Rapid adaptation to crisis events: insights from the bait crisis in the Maine lobster fishery

Joshua S. Stoll, Eliza J. Oldach, Taylor Witkin, Kathleen Reardon,

David C. Love, Patricia Pinto da Silva

ABSTRACT: Climate change, overfishing, and other anthropogenic drivers are forcing marine

resource users and decision makers to adapt – often rapidly. In the Gulf of Maine, the Atlantic

herring stock, a key source of bait in the iconic Maine lobster industry, has declined sharply. This

article investigates bait use in the fishery over an 18-year period (2002 – 2019) and how the

lobster industry abruptly adapted to a sharp decline in the availability of herring in 2019 that

came to be called the "bait crisis". We found that adaptation strategies to the crisis were diverse,

largely uncoordinated, and imperfectly aligned, but ultimately led to a system-level change in

bait use. Using this case to study rapid adaptation, we draw on institutional theory to further our

understanding of how the lobster industry was able to pivot. We introduce the notion of pathways

to rapid adaptation to crisis events (or "raceways") to bring attention to the double-edged role

that institutions play in simultaneously enabling and constraining swift responses to emerging

crises. We suggest that further attention to these raceways may be useful in understanding how

and, in particular, why marine resource users and coastal communities adapt in particular ways in

the face of shocks and crises.

Keywords

Adaptation; Agency; Globalization; Lobster; Maine; Shock

1

1. INTRODUCTION

1.1. Adaptation, agency, and institutions

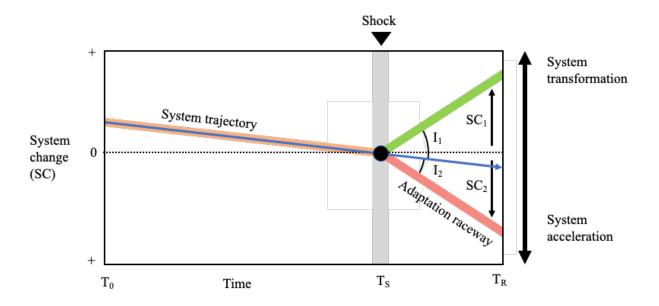
Coastal communities around the world are experiencing major environmental and socioeconomic changes that are affecting the productivity of marine ecosystems and the ability for marine resource users to sustain their livelihoods. These changes are being driven by a wide range of factors including sea level rise and climate change (Barnett and Adger 2003; Nye et al. 2009; Raitsos et al. 2010), declining fish stocks (Worm et al. 2006), shifting coastal demographics (Colburn and Jepson 2012), competition for ocean space (Bennett et al. 2015), and investments in the blue economy (Silver et al. 2015; Campbell et al. 2021). Changes are particularly pronounced in places like the Gulf of Maine, where ocean conditions are changing at unprecedented rates and affecting commercially important species like the American lobster (Homarus americanus) (Pershing et al. 2015).

The pace and magnitude of socioeconomic and environmental change raises important questions about how and to what extent marine resource users will be able to adapt to future shocks and crises (IPPC 2018). These questions are particularly salient to discussions about the resilience of ocean-dependent communities – and the people within them – since the frequency of shocks in fisheries and food systems is rising with increased global connectivity (Cottrell et al. 2019, Kummu et al. 2020).

The extent to which marine resource users are able to withstand shocks is generally seen as a function of the magnitude of the impact on the system and the extent to which adaptation occurs (Walker et al. 2004; Smit and Wandel 2006; Marshall et al. 2013). While adaptation can be a passive process (Smit et al. 2000), scholars generally recognize the active role that people and entities play in bringing about change (Adger 2005; Folke et al. 2010; McLaughlin 2011). The capacity to influence change is referred to as agency (Giddens 1979; McLaughlin and Dietz 2008) and comes from a range of factors, including being able to articulate compelling visions of the future and having the ability to mobilize the social, cultural, economic, political, and ecological resources and relationships necessary to garner change (Garud et al., 2007; Lawrence, 2004; Lounsbury and Crumley, 2007; Maguire et al. 2004; Welter and Smallbone, 2011; Stoll 2017).

For decades, neo-institutional scholars have vigorously debated the relationship between agency and the institutions within which people are situated (DiMaggio 1998). At the root of this debate is a question about the role that institutions, defined broadly as the established norms, rules, and practices as well as sociocultural and environmental contexts, play in constraining individual and collective behavior (Ostrom 1990; North 1992; Prell et al. 2010). Part of the challenge is that institutions are "sticky" and interfere with rational choice behavior (McCay 2002), thereby creating barriers to adaptation and change (Alexander 2001).

Work by Holm et al. (2020) on the co-production of knowledge in the Norwegian cod fishery is illustrative of the constraining nature of institutions. Of particular salience here is their description of how their effort to transform the fisheries science process in Norway failed because scientists and fishers alike could not escape their conventional roles in the science-


making process. As a result, the collaborators ultimately replicated the scientist-industry dynamic that they had sought to change. The history of the licensing system for commercial fisheries and aquaculture in Maine, USA similarly points to the stickiness of institutions and the challenge they pose in bringing about transformative shifts. For the last several decades, policymakers have routinely changed the licensing system to address specific problems in specific fisheries (Stoll et al. 2016). These efforts were meant to support the fishing sector; however, an unintended consequence of these legislative changes was that they contributed to the overall decline in the number of fisheries that fishers were participating in. While this loss of livelihood diversification has been identified as a source of vulnerability, fishers, shoreside businesses, and even fishery managers and scientists simultaneously became invested in the emergent licensing system, whereby making them resistant to legislative proposals associated with comprehensive licensing reform.

The influence that institutions have on individual and collective agency creates what Torfing (2001: 290) describes as a "'logical impossibility' of a total dislocation." In other words, there is a path dependency between current and future systems such that emergent strategies and approaches are often shaped by those that preceded them (North 1990; Mosse 1997; Pierson 2000; Kay 2005; Cote and Nightingale 2012). Path dependency does not mean that system change is entirely deterministic, but it brings forward the idea that institutions – like ruts in a road – often guide behavior even if that behavior is not the most suitable course of action (Torfing 2001).

The tension between actors' agency and the inertia created by institutions as well as the related idea that institutions create path dependencies are both germane to crisis adaptation.

Indeed, crises often necessitate rapid and large-scale responses, while at the same time institutions can be expected to limit the range of practicable solutions that can be acted upon. We can therefore hypothesize that in periods of real or perceived crisis – when there is acute pressure to act – paths with the least institutional inertia will become the focus of adaptation activities. In these instances, crises have the potential to propel systems along pathways they are already moving, rather than putting them on new and transformative trajectories altogether. In this paper, we refer to the pathways that emerge in response to rapid adaptation to crisis events as "raceways" in reference to the path dependencies created by existing institutions and the double-edged role these institutions play in simultaneously facilitating and constraining rapid adaptation (Fig. 1).

Our aim in developing the concept of "raceways" is to contribute to the adaptation literature by focusing on how resource-dependent systems adapt in the face of crisis with a particular emphasis on the role existing institutions play in the process. We develop the concept of raceways by focusing specifically on the iconic lobster industry in the Gulf of Maine in the Northwest Atlantic and how the industry adapted to a major reduction in the availability of locally sourced Atlantic herring (*Clupea harengus*), which was historically the predominant source of bait. We begin by situating the bait crisis within the broader context of the lobster fishery, which has become increasingly dependent on trade to support the market for lobster. We then show how bait use has changed over the last sixteen years and describe the adaptation strategies that the lobster industry deployed during a recent bait crisis.

Figure 1. Illustration of the path<u>way</u> to <u>rapid adaptation</u> to <u>crisis events</u> ("raceway") concept following a system shock, where T_{θ} is time before a shock, T_{s} is time at the point of shock, and T_{R} is time at some point of recovery. From left to right: A system is progressing along a particular path that is supported by formal and informal institutions, until it is disrupted by a shock. The shock necessitates rapid system change (SC). Inertia (I) created by existing institutions constrains the system from moving in a new direction (transformation), but facilitates rapid change in a direction the system is already moving (acceleration).

