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38 HIGHLIGHTS  

  Baleen analysis  of hormones and stable isotopes is a  powerful tool  to  enable a comprehensive 
and retrospective assessment of stress, reproduction, and nutritional status of the gray whale.  

  Gray whale baleen holds an endocrine and isotopic  record of the last 1.3  years  of the individual 
prior to death.  

  Quantification of baleen glucocorticoid content enables  discrimination between  chronic illness 
and acute stress  as cause of death.  

  Fluctuations in baleen δ15N correspond to the expected migration phenology in gray whales.  

ABSTRACT  

Individual-level assessments of wild animal health, vital rates, and  foraging ecology are critical  for 

understanding population-wide impacts  of exposure  to stressors. Large whales face multiple stressors, 

including, but not limited to,  ocean noise, pollution,  and ship strikes.  Because baleen is a continuously 

growing keratinized structure, serial extraction,  and  quantification of hormones  and stable isotopes  

along the length of  baleen provide a historical record of  whale  physiology and foraging ecology. 

Furthermore, baleen analysis  enables the investigation  of  dead  specimens, even decades later, allowing 

comparisons between historic and modern populations. Here, we  examined baleen of five sub-adult  

gray whales  and observed  distinct patterns of oscillations in δ15N values along the length of their baleen 

plates which enabled estimation of  baleen growth rates and differentiation of  isotopic niche widths of 

the whales during winter  and summer foraging. In contrast, no clear patterns  were apparent in  δ13C 

values. Prolonged elevation of cortisol in four individuals before death indicate  that  chronic stress  may 

have  impacted  their health and survival. Triiodothyronine (T3) increased over months in the whales with  

unknown causes of death, simultaneous  with elevations in cortisol,  but both hormones  remained stable 

in the one case of acute death attributed to killer whale predation. This  parallel  elevation of cortisol and  

T3 challenges  the classic understanding of their interaction and might relate to increased energetic  

demands during exposure to stressors. Reproductive hormone profiles in subadults did not show cyclical 

trends, suggesting they had not yet reached sexual  maturity.  This  study highlights  the potential of 

baleen analysis to retrospectively assess gray whales' physiological status, exposure to  stressors, 

reproductive status, and foraging ecology in the months or years leading up to their death, which can be 

a useful tool for conservation diagnostics to mitigate  unusual mortality events.  

KEY  WORDS:  

Mysticetes, stable isotopes,  enzyme immunoassays, mortality,  longitudinal  profiles.  
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75 1.  INTRODUCTION  

Individual-level assessments  of changes in health, vital rates, and foraging ecology of wild 

animals in response to  disturbance events  are key for identifying potential impacts on the broader 

population (Pirotta et al., 2022), as well as  gaining  insights needed for effective,  targeted conservation 

strategies. Large whales are exposed to an increasing number of stressors, including ocean noise (e.g., 

vessel traffic, military sonar, seismic oil  and gas exploration, and construction;  (Lemos et al., 2022a; 

Rolland et al., 2012),  contaminant,  plastic, heavy metal  and chemical pollution (Lowe et al., 2022; 

Reckendorf,  2023; Torres et al., 2023), ship strikes,  harmful algal blooms  (D’Agostino et al., 2022), 

entanglement in fishing gear (Clapham, 2016; S. Derville et al., 2023), marine heatwaves  (Suryan et al., 

2021), and prey shifts (Solène Derville et al., 2023; Pallin et al., 2023; Thomas et al., 2016). Conservation 

efforts to mitigate  threats to whale populations  are  hindered by  challenges of  monitoring and repeated 

sampling  due to  whales' large size, mobility, and  their  remote  marine habitats (Hunt et al., 2013)  and  

thus  constrain  assessment of  natural and anthropogenic  impacts on individual health, vital rates, and 

foraging ecology.  

Recently,  the use of innovative analytical  methods for  non-plasma sample  types that can be 

collected from live or dead whales  has  increased  our ability to disentangle different aspects of the 

complex foraging ecology and physiology  of  large whales  (Fleming et al., 2018; Hunt et al., 2013; Teixeira  

et al., 2022). Baleen, for example,  is a unique  structure  that forms the filter-feeding apparatus in 

mysticete whales  and is perhaps the best biological tissue for acquiring  longitudinal ecological and 

physiological data, with sufficient temporal resolution to examine seasonal patterns  (Caraveo-Patiño et 

al., 2007; Fernández Ajó et al., 2020, 2018; Hunt et al., 2018).  Like  other keratinized epidermal tissues 

(e.g., claws,  hair, and spines, whiskers),  baleen is  a continuously  growing structure that extends from a 

well-vascularized dermal zone. During growth, baleen incorporates the isotopic  ratios and endocrine 

signature of  the circulating plasma. The  slow growth  rate  of baleen allows for simultaneous  

incorporation  of the whale's endocrine and stable isotope (SI) history spanning the time of baleen  

growth. For mysticetes with shorter baleen (e.g., humpback whales, Megaptera novaeangliae,  and gray  

whales, Eschrichtius robustus), this period is 1–5 years (Caraveo-Patiño et al., 2007a; Lowe et al., 2021b, 

2021a)  versus  a decade or more in species with longer baleen (e.g.,  bowheads,  Balaena mysticetus) 

(Hunt et al., 2022, 2017a, 2014; Lysiak et al., 2018). Consequently,  paired quantification of  hormones  

and  SI  values along the longitudinal axis  of the baleen  plate  provides a historical record of the  

individuals' physiology  and insights into their foraging ecology.  Notably, baleen is routinely recovered 
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during necropsies, and its inherent strength, durability, and minimal storage requirements (these 

samples can be preserved dry at room temperature) ensure the preservation of the analytes of interest 

within the keratin matrix. As a result, detection of hormones and SI’s remains feasible in dried samples 

for decades (Fernández Ajó et al., 2018; Hunt et al., 2017b). These remarkable properties of baleen not 

only capture multi-year timeframes, enabling the determination of the individuals’ seasonal endocrine 

and foraging patterns, but also facilitates comparisons between historic and modern populations of 

whales (Fernández Ajó et al., 2020, 2018; Hunt et al., 2018, 2014). 

