-
tions. The comparison considered the modal particle size distribution
adopted by Ensberg et al. (2013). We selected specific days to compare
aircraft-measured and simulated EC concentrations by considering the
effect of upwind and downwind emissions. May 17-18, 2016 and May

25 and 27, 2016 were selected as representative days with a strong in-
fluence of upwind and downwind emissions in South Korea, respectively
(NIER, 2017; Cho et al., 2021; Choi et al., 2019; Crawford et al., 2021;
Kim et al., 2021a).

2.2. Air quality simulation

Meteorological modeling was performed using Weather Research
and Forecasting (WRF) version 3.9.1 (Skamarock and Klemp, 2008). We
used Final Operational Global Analysis data as the initial conditions for
the WRF simulation (NCEP, 2000) and processed the simulation results
using Meteorology-Chemistry Interface Processor version 4.3 to
generate input data for the Community Multiscale Air Quality model
(CMAQ). Natural emissions from the Northeast Asia region were
determined using the Model of Emissions of Gases and Aerosols from
Nature (MEGAN) version 2.04. For anthropogenic emissions, we
considered the spatio-temporal and chemical characteristics in emission
processing with the Sparse Matrix Operator Kernel Emission version 3.1
(Houyoux et al., 2000). We used CAPSS 2016 for anthropogenic emis-
sions over South Korea, while KORUS v5 was used for anthropogenic
emissions over Northeast Asia excluding South Korea (Choi et al., 2020;
Jang et al., 2020).

CMAQ version 5.3.2 was selected as the three-dimensional photo-
chemical grid model for the air quality simulation in this study (Appel
et al., 2021; Byun and Schere, 2006). The simulation domain included
South Korea, China, and Japan (Fig. 1), and the horizontal grid resolu-
tion of the modeling domain was 27 km. For the air quality simulation,
SAPRC07 and AERO6 were utilized as the gas-phase chemical mecha-
nism and the aerosol module, respectively (Binkowski and Roselle,
2003; Carter, 2010). The meteorological and air quality simulation
period was set from April 1 to May 31, 2016 to ensure a sufficient spin-
up time because the KORUS-AQ period (defined as May 2016 in this
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study) was used as the study period for analysis. The detailed configu-
rations of WRF and CMAQ are shown in Table B1.

The integrated source apportionment method (ISAM) is a tagging
method used to quantify the contributions of emission sources within
SRR analyses (Environment Protection Agency, 2021). We used the
ISAM of CMAQ to quantify the contribution of each region to EC emis-
sions. For ISAM, the six supersites in South Korea were set as receptors
for contribution analyses. We defined contributions that originated from
the downwind area as “downwind contribution” and contributions that
originated from the upwind area as “upwind contribution.” We defined
the upwind/downwind contribution rate as the percentage of the up-
wind/downwind contribution to the simulated EC concentration (i.e.,
the total contribution from all sources). In previous studies, the contri-
bution rate was used to show the relative contribution of a source to the
total EC concentration at a receptor area (Chen et al., 2015; Cheng et al.,
2021; Lan et al., 2018; Lu et al., 2019; Zhang et al., 2019).

2.3. Model performance evaluation

For model performance evaluation of the meteorological simulation,
we used the root mean square error (RMSE) and the index of agreement
(I0A) as indicators of agreenment between the observed and simulated
data at the MADIS sites. The IOA is one of the performance benchmark
indices for the meteorological model used by Emery et al. (2001), who
also introduced the normalized mean error (NME) and correlation co-
efficient (r) as benchmark indices for the air quality model. For model
performance evaluation of the air quality simulations, we calculated the
RMSE, r, and NME of PMj; 5 and 8-h O3 concentrations at the monitors of
Chinese NAAQMN and South Korean AMS. Finally, we used the NME
and normalized mean bias (NMB) to quantify the effect of the EC
emission adjustment method on the model performance for EC con-
centrations at the six supersites in South Korea. The detailed

A
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Row: the number of days of the month (31)X the number of sites (m)
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descriptions and benchmark values of the performance statistics that we
used in this study have been previously discussed by Emery et al. (2001,
2017). We evaluated the simulated aloft EC concentrations with the
aircraft measurements before and after EC emission adjustment, as
described in Section 2.1.