1.2. Rapid adaptation to the bait "crisis" in the lobster industry

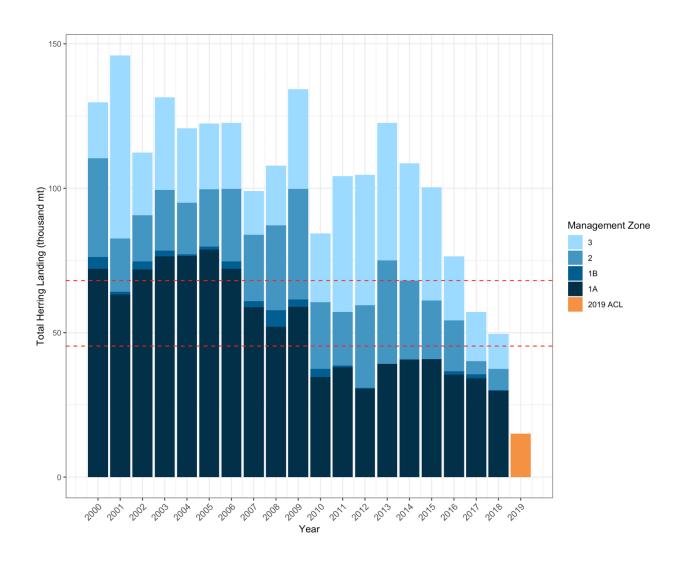
American lobster is the most valuable commercial fishery in the United States (NOAA 2018). Approximately 80% of lobster landings occur in the state of Maine (ASMFC 2019). Over the past 50 years, annual lobster landings in Maine have increased significantly, growing from 7,500 to over 45,000 mt. Since 2011, the ex-vessel value has been between \$335 and \$540 million (\$USD) (ME DMR 2019). As the lobster fishery has grown, so too has the geographic reach of the lobster market. In 2019, lobster landed in the United States was traded to more than

80 countries worldwide at an estimated value of \$605 million (COMTRADE 2021). By comparison, the United States traded \$254 million worth of lobster to just over 50 countries in 2001 (COMTRADE 2021). In recent years, markets in Asian have become particularly important, surpassing Europe as the second most important trade region outside North America¹ (Stoll et al. 2018). These markets have been established through private and public investment in marketing, infrastructure, and technology, including state sponsored trade missions and grant funding to support domestic processing and storage facilities.

Despite the storied success of the fishery, the lobster industry faces multiple socioeconomic and environmental challenges. For example, as international trade of lobster has increased, the fishery has become susceptible to trade-related shocks caused by geopolitical disputes, recessions, and disruptions to processing and transportation (Stoll et al. 2018). In recent years, the fishery has also had to face the decline of Atlantic herring, a small, pelagic species of fish that has been an important bait used in the lobster fishery.

For much of the last two decades, approximately 100,000 mt of herring was harvested from the Gulf of Maine per year (ASMFC 2019). As recently as the early 2000s, an estimated 70 to 75% of this catch was used in the lobster industry as bait, equal to 70 to 90% of the total bait needed to support the fishery (Saila et al., 2002; Grabowski et al. 2010) (also see Driscoll et al. 2015). Most of this catch is delivered to lobster fishers via local networks of bait dealers in New England (Stoll et al. 2015). Fishers place this bait inside a compartment in their traps called the "kitchen" to attract lobsters. Baited traps are then left to fish for several days before being checked and re-baited. Fishers are required to purchase a trap tag each year for every lobster trap

¹ A large share of the US lobster supply is traded to Canada, where it is processed and re-exported around the world.


they will deploy that year. With some exceptions, fishers who are entering into the fishery are allowed to purchase 150 trap tags in their first year and then can purchase an additional 100 trap tags each subsequent year until they reach a total of 800 trap tags. In 2018, fishers purchased a total of 2.8 million trap tags. While the exact number of traps in the water at any time is not known, fishers in Maine use considerably more traps than in other lobster fisheries around world, including in Canada's Lobster Fishing Area 34, which accounts for the highest proportion of landings in Nova Scotia (Myers and Moore 2020)². We return to this point in our discussion.

Although herring has long been an important source of bait in the lobster fishery, herring quotas in the Gulf of Maine have been reduced over the past 20 years due to the decline of the herring population (Fig. 2). The decline of herring is believed to be linked to multiple factors, including a shift in the abundance and distribution of its primary food source, the copepod *Calanus finmarchicus*, caused by changing environmental conditions (Runge and Jones, 2010; Record et al. 2019),³ and overfishing (ASMFC 2020). While the herring stock has been declining for some time, the federal government sharply reduced catch limits for herring from 104,800 mt in 2018 season to 15,065 mt in 2019 (NOAA, 2019), representing an 85% decrease. The reduction in herring quota exacerbated what was already viewed as a growing bait deficit in the lobster industry (Overton 2016) and drove the price of herring to a 20-year high, which was 56% higher than that in the previous year and 180% higher than in 2010 (Appendix S1).

² According to Myers and Moore (2020), Maine lobster fishers used 7.55 times more traps than their counterparts in LFA 34. We note that this estimate is based on the number of trap tags sold in Maine as opposed to the number of traps fished.

³ Lipid rich *C. finmarchicus* are a key food source for many marine organisms and constitute 75% of adult herring's diet in the nearshore coastal zone in the Gulf of Maine (Runge and Jones 2010). Changing ocean conditions have negatively impacted *C. finmarchicus* and its abundance has declined by 30% in parts of the Gulf of Maine (Record et al. 2019).

Leading into the 2019 fishing season, there was widespread concern within the lobster fishery about the impending decline in herring availability, which was described by many as the bait "crisis" (MLA 2018). In general, the lobster industry faced three possible pathways forward: (1) reduce fishing effort, gear, and bait use; (2) find new sources of local bait to fill the herring deficit; or (3) source alternative baits from outside the region. In this paper, we bring together both quantitative and qualitative data to investigate changes in bait use in the lobster fishery over an 18-year period and illustrate how, despite the seeming inevitability of the bait crisis, the lobster industry was able to navigate the situation without experiencing a major disruption. Our results draw attention to the alignment of actors' adaptive strategies across different sectors of the fishing industry and how existing institutions facilitated rapid adaptation. By studying this system, we seek to better understand the roles that both institutions and agency play in shaping rapid responses to drivers of change.

Figure 2. Annual Atlantic herring landings by management zone in the Gulf of Maine. Red dashed lines denote the upper and lower estimates of herring used in the lobster fishery per year (based on Grabowski et al. 2010). The blue bars represent herring landings across all management zones in the Gulf of Maine (1A – 3). The orange bar represents the Allowable Catch Limit for herring in the 2019 fishing season across all zones. Data source: Northeast Fisheries Science Center (2019a).

2. MATERIALS & METHODS

We used a mixed-methods approach and qualitative and quantitative data to investigate how bait use in the lobster industry changed over the course of nearly two decades, culminating in the industry's adaptation to a period of acute herring scarcity in 2019 that came to be called the "bait crisis". Our methods included a longitudinal analysis of bait use in the lobster industry as well as in-depth interviews with stakeholders, participant observation, and media and policy analyses. One novel element of our approach was that our interviews and participant observation occurred in real-time during the 2019 fishing season, rather than retrospectively as is often the case with adaptation research. Understanding how different stakeholder groups respond to abrupt socioeconomic and environmental changes and how these adaptive strategies intersect is important because natural-resource systems are experiencing shocks with increasing regularity and this pattern will likely continue into the future as social-ecological processes become more interconnected.

