

1 **Evaluating the risks of red tide mortality misspecification when modeling stock dynamics**

2 Skyler R. Sagarese^{a*} and William J. Harford^{b,c}

3 ^a NOAA Southeast Fisheries Science Center, 75 Virginia Beach Drive, Sustainable Fisheries Division Miami, FL
4 33149 skyler.sagarese@noaa.gov

5 ^b Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL,

6 ^c Present address: Nature Analytics, 551 Lakeshore Rd E, Suite 105, Mississauga, Ontario, L5G 0A8, Canada;
7 bill@natureanalytics.ca

8 **Abstract**

9 Extensions of single-species stock assessments to include ecosystem considerations are one step
10 towards achieving an ecosystem approach to fisheries management. While red tide mortality has
11 been estimated within base assessment models for both gag grouper and red grouper in the Gulf
12 of Mexico since the late 2000s, considerable uncertainty remains regarding how best to
13 incorporate this source of mortality in stock assessment and the potential risks of misspecifying
14 its timing and its effect across age-classes. We conduct simulation testing of an approach to
15 estimating red tide mortality, which treats red tide as a bycatch fleet where all encountered fish
16 are discarded dead. Accounting for episodic natural mortality events by correctly specifying the
17 years in which these events occurred was the most unbiased and precise approach for estimating
18 population quantities, although the estimated red tide mortalities were highly variable in
19 magnitude. While not estimating red tide mortality provided reasonably unbiased estimates of
20 terminal biomass and fishing mortality rate, which are used to determine stock status, caution
21 must be exercised when red tide events occur in the terminal year(s), as ignoring episodic
22 mortality can lead to these events being misinterpreted in model fitting and inflating estimates of
23 fishing mortality (and potentially overfishing status). Our simulations highlight the importance of
24 continued data collection on how red tides affect marine resources, and continued community
25 and stakeholder engagements to gain an understanding of the historical timing and impact of red
26 tide events.

27 *Corresponding author contact: 305-361-4272; skyler.sagarese@noaa.gov

28 **Key Words**

29 Stock assessment, episodic mortality, simulation analysis, precision, bias

30 **Highlights:**

31

- 32 • Simulation tests estimation of red tide mortality in stock assessment
- 33 • Current approach produces unbiased but imprecise estimates of red tide mortality
- 34 • Ignoring episodic mortality may inflate fishing mortality estimates and stock status

42 **1. Introduction**

43 Progress towards ecosystem-based fisheries management continues to be made as part of U.S.
44 marine resource policy (Marshall et al., 2018). In the U.S., advances towards ecosystem-based
45 management are increasingly carried out through the scientific process of Integrated Ecosystem
46 Assessment (Levin et al., 2009; Dell’Apa et al., 2015; Reum et al., 2021). An Integrated
47 Ecosystem Assessment comprises a spectrum of approaches from fishery-focused models that
48 incorporate environmental and ecological interactions to holistically focused assessments of
49 cumulative coastal pressures on ecosystem services (Cook et al., 2014; Grüss et al., 2015).
50 Single-species stock assessments remain the principal approach for providing management
51 advice for U.S. fisheries and those that incorporate environmental and ecological interactions can
52 be thought of as occupying one end of the Integrated Ecosystem Assessment spectrum. As an
53 example, population processes such as natural mortality are often assumed to be constant over
54 the time period modeled within stock assessments (Lee et al., 2011; Piner et al., 2011; Deroba
55 and Schueller, 2013; Johnson et al., 2015). However, natural mortality can vary over age, space
56 or time due to predation pressure (Fu and Quinn II, 2000; Gårdmark et al., 2012), environmental
57 change (Jiao et al., 2012), or episodic events such as cold snaps (Matich and Heithaus, 2012) or
58 red tide events (Sagarese et al., 2021).