2.4. Emission adjustment method

The first step of our proposed emission adjustment approach
required the quantification of the EC contribution of upwind areas to a
downwind monitoring site that can represent the influence of the up-
wind area. To quantify the contributions of EC emissions over Northeast
Asia, we used CMAQ-ISAM with 17 regions (12 upwind regions and 5
downwind regions) for tagging in this study. These are shown in Fig. 1
based on administrative boundaries and locations/availability of the
supersites.

If we assume that the observed EC concentration at a downwind
region is equal to the sum of EC concentrations contributed by upwind
and downwind EC emissions, the source-receptor relationship can be
expressed as a matrix of equation (1), as shown in Fig. 2. Then, this
matrix of equations can be used to find an optimal solution for a monthly
regional EC emission adjustment factor to minimize observation-model
differences. The multiplication of matrix A (i.e, regional EC contribu-
tions) and vector X (i.e., adjustment factors for EC emission sources)
result in vector B, which contains the difference between the observed
EC concentration and the residual term. In Fig. 2, i is the index of
supersites and m is the number of supersites used at each emission
adjustment step. Note that m is 1 in the first step because the Baeng-
nyeong supersite that can explicitly address the upwind contribution
was the only supersite used, while the second step in the emission
adjustment uses 4 supersites (i.e., the Seoul, Deajeon, Gwangju, and
Ulsan supersites), where EC concentrations are determined from both

- X = B (1)

the number of days of the month (31)
X the number of sites (m)

the number of adjusting
emission source regions (i)

. - Fojsl — - OBSoso1,i1 — €0s01,i1 7
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jn=1 | L
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i L Er L OBSps3iim — £o0531,im
_ n Jn
Emmdd,im ~ MODmmad,in, — 2j=1 Crumad,iy, (2)

Fig. 2. (1) System of equations used to derive the adjusting factors (B for regional elemental carbon (EC) emissions based on the modeled contributions (C{nmdd,i)
from CMAQ-ISAM simulations and observed EC concentrations (OBSymqq,).- Twelve emission source regions (n) in the upwing regions and one site (m), the
Baengnyeong supersite, were used during the first step of the emission adjustment, i.e., n = 12 and m = 1. In the second step of emission adjustment, five emission
source regions in the downwind area and four supersites (the Seoul, Deajeon, Gwangju, and Ulsan supersites) were used, i.e., n = 5 and m = 4. (2) The residual term

(émmdd, i) accounts for the difference between the modeled concentrations from the base simulation (MODyppdq;,) and the sum of the contributions (C"‘

emission source regions on day dd of month mm at supersite ip,.

) for

mmdd, i,
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upwind and downwind contributions. j is the index of emission source
regions and n is the number of emission source regions at each emission
adjustment step (i.e., 12 to account for the upwind regions in the first
step and 5 for downwind regions in the second step). mmdd represents a
given day (dd) of a the month (mm). OBSpymdq; is the daily mean
observed EC concentration on mmdd at supersite i. C{nmdd,i is the daily
mean EC contribution from the emissions from region j on mmdd at
supersite i. Fjy is the monthly EC emission adjustment factor on mm for
the source region j. As indicated in equation (2) in Fig. 2, €mnmad.i Tep-
resents the residual term, which accounts for the contributions of the
initial condition, boundary condition, and emissions from other regions
beyond the 17 emission source regions defined for the CMAQ-ISAM
simulation on day dd of month mm at supersite i.

Three optimization methods were tested to solve the matrix to derive
adjustment factors: the generalized reduced gradient method (GRGM),
pseudoinverse matrix (PMTRX), and regression function (REGF). GRGM
assumes a non-linear relationship between the contributions and the
adjustment factors by region, while PMTRX and REGF assume a linear
relationship. We applied GRGM because a non-linear relationship be-
tween EC contribution and emission adjustment factors can exist
because the air pollutant concentration is determined not only by
emissions but also various conditions, including meteorology and at-
mospheric processes such as depositions. GRGM has been used to solve
non-linear problems in previous studies (Chai et al., 2015; Geem and
Geem, 2007; Kim et al., 2007). We utilized the GRGM solver that is
named as “GRG Nonlinear” available in Microsoft Excel. The GRGM
solver calculates an optimal (maximum or minimum) value for a for-
mula in an objective cell (Dauda et al., 2022). In this study, adjustment
factors were calculated to minimize the difference between the observed
and calculated EC concentrations using the solver.