2.1. Characterizing changes in bait use

We characterized bait use in the Maine lobster industry using data from the Maine

Lobster Sea Sampling Survey (LSSS) over an 18-year period from 2002 to 2019. The LSSS is a

fisheries-dependent sampling program for lobster that has been conducted by the Maine

Department of Marine Resources in partnership with Maine fishers since 1985⁴. The survey is

conducted from May to November on commercial fishing vessels and is used to help assess the

status of the lobster stock in the Gulf of Maine. The number of fishing trips has ranged from 152

to 256 per year. Data collected includes information about the location of fishing activities,

environmental conditions, lobster catch, and number of traps hauled and set. In 2001, new data

⁴ The survey was started in 1985, but the current iteration of coastwide sampling started in 1998.

fields were added to the LSSS to collect information about the types, quantity, and product form (e.g., fresh, frozen) of bait being used by fishers. In this study, all bait quantities were standardized to pounds, since bait units reported on the LSSS were by container type (e.g., barrels, totes, buckets, etc.). Conversions were based on information provided by the Maine Department of Marine Resources and verified by key informants involved in the lobster industry (Appendix S2). The origin of bait (i.e., where it was sourced from) was estimated using the Maine Department of Marine Resource's Approved Marine and Freshwater Bait Lists, which specifies which species are allowed to be used as bait in the lobster fishery and where they can be sourced from. In cases where a particular bait type could have been sourced from either a local or non-local area (e.g. herring), we assumed that the fresh product form was locally sourced and the frozen product form was harvested outside the Gulf of Maine region. One acknowledged limitation of using LSSS data to estimate bait use is that fishers' participation in the LSSS survey is voluntary. However, previous work by Scheirer et al. (2004) has investigated the potential bias introduced by the non-random sampling methodology. They found no statistical difference in annual catch per unit effort at the state level between the LSSS data and that from a port sampling program that used a random sampling design. The port sampling program is no longer operational and therefore was not used in this study.

2.2. Understanding adaptation strategies

In addition to analyzing the LSSS data, we conducted 60 semi-structured interviews with 52 people involved in the lobster industry between January and September 2019 to understand how the lobster industry was adapting in real-time to the herring crisis triggered by the 2019 herring quota reduction. We defined "involvement" in the lobster industry broadly to include

those who fish for lobster as well as actors that work to support the fishing fleet (Table 1). By taking an expanded view of the Maine lobster industry, we acknowledge that fishery systems extend beyond those who target and catch marine resources and includes those within the supply chain as well as decision-makers, researchers, and advocacy groups (Charles 2001; Stoll et al. 2015). Fourteen interviewees held more than one role in the industry (e.g., as a fisher and lobster dealer). Eight individuals were interviewed twice during the study period to understand how their perspectives on bait availability had changed during the season or to clarify previous statements. Interviewees ranged in age from their mid-20s to late-70s, and 39 were male and 13 were female. Interviews were geographically distributed across the state from the western most country to the eastern most county in order to minimize the potential for regional biases. Four interviews were conducted with individuals who were based outside the state of Maine, but who were involved in bait trade. Interviews were conducted in-person at a place of the interviewees' preference or via phone if meeting in-person was not practicable (Appendix S3). Participants were recruited through targeted intercepts at fishing ports, industry meetings, and through snowball sampling methods (Bernard 2013). Interviews were open-ended and conversational, using a blended approach of interview techniques, including structured interview questions and passive interviewing that allows the respondent space and time to tell their story (Steckler et al. 1992). Interviews focused on understanding the range of perspectives associated with the herring deficit, diverse strategies used to deal with decreasing availability of herring, and interactive effects of simultaneous innovations and actions by stakeholder groups within the bait supply chain (Appendix S4). Interviews ranged from approximately 30 minutes to over 2 hours. All interviews were digitally recorded and transcribed verbatim. Interviews were analyzed in NVivo

(v. 12.3.0) and coded, using grounded theory to identify emergent themes and triangulate relationships between adaptation strategies used by different sectors in the supply chain (Corbin and Strauss 2008). In addition to these interviews, our research team attended numerous industry meetings, regularly interacted with members of the lobster industry, followed relevant social media channels and news outlets, and tracked changes in policy and management. These latter activities helped to contextualize the interviews and our analysis of LSSS data.

Table 1. Types of actors involved in the lobster industry in Maine and number of interviews with each group.

Stakeholder category	Number of interview	Role in the lobster industry	
Producer (P)	5	Harvest, raise, or produce products that	
		are ultimately used as bait in the lobster	
		industry. Products are sometimes	
		sourced expressly for use in the lobster	
		industry or are byproducts from another	
		sector repurposed for lobster bait.	
Bait dealer (BD)	10	Source and process products to be used	
		as bait.	
Lobster dealer	8	Buy and sell lobster. Lobster dealers	
(LD)		often provide a suite of services to	
		fishermen, including but not limited to	
		fuel, dockage, and bait.	
Fisher (F)	13	Licensed lobster harvesters.	
Regulator (R)	6	Set and enforce governmental rules	
		around industry.	

Non-profit	3	Provide non-profit support to other	
organization		actors (not trade associations).	
(NGO)			
Trade	4	Provide support for dues-paying	
association (TA)		industry members.	
Scientist (S)	4	Conduct research to gather data about	
		the lobster fishery.	
Bank (B)	3	Provide custody, loan, and exchange of	
		money and credit.	
Service and	4	Supply goods or services other than bait	
supply provider		required for the lobster industry.	
(SP)			

Note: The number of interviews listed above (n = 60) is more than the total number of individuals that were interviewed because several people held more than one role in the lobster industry.

3. RESULTS

We present our results in two parts. The first section focuses on bait use prior to the bait crisis (system trajectory) $(T_0 - T_S)$. The second section focuses on the adaptations deployed by fishers, bait dealers, and policymakers during the crisis (raceway) $(T_S - T_R)$.

3.1. System trajectory $(T_0 - T_S)$: Moving away from herring, not bait

Overall, bait use in the Maine lobster fishery changed considerably between 2002 and 2018. Two predominant trends are visible in the LSSS data prior to the bait crisis in 2019. First, the lobster industry reduced its overall reliance on herring. LSSS data shows that the total proportion of herring (by weight) decreased from 85% in 2002 to 36% in 2018, with a period-high recorded in 2004 (89%) (Fig. 3). Herring was predominantly replaced by other types of marine fishes. In 2002, non-herring marine fishes represented only 12% of the overall bait

portfolio in the lobster fishery, whereas by 2018 it had increased to 58%. According to interviewees, the shift to alternative baits was largely driven by the rising cost of locally sourced herring. By 2019, the average price of herring had increased to \$0.42 per pound, equal to a 133% inflation-adjusted increase over a 10-year period (Appendix S1).

The fishing industry's exposure to alternative baits prior to the 2019 bait crisis meant that fishers had experience using different types of baits and had gained confidence that it could be used to catch lobsters. As one bait dealer explained, "People have tried different stuff [bait] and I think they finally realized that you don't need a herring to catch a lobster. That always seemed to be the theory... And that's certainly not the case."

In addition to using less herring, a second observed trend in bait use is that fishers have progressively used more types of bait per fishing trip. LSSS data shows that the mean number of baits used per trip increased steadily between 2002 and 2018, reaching a mean of 1.7 baits per trip in 2018 (Fig. 4A). The use of multiple baits reflects both the increasing availability of alternative baits as well as a shift in the role that bait plays as a fishing strategy. As one interviewee noted: "everyone has their own idea of what is the perfect combination of bait to catch lobster." When there are dozens of types of bait for fishers to choose from, the species type, amount, preparation, and ratio of different baits can give fishers a competitive edge over their peers. As a result, bait use has become "a very personal decision," explained one interviewee.

In contrast to the observed changes in herring use (less herring) and bait diversification (more types of bait per trip), the amount of bait used per trap was relatively stable during the 17-year period leading up to the 2019 crisis. LSS data shows that bait use per trap ranged from 0.7

to 0.5 kg (Fig. 4B). In only two years (2005, 2013) was bait use more than 0.1 kg above or below the mean bait use (0.6 kg) for the study period and while there was a slight decrease in bait use per trap from 2016 to 2018, bait use in 2018 was below the mean by only 0.03 kg.