59 Within the Gulf of Mexico (Gulf), Integrated Ecosystem Assessment-focused research has
60 formed a foundation for incorporating environmentally-linked fish die-offs into stock assessment
61 as well as the development of management strategies aimed at responding to these events
62 (Harford et al., 2018; DiLeone and Ainsworth, 2019; Reum et al., 2021). Red tide blooms in the
63 Gulf have been reported for hundreds of years and are linked to the dinoflagellate *Karenia brevis*
64 (Steidinger, 2009). These blooms may cause fish mortality through acute exposure or
65 bioaccumulation of the neurotoxin brevetoxin but also through asphyxiation from hypoxic water
66 (Landsberg et al., 2009). Since blooms generally start offshore at depth (Steidinger and Vargo,
67 1988), and are transported inshore by winds and tidal currents (Steidinger and Haddad, 1981),
68 these events can go unnoticed if dead fish remain on the bottom (Steidinger and Ingle, 1972).
69 Mass mortalities of marine vertebrates and fishes were detected during red tide events in 2005
70 (Landsberg et al., 2009; Flaherty and Landsberg, 2011), 2014 (Driggers et al., 2016), and more
71 recently in 2018 and 2021. The Florida Fish and Wildlife Conservation Commission’s Fish and
72 Wildlife Research Institute harmful algal bloom database identifies species vulnerable to red
73 tides, with observations largely derived from beach sightings of coastal species (Sagarese et al.,
74 2017; DiLeone and Ainsworth, 2019). Growing anecdotal evidence suggests that shallow-water
75 groupers (family: Serranidae) are notably affected by red tide events (Smith, 1975, Walter et al.,
76 2013, Driggers et al., 2016, Karnauskas et al., 2019), possibly due to high site fidelity (Kiel,
77 2004; Lindberg et al., 2006; Saul et al., 2013), which may limit their movements away from
78 affected areas. However, quantifying the effects of red tide events on marine species has proven
79 particularly challenging due to complications with field collections and rapid decomposition of
80 affected individuals (Driggers et al., 2016).

81 The potential impact of the 2005 red tide on groupers was first questioned by stakeholders in
82 2006 during stock assessments for gag grouper *Mycteroperca microlepis* (SEDAR, 2006a) and
83 red grouper *Epinephelus morio* (SEDAR, 2006b). In response, updates of these two assessments
84 in 2009 were the first to explicitly estimate extra mortality attributed to the 2005 red tide
85 (SEDAR, 2009a, 2009b). In 2014 and 2015, assessments for both species transitioned to the
86 integrated Stock Synthesis modeling platform (Methot and Wetzel, 2013), which increased
87 flexibility for modeling red tide mortality (SEDAR, 2014, 2015). Time series serving as proxies

88 of red tide mortality were developed using statistical models that estimated the probability of red
89 tide severity between 1998 and 2010 (Walter et al., 2013). Sagarese et al. (2015) tested a suite of
90 stock assessment methodologies that enabled red tide mortality rates to be estimated, with these
91 methodologies varying in their treatment of time-varying mortality. For example, natural
92 mortality rates can be linked to empirically derived indices of bloom severity (Walter et al.,
93 2013), or natural mortality can be represented using a bycatch fleet approach to represent dead
94 fish (discards) attributable to red tide blooms or other episodic mortality events (Methot et al.,
95 2020; Sagarese et al., 2021). Ultimately, both assessments employed a binary index of red tide
96 severity to identify years where red tides were depicted as severe (i.e., above a statistically
97 defined threshold value). This approach was preferred because baseline levels of red tide
98 mortality are likely included in estimates of natural mortality derived from empirical data
99 (Walter et al., 2013). Die-off rates occurring from severe red tide events may well exceed the
100 magnitudes of natural mortality rates reported for gag grouper (0.159 year^{-1} ; SEDAR, 2021) and
101 red grouper (0.144 year^{-1} ; SEDAR, 2019).