Eastern North Pacific (ENP) gray whales migrate between their wintering grounds along the Baja 

California, Mexico, coastline, and their summer foraging grounds in the Bering, Chukchi, and Beaufort 

Seas. The ENP population has experienced at least two recorded Unusual Mortality Events (UMEs), in 

1999-2000 and from 2019 to the present, during which an unusually high number of gray whales were 

found dead along the Pacific coast from northern Mexico to the Alaskan Arctic, USA. Several factors 

have been considered as possible causes for the high number of gray whale strandings, including 

variation in Arctic prey availability and the duration of their feeding season caused by the timing of sea 

ice formation and breakup (Stewart et al., 2023), starvation, anthropogenically derived toxicants, 

biotoxins, infectious diseases, parasites, fisheries interactions, and ship strikes (Eguchi et al., 2023; 

Gulland et al., 2005). In the current UME, dead whales are frequently emaciated, indicating nutritional 

limitation as a causal factor of death (Christiansen et al., 2021). While poor condition of many of the 

stranded whales supports the idea that starvation could be a significant contributing factor in these 

mortalities, the underlying causes of starvation during these events are unknown, and it is also unclear 

whether the whales' decline in body condition was rapid or gradual. 

In this study, we analyzed patterns across time of stable isotopes and five hormones within five 

baleen plates recovered postmortem from five subadult gray whales (4 males, 1 female) that stranded 

during the 2019-present UME. Our goal is twofold: first, to retrospectively examine the hormone and 

isotopic profiles in gray whales prior to mortality; and second, to assess potential factors contributing to 

mortality and the onset timing of chronic illness leading to death. Our isotopic analysis includes the 

longitudinal profiles of bulk carbon and nitrogen stable isotope ratios in baleen, as they are well-

established markers of seasonal diet and foraging grounds in large whales (Best and Schell, 1996; 

Busquets-Vass et al., 2017; Matthews and Ferguson, 2015). Stable isotopes incorporated into baleen are 

acquired from an animal's diet, with different prey having characteristic ratios of 13C/12C and 15N/14N, 

expressed as δ13C and δ15N, respectively. Predictable enrichment of both δ13C and δ15N occurs at each 
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trophic level (Kelly, 2000), and additional latitudinal variation in prey isotope ratios often results in 

annual oscillations in δ13C and δ15N across the length of whale baleen, reflecting the whales' annual 

migrations between summering and wintering grounds. For example, δ15N values are typically lower 

when whales consume zooplankton at their summering grounds and are higher when whales are 

sustained primarily by their own blubber reserves and/or feed on isotopically distinct food on their 

wintering grounds (Lysiak, 2009). Recent studies have combined stable isotopes with baleen steroid 

hormone analysis to establish a timeline of tissue growth, allowing interpretation of hormone 

concentrations over time (e.g., (Hunt et al., 2017a, 2016b, 2014)). 

Our hormonal analysis quantifies two adrenal glucocorticoid steroids, cortisol and 

corticosterone, as well as the thyroid hormone triiodothyronine (T3), and two gonadal steroids, 

progesterone and testosterone. Increased secretion of glucocorticoids from the hypothalamic-pituitary-

adrenal (HPA) axis signifies the activation of the vertebrate stress response (Romero and Wingfield, 

2016). The hypothalamic-pituitary-thyroid axis (HPT) regulates the synthesis and secretion of thyroxine 

(T4), which subsequently undergoes enzymatic conversion to the more active form, T3. Both T3 and T4 

modulate basal metabolic rate, growth and development, and thermogenesis, along with other 

permissive actions (Romero and Wingfield, 2016). Because T3 is generally recognized as the most 

biologically active thyroid hormone, it has been considered a more relevant biomarker than other forms 

of the thyroid hormones (Eales, 1988; Flamant et al., 2017). T3 is examined here as a biomarker of 

nutritional state, i.e., a proxy of foraging success, given its role in regulating metabolic rate in mammals, 

as reviewed in (Behringer et al., 2018). The two gonadal steroids, progesterone and testosterone, are 

assessed here as markers of reproductive status. The analysis of reproductive hormones within baleen 

has proven valuable for assessing pregnancy and inter-calving cycles in females, and testosterone cycles 

in males, in multiple baleen whale species (Hunt et al., 2022, 2018, 2016b; Lowe et al., 2021b; Lysiak et 

al., 2023). Here, we examine the reproductive steroids to assess sexual maturity; all our specimens are 

from subadults, but subadult whales may initiate gonadal secretion of reproductive hormones well in 

advance of full reproductive competence, and stress is known to delay sexual maturity in many 

mammals (Dettmer and Chusyd, 2023; Hunt et al., 2022). Further, the individual baselines for each 

hormone and each individual whale are assessed to monitor individual variability in response to 

potential stressors. 

Through the integration of SI and endocrine methodologies, we demonstrate that baleen 

analysis provides a holistic narrative detailing the health and trophic ecology of individual whales across 
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time, effectively filling knowledge gaps between individual physiology and population impacts. 

Ultimately, these biomarker techniques can make significant contributions to management and 

conservation efforts by informing the complex physiological dynamics that underlie whale mortality. 

2. MATERIALS & METHODS 

2.1 SAMPLE COLLECTION 

From April 2019 to August 2021, a baleen plate from each of five stranded gray whales (n = 4 

males and n = 1 female) was collected by the Oregon Marine Mammal Stranding Network (OMMSN, 

NMFS MMPA/ESA permit No. 18786-06) along the Oregon, USA coast, between Whaleshead Beach in 

Brookings (42.15°N, -124.35°W) and Cape Mears (45.54°N, -123.96°W). All males had complete baleen 

plates (i.e., including the most recent growth within the gum), while the female's baleen plate was 

missing the most recently grown baleen at the root of the baleen plate (i.e., the baleen was cut at the 

gumline when recovered at necropsy). All specimens were removed from the right side of the rostrum 

and the center of the rack, where the longest baleen plates are located. The whale’s total length (TL, 

measured as snout-to-fluke-notch), presence of scars, general body condition, and presumed cause of 

death were also recorded (Table 1). All individuals were classed as "subadults" based on the size 

categories (i.e., female TL 9–11.7 m, male TL 9–11.1 m; (Rice and Wolman, 1971)), i.e., at least 24 

months old but not yet sexually mature. 

2.2 PREPARATION OF BALEEN PLATES FOR HORMONE EXTRACTION AND QUANTIFICATION 

To remove any soft tissues adhered to the base of the baleen plates (proximal end near the gum 

line with the newest baleen), we rehydrated and softened the tissues by submerging the baleen plates 

in fresh water, and subsequently scraped the soft tissues off with a metal scraper or scalpel. We then 

freeze-dried the baleen plates under vacuum (LabConco FreeZone 6L system with Stoppering Tray Dryer, 

Kansas City, MO, USA), until the pressure reading of the lyophilizer stabilized for at least 12 h, indicating 

that the samples were dry. Dried, cleaned plates were then stored at room temperature in individual 

sealed plastic bags, each with a 50 g silica gel desiccant pack (Arbor Assays, Ann Arbor, MI, USA). 