3.2. System raceway $(T_s - T_R)$: Adaptation during the bait crisis

Fishery managers notified the public that herring quota in the Gulf of Maine would be reduced by 85% in early 2019, telegraphing the looming bait deficit that the lobster industry would face during the fishing season. Our interviews reveal that members of the lobster industry deployed a wide range of adaptation strategies in response to the perceived crisis. We subdivided these strategies into three categories related to efforts to: (1) reduce fishing effort, gear, and bait use; (2) find alternative local baits to use as a substitute for herring; and (3) source new baits from outside the region (Table 2). Overall, the adaptation strategies were imperfectly aligned and in some cases in conflict, yet our interviews and LSSS data suggest that the lobster industry as a whole successfully shifted to sourcing alternative baits from the Gulf of Maine and beyond. In the following subsections we report on the efforts of fishers, bait dealers, and decision-makers.

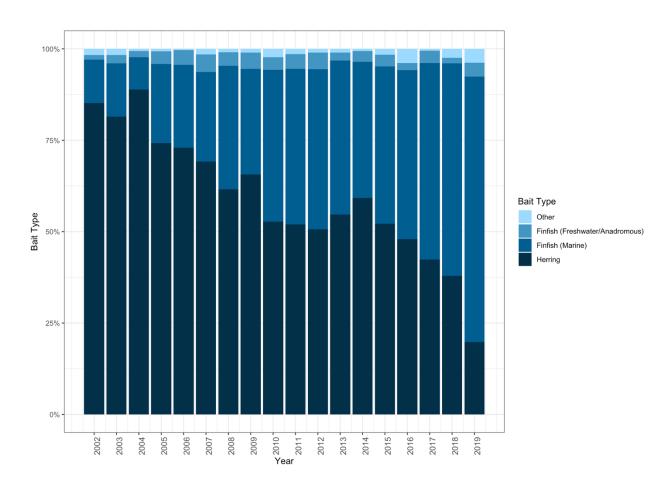
Table 2. Adaptive strategies deployed by actors involved in the lobster industry in response to the bait crisis. Responses are grouped into general categories of action. [Note: F = Fisher; BD = Bait Dealer; LD = Lobster Dealer; R = Regulator; NGO = Non-profit organization; TA = Trade Association; S = Scientist; SP = Service Provider).

Response Fisher (F) Dealer (BD/LD) Other (R, NGO, TA, S, B, SP)

Reduce and conserve	Exit fishery	Exit fishery	Provide information to facilitate community preparedness (e.g., fact sheets on local- and state-level resources related to suicide, depression, foreclosure, etc.)
	Fish less (e.g., increase the time period between hauls)	Charge more for bait to encourage bait conservation	Provide information to the fishing industry and the public about the issue
	Reduce fishing during shoulder seasons (e.g., early spring and winter)		
	Use less bait (e.g., reduce the amount of bait per trap)		
	Use bait more conservatively (e.g., bait 'saving' bags)		
Utilize local baits	Catch own bait	Source and catch alternative local baits	Negotiate the timing of fishing season for herring to maximize its overlap with the lobster fishery
			Negotiate regulations for alternative local bait to maximize utilization
Source new baits	Stockpile bait in personal or shared storage facilities	Build freezer and cold storage capacity	
	Identify and source new baits from outside region	Identify and source new baits from outside region	
	Use other bait	Stockpile bait in storage	Negotiate new bait sources
		Produce alternative baits (e.g., synthetic baits)	Research synthetic baits
		Pay for bait assessment to speed up the review and approval process for new baits	Streamline bait approval process
		Charge less for bait to ensure fishers can keep fishing	Provide short-term loans and modify existing loans for fishers

3.2.1. Fishers: Using less bait

Herring constituted 36% of the total bait used in the lobster fishery in 2018. Leading into the 2019 fishing season there was concern – as reported by multiple people we interviewed – that fishers would be slow, unwilling, or unable to switch to alternative baits because they were accustomed to using herring and viewed it as essential to catching lobsters or because enough alternative bait simply would not be available. However, fishers proved to be highly adaptive. Overall, fishers' predominant adaptive strategies were consistent with the trajectory that the lobster industry was on leading up to 2019. First, LSSS data shows that the proportion of herring used as bait in the fishery dropped by 16% in 2019 (equal to 20% of the total bait portfolio). The change in herring use observed in 2019 was the largest single year shift in the 18-year dataset (Fig. 3).


To make up for the lack of herring in 2019, fishers pivoted to alternative baits (Fig. 4A). A particularly key alternative was Atlantic menhaden (*Brevoortia spp.*), which are locally referred to as "pogies" (Fig 5). Pogies migrate sporadically into Maine waters in the summer months and form large aggregations close to shore that can be caught with gillnets. In 2019, pogies were abundant in the nearshore waters of the Gulf of Maine and through a special provision in the menhaden management, lobster fishers were able to obtain a fishing license that allowed them to land up to 2.7 mt of pogies per day⁵. Use of pogies was widely discussed among interviewees. One bait dealer, highlighting the alacrity with which lobster fishers started catching pogies, noted: "everybody now thinks that they are pogy fishermen" (i.e., because fishers were more focused on catching bait than lobsters). Interviewees also widely reported the use of other

⁵ For a description of the licensing system in Maine, see (Stoll et al. 2016).

fish as alternative baits and indicated that some options worked better than herring at certain times of year and in certain locations. This diversification is reflected in the increase in number of types of baits used per fishing trip, which rose from 1.7 in 2018 to 2.0 in 2019 (note that this represents the largest single-year change in the dataset) (Fig. 4B).

Importantly, although some fishers reported using less bait and deploying bait saving gear, LSSS data indicates that these strategies did not lead to reduced bait use in the fishery.

Mean bait use per trap for the 2019 season was 0.6 kg, slightly higher than the previous year.

Figure 3. Proportion of bait types used by fishers involved in the Lobster Sea Sampling Survey by total weight (2002 to 2019). 'Other' category includes synthetic and terrestrial baits.

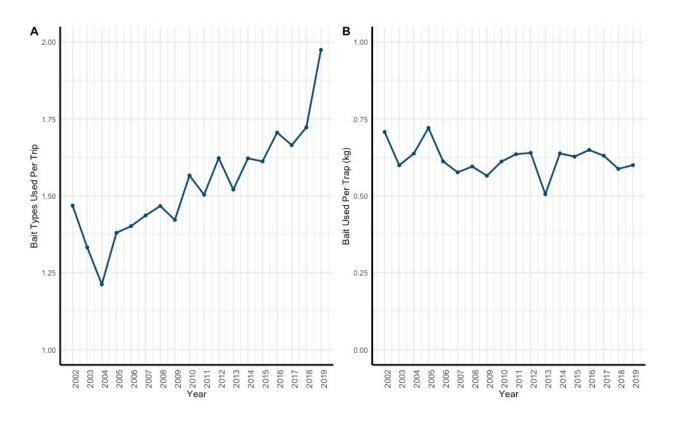
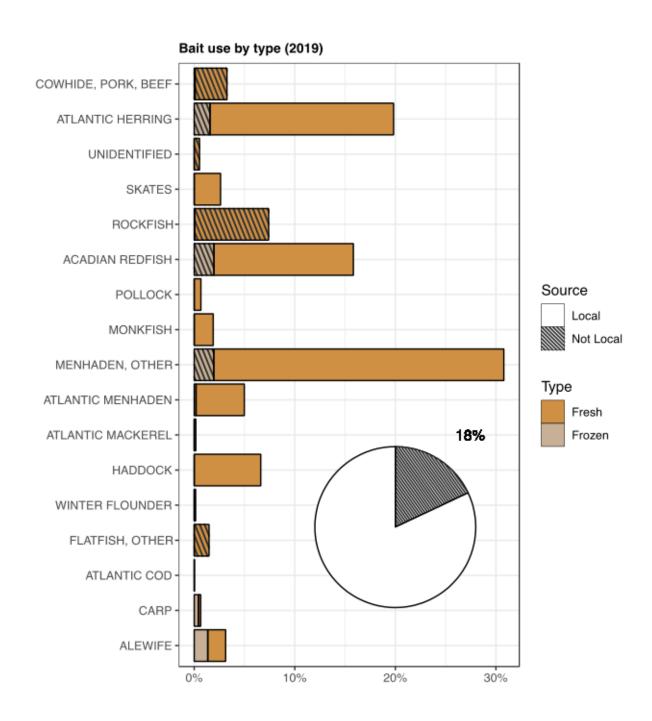



Figure 4. (A) Average number of types of bait used per trip. (B) Average bait use per trap (kg).