102 The most recent stock assessments for both species employed the bycatch fleet approach to
103 estimate the magnitude of mortality from the red tide event of 2005 (SEDAR, 2014, 2015). This
104 approach treats red tide as a “fishing fleet” with 100% of its “catch” discarded as dead (i.e.,
105 100% discard mortality) in select years coinciding with severe red tide events. While this
106 approach does not require input data (i.e., estimated removals), it does require the specification
107 of the length- or age-based selectivity of a red tide bloom. By modeling red tide as a bycatch
108 fleet, the assessment model estimates the rate of the red tide mortality in the pre-defined years
109 (i.e., severe red tides) based on contrast in the other data streams. The bycatch fleet approach was
110 preferred because of concerns with imposing correlative relationships between observed indices
111 of bloom severity (and inherent data concerns) and age-specific mortality rates within the stock
112 assessment. While the bycatch fleet approach does not eliminate the need to understand
113 susceptibility of age classes to red tides (also required for other approaches linking age-specific
114 mortality to indices), different selectivity patterns can be tested in sensitivity runs. Further,
115 selectivity patterns can be adjusted as additional data are collected, such as length- or age-
116 compositions of fish killed by red tides (Walter et al., 2015) or age-specific estimates of red tide
117 mortality (Vilas et al., 2021).

118 Not surprisingly, the details associated with accounting for red tide mortality rates within
119 stock assessment has led to the recommendation of subjecting these approaches to simulation
120 testing (SEDAR, 2014, 2015, 2019, 2021). Here, we foster a more nuanced understanding of the
121 ability of the bycatch fleet approach in Stock Synthesis to estimate episodic mortality through
122 simulation testing. First, we examine the influence of the bycatch fleet approach and related
123 selectivity assumptions on estimation of population parameters (e.g., spawning stock biomass
124 and fleet-specific fishing mortality rates), stock status, and red tide mortality rates. Second, we
125 consider the issue of stock assessment over-parameterization and evaluate whether allowing the
126 stock assessment to identify the years in which episodic mortality events are thought to occur
127 leads to substantial errors in mortality estimates in some years. Third, we evaluate the extent to
128 which estimation of these quantities are affected by ignoring the presence of extreme red tide
129 mortality events altogether within stock assessment. Evaluating the accuracy and precision of the
130 bycatch fleet approach to estimating episodic mortality is timely given calls for ecosystem
131 considerations in stock assessments because of its potential utility for other forms of episodic
132 mortality (e.g., mortality due to cold events or disease).

133 **2. Materials and Methods**

134 *2.1 Operating model structure*

135 The Gulf red grouper base-model (SEDAR, 2019) was first used to explore the sensitivity of
136 parameter estimates and management quantities to the selectivity of the red tide bycatch fleet.
137 The stock assessment was conducted using Stock Synthesis version 3.30.13 (Methot and Wetzel,
138 2013; Methot et al., 2020), and the model configuration is summarized in Table 1 and Fig. 1.
139 Since fishery removals occurred prior to 1986 (but were too uncertain for inclusion), initial fleet-
140 specific fishing mortality rates for three commercial fleets (vertical line, longline, and trap) and
141 one recreational fleet were estimated from initial equilibrium catches (i.e., pre-model
142 equilibrium) assumed to be normally distributed with a log-scale standard error (SE) of 0.05.
143 Data inputs concerning removals for each fleet included landings and discards, both of which
144 were assumed to have lognormal error structures and relatively large SE estimates (0.15 – 0.3;
145 Fig. 2). Each fishing fleet had a unique selectivity pattern as well as time-varying retention to
146 account for changes in management regulations that affected retention (e.g., bag limits or quota)
147 or minimum harvest size (Table 1; Fig. 1). Indices of catch-per-unit-effort (reported in units
148 corresponding to catch histories) were derived using landed fish only for the commercial vertical
149 line and longline fleets and for the recreational headboat fleet, and for all catch (landings and
150 discards) for the recreational charter and private modes combined.