We collected 20-50 mg of powder from sampling points spaced every 1 cm along the labial edge 

of the plate, using a hand-held electric rotary grinder (Dremel® model 395 type 5) fitted with a tungsten 

carbide ball-tip, with each sample collected from a <1.5 cm transverse groove across the posterior face 

of the plate. The proximal-most point on the base of the baleen plate was designated as the 0 cm point. 

Sampling started 1 cm from the base and continued every 1 cm to the tip (distal end) until the baleen 



 

 

 

 

 

 

 

 

 

 

 

 
 

 Whale 

 Code  
 Whale ID 

 Strand 

 Date 

 Cause 

of 

 Death 

 Sex 
 TL 

 (cm) 

 Total 

 Samples 

 BGR 

 (mm/week) 

 GS 

 (days) 

 Age 

 Class 

 Er_1 HMSC_190424_Er   2019-04-24  Unk  F  1080  12*  3.2  ~242  Subadult 

 Er_2 HMSC_200331_Er   2020-03-31  Unk  M  1086  26  3.2  ~550  Subadult 

 Er_3 HMSC_200515_Er   2020-05-15  Unk  M  996  20  3.2  ~418  Subadult 

 Er_4 HMSC_210529_Er   2021-05-29  Unk  M  1060  25  3.2  ~528  Subadult 

 Er_5 HMSC_210816_Er   2021-08-16  Orca  M  1000  27  4.7  ~390  Subadult 

  
 
 
 
 
 

 

 

 

 

 

 

 

 

 

198 became too  thin to collect the minimum required sample mass for hormone extraction (20 mg); thus, 

we  typically excluded  the distal-most two centimeters of each plate  (i.e., the oldest growth).  To avoid 

cross contamination, during sampling we shielded  other regions of the plate with adhesive tape, and 

between samples the entire baleen plate, sampling  equipment, and fume hood  were cleaned with  

compressed air, and the work surface and all equipment were also cleaned with 70%  ethanol. Powder 

samples were weighed to  the nearest 0.1  mg on an  Ohaus Explorer Pro EP214C analytical balance  

(Ohaus, Pine Brook, NJ, USA), with a nearby workstation ionizer (SPI No. 94000, SPIwestek.com) placed 

next to the scale to minimize any effects of static electric  charge. Weighed samples were placed in 16  × 

100 mm borosilicate glass tubes and securely capped  until hormone extraction,  which took place within  

72 hours of drilling.  In total, 110 powder samples were produced, with each whale's plate producing 

between 12-27 samples.  

Table 1. Biological information for individual gray whales,  Eschrichtius robustus,  collected along the 
Oregon Coast and  sampled for both  hormone and stable isotope analysis.  

199 

200 
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206 

207 

208 

209 
210 

211 
212 Cause of death: Unk = undetermined,  Orca = evidence of  Killer whale,  Orcinus  orca,  predation as acute cause of death;  Sex =  Female (F), Male 

(M); TL = Total Length from snout to fluke  notch in cm; Total samples = number of subsamples obtained from each baleen plate;  BGR = baleen 
growth rate estimated  in days per c m  (from stable isotope analysis);  GS  = Growth span, estimated  timespan represented by the entire baleen 
plate,  in days, derived from baleen growth rate and total length of plate; * only the erupted portion of the baleen was collected during the 
necropsy.  

2.3.  STABLE  ISOTOPE  ANALYSES  (SIA)  

We weighed  approximately 1  mg of baleen powder from each sampling location (i.e.,  every 1 cm 

along the longitudinal axis  on each baleen plate) directly into tin capsules. Bulk  δ13C and δ15N  were 

measured using a Thermo FlashSmart  elemental analyzer  coupled  to a  Thermo Finnigan Delta Plus XP 

continuous-flow isotope ratio mass spectrometer (Thermo Scientific, Bremen, Germany). Results are 

expressed in parts per thousand (‰) and delta notation (δ) using the equation:  δsample  = [Rsample/Rstandard  − 

1] *  1000, where R  and R  are the 13C/12C or 15N/14
sample standard N ratios of the sample and standard, 

respectively  (Peterson and Fry, 1987).  The isotopic reference materials used were supplied by the  

International Atomic Energy Agency (IAEA-N-1, δ15N = 0.4 ± 0.2‰; IAEA-CH-7, δ13C = −32.1 ± 0.05‰; 
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IAEA-CH-3, δ13C = −24.7 ± 0.04‰) and the United States Geological Survey (USGS25, 

δ13C = −34.58 ± 0.06‰, δ15N = −0.94 ± 0.16‰; USGS40, δ13C = −26.3 ± 0.04‰, δ15N = −4.5 ± 0.1‰; 

USGS41, δ13C = +37.6 ± 0.04‰, δ15N = 47.6 ± 0.2‰;). Internal standards were included with all samples 

as quality controls; all error data are SD (purified methionine, Alfa Aesar, δ13C = −34.5 ± 0.06‰, 

δ15N = −0.9 ± 0.1‰; homogenized Chinook salmon muscle, NOAA Auke Bay Laboratories, 

δ13C = −19.2 ± 0.05‰, δ15N = 15.5 ± 0.1‰). The analytical precision based on the standard deviation of 

the standard laboratory replicas was <0.1‰ for both δ13C and δ15N. To ensure that our samples did not 

contain any 13C-depleted lipids, we also measured the C:N ratio of each sub-sample; all of which were 

within the range expected for pure protein (2.7-3.5) ((Ambrose, 1990); see Supplementary Material, 

Table S2). 

2.4. BALEEN GROWTH RATES AND TIMELINES 

To assign an estimated season of growth to each part of the baleen plate, we inspected the δ15N 

data for evidence of seasonal changes. Specifically, based on the patterns seen in other baleen whales 

(Best and Schell, 1996; Lysiak et al., 2018; Matthews and Ferguson, 2015), we assumed that the areas of 

baleen with lower δ15N were grown during summer when whales are most actively foraging, while the 

regions of baleen with higher δ15N were assumed to have grown during winter. Similarly, points with 

intermediate δ15N values (i.e., between summer δ15N troughs and winter δ15N peaks) were assumed to 

represent spring and fall migrations. However, because gray whale baleen is relatively short and hence 

expected to only capture a single full annual cycle, these potential timelines may be imprecise. Thus, we 

also compared each whale's δ15N data to published estimates of baleen growth rate (BGR) for gray 

whales, which vary from 3.2 mm/week (Sumich, 2001) to 4.7 mm /week (Caraveo-Patiño et al., 2007a). 