Figure 5. Breakdown of non-herring bait by type used during the 2019 fishing season, including estimated proportion of local vs. non-local sources. Grey shaded area in inner pie chart represents the overall percentage of bait sourced from outside the Gulf of Maine (18%).

3.2.2. Supply chain: Sourcing new baits

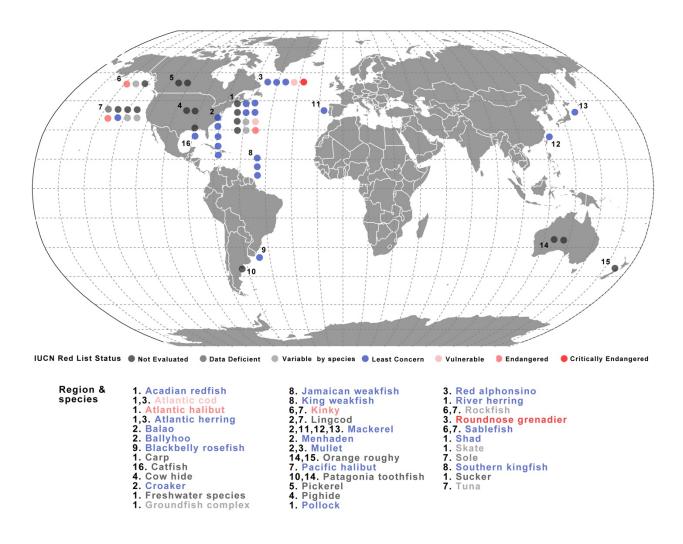
During the 2019 bait crisis, actors in the supply chain focused on sourcing alternative baits. Use of alternative baits in the lobster fishery has become increasingly commonplace over the last two decades. "It used to be simple," explained one bait dealer we interviewed, "There was a lot of herring. You salted it, you stuck it in your traps, and everything was done. But now, everybody's sourcing whatever they can possibly find." This change is reflected in the diverse range of baits that became available to fishers. These included species such as Atlantic menhaden from the Gulf of Mexico, mid-Atlantic, Gulf of Maine, and maritime Canada; Atlantic cod (*Gadus morhua*)⁶ from the Gulf of Maine and maritime Canada; and more exotic species from all around the world there were approved for use by regulators (Fig. 6, 7) (Appendix S5).

Freshwater, synthetic, and terrestrial baits also became available, including freshwater suckers, cowhide, and pig hide. These latter baits constituted a relatively small proportion (3 to 6%) of the total share of bait used by fishers between 2002 and 2018. However, the popularity of pig hide use increased in 2019 as fishers started to use it more regularly. These reports are supported by the LSSS data for 2019 which included 61% of all of the documented cases of use of pig hide during the 18-year period. Much of this product is sourced from the Midwestern United States or abroad and is a byproduct in the pork industry.

In addition to pig hide, by 2019, the list of bait sources approved for use in Maine waters included more than 50 species from five continents (Fig. 7) (Appendix S5). Most of these baits fall into one of three categories: those that are directly targeted as bait; those that are caught as bycatch in other fisheries as sold as bait; and those that are targeted and sold as food fish whose

⁶ In some cases, fish carcasses called "racks" are used.

⁷ One bait producer estimated that upwards of 4,500 mt of pig hide would be used during the 2019 fishing season alone.


waste from processing is used as bait. Based on species type and product form (i.e. fresh vs. frozen), an estimated 18% of all bait used in 2019 was sourced from outside the region (Fig. 5).

In discussing the diversification of baits and the geographic expansion of the supply system with those involved in bait sourcing, it appears that a primary motivation has been a deep sense of responsibility towards fishers and the coastal communities where they live. As one dealer explained, "We may not be able to deal with herring, but we're going to be able to deal with other baits. We're going to survive this. We've fought so hard to have a sustainable industry, to protect our way of life that we've got this too. In the big picture, this is a speed bump and it's going to hurt, but we're going to handle this fine." Similar sentiments were also reflected by other dealers who shared comments like: "we do everything we can to help our guys," "everyone's trying to do what they can to help," and "we're here to support [lobster fishers]."

The bait crisis has helped to elevate bait sourcing from a mostly invisible practice that happens in the shadows of the lobster industry to one that is increasingly emblematic of the lobster industry's dogged persistence and orientation towards solutions. The crisi has also changed people's perceptions of bait and, in particular, expanded views on what constitutes "bait" as actors in the system work to source an ever more diverse and distal variety of baits. As one dealer explained, "all the fish in the world" has the potential to be bait.

Figure 6. Examples of local and alternative baits being used in the lobster fishery. From left to right: Fresh pogies (local), pig hide (non-local), frozen rockfish (non-local).

Figure 7. Harvest location of species approved for use as bait in the lobster fishery during the 2019 fishing season. Bait types color coded by IUCN Red List Status. See Appendix S5 for additional details.

3.2.3. Managers and policymakers: legitimizing new sources of bait

Like fishers and supply chain actors, managers and policymakers also played a key role in navigating the bait crisis. Their efforts largely focused on helping the lobster industry access alternative sources of bait. For example, state managers used their influence at the regional level to lobby to change the herring fishing season so that landings by herring fishers, particularly in

the coastal zone off of Maine, would correspond with peak demand for bait in the lobster fishery. In doing so, they were able to successfully delay the start of the herring season by two months from the previous year from June to August. State managers also advocated for more herring and menhaden quota from the federal government, which helped to offset the anticipated deficit facing the industry during the 2019 fishing season.

Actions taken by managers and policymakers during the crisis were largely consistent with bait-related decisions that had been taken previously. In particular, managers and policymakers had previously created a vetting process to review and approve baits for use in the lobster industry. This process was established in 2015 to address increasing concern that bait sourced from outside the Gulf of Maine could pose a health risk to the marine environment by introducing diseases or pathogens. The vetting process is coordinated by the state and involves a volunteer advisory group made up of governmental, university, and private industry aquatic animal health professionals. The advisory group is responsible for reviewing prospective products that are put forward by actors who want to use or sell these products as bait.

A common view among those who we interviewed was that the vetting process serves an important function by helping to buffer against environmental threats posed by new bait. However, some interviewees also expressed concerns about its inefficiency and felt that the slowness was a hindrance to their response to the bait crisis at a time when they needed to be nimble. Despite this critique, during the 2019 crisis, managers and policymakers mobilized to support the industry in diverse and often behind-the-scenes ways that were not always recognized or understood. For example, state managers actively pursued an arrangement with a state in the Midwestern United States to that would have let bait dealers source the invasive

species, Asian carp (*Cyprinus carpio*). The basic idea was that certain Midwest states were trying to get rid of Asian carp and needed a market for it, while fishers in Maine needed bait, so it was seen as a potential win-win situation. Ultimately, the effort was not implemented due to concerns about introducing Asian carp into other waterbodies, but it represented a significant investment of time and effort on the part of state managers and demonstrated their concern and attentiveness to the issue of bait supply. Furthermore, the very existence of the bait review process also represents a key contribution by managers and policymakers. This process, though imperfect and slow by the standards of the private sector, helped to legitimize their pursuit of alternative baits from around the world. In doing so, new bait types benefitted from the formal endorsement of the state. In this way, this regulatory process enabled the pursuit of alternative baits from around the world and acted to formalize the globalization of the bait system.