Simultaneously, EC also shows a strong linear relationship between
concentration and emission because it is a primary air pollutant (Fisher
and Sokhi, 2000; Kiesewetter et al., 2013; Kim et al., 2020). Thus, we
evaluated PMTRX and REGF, which have been used in previous studies
to solve the linear objective function and minimize errors (Cho et al.,
2008; Kublanovskaya, 1966; Matveev, 1974; Shu and Lam, 2011). To
derive the emission adjustment factor by region (defined as vector X in
Fig. 2) in PMTRX, we multiplied both sides of the equation in Fig. 2 with
the transposed matrix of A (i.e., A"). Subsequently, the product of A and
A'was multiplied with the pseudo inversion matrix. The detailed solving
process of deriving a solution through the PMTRX is shown in Appendix
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C (Fig. C1). In REGF, we used the “regress” function in the Interactive
Data Language program (L3HARRIS, accessed on April 6, 2022). We
adopted an additional post-processing for REGF results as we expected
that EC concentrations adjusted by REGF would be lower than the
observed concentrations, while correlation coefficients seemed to be
reasonable (not shown here). In the post-processing step, we multiplied
the regional adjustment factors with the ratio of the observed and ex-
pected EC concentrations that was estimated with REGF to minimize the
mean error. Appendix C provides the detailed process used for the REGF
(Fig. C2).

We employed three methods for solving the matrix within the two-
step emission adjustment for upwind and downwind regions. The first
step (i.e., upwind emission adjustment) was performed over EC emis-
sions from 12 upwind regions. As described in Section 2.1, the EC
observation at the Baengnyeong supersite represents the foreign impact
(Jo et al., 2020; Lee et al., 2015a,2015b). The second step (i.e., down-
wind emission adjustment) was performed for the modeling result ob-
tained after using upwind EC emissions that were adjusted in the first
step. The objective functions for the Seoul, Daejeon, Gwangju, and Ulsan
supersites were solved simultaneously to adjust the EC emissions of the
downwind regions. Fig. 3 shows the schematic of the two-step EC
emission adjustment.

Previous studies have applied the method of estimating the uncer-
tainty of upwind contribution based on a simulation uncertainty at the
Baengnyeong supersite (Bae et al., 2021; Kim et al., 2021c). These
studies adopted a two-step adjustment for contributions but did not
provide regional emission adjustments. In this study, we combined a
foreign contribution adjustment using the Baengnyeong supersite and a
domestic contribution adjustment at the four inland supersites as a two-
step approach for adjusting EC emissions.

3. Results and discussion
3.1. Model performance evaluation for the base simulation

3.1.1. Meteorological model performance

Table 1 shows the results of model performance evaluation for 10-m
wind speeds and 2-m temperatures at the MADIS sites located in China
(33 sites) and South Korea (26 sites) in May 2016. For the MADIS sites in
China, the RMSEs for wind speeds and temperatures were 0.20 m s~ !
and 0.51 °C, respectively while the IOAs were > 0.9 for both. For the
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Fig. 3. Illustration of the two-step adjustment approach used in this study for emissions of elemental carbon (EC). Red (“U”) and blue (“D”) bars represent simulated
upwind and downwind contributions, respectively. Hashed bars depict simulated contributions with EC emission adjustment. “OBS” (black circle) denotes observed
EC concentrations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Model performance statistics for 10-m wind speeds and 2-m temperatures at
MADIS sites in China and South Korea during May 2016.

Region Variable Observed Simulated RMSE I0A
mean mean
China 10-m wind 3.27ms™* 3.30ms! 020m  0.96
speed st
2-m 20.67 °C 20.60 °C 0.51 °C 0.97
temperature
South 10-m wind 2.77ms 3.10ms ! 0.59m  0.95
Korea speed st
2-m 16.24 °C 17.33°C 1.11°C 0.92
temperature

Performance goals for 10-m wind speeds by Emery et al. (2001): RMSE < 2m ™!

and IOA > 0.6. Performance goals for 2-m temperatures by Emery et al. (2001):
IOA > 0.7. The number of MADIS sites in China and South Korea are 33 and 26,
respectively.