Therefore, for each plate we calculated two potential timelines, counting cm from the base of the 

baleen plate, using the two published BGR estimates, i.e., assuming the proximal-most point on the 

plate was grown near the day the whale was found dead, with all other points on the plate then 

assigned an estimated date of growth based on that BGR (either 3.2 or 4.7 mm/week). These two 

timelines bracket a range of potential plausible BGRs. The two BGR-derived timelines were then 

compared to the δ15N timeline for that whale, i.e., to verify that our δ15N interpretations involve a 

plausible BGR for this species. 

2.5. HORMONE EXTRACTION AND QUANTIFICATION 

We extracted hormones from pre-weighed baleen powder samples using 1.6 mL of absolute 

methanol per 20 mg powder, i.e., keeping a constant ratio of 80:1 mL of solvent to g of sample. This 
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solvent:sample ratio yields good detectability with low variation (inter-sample coefficient of variation < 

10%; (Fernández Ajó et al., 2022). The solvent:sample mixture was vortexed 2 h at room temperature 

(Large Capacity Mixer, Glas-Col, Terre Haute, IN, USA; speed set on 40) and centrifuged for 1 min at 4025 

g. The supernatant from each tube was transferred to individual 13×100 mm borosilicate tubes and 

dried at 45°C for a minimum of 4 h in a sample evaporator (SpeedVac 121P, Thermo Fisher Scientific, 

Waltham, MA, USA) under vacuum. We reconstituted the dried samples in 0.50 mL of assay buffer (X065 

buffer; Arbor Assays, Ann Arbor, MI, USA), sonicated for 5 min, vortexed for 5 min, and transferred the 

sample to 1.5 mL vapor proof O-ring-capped cryovials. We stored the tubes overnight at −80°C and 

decanted the extract into a new cryovial the following day. This was considered the "1:1" (full-strength, 

neat) extract and was stored at -80C until assay. 

We used commercial enzyme immunoassay (EIA) kits to quantify immunoreactive 

corticosterone, cortisol, progesterone, testosterone, and T3 in baleen extracts (Arbor Assays kits: 

corticosterone #K014, cortisol #K003, progesterone #K025, testosterone #K032, and T3 #K056, Ann 

Arbor, MI, USA). These five kits have previously been validated for gray whale baleen extracts (Hunt et 

al., 2017b). We assayed all samples at a 1:2 dilution, which in this species produces acceptable 

detectability and percent-bounds while also allowing assay of multiple hormones from a single 500ul 

extract. Final data are expressed as ng of hormone per g of dried baleen powder. All assays adhered to 

standard QA/QC criteria, which included a full standard curve, NSB (non-specific binding), zero dose 

("blank"), and an independent control in every EIA microplate. All samples, standards, controls, NSBs, 

and zeros were assayed in duplicate. Any sample that exhibited a coefficient of variation exceeding 10% 

between duplicates was re-analyzed. For antibody cross-reactivities, assay sensitivities, and other 

methodological details, see Hunt et al. (2017a) and the manufacturer’s protocols 

(www.arborassays.com). 

We evaluated the complete longitudinal profiles for both glucocorticoids, cortisol and 

corticosterone, in only two individuals (Er_1 and Er_4) to determine the dominant (most abundant) 

glucocorticoid and to compare the longitudinal profiles of the two hormones. As cortisol was at higher 

concentration than corticosterone for these two whales, corticosterone was not assayed for the other 

baleen specimens (see Results). We assayed all other hormones (progesterone, testosterone, T3) for all 

samples from all whales. 

2.6. STATISTICAL ANALYSIS 

2.6.1. HORMONES 

www.arborassays.com
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All hormone data were log-transformed for data visualization and analyses due to non-normal 

distribution. We estimated hormone baselines for each gray whale using an iterative process that 

excludes all data points greater than the mean + two standard deviations until no points exceed this 

maximum value, following methods from Brown et al., 1988. To test for differences in concentrations of 

reproductive hormones between sexes, we fit a linear mixed-effects model with random intercepts 

using the lme4 R package. All statistical analyses were computed using R (R Development Core Team 

2023). 

2.6.2. STABLE ISOTOPE ANALYSIS 

We gauged δ13C and δ15N fluctuations in baleen plates with a generalized additive model (GAM), 

fitting a semi-parametric regression with smoothing by cross-validation. We used an ANOVA analysis to 

test differences in the δ13C and δ15N values between the phenological phases (wintering vs. summer 

foraging) utilizing the aov function from the stats R package. We then compared the isotopic niche width 

of each individual gray whale per phenological phase by generating bivariate ellipses in SIBER (Stable 

Isotope Bayesian Ellipses in R (Jackson et al., 2011), which employs Markov-Chain Monte Carlo (MCMC) 

simulations to construct parameters of ellipses based on sampling points. We estimated the standard 

ellipse area corrected for small sample sizes (SEAC, expressed as ‰, which represents the mean core 

area of each individual's isotopic niche (Jackson et al., 2011; Layman et al., 2007)). We also calculated 

the Bayesian standard ellipse area (SEAB) to obtain unbiased estimates of the isotopic niche widths 

(Jackson et al., 2011).To test for significant differences, we ran 20,000 MCMC iterations and constructed 

95% credible intervals around the mean of each whale. Results are reported as mean ± standard 

deviation (SD) unless otherwise stated. All statistical analyses were computed using R (R Development 

Core Team 2023). 

3. RESULTS 

3.1 STUDY ANIMALS, BODY EXAMINATION AND CAUSE OF DEATH. 

All five individuals were in fair to good body condition at necropsy, i.e., no evidence of 

emaciation. Further, there was no indication that direct human interaction was the cause of death. 

Notably, all individuals had "rake" mark scars, indicative of physical interactions with killer whales, 

Orcinus orca (Corsi et al., 2022). These scars were primarily observed on the distal end of the fluke and 

pectoral fins. One individual, HMSC21-08-16-Er (Er 5), presented evidence of acute mortality caused by 

interactions with killer whales, showing multiple deep and recent "rake" marks on various body parts, 

https://2011).To
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particularly the head and flippers, along with extensive and severe hemorrhaging on the top of the 

head. Cause of death could not be determined for the other four whales. 