4. DISCUSSION & CONCLUSION

Adaptability is a topic of increasing focus as marine resource users around the world grapple with the impacts of rapid environmental and socioeconomic change. In the Gulf of Maine, one of the observed changes has been a decline in the abundance of Atlantic herring as a result of changing climatic conditions and overfishing. This article investigates how Maine's lobster industry, which has been heavily reliant on herring for bait, was able to rapidly adapt to an 85% cut in herring quota to avoid what seemed to be inevitable crisis.

One contributing factor that we do not discuss in the results was the timing of the summer lobster molt, which is when lobsters are most active, and fishers typically ramp up their fishing effort for the year. Because the molt occurred later than normal, the 2019 fishing season had a

slow start. This allowed fishers to delay their fishing efforts, which reduced some of the demand for bait early in the season.

The late start to the season, however, was not enough to fully ameliorate the crisis and the industry ultimately pursued a range of adaptation strategies (Table 2). Although these strategies were diverse, an emergent focus became sourcing alternative baits – as opposed to using less bait. The availability of local pogies in the Gulf of Maine, which happened to experience an episodic run, were a particularly important source of bait. Their prevalence gave fisheries managers in Maine an opportunity to successfully advocate to federal regulators to increase the state's quota. Efforts to source baits outside the region were also key. An estimated 18% of bait used during the 2019 fishing season was imported into Maine.

Each segment of the lobster industry contributed to the emergent response to the crisis:

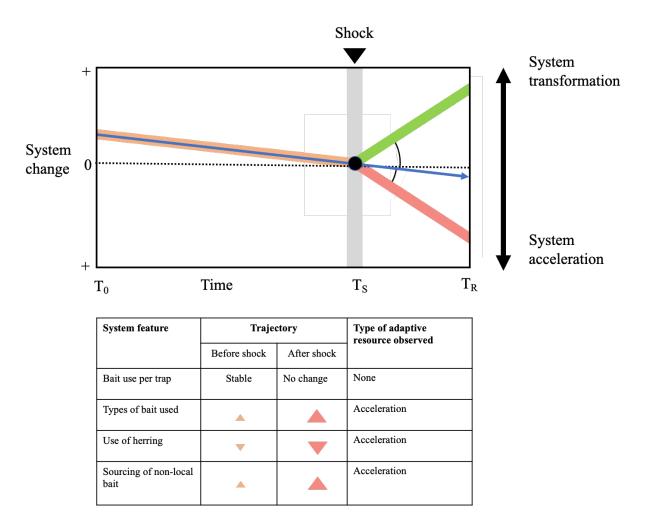
(1) fishers demonstrated flexibility and a willingness to use new baits; (2) bait dealers built capacity to source and store alternative baits; and (3) managers and policymakers acted to legitimize and support bait trade. The alignment of these efforts was imperfect, and we observed some tension between actors in different parts of the lobster industry. For example, efforts by fishers to catch their own bait were, to some extent, at odds with dealers who were simultaneously building and stockpiling bait in their cold storage facilities. However, taken as a whole, the industry's responses to the crisis were largely synergistic. Fishers' openness to use alternative baits, for instance, positively reinforced bait dealers who invested in the infrastructure and business relationships necessary to source and store new types of non-local baits. These efforts were further reinforced by policymakers and managers, who legitimized these efforts with supportive rules and regulations. Had any one of these sector-level responses not been deployed

or been different, it is quite possible that the bait crisis would have triggered serious socioeconomic consequences for fishers. For example, had fishers been less open to using new baits, bait dealers would have been less willing to source new types of bait. Similarly, had state fishery managers not invested in and bolstered the process for reviewing and approving new types of bait and instead taken a precautionary perspective that no imported baits could be used, efforts to source bait from outside the region would not have been possible.

While the lobster industry was able to navigate the bait crisis by pursuing alternative baits, it is worth asking: why did the industry converge around this strategy instead of some alternative approach (e.g. using less bait)? This question is particularly salient given what transpired in the following year. By early 2020, the lobster industry was facing a major decline in market demand due to the early effects of the COVID-19 pandemic, which is a reflection of the global connectedness of people and markets (Love et al. 2020). Certainly, expanding markets is recognized as a strategy that can provide benefits and opportunities for marine resource users. Marine resource users opened to building global markets have, in some cases, leveraged these connections to overcome decreasing local supply (Vincent et al. 2011), support fishing livelihoods and create opportunities for employment (Alder and Alder 2011; Bennett et al. 2016), and adopt technology that results in more efficient resource use or community well-being (Jensen 2007). However, scholars have also shown that there are also consequences to expanding markets. For example, pressure from global markets has driven resource overexploitation (Berkes et al. 2006), disincentivized local governance (Basurto et al. 2013), created dependencies on expensive fishing and shipping technologies (Perry et al. 2011), disrupted local markets (Robards and Greenberg 2007), masked local ecological decline (Deutsch et al. 2007), and set

communities up for surprise (Liu et al. 2013; Stoll et al. 2018). At the very least, these uneven outcomes suggest that the lobster industry's efforts to source alternative baits by expanding the market beyond the region was a risky proposition, even in a time of crisis.

One possible explanation is that sourcing new bait was the only viable option to sustain the lobster industry. This is not, however, an entirely satisfactory conclusion. Indeed, there are other lobster fisheries around the world that use less bait and have less gear in the water. Just to the north of Maine, for example, fishers in Nova Scotia's Lobster Fishing Area 34 use eight times less gear and have higher catch rates (Myer and Moore 2020). It is therefore not beyond the realm of possibility to imagine that the Maine lobster industry could have adapted to the bait crisis by reducing bait use instead of sourcing alternative bait. On the other hand, scholars like DiMaggio (1998) and McCay (2002) insightfully remind us that institutional contexts matter and that they create path dependencies that constrain options and opportunities. In the case of the lobster industry, this insight appears to be helpful in explaining how the industry was able to adapt so rapidly and why it took a potentially risky path.


In this paper, we propose the concept of pathways of rapid adaptation to crisis events or "raceways". We propose that these raceways are conducive to rapid adaption following shocks, but that they are inherently bound by institutional contexts. While these raceways facilitate rapid and large-scale change, they also drive systems along trajectories they are already on, rather than new pathways that are transformative. In the case of the lobster fishery, the industry was shifting away from herring and starting to use alternative baits when the bait crisis emerged. Rather than pivoting to a new way of doing business (i.e., using less bait), the lobster industry adapted by

focusing on sourcing alternative baits (Fig. 8). A key outcome is that the crisis acted to accelerate the lobster industry's movement away from herring and towards a more global bait market.

In many ways, the lobster industry's pivot very much follows the broader trend in the seafood economy towards an increasingly global system (Gephart and Pace 2015). Lobster from Maine is traded worldwide and represents one of the most important export commodities for the state – hundreds of millions of dollars of lobster are traded to Canada, China, and Europe alone (Stoll et al. 2018). This trajectory is intimately familiar to fishers, dealers, managers, and policymakers in Maine, as many have directly participated in and shaped these markets. Thus, while the geographic expansion of the bait market is a relatively new phenomenon, the lobster industry is quite accustomed to and dependent on working at a global scale. In other words, the outcome of the bait crisis is reflective of continued movement down a pathway as opposed to a new way of operating altogether.