MADIS sites in South Korea, the RMSEs for 10-m wind speeds and 2-m
temperatures were 0.59 m s~ and 1.11 °C, respectively. The IOAs for
both meteorological variables were > 0.9. These performance statistics
indicate that meteorological model performance met the performance
goal proposed by Emery et al. (2001).

3.1.2. Air quality model performance

The observed monthly mean EC concentrations at each supersite
ranged from 0.6 to 1.3 pg m~>. The RMSEs and correlation coefficients at
each supersite ranged from 0.2 to 0.8 pg m~> and 0.3-0.9, respectively
while the NMEs ranged between 30 % and 62 %. For NMEs, while all
sites met the air quality model performance criteria (<75 %) proposed
by Emery et al. (2017), four out of the six sites did not meet the per-
formance goal (<50 %) (Table 2). It is worth noting that the meteoro-
logical model performance met its benchmark goal, while the simulated
EC concentration did not meet the performance criteria entirely. This
implies that the EC emission inputs used in the present study had more
uncertainty than the meteorological inputs.

The correlation coefficients between the observed and simulated
concentrations for the daily mean PMs 5 and 8-h Og in China at the
NAAQMN sites for May 2016 were 0.59 and 0.71 while the NMEs were
21.0 % and 22.2 %, respectively. For South Korea, the correlation co-
efficients and NMEs for PMj 5 concentrations at air monitoring stations
(AMS) sites were 0.86 and 28.9 % while those for 8-h O3 concentration
were 0.84 % and 8.2 %, respectively, as shown in Appendix B (Fig. B1).
The simulated PM; 5 and 8-h O3 concentrations in this study satisfied the
performance goals proposed by Emery et al. (2017).

Table 2
Model performance statistics for elemental carbon (EC) concentrations at each
supersite in South Korea during May 2016.

Sites Observed Simulated mean RMSE R NME
mean (ngm=? (ng (%)
(ngm3) m~®)
Baengnyeong 1.04 0.42 0.73 0.59 60.06
Seoul 1.32 0.84 0.74 0.36 42.10
Daejeon 1.24 0.55 0.78 0.78 55.95
Gwangju 1.07 0.51 0.64 0.85 52.32
Jeju 1.07 0.41 0.75 0.33 62.22
Ulsan 0.64 0.52 0.21 0.80 26.31

RMSE (root mean square error), r (correlation coefficient), NME (normalized
mean error).

Performance goals for 24 h EC by Emery et al. (2017): NME < +50 %.
Performance criteria for 24 h EC by Emery et al. (2017): NME < £75 %.
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3.2. Results of EC emission adjustment

3.2.1. Upwind emission adjustment

In May 2016, the monthly mean observed and simulated (without
adjustment) EC concentrations at the Baengnyeong supersite were 1.0
and 0.4 pg m~>, respectively. After the first step of EC emission adjust-
ment, the monthly mean simulated EC concentrations at the Baeng-
nyeong supersite were 0.9 pg m~> by GRGM, 0.9 pg m > by REGF, and
1.1 pg m~3 by PMTRX. The RMSE of the daily mean simulated EC
concentration without adjustment was 0.7 pg m ™. This was reduced to
0.5 pg m~3 by GRGM, 0.5 pg m~> by REGF, and 0.6 pg m ™~ by PMTRX.
The NME of the daily mean simulated EC concentration decreased from
60 % before adjustment to 37 % by GRGM, 37 % by REGF, and 50 % by
PMTRX. Our results demonstrate that among the three methods that we
tested, PMTRX provided the greatest improvement in the monthly mean
error but the smallest improvements to RMSE and NME. PMTRX
revealed its shortcomings when improving simulated concentrations on
a smaller time scale (i.e., daily or hourly) than the emission adjustment
time scale (monthly). Further, the correlation coefficient was 0.59 by
REGF, matching that of the base simulation, while it decreased to 0.05
by GRGM and 0.11 by PMTRX (Fig. 4). The simulated EC concentrations
after emission adjustment for May 22-26 were underestimated
compared with the observed concentrations regardless of the emission
adjustment method used. Lamb et al. (2018) reported that the EC con-
centration temporarily increased because of wildfires in Siberia during
the period. As this study derived the adjustment factors for upwind re-
gions considering the upwind contribution and observation concentra-
tion for the entire adjustment period, the effect of emission adjustment
may be limited if the EC concentration changes rapidly because of
uninventoried natural events such as wildfires.