3.2 ISOTOPIC PATTERNS AND BALEEN GROWTH RATES (BGR) 

All baleen plates oscillated in δ15N values along their growth axis consistent with expected 

migration phenology (Figure 1). The growth rate that best fit the expected oscillations with the 

migration phenology was 3.2 mm/week for all whales except Er_5, for which the best estimate was 4.7 

mm/week (Figure 1). Excluding Er_1, from which the baleen plate was incomplete (i.e., the proximal-

most portion within the gum was missing) we estimate that the baleen of these subadult gray whales 

recorded around 1.3 years of individual hormone and SI data (n = 4; 471.5 ± 68.73 days; Mean ± SD, 

Table 1). 

Mean δ13C values were similar among individuals: during wintering, values ranged from −15.2‰ 

± 0.1‰ for Er_5, to -16.3‰ ± 0.1‰ for Er_2; during summer foraging period values ranged from -15.0 

‰ ± 0.4‰ for Er_5 to -16.3‰ ± 0.4‰ for Er_2 (Table 2). Mean δ13C values for all individuals were -

15.0‰ ± 0.4‰ and -15.2‰ ± 0.1‰ for the summer and wintering period, respectively (Figure 2) with no 

significant differences between these two periods (F (1, 88) = 1.73, p = 0.19). In contrast, mean δ15N values 

varied among individuals, ranging from 13.0‰ ± 0.3‰ for Er_2 to 15.1‰ ± 0.2‰ for Er_5 during the 

wintering period to 11.9‰ ± 0.4‰ for the Er_5, to 13.1‰ ± 0.4‰ for the Er_3 during the summer 

foraging period. The mean δ15N values for all individuals was 12‰ ± 0.4‰ and 15.1‰ ± 0.2‰ for the 

summer foraging and wintering periods, respectively (Figure 2), with a significant difference between 

periods (F (1, 88) = 132, p < 0.001). 



  

 
 
 
 
 
 
 
 

340
341
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343
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339 Figure 1: Longitudinal  profiles of and δ15N (left)  δ13C (right)  in baleen plates of stranded subadult gray 
whales collected along the Oregon Coast. X-axes show sample location along the baleen, in cm from  
base of the baleen plate (i.e., newest baleen = 1 cm), with 1  cm (newest baleen) at far right, i.e.,  time 
runs from left to right. Y-axes show δ13C or δ15N values (‰). Estimated season and year of growth is 
shown below the x-axes, and the time  of death is noted with a  red  X on the x-axis. Migration phenology 
is denoted by dark gray (putative summer  foraging  period) and light grey  (putative wintering  period)  
shading, estimated based on δ15N fluctuations. Squares and closed circles depict actual values of δ15N 
and δ13C, respectively; the dotted and dashed lines depict the fit of the GAM models, with the blue 



 
 
 

  

  

 
 
 
 

 

 

 

347 (δ15N) and green (δ13C) fringe illustrating the 95% confidence intervals. Only the erupted portion of the 
baleen plate from Er_1 (top) was available, i.e., the proximal-most portion of  the base of the plate was  
missing, denoted with two parallel red lines on the x-axis.  

348 
349 
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351 

352 Figure 2.  Violin plots for A) δ13C and  B) δ15N  values by phenology phase (i.e., summer  foraging  in dark  
grey and wintering in light  gray). Circles depict actual  δ13C  and δ15N  values. The black dot represents the 
mean, and whiskers indicate the standard deviation;  statistically significant differences  between groups  
are shown at  the top with  F and p values from ANOVA.  

The smallest isotopic niche areas for the gray whales  were observed during the  wintering 

period, consistent with  winter  fasting  (Figure 3).  During winter, Er_4 and Er_5 presented the smallest 

standard ellipse areas (SEA   2 
C: 0.07‰2 / SEAB: 0.06‰2 and SEA 2

C: 0.09‰  / SEAB: 0.07‰ , respectively) and 
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Summer foraging Wintering 

ID δ13C δ15N δ13C δ15NSEAC SEAb SEAC SEAbCI 
(‰) (‰) (‰2) (‰2) (‰) (‰) (‰2) (‰2) 

Er 1 -15.7 ± 0.3 12.5 ± 0.2 0.43 0.3 (CI: 0.23-0.42) -15.9 ± 0.2 13.9 ± 0.2 0.12 0.11 (CI: 0.07-0.16) 

Er 2 -16.3 ± 0.3 12.2 ± 0.5 0.37 0.38 (CI: 0.30-0.49) -16.4 ± 0.1 13.0 ± 0.3 0.18 0.16 (CI: 0.13-0.19) 

Er 3 -16.0 ± 0.1 13.2 ± 0.4 0.03 0.02 (CI: 0.02-0.04) -16.1 ± 0.1 14.1 ± 0.4 0.16 0.12 (CI: 0.10-0.16) 

Er 4 -16.0 ± 0.1 13.1 ± 0.4 0.13 0.12 (CI: 0.10-0.17) -16.3 ± 0.1 13.4 ± 0.5 0.07 0.06 (CI: 0.05-0.08) 

Er 5 -15.0 ± 0.1 12.0 ± 0.4 0.65 0.54 (CI: 0.46-0.70) -15.2 ± 0.4 15.1 ± 0.2 0.09 0.07 (CI: 0.06-0.09) 

CI 
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359 Er_2 and Er_3 presented the largest standard ellipse areas (SEAc: 0.18‰2  / SEA : 0.16‰2 
B  and SEAc:  

0.16‰2/ SEAc: 0.12‰2, respectively). The largest  standard ellipse areas of  δ13C  in summer is  consistent 

with foraging on varied benthic prey  in  summer  with different isotopic compos itions  (Burnham  and  

Duffus,  2016a;  Nelson  et  al.,  2008a;  Newell  and  Cowles,  2006). During summer foraging,  Er_3 and  

Er_4 had the smallest standard ellipse areas (SEAc: 0.03‰2/ SEA : 0.02‰2 and 2
B   SEAc: 0.13‰ / SEAB: 

0.12‰2, respectively) while Er_5 and Er_1 had the largest standard ellipse areas (SEAc: 0.65‰2  / SEAB: 

0.54‰2 and SEAc: 0.43‰2/ SEAB: 0.30‰2) (Figure 3; Table 2).  

Table 2.  Mean δ13C and δ15N values ± SD  for each of the five gray  whale baleen plates  sampled  by  season 
(summer foraging  vs. wintering).  Standard ellipse area corrected for small sample sizes (SEAC, expressed 
as ‰2), which represents the mean core area of each individual's  isotopic niche,  and Bayesian  standard  
ellipse areas  (SEAB)  with credible intervals  (CI).  