As the bait distribution system continues to globalize, it will be important to be attentive to the potential hidden costs of expanding bait sourcing efforts. One such cost relates to new exposure to risk that will be introduced as new baits are adopted. As previously noted, fisheries managers established a committee of governmental, university, and private industry aquatic animal health professionals to conduct risk assessments and provide recommendations on the ecological risks associated with using different species of bait in the lobster fishery. These assessments help to ensure that the baits that are imported into Maine do not pose a threat to the Gulf of Maine ecosystem. However, introducing new baits into the lobster fishery has implications for the health of lobsters themselves, which is not currently being considered in these assessments. Furthermore, there are also potential implications that extend beyond the

environment. For example, expanding markets creates new socioeconomic linkages between places that did not exist previously (Liu et al. 2013). As these new linkages become solidified, multiple socioeconomic questions and issues arise. For example, the current list of approved baits includes multiple species that the International Union for Conservation of Nature lists as threatened, endangered, or critically endangered (Fig. 7. Appendix S5). Even if these species are being used in a limited fashion, the fact that they are approved for use raises critical questions about how they could impact consumers' perceptions of the sustainability of the fishery – which has long been one of its defining features – or how they will impact the fishery's Marine Stewardship Council certification. These questions underscore the need for being attentive to the long-term implications of adaptation strategies and the role that institutions play in creating raceways that facilitate and constrain marine resource users' responses to crises.

Figure 8. Illustration of the lobster industry's <u>rapid adaptation</u> to <u>the bait crisis</u>. Orange arrows denote the direction the system was moving in prior to the shock. Red and green arrows denote the trajectory of the system after the shock. The difference in scale of arrow represents the magnitude of the change observed.

5. REFERENCES

- Adger, W. N. 2005. Social-ecological resilience to coastal disasters. *Science* 309: 1036–1039. doi:10.1126/science.1112122.
- Alder, J., and R. Alder. 2011. Fisheries globalization: Fair trade or piracy? In *Globalization Effects on Fisheries Resources*, eds. W. Taylor, M. Schechter, and L. Wolfson. Cambridge University Press.
- Alexander, G. 2001. Institutions, path dependence, and democratic consolidation. *Journal of Theoretical Politics* 13: 249–270.
- ASMFC. 2019. Addendum II to Amendment 3 to the Atlantic Herring Interstate Fishery

 Management Plan. URL. http://www.asmfc.org/uploads/file/

 5cddb296Atl.HerringDraftAddendumIIFinalApprovedRevised.pdf.
- Barnett, J., and N. Adger. 2003. Climate dangers and atoll countries. *Climatic Change* 61: 321–337.
- Basurto, X., S. Gelcich, and E. Ostrom. 2013. The social–ecological system framework as a knowledge classificatory system for benthic small-scale fisheries. *Global Environmental Change* 23: 1366–1380. doi:10.1016/j.gloenvcha.2013.08.001.
- Bennett, N. J., H. Govan, and T. Satterfield. 2015. Ocean grabbing. *Marine Policy* 57: 61–68. doi:10.1016/j.marpol.2015.03.026.
- Bennett, N. J., J. Blythe, S. Tyler, and N. C. Ban. 2016. Communities and change in the Anthropocene: understanding social-ecological vulnerability and planning adaptations to multiple interacting exposures. *Regional Environmental Change* 16: 907–926. doi:10.1007/s10113-015-0839-5.

- Berkes, F., T. Hughes, R. S. Steneck, J. A. Wilson, D. R. Bellwood, B. Crona, C. Folke, L. Gunderson, et al. 2006. Globalization, roving bandits, and marine resources. *Science* 311: 1557–1558. doi:10.1126/science.1122804.
- Bernard, H. R. 2013. *Social research methods: Qualitative and quantitative approaches*. 2nd Edition. Los Angeles: Sage Publishing, Inc.
- Campbell, L.M., Fairbanks, L., Murray, G., Stoll, J.S., D'Anna, L. and Bingham, J., 2021. From Blue Economy to Blue Communities: reorienting aquaculture expansion for community wellbeing. *Marine Policy*, *124*, p.104361.
- Charles, A. T. 2001. Sustainable Fishery Systems. Oxford: Blackwell Science.
- Cockrell, M. L., O'Farrell, S., Sanchirico, J., Murawski, S. A., Perruso, L., & Strelcheck, A. (2019). Resilience of a commercial fishing fleet following emergency closures in the Gulf of Mexico. *Fisheries Research* 218: 69-82.
- Colburn, L. L., and M. Jepson. 2012. Social indicators of gentrification pressure in fishing communities: A context for social impact assessment. *Coastal Management* 40: 289–300. doi:10.1080/08920753.2012.677635.
- Corbin, J., and A. Strauss. 2008. *Basics of qualitative research*. 3rd ed. Thousand Oaks: Sage Publishing, Inc.
- Cote, M., and A. J. Nightingale. 2012. Resilience thinking meets social theory: Situating social change in socio-ecological systems (SES) research. *Progress in Human Geography* 36: 475–489. doi:10.1177/0309132511425708.

- Cottrell, R. S., K. L. Nash, B. S. Halpern, T. A. Remenyi, S. P. Corney, A. Fleming, E. A. Fulton, S. Hornborg, et al. 2019. Food production shocks across land and sea. *Nature Sustainability* 2: 130–137. doi:10.1038/s41893-018-0210-1.
- Deutsch, L., S. Gräslund, C. Folke, M. Troell, M. Huitric, N. Kautsky, and L. Lebel. 2007. Feeding aquaculture growth through globalization: Exploitation of marine ecosystems for fishmeal 17: 238–249. doi:10.1016/j.gloenvcha.2006.08.004.
- DiMaggio, P. 1998. The New Institutionalisms: Avenues of Collaboration. *Journal of Institutional and Theoretical Economics* 154: 696–705.
- Driscoll, J., Boyd, C., & Tyedmers, P. 2015. Life cycle assessment of the Maine and southwest Nova Scotia lobster industries. *Fisheries Research* 172: 385-400.
- Folke, C., S. R. Carpenter, B. H. Walker, M. Scheffer, T. Chapin, and J. Rockstrom. 2010.
 Resilience thinking: Integrating resilience, adaptability and transformability. *Ecology and Society* 15: 20–29.
- Gephart, J. A., and M. L. Pace. 2015. Structure and evolution of the global seafood trade network. *Environmental Research Letters* 10: 1–11. doi:10.1088/1748-9326/10/12/125014.
- Giddens, A. 1979. Central problems in social theory: Action, structure, and contradiction in social analysis. University of California Press.
- Garud, R., Hardy, C., Maguire, S., 2007. Institutional entrepreneurship as embedded agency: an introduction to the special issue. *Organ. Stud.* 28, 957e969. http://dx.doi.org/10.1177/0170840607078958.

- Grabowski, J. H., E. J. Clesceri, A. J. Baukus, J. Gaudette, M. Weber, and P. O. Yund. 2010. Use of herring bait to farm lobsters in the Gulf of Maine. *PLoS ONE* 5: e10188–11. doi:10.1371/journal.pone.0010188.
- IPCC. 2018. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. eds. Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield.
- Jensen, R. 2007. The digital provide: information (technology), market performance, and welfare in the South Indian fisheries sector. *The Quarterly Journal of Economics* 122: 879–924.
- Kay, A. 2005. A critique of the use of path dependency in policy studies. *Public administration* 83: 553-571.
- Kummu, M., Kinnunen, P., Lehikoinen, E., Porkka, M., Queiroz, C., Röös, E., ... & Weil, C.2020. Interplay of trade and food system resilience: Gains on supply diversity over time at the cost of trade independency. *Global food security* 24, 100360
- Lawrence, T. B., & Phillips, N. 2004. From Moby Dick to Free Willy: Macro-cultural discourse and institutional entrepreneurship in emerging institutional fields. *Organization* 11: 689-711.
- Lounsbury, M., & Crumley, E. T. 2007. New practice creation: An institutional perspective on innovation. *Organization studies* 28: 993-1012.