We adjusted the EC emissions of the upwind area based on our
contribution analysis at the Baengnyeong supersite (as described in
Section 2). The effect of the upwind emission adjustment propagated to
other supersites in the downwind area. After the first step of EC emission
adjustment, the underestimation of the average EC concentration at all
supersites in South Korea was mitigated by 0.4-0.5 pg m~ (40-50 %)
except at the Ulsan supersite (Fig. B2). The Ulsan supersite had the
lowest correlation coefficient (—0.22) for the upwind contribution rate
among the six supersites in South Korea. As the Baengnyeong and Ulsan
supersites had distinct characteristics in the upwind contribution rate,
the improvement on EC simulation uncertainty after adjusting the up-
wind EC emission may have been limited at the Ulsan supersite.

3.2.2. Downward emission adjustment

The monthly mean EC concentrations averaged over all supersites
ranged from 1.0 to 1.2 pg m~> upon the completion of the two-step EC
emission adjustment by each method. Compared with the EC concen-
tration before the emission adjustment (0.5 pg m™~3), the results from the
simulations with adjusted emissions showed that the mean error
decreased between observed EC concentration (1.0 pg m~>) and simu-
lated EC concentrations (Fig. 5). The RMSEs for the daily mean EC
concentration averaged over all supersites improved in the order of
REGF (0.26 pg m~>), GRGM (0.28 pg m ), and PMTRX (0.33 pg m™>)
and decreased to approximately half of that in the simulation before the
emission adjustment (0.57 pg m~>). After the emission adjustment, the
NMEs for EC concentrations averaged over all supersites improved as
follows: 22.2 % by REGF, 22.8 % by GRGM, and 24.5 % by PMTRX. The
correlation coefficients were as follows: 0.79 for REGF, 0.69 for GRGM,
and 0.61 for PMTRX. A prominent difference in the improvement of the
simulated EC concentration for each method could be driven by the
difference in EC emissions after adjustment. We found that REGF was
deemed to be the optimal method for EC emission adjustment in
Northeast Asia in terms of the NME, correlation coefficient, and RMSE.
The performance statistics at each supersite when we used REGF are
summarized in Table B2.

After the second step of EC emission adjustment, the NMEs at
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Fig. 4. (a) Time series plot and (b-e)
scatter plots of the observed and

3 - simulated daily mean elemental car-
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Fig. 5. (a) Time series plot and (b-e) scatter plots of the observed and simulated daily mean elemental carbon (EC) concentrations upon the completion of the second
step of EC emission adjustment as average values across all supersites in South Korea during May 2016. Legend labels in the time series plot and plot titles of the
scatter plots indicate the source of EC concentration data used in each plot: observations (“OBS”), base case simulation (“Base™), and simulations based on adjusted
EC emissions using the generalized reduced gradient method (“GRGM”), pseudoinverse matrix (“PMTRX"), and regression function (“REGF”).
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supersites improved by 10-30 % compared with those in the simulation
before the emission adjustment, except at the Ulsan supersite. Before the
emission adjustment, the NME:s at the Baengnyeong, Daejeon, Gwangju,
and Jeju supersites did not meet the performance goal proposed by
Emery et al. (2017). After EC emission adjustments, the NMEs at these
supersites were < 50 %, indicating that the developed method accom-
plishes sufficient performance improvement to satisfy the performance
goal (Fig. B3). When compared with the NME of the simulation before
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the emission adjustment, the NMEs at the Ulsan supersite degraded by 5
% with GRGM and 39 % with REGF. At the Ulsan supersite, the observed
monthly mean EC concentration of 0.6 pg m > was approximately half of
the average EC concentration (1.1 pg m™°) at the other five supersites
before the emission adjustment. Unlike other supersites, the simulated
EC concentration at the Ulsan supersite was overestimated after the first
EC emission adjustment. To minimize underestimation, the second EC
emission adjustment was performed simultaneously at all supersites.