360 

361 

362 

363 

364 

365 

366 
367 
368 
369 
370 

https://0.06-0.09
https://0.46-0.70
https://0.05-0.08
https://0.10-0.17
https://0.10-0.16
https://0.02-0.04
https://0.13-0.19
https://0.30-0.49
https://0.07-0.16
https://0.23-0.42


  

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

372 

373 Figure 3.  δ13C  and δ15N  biplot illustrating the isotopic niche width of five subadult gray whales that  

stranded along the Oregon Coast, divided  by  season  (Summer  foraging  vs. wintering). Points within each 
ellipse represent sub-samples  from each sampled baleen plate,  and ellipses represent the estimated 
standard ellipse area corrected for small sample sizes (SEAC, expressed as ‰2).  

3.4.  BALEEN  GLUCOCORTICOIDS  (CORTISOL  AND  CORTICOSTERONE)  

Both glucocorticoids (cortisol  & corticosterone) were  detectable along the full length of the two  

plates for which both hormones were assayed  (i.e., Er_1 & Er_4; Figure 4). The longitudinal profiles of  

the two hormones generally mirrored each other, with cortisol  consistently showing a slightly higher 

apparent concentration compared to corticosterone  at every sampling point along the baleen 

longitudinal axis (Figure  4; electronic supplementary material, Table S1). Therefore, only cortisol  was  

analyzed for the other three whales. The baseline concentration for cortisol  in all individuals fell within 

the range of 0.55  ± 0.75  to 11.20  ± 26.66  ng/g (mean ± SD; Table 3). Among all  individuals, except for 

Er_5 (the individual presumed to have  died acutely due to  killer whale predation), there were 

pronounced elevations in the apparent concentration of cortisol  preceding death (Figure  4). For the 

three  individuals  with  unknown  cause  of death  that  had complete baleen length  (i.e., excluding both  

Er_1, missing  part of the baleen, and Er_5, known cause of death), the time elapsed from the onset of 
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 Hormone Baselines (ng/g) +/- Standard Deviation  
 ID 

 Cortisol  Progesterone Testosterone  T3  

  Er 1  6.46 +/- 8.29   1.73 +/- 0.64   0.51 +/- 0.25    2.51 +/- 1.15 

  Er 2  5.19 +/- 9.78   1.39 +/- 1.02   0.38 +/- 0.21    1.66 +/- 1.37 

  Er 3  4.86 +/- 7.85   2.04 +/- 0.66   0.35 +/- 0.17    1.77 +/- 1.21 

  Er 4    11.20 +/- 26.66  2.32 +/- 1.08   0.56 +/- 0.34    3.46 +/- 1.44 

  Er 5  0.55 +/- 0.75   1.46 +/- 0.68   0.39 +/- 0.21    1.88 +/- 0.95 

  398 

389 the elevation in  cortisol to the time of death was estimated to be 284.37 days (13 cm) for Er_2, 240.62 

days (11 cm) for Er_3, and  262.50 days (12 cm) for Er_4. On average, this elapsed time was  262.5 days  

(approximately 0.72 years).  

Table 3.  Individual baselines of  gray whale baleen immunoreactive hormone  concentrations (expressed 
in ng  of immunoreactive  hormone per g  of baleen powder  (ng/g)). Baselines are estimated via an 
iterative process that excluded all data points greater  than the mean + 2SD until no points exceeded this 
maximum value (following Brown et al.,  1988).  Cortisol  = immunoreactive baleen cortisol; Progesterone  
= immunoreactive baleen  progesterone; Testosterone  = immunoreactive baleen testosterone; T3 = 
immunoreactive baleen triiodothyronine.  
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400 Figure 4.  Longitudinal profiles of immunoreactive  hormone concentrations of corticosterone 
(Corticosterone; black crosses and dashed line) and cortisol (Cortisol; black  circles and dotted line) 
across the length of baleen plates from five stranded gray whales.  The dashed horizontal line indicates  
the log-transformed baseline for baleen cortisol. X-axes show  the location of each sample, in cm from  
base of the baleen plate (i.e., newest baleen = 1 cm) with y-axes showing concentration of hormone 
(log-transformed ng of immunoreactive hormone per g of dried  baleen powder).  Migration phenology is 
derived from  δ15N data; dark gray indicates summer foraging and light grey indicates wintering (see  
Figure 1), and season  of growth at  each  point on the plate was estimated from time  of death  (noted 
with a  red  X on the x-axis). Only the erupted portion  of the baleen plate from Er_1 (top) was  available, 
indicated with two  parallel red lines on the x-axis. Blue arrows denote the onset of cortisol elevation 
prior to death.  

3.5.  TRIIODOTHYRONINE  (T3)  

Immunoreactive T3 was  detectable  along the full length of all baleen plates (Figure  5; electronic 

supplementary material, Table S1). The   baseline concentration of T3 ranged  from 1.66  ± 1.37  to 3.46  ± 

1.44  ng/g (mean ± SD; Table 3). Similar to the glucocorticoids, the three individuals with an unknown 

cause of death  that also had a full-length  baleen plate  (Er_2, Er_3, and Er_4) all had  elevated T3 

preceding death (Figure 5). The onset of the elevation in T3 prior to death was nearly coincident with 

the timing of  elevated  cortisol  (see Results 3.4).  
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419 Figure 5.  Longitudinal profiles of immunoreactive hormone concentrations of triiodothyronine (Log_T3; 
grey  rhomboids and dotted line) across the length  of  baleen plates from five stranded gray whales. The 
dashed horizontal line indicates the log-transformed baseline for baleen T3. X-axes show the location of 
each sample, in cm from base of the baleen plate (i.e., newest baleen = 1 cm) with y-axes showing 
concentration of hormone (log-transformed ng of immunoreactive hormone per g of dried  baleen 
powder). Migration phenology is derived from δ15N data; dark gray indicates summer foraging and light 
grey indicates wintering (see Figure 1), and season  of  growth at  each point on  the plate was estimated 
from time  of death (noted with a  red  X on the x-axis). Only the erupted portion  of the baleen plate from 
Er_1 (top) was available, indicated with two parallel red lines on the x-axis.  Blue  arrows denote the 
onset of T3  elevation prior to death.  