- Love, D., E. Allison, F. Asche, B. Belton, R. Cottrell, H. Froehlich, J. Gephart, C. Hicks, D. Little, L. Nussbaumer, P. Pinto da Silva, F. Poulain, A. Rubio, J. Stoll, M. Tlusty, A. Thorne-Lymann, M. Troell, W. Zhang. 2020. Emerging COVID-19 impacts, responses, and lessons for building resilience in the seafood system. *Global Food Security* 28: 100494
- Maguire, S., Hardy, C., & Lawrence, T. B. 2004. Institutional entrepreneurship in emerging fields: HIV/AIDS treatment advocacy in Canada. *Academy of management journal 47*: 657-679
- Marín, A., Gelcich, S., Araya, G., Olea, G., Espíndola, M., & Castilla, J. C. 2010. The 2010 tsunami in Chile: Devastation and survival of coastal small-scale fishing communities. *Marine Policy* 34: 1381-1384.
- Marshall, N. A., R. C. Tobin, P. A. Marshall, M. Gooch, and A. J. Hobday. 2013. Social vulnerability of marine resource users to extreme weather events. *Ecosystems* 16: 797–809. doi:10.1007/s10021-013-9651-6.
- McCay, B. J. 2002. Emergence of institutions for the commons: Contexts, situations, and events.

 In *The drama of the commons*, 361–402.
- McLaughlin, P. 2011. Climate change, adaptation, and vulnerability. *Organization & Environment* 24: 269–291. doi:10.1177/1086026611419862.
- McLaughlin, P., and T. Dietz. 2008. Structure, agency and environment: Toward an integrated perspective on vulnerability 18: 99–111. doi:10.1016/j.gloenvcha.2007.05.003.
- ME DMR. 2019. Historical Maine Lobster Landings. Maine Department of Marine Resources.

- MLA Staff. 2018. Are you ready for the 2019 bait crisis? *Maine Lobstermen's Community Alliance*.
- Mosse, D. 1997. The symbolic making of a common property resource: History, ecology and locality in a tank-irrigated landscape in South India. *Development and Change* 28: 467–504.
- Myers, H. J., and Moore, M. J. 2020. Reducing effort in the US American lobster (Homarus americanus) fishery to prevent North Atlantic right whale (Eubalaena glacialis) entanglements may support higher profits and long-term sustainability. *Marine Policy* 118, 104017.
- NOAA. 2018. *Fisheries of the United States, 2017*. Washington, DC: US Department of Commerce: 1–169.
- North, D. 1990. *Transaction costs, institutions, and economic performance*. Cambridge University Press.
- Nye, J. A., J. S. Link, J. A. Hare, J. A. Hare, and W. Overholtz. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. *Marine Ecology Progress Series* 393: 111–129. doi:10.3354/meps08220.
- Ostrom, E. 1990. *Governing the commons: The evolution of institutions for collective action.*Cambridge: Cambridge University Press.
- Perry, R. I., R. E. Ommer, M. Barange, S. Jentoft, B. Neis, and U. R. Sumaila. 2011. Marine social-ecological responses to environmental change and the impacts of globalization. *Fish and Fisheries* 12: 427–450. doi:10.1111/j.1467-2979.2010.00402.x.

- Pershing, A., M. Alexander, C. Hernandez, L. Kerr, A. Le Bris, K. Mills, J. Nye, N. Record, et al. 2015. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. *Science* 350: 805–809. doi:10.1126/science.aac5660.
- Pierson, P., 2000. Increasing returns, path dependence, and the study of politics. *American* political science review 94: 251-267.
- Prell, C., M. Reed, L. Racin, and K. Hubacek. 2010. Competing Structure, Competing Views:

 The Role of Formal and Informal Social Structures in Shaping Stakeholder Perceptions. *Ecology and Society* 15: 1–18.
- Raitsos, D. E., G. Beaugrand, D. Georgopoulos, A. Zenetos, A. M. Pancucci-Papadopoulou, A. Theocharis, and E. Papathanassiou. 2010. Global climate change amplifies the entry of tropical species into the eastern Mediterranean Sea. *Limnology and Oceanography* 55: 1478–1484. doi:10.4319/lo.2010.55.4.1478.
- Record, N., J. Runge, D. Pendleton, W. Balch, K. Davies, A. Pershing, C. Johnson, K. Stamieszkin, et al. 2019. Rapid climate-driven circulation changes threaten conservation of endangered North Atlantic Right Whales. *Oceanography* 32: 1–8. doi:10.5670/oceanog.2019.201.
- Robards, M. D., and J. A. Greenberg. 2007. Global constraints on rural fishing communities: whose resilience is it anyway? *Fish and Fisheries* 14–30. doi:10.1111/j.1467-2979.2007.00231.x.
- Saila, S. B., S. W. Nixon, and C. A. Oviatt. 2002. Does lobster trap bait influence the Maine inshore trap fishery? *North American Journal of Fisheries Management* 22: 602–605. doi:10.1577/1548-8675.2002.02.022.

- Scheirer, K., Chen, Y., & Wilson, C. 2004. A comparative study of American lobster fishery sea and port sampling programs in Maine: 1998–2000. *Fisheries Research*, 68: 343-350.
- Silver, J. J., Gray, N. L. Campbell, L. M., Fairbanks, L. W., Gruby, R. L. 2015. Blue economy and competing discourses in international oceans governance. *The Journal of Environment & Development* 24: 135-160.
- Smit, B., and J. Wandel. 2006. Adaptation, adaptive capacity and vulnerability. *Global Environmental Change* 16: 282–292. doi:10.1016/j.gloenvcha.2006.03.008.
- Smit, B., I. Burton, R. Klein, and J. Wandel. 2000. An anatomy of adaptation to climate change and variability. *Climatic Change* 45: 223–251.
- Steckler, A., K. McLeroy, R. Goodman, S. Bird, and L. McCormick. 1992. Toward integrating qualitative and quantitative. *Health Education Quarterly* 19: 1–8.
- Stoll, J.S., 2017. Fishing for leadership: the role diversification plays in facilitating change agents. *Journal of environmental management*, 199, pp.74-82.
- Stoll, J. S., B. I. Crona, M. Fabinyi, and E. R. Farr. 2018. Seafood trade routes for lobster obscure teleconnected vulnerabilities. *Frontiers in Marine Science* 5: 587–8. doi:10.3389/fmars.2018.00239.
- Stoll, J. S., C. M. Beitl, and J. A. Wilson. 2016. How access to Maine's fisheries has changed over a quarter century: The cumulative effects of licensing on resilience. *Global Environmental Change* 37: 79–91. doi:10.1016/j.gloenvcha.2016.01.005.
- Stoll, J. S., P. Pinto da Silva, J. Olson, and S. Benjamin. 2015. Expanding the "geography" of resilience in fisheries by bringing focus to seafood distribution systems. *Ocean and Coastal Management* 116: 185–192. doi:10.1016/j.ocecoaman.2015.07.019.

- Vincent, A. C., A. D. Marsden, and U. R. Sumalia. 2011. Possible Contributions of Globalization in Creating and Addressing Sea Horse Conservation Problems. In *Globalization Effects on Fisheries Resources*, eds. W. Taylor, M. Schechter, and L. Wolfson.
- Walker, B. H., C. S. Holling, S. R. Carpenter, and A. Kingzig. 2004. Resilience, Adaptability and Transformability in Social-ecological Systems. *Ecology and Society* 9: 1–14.
- Welter, F., & Smallbone, D. 2011. Institutional perspectives on entrepreneurial behavior in challenging environments. *Journal of Small Business Management* 49: 107-125.
- Worm, B., E. B. Barbier, N. Beaumont, J. E. Duffy, C. Folke, B. S. Halpern, J. Jackson, H. K. Lotze, et al. 2006. Impacts of Biodiversity Loss on Ocean Ecosystem Services. *Science* 314: 787–790. doi:10.1126/science.1132294.