(a) DC8_60s [BCmass_100 nm to 550 nm] (b) Base (¢) GRGM
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Fig. 6. Vertical profiles and scatter plots for black carbon (BC) concentrations measured by the DC-8 aircraft on (a) May 17 and 18, 2016 and (f) May 25 and 27,
2016. (b-e, g—j) Scatter plot data represent daily averaged BC concentrations. Legend labels and plot titles indicate the source of EC concentration data used in each
plot: observations (“OBS”), base case simulation (“Base”), and simulations based on adjusted EC emissions using the generalized reduced gradient method (“GRGM™),

pseudoinverse matrix (“PMTRX"), and regression function (“REGF”).
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Therefore, the reproducibility improvement of simulations for EC con-
centrations at the Ulsan supersite may have been limited.

3.2.3. EC concentrations aloft after emission adjustment

May 17 and 18, 2016 reportedly showed relatively high effects of
downwind emissions on air quality in South Korea during the KORUS-
AQ 2016 period (Lamb et al., 2018; Peterson et al., 2019). The mean
BC concentration from aircraft measurement for those days was 0.4 pg
m~3, while the simulation before the emission adjustment under-
estimated this value by 0.1 pg m 3. After the two-step EC emission
adjustment, the mean simulated EC concentrations for this period were
0.2 pg m 3 by REGF, 0.3 pgm > by GRGM, and 0.3 pg m > by PMTRX, as
shown in Fig. 6(a). In particular, the differences in the simulated EC
concentrations before and after the EC emission adjustment were
noticeable at altitudes < 2.5 km. Additionally, the closer the aircraft was
to the surface, the bigger the difference of EC concentrations before and
after the EC emission adjustment was. As downwind emissions were the
main factor determining air quality of South Korea during this period,
the effect of the adjusted EC emission was primarily observed in lower
layers.

On May 25 and 27, 2016, the effect of upwind emissions on air
quality in South Korea was relatively high (Tang et al., 2019; Travis
et al., 2022; Yu et al., 2020). The mean BC concentration measured by
aircraft for those days was 0.6 pg m™>. The mean simulated EC con-
centration was 0.2 pg m™° in the simulation before the emission
adjustment. After the two-step EC emission adjustment, the simulated
EC concentrations ranged from 0.4 pg m~> (GRGM) to 0.5 pg m >
(PMTRX), as shown in Fig. 6(b). Unlike May 17 and 18, 2016, the dif-
ference in the simulated EC concentrations before and after the EC
emission adjustment was remarkable within an altitude of 3.5 km, which
is higher than the altitude identified on May 17 and 18, 2016 (i.e., 2.5
km). This result was attributed to a combination of long-range transport
effects originating from the adjusted upwind EC emission and the impact
of adjusted downwind EC emission. The vertical mixing and long-range
transport path of air pollutants could vary according to the mechanical
options used in a meteorological model, such as the planetary boundary
layer (PBL) scheme (Chatani et al., 2014; Jeong and Kim, 2021; Lee
et al., 2019a,2019b; Mao et al., 2006; Moon et al., 2011). Our results
indicate that future studies should adjust regional EC emissions
considering the PBL scheme and analyze the impact of long-range
transport accordingly.

3.3. Comparison of EC adjusted emissions

In this study, the EC emissions from Northeast Asia in May 2016,

40,000
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representing a sum of EC emissions (percentages of the domain wide
total emissions) were 6.9 x 10 tons: 6.5 x 10 tons (94 %) from China,
and 0.08 x 10* tons (1 %) from South Korea. The highest adjusted EC
emission was obtained with the GRGM (3.9 x 10° tons), followed by
that with PMTRX (3.4 x 10° tons) and REGF (1.7 x 10° tons) (Fig. 7).
After the adjustment, EC emissions increased 2.5-5.7 times compared
with the original EC emissions depending on the adjustment method
used. The EC emissions adjusted with REGF (the optimal adjustment
method identified in this study) increased from the original EC emissions
in all regions (Fig. 7). These results imply that the EC emissions in the
emissions inventory over Northeast Asia have been significantly
underestimated.