151 Fishery-independent indices of relative abundance and survey length-compositions were
152 included from four representative surveys: (1) the Southeast Area Monitoring and Assessment
153 Program Summer Groundfish Survey (representing juvenile and younger adult red grouper); (2)
154 the National Marine Fisheries Service's Bottom Longline Survey (covers entire depth range of
155 adults throughout shelf); (3) the Florida Fish and Wildlife Conservation Commission's Fish and
156 Wildlife Research Institute Hook and Line Repetitive Time Drop Survey (covers core habitat off
157 Florida); and (4) the Combined Video Survey (longest time series across habitats and sizes). All
158 indices of relative abundance had a lognormal error structure and were scaled to an average SE
159 of 0.3 across the entire time series. However, the relative annual variation in the scaling derived
160 from the standardization approach was maintained within each index. Composition data
161 including age compositions of landed fish, discard length-compositions for the fishing fleets, and
162 survey length-compositions were assumed to follow a multinomial error structure, where the
163 variance was determined by the input effective sample size which was the square root of the
164 number of length or age observations. An ageing error matrix linked to observed age
165 compositions was input as a vector of mean ages (with standard deviations) and enabled
166 generation of imperfect observation of ages (e.g., age with possible bias and imprecision) from
167 true ages (Fig. 1).

168 Red tide mortality was estimated in the Gulf red grouper base-model via the bycatch fleet
169 approach. Both 2005 and 2014 were recognized as being severe enough for inclusion by a
170 combination of quantitative and qualitative input from stakeholders (SEDAR, 2019; Sagarese et
171 al., 2021). Quantitative support for 2005 was obtained from the index of red tide severity
172 discussed above (Walter et al., 2013). However, calibration issues between satellite data sources
173 cautioned the use of the index updated through 2017, which revealed 2014 just below the
174 threshold value (Sagarese et al., 2018). Ultimately, 2014 was deemed severe based on
175 stakeholder insights that the 2014 red tide event devastated red grouper and degraded critical
176 habitat (Karnauskas et al., 2019; SEDAR, 2019; Sagarese et al., 2021). All age-classes were
177 assumed vulnerable to red tide mortality, following anecdotal evidence regarding age-specific

178 red tide mortality across age classes based on spatial overlap of fish distributions with red tides-
179 affected areas, particularly during 2005 (Chagaris and Sinnickson, 2018).

180 For the second operating model, which was fitted to actual data, the age-based selectivity
181 pattern of the red tide bycatch fleet was modified to affect adult red grouper only to evaluate the
182 impact on management quantities and status determination in the event that red tide events did
183 not affect age-0 and younger red grouper. Age 5 was based on field collections of 16 red grouper
184 (aged 5 – 9 years) during the 2014 red tide event (Walter et al., 2015). Although no red grouper
185 older than 9 years were observed, this analysis assumed that all red grouper older than 9 years
186 could be vulnerable to red tides given the spatial overlap between this red tide and their habitat
187 (Driggers et al., 2016). A projection achieving a spawning potential ratio target of 30% at
188 equilibrium (i.e., 100 years) was conducted and stock status was determined by dividing the
189 estimated spawning biomass in the final year of the model (2017) by the spawning biomass at
190 equilibrium (SEDAR, 2019; Sagarese et al., 2021). Projections assumed that forecasted
191 recruitment would continue at recent average levels (2010 – 2017), recent fishery dynamics
192 (selectivity, retention, and discard mortality) would persist, forecasted landings would maintain
193 an allocation ratio of 76% commercial to 24% recreational by weight, and that the 2018 red tide
194 (in the first year of the projections) was similar in magnitude to the 2005 red tide event.

195 2.2 *Simulation Approach*

196 Simulation testing was carried out by using two operating models (OMs) that were created based
197 on the assumed population dynamics from the actual stock assessment (SEDAR, 2019).
198 Simulated data sets for each fishing fleet and for each fishery-independent survey (Fig. 2) were
199 generated from: (1) the Gulf red grouper base-model (i.e., OM1); and (2) the sensitivity run
200 where red grouper aged 5+ were vulnerable to red tides (i.e., OM2). Data sets were generated
201 using the parametric bootstrap routine in Stock Synthesis (Methot et al., 2020). Each new data
202 set was generated based on the variance properties specified for the original data, with new
203 observations obtained from corresponding sampling distributional assumptions that are made in
204 specifying the likelihood function that is used in assessment model fitting (Methot and Wetzel,
205 2013). One thousand new data sets were generated and retained for simulation testing. Data
206 concerning the magnitude of red tides were not simulated by either OM since input catches are
207 not required for the bycatch fleet approach to estimating episodic mortality. Instead, years in
208 which red tide mortality was to be estimated by a given AM were specified *a priori* (Table 2).
209 Focusing solely on observation error in this analysis allowed an evaluation of how red tide
210 mortality estimated using the bycatch fleet approach would vary with changing data inputs given
211 their uncertainty. Additional sources of error were not incorporated to ensure results were not
212 confounded by competing processes.