3.6.  REPRODUCTIVE  HORMONES  (PROGESTERONE  AND  TESTOSTERONE)  

Both progesterone  and  testosterone  were detectable along the full length of the baleen plates 

(Figure 6; electronic supplementary material, Table S1). The baseline concentration for  progesterone  in  

all individuals fell within the range of 1.39  ± 1.02  to 2.32  ± 1.08 ng/g (mean ± SD; Table 3), and for 

testosterone  the baseline concentration ranged from 0.35  ± 0.17  to 0.56  ± 0.34  ng/g (mean ± SD;  Table  

3). No significant differences  between the two sexes were found in the apparent immunoreactive 

progesterone  and testosterone  (p = 0.9999).  
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437 Figure 6:  Longitudinal profiles  of immunoreactive hormone concentrations of progesterone 
(Progesterone; black cross-square) and testosterone (Testosterone; grey solid  squares)  across the length  
of baleen plates from five  stranded gray whales. The dashed horizontal lines indicate the log-
transformed baseline for baleen progesterone (black) and testosterone (light grey). X-axes show the  
location of each sample, in cm from base of the baleen plate (i.e., newest baleen = 1 cm) with  y-axes 
showing concentration of hormone (log-transformed ng of immunoreactive hormone per g of dried  
baleen powder).  Migration phenology is derived from δ15N data;  dark gray indicates summer foraging  
and light grey indicates wintering (see Figure 1), and season  of growth at  each point on the plate was 
estimated from time  of death (noted with a red  X on the x-axis). Only the erupted portion  of the baleen  
plate from Er_1 (top) was  available, indicated with two parallel red lines on the x-axis. Blue arrows  
denote the onset of T3  elevations prior to death.  

4.  DISCUSSION  AND  CONCLUSION  

In this study, we analyzed the SI and hormone profiles in  baleen  of five sub-adult gray whales, 

which enabled us to  estimate baleen growth rates, distinguish isotopic niche widths  during  summer and  

winter periods,  and document different endocrinology patterns leading up to death between the whale 

that died acutely (killer whale attack) and those  whales of unknown cause of death. The SI assessment 

revealed  distinct oscillation patterns in δ15N values along  the baleen plates. The  hormone analysis is the  

first to provide longitudinal profiles of the adrenal, thyroidal, and gonadal axes obtained from the 

baleen of gray whales  in the months leading up to the whales' deaths.   Our work demonstrates 

feasibility of this retrospective approach  for gaining insight into gray whale health, physiology,  and cause 

of death.  

While spatial and temporal variability of stable isotopes  in gray whale habitats is  still not fully  

understood  (Graham and Bury, 2019; Riekenberg et al., 2021; Trueman and St John Glew, 2019), distinct 

oscillations in δ15N values along the length of subadult  gray whale  baleen plates  allowed us  to  1) infer 

baleen growth rates (which generally agreed with prior estimates  (Caraveo-Patiño et al., 2007b; Sumich, 

2001); and  2)  differentiate  standard ellipse areas  of  individuals during summer  foraging  and  wintering 

locations.  The overlap among standard isotopic niche width of the  five gray whales during summer 

suggests either a similar diet  across individuals  or a diet based on prey  species  with similar isotopic 

values. The difference in niche widt hs between seasons were mostly driven by the low δ15N values 

during  summer, likely attributed  to  the  benthic foraging  of gray whales on lower trophic level organisms  

including amphipods  (Burnham and Duffus, 2016b), mysids  (Newell and Cowles, 2006), crab larvae 

(Nelson et al., 2008b), shrimps and herring roe (Darling et al., 1998).  

The larger  standard ellipse areas during  summer may reflect a diet of  a wide range of prey  

sources  in different areas,   whereas  the smaller  standard ellipse areas  during winter - mostly  driven by  
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high δ15N values - are likely related to the fasting period of gray whales during the winter, given that the 

fasting in mammals is usually associated with increased δ15N values due to catabolic or anabolic 

processes (Fuller et al., 2005; Lee et al., 2012). In accordance with previous reports (Caraveo-Patiño et 

al., 2007b), there was no distinguishable annual δ13C pattern in the gray whale baleen plates. In whale 

species that migrate between ocean-basins with large gradients in plankton δ13C, δ13C patterns along the 

baleen reflect seasonal cycles of movements and diet between summer/winter grounds. In bowhead 

whales, for example, annual oscillations in δ13C values are common, presumably resulting from feeding 

along the whale's annual migratory route that reflects the contrasting geographic isotope values in 

zooplankton prey found in the Bering (13C-enriched) and Beaufort Seas (13C-depleted) (Saupe et al., 

1989; Schell et al., 1989). To better understand the isotopic patterns observed in gray whales and how 

they reflect the energetic pathways of their summer/winter grounds, future studies may use different 

analytical approaches including: the use of isoscapes (i.e., stable isotope mapping; (Graham and Bury, 

2019; Trueman and St John Glew, 2019); the combination of bulk and compound-specific amino acid 

analysis to disentangle the relative contributions of trophic and baseline variation in δ13C and δ15N 

values (e.g., Riekenberg et al., 2021); and/or integrating isotopic data from prey sources in isotopic 

mixing models to assess the proportional contribution of each prey sources in their diet. 

In the glucocorticoid (GC) analyses, we found that both cortisol and corticosterone were 

detectable along the full length of baleen from two individuals (Er_1 & Er_4), but cortisol was 

consistently more abundant than corticosterone. Furthermore, corticosterone exhibited similar patterns 

to cortisol, i.e., corticosterone seemingly did not provide additional information. This pattern generally 

aligns with traditional assumptions of "cortisol dominance" in mysticetes (primarily based on rare 

plasma samples from hunted specimens) as well as assumptions that only the more abundant GC need 

be analyzed, but contrasts with recent findings of more corticosterone than cortisol in baleen of other 

mysticetes (Fernández Ajó et al., 2018; Hunt et al., 2017a; Lowe et al., 2021a). Most mammals produce 

both glucocorticoids, and some data indicate the two hormones can respond differently to exogenous 

stressors, depending on the type and duration of the stressor (Koren et al., 2012). Given our small 

sample size, we encourage future research on both GCs to further investigate whether they might show 

species-specific differences or individual differences in glucocorticoid dominance or might provide 

differing information for acute vs. chronic stressors. 