The underprediction of EC concentrations owing to the uncertainty
of EC emissions over Asia has been reported in previous studies. Wang
etal. (2016a,2016b) showed that the inverse modeled EC emissions over
China were approximately 1.8 times those of a bottom-up emissions
inventory and that the use of the inverse modeled EC emissions
improved the accuracy of daily model simulations. Luo et al. (2023)
reported that the uncertainty of EC emissions was still large (+221.68
%) after estimating EC emissions inversely as there is no direct EC
observation in Beijing-Tianjin-Hebei. In Japan, simulated EC concen-
trations were underestimated because of a problem of boundary con-
ditions resulting from the underestimation of EC emissions in upwind
areas (Chatani et al., 2018).

While the total EC emissions of upwind and downwind areas in the
modeling domain increased to 5.7 times the original emissions after
adjustment, the increase in EC concentrations in South Korea was much
lower, only 2.0 times the EC concentration before the emission adjust-
ment. This may be because the contribution of each emission region to
the EC concentration in South Korea varied by region. For instance, the
region referred to as “Rest of China” that included LIA, JH, and COT had
the greatest EC emission increase regardless of the adjustment method,
while contribution of that region to the EC concentration at the
Baengnyeong supersite was < 10 % (0.04 pg m~>). This is explained by
the emission-to-contribution relationship generally being inversely
proportional to the distance between the source and receptor area
(Rissman et al., 2013; Su et al., 2018). This implies a necessity for further
studies to develop a new method based on observations in source regions
for a more accurate adjustment of their emissions.

3.4. Upwind and downwind EC contributions

The upwind and downwind EC contributions were estimated with
emissions adjusted with REGF, and their results were compared with
those of the simulations before the emission adjustment at the six

Base GRGM PMTRX REGF
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Fig. 7. Monthly elemental carbon emissions
from selected regions in Northeast Asia for
May 2016. NRB, BTH, YRD, and NK represent
emissions from the corresponding areas
defined in Fig. 1. “Rest of China” represents
emissions from LIA, JH, and COT in Fig. 1.
Note that the emissions from ‘Rest of China”
were scaled with 1/10. “South Korea™ repre-
sents emissions from SMA, CC, HN, YN, and
KW in Fig. 1. “Rest of domain” represents
emissions from JP, TW, MG, RU, and VT in
Fig. 1. Legend labels indicate the source of EC
concentration data: base case simulation
(“Base™ and simulations based on adjusted
EC emissions using the generalized reduced
gradient method (“GRGM”), pseudoinverse
matrix (“PMTRX”), and regression function
(“REGF”).
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supersites in South Korea. For May 2016, the monthly mean upwind EC
contribution at all supersites was 0.3 pg m > before the emission
adjustment and more than doubled (0.8 pg m™>) after EC emission
adjustment. The upwind contribution to the EC concentration at the
Baengnyeong supersite was 0.4 ug m~> before the emission adjustment,
while it was increased to 0.9 pg m 3 after the emission adjustment. The
monthly mean downwind contribution to simulated EC concentrations
at all supersites was doubled from 0.2 to 0.4 ug m > after the adjustment
(Fig. 8). The monthly mean upwind EC contribution at all supersites,
except at the Baengnyeong supersite, was 0.7 pug m ™~ after EC emission
adjustment, showing an increase of 0.4 pg m™> compared with the
simulation before the emission adjustment (0.3 pg m~>). Excluding the
Baengnyeong supersite, the monthly mean downwind EC contribution
averaged over all supersites was 0.3 pg m ° before the emission
adjustment, while it increased to 0.5 pg m > after EC emission
adjustment.

The monthly mean upwind EC contribution rate averaged over all
supersites increased to 65 % compared to the simulation before the
emission adjustment (62 %). Even without considering the Baengnyeong
supersite, the monthly mean upwind EC contribution rate averaged over
the five supersites increased from 55 % to 59 % after EC emission
adjustment. Regardless of the number of supersites, the upwind contri-
bution rate to EC concentrations in the downwind area before and after
the EC emission adjustment was over 50 %. Therefore, to reduce EC
concentrations in the downwind area, it is critical to not only reduce
domestic emissions but also to cooperate with regions in upwind areas.
Moreover, even though the downwind EC contribution rate was reduced
after emission adjustment, the overall EC emissions were larger after
emission adjustment. Therefore, we expect that the required amount of
domestic emission reductions based on the emissions inventory should
be increased to accomplish the previous goal of EC concentration, such
as achieving 30 % of the baseline concentration.

4. Conclusions

In this study, we designed and implemented a two-step emission
adjustment approach to improve the reproducibility of air quality
modeling to support source-receptor (i.e., upwind-downwind) rela-
tionship analysis. Our approach required two steps because traditional
emission adjustment with observations assume easy access to observa-
tional datasets. Traditional approaches cannot be used when observa-
tional data for one region is difficult to acquire. Thus, we designed a new
approach where emission adjustment for one region is performed with
observations in the other region. Then, a follow-up adjustment for the
other region can be done with modeling using updated emissions from
the first emission adjustment as well as observational data available for
the other region. An objective function based on the described
assumption was developed to generate emission adjustment factors by
source region. At the same time, to find an optimal solution for the
objective function in the form of a matrix, we evaluated three methods:
GRGM, PMTRX, and REGF. Based on model performance statistics (NME
and correlation coefficient), we selected REGF as the optimal method in
this study. The mean errors compared with all supersites and aircraft
observational data decreased after the EC emission adjustment with
REGF. Also, the NME of the daily mean EC concentration averaged over
all supersites decreased from 48 % to 22 %, while the correlation coef-
ficient was maintained at 0.8.

The EC emission adjustment alleviated the underestimation by
increasing the simulated EC concentration at the surface and aloft nearly
twofold. Therefore, the EC emission adjustment method with REGF is
effective when applied with accurate SRR analyses and minimizes the
uncertainties of bottom-up emissions inventories by mitigating the time-
lag issue of emissions inventories. We used surface and aircraft mea-
surements to examine the utility of the adjusted emissions as surface
monitors provide hourly EC data for relatively long periods while
aircraft measurements provide higher temporal resolution data and

10

Environment International 178 (2023) 108069

Upwind contribution Downwind contribution
Observation

15
— 1.0 o O
£
>
2
@)
= 05

0.0

Baengnyeong Seoul Daejeon  Gwangju Ulsan Jeju Averaged

Fig. 8. Upwind (red) and downwind (blue) contributions to the monthly mean
elemental carbon (EC) concentrations at the six supersites and averaged across
all supersites (“Averaged”) in South Korea for May 2016. Lefthand- and
righthand-side bars of each paired bar represent the contributions before and
after EC emission adjustment, respectively. Grey circles denote the observed EC
concentrations. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

vertical profiles of EC concentrations for a limited number of days.

After EC emission adjustment with REGF, the upwind and downwind
contributions to EC concentrations averaged over all South Korean
supersites increased to 0.8 pg m~> (0.3 pg m > before adjustment) and
0.4 pg m ™~ (0.2 pg m > before adjustment), respectively. This is because
the EC emission adjusted with REGF increased by 2.5 times compared
with that of the emissions inventory in Northeast Asia. Additionally, the
upwind contribution rates averaged over all supersites before and after
the emission adjustment were 62 % and 65 %, respectively. This implies
that the emission adjustment had no significant impact the upwind
contribution rate, and the rate was higher than the downwind contri-
bution rate regardless of emission adjustment. Thus, cooperating with
regions in upwind areas is essential to improve the EC concentration in
South Korea. We demonstrated that our two-step EC emission adjust-
ment approach can provide more accurate estimates of up-to-date
emission amounts even if upwind observation points are not readily
available, although it would be desirable to secure upwind observational
data to utilize more representative upwind contributions for the same
approach. Addtionally, we will enhance our monthly-based approach to
derive daily/hourly-based emission adjustment in a future study. We
expect that the EC emission adjustment method proposed in this study
can be successfully used by decision-makers to prepare an integrated air
pollution policy.
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