Cortisol profiles for the four individuals with unknown cause of death demonstrated a long-term 

elevation in cortisol that began an estimated 8 months before death. In contrast, the individual known 
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to have died acutely due to killer whale predation (Er_5) had cortisol concentrations that approximate 

baseline levels across the span of the baleen, suggesting that this individual was in good health before 

its acute death. These data suggest that the other four individuals experienced a prolonged period of 

stress. Generally, individual perception of a stressor activates the HPA-axis, leading to an increase in 

circulating GC levels. Short-term elevations in GCs are thought to aid animals in coping with the stressor 

(McEwen and Wingfield, 2010; Romero et al., 2009; Romero and Wingfield, 2016), but if the 

perturbation is severe and/or chronic, the individual deviates from its current life-history stage and 

enters an “emergency life-history stage”, during which all activities not essential for immediate survival 

are suppressed (Romero and Wingfield, 2016; Wingfield, 2005; Wingfield et al., 1998). Consequently, 

chronic elevation of GCs can itself have negative effects on long-term health, through 

immunosuppression, reduced growth, and inhibition of reproduction (Buck et al., 2007; Dhabhar, 2009, 

2000; Dhabhar et al., 2012; Kitaysky et al., 1999). Therefore, although the immediate cause of death 

remains unknown for these four individuals, it is conceivable that the prolonged elevation of cortisol 

may eventually have directly impacted health and survival, i.e., in addition to any direct negative effects 

of the stressor itself (Romero and Wingfield, 2016). The presence of “rake marks” attributed to killer 

whale interactions could provide evidence for increased vulnerability of these individuals. It is plausible 

that whales undergoing chronic illness might become more susceptible to predation and other threats. 

T3, like cortisol, tended to show a gradual, months-long increase in the four whales of unknown 

cause of death (albeit with high individual variability), but remained relatively stable in the whale with 

an acute cause of death. The simultaneous elevation of both cortisol and T3 was unexpected, as the HPA 

axis is classically thought to inhibit the HPT axis (Behringer et al., 2018). In fact, elevated GCs in 

mammals often directly downregulate the HPT axis, resulting in decreases in circulating T3 (Charmandari 

et al., 2005). However, this downregulation can be temporary (Nicoloff et al., 1970). Further, emerging 

data indicate that in marine species, T3 may elevate simultaneously with the GCs during those stressors 

that require increased energetic output, such as swimming while entangled in fishing gear (Hunt et al., 

2016a; Lemos et al., 2020; Lysiak et al., 2018). In mammals, T3 can also elevate during thermoregulatory 

challenges, as elevated T3 directly raises metabolic rate, which elevates body temperature (Behringer et 

al., 2018; Williams et al., 2019). Indeed, (Lemos et al., 2022b) found that gray whales in poor body 

condition exhibited higher thyroid hormone concentrations in feces, compared to whales in good body 

condition, suggesting a possible thermoregulatory influence on T3. In other words, poor body condition 

in cetaceans entails thinning of the insulative blubber layer and might therefore require a compensatory 

elevation in metabolic rate and thus an elevation in T3. Similarly, fecal thyroid hormones may reflect 
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changes in food availability (Ayres et al., 2012; Wasser et al., 2017), while psychological/perceptual 

stressors, i.e., vessel traffic or harassment, are thought to have little impact on T3 levels in whales (Ayres 

et al., 2012; Fernández Ajó et al., 2020). In our study, all five of our study whales died during the current 

UME, which generally has been linked to poor nutrition and emaciation (Christiansen et al., 2021). 

Though it is tempting to ascribe the gradual elevation in T3 seen here to the poor body condition 

reported in gray whales during the UME generally, the necropsy reports of these five individuals did not 

describe severe emaciation. However, it is possible that these whales were in relatively lower body 

condition with respect to the population mean. Overall, we speculate that whales in poor body 

condition may elevate T3 in response to thermoregulatory demands. This hypothesis could be tested 

with further comparisons of baleen from stranded whales in poor vs. good body condition, ideally with 

measurements of body condition, e.g., blubber thickness or body area index derived from drone-based 

photogrammetry (Bierlich et al., 2021; Burnett et al., 2019). Finally, T3 also commonly varies across life 

history stages (Wilsterman et al., 2015), and thus studies of T3 patterns in baleen of juveniles as 

compared to adults may be informative. 

We also quantified reproductive hormones across the baleen's entire length in four subadult 

males and one subadult female. To our knowledge, these are the first longitudinal profiles of 

reproductive hormones from gray whales across a full calendar year. As expected for this reproductive 

age class (subadults), we did not observe temporal patterns, cyclical trends, or elevated hormone 

concentrations, suggesting none of the subadults had yet reached sexual maturity. Nevertheless, our 

results add to knowledge about expected baselines of reproductive hormones in subadults and may thus 

inform future efforts to identify onset of sexual maturity. Our results also underscore the potential to 

capture at least one year of information from adult gray whale baleen, as there have been uncertainties 

about the feasibility of capturing complete pregnancies or multiple pregnancies within gray whale 

baleen (max baleen length ~30 cm), or whether seasonal testosterone cyclicity in males could be 

discerned. Our subadult baleen specimens captured an estimated timeframe of 1.3 years. Further, adult 

baleen generally captures a longer timespan than subadult baleen (since subadults not only might have 

shorter baleen but also tend to have faster baleen growth rate); thus, these results suggest that adult 

gray whale baleen may capture a sufficient timeframe to examine at least one if not two prior 

reproductive cycles. 

The ENP gray whale population has rebounded from a dramatic decline attributed to whaling 

from less than 4,000 by 1900 to a peak abundance estimated at 26,916 individuals (Stewart and Weller, 
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2021; Swartz et al., 2006). However, the ENP gray whale population has exhibited significant 

fluctuations, marked by two Unusual Mortality Events (UMEs) that curtailed population size, 

underscoring the susceptibility of gray whales to oceanic conditions, resource availability, and other 

influences (Torres et al., 2022). The occurrence of recurrent UMEs with often-unknown causes in the 

ENP gray whale population highlights the necessity for innovative methodologies to investigate and 

better understand the causes of death and physiological response of individuals to fluctuations in the 

environment. Despite the characteristic shorter length of gray whale baleen compared to other 

mysticete species, and thus the relatively brief period of longitudinal data that can be inferred, even 

subadult gray whale baleen captures a >1 year timespan, and adult baleen specimens may capture a 

longer timeframe. In sum, baleen analysis in gray whales allows assessment of physiological status of at 

least the past year and may enable inferences as to the cause of death (acute vs. chronic, nutritional vs. 

non-nutritional stress). Overall, baleen analysis has emerged as powerful tool that enables a 

comprehensive and retrospective assessment of gray whale hormonal profiles, stress responses, 

reproductive status, and foraging ecology in the months or years leading up to their death. 
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