213 2.3 *Assessment model configurations*

214 Four Stock Synthesis assessment models (AMs) were specified, in some instances matching the
215 structure of the OMs and in some instances representing a mismatch between AM and OM
216 structure in terms of the red tide bycatch fleet (Table 2). Three of the four AMs implemented the
217 bycatch fleet approach to estimating episodic mortality (years for estimation specified in Table
218 2). Other parameters estimated by each AM included four initial and 119 annual fleet-specific
219 fishing mortality rates, two growth parameters (remaining life history parameters were fixed),
220 two recruitment parameters (steepness remained fixed), 25 annual recruitment deviations, 20
221 selectivity parameters and four time-varying retention parameters (Table 1). The first assessment
222 model, AM1, is the same as OM1, in which estimation of red tide mortality events in 2005 and

223 2014 is specified to occur via a bycatch fleet and all age-classes are correspondingly affected
 224 (i.e., 0 – 20+). The second assessment model, AM2, has the same configuration as OM2 in that
 225 red tide mortality events in 2005 and 2014 affect ages 5+ and are estimated via a bycatch fleet. In
 226 the third assessment model, AM3, no red tide mortality is estimated (i.e., no bycatch fleet). The
 227 fourth assessment model, AM4, allows for non-zero values of red tide mortality to be estimated
 228 in each year of the time series, 1986 to 2017, via a bycatch fleet under the assumption that all age
 229 classes are vulnerable to red tide mortality. A factorial approach was applied to evaluate the
 230 robustness of each AM in estimating population dynamics parameter values from each OM
 231 (Table 2). Since the magnitude of red tide mortality was not simulated by the OM, all AMs
 232 except AM3 estimated the magnitude of red tide mortality in pre-specified years (Table 2) from
 233 the contrast in the bootstrapped values for the other data streams.

234 *2.4 Simulation testing and performance metrics*

235 Precision and bias in estimation of population parameters and derived management quantities are
 236 presented herein, whereas additional performance metrics are provided in Supplementary
 237 Appendices A and B. Relative bias (R_q) of a given estimator, θ , is calculated:

$$238 \quad R_q = \frac{\hat{\theta}_{q,AM} - \theta_{OM}}{\theta_{OM}} \quad (1)$$

239 where $\hat{\theta}_{q,AM}$ is the estimated quantity from a given AM using the q -th simulated dataset, and θ_{OM}
 240 is the quantity from the OM used to generate the dataset. In summary tables, median relative bias
 241 (median of R_q across Q total simulated replicates) is reported as a coarse performance metric of
 242 estimator bias. Estimator precision is reported as the standard deviation of estimator replicates
 243 divided by the estimator mean, $\bar{\theta}$; otherwise, known as the coefficient of variation (CV):

$$244 \quad CV = \frac{\sqrt{\frac{1}{Q-1} \sum_{q=1}^Q (\hat{\theta}_{q,AM} - \bar{\theta})^2}}{\bar{\theta}} \quad (2)$$

245 Performance metrics are calculated for the following estimators of population parameters and
 246 derived management quantities: recruitment variability, fishing mortality, unfished equilibrium
 247 recruitment (R_0), and terminal year estimates of spawning stock biomass (SSB), recruitment, the
 248 SSB ratio (ratio of SSB to unfished SSB), fishing mortality and fleet-specific fishing mortality.
 249 Comparisons of estimated time series to ‘true simulated’ values are made in the Supplementary
 250 Appendices for SSB, the SSB ratio, total fishing mortality and age-0 recruits. In addition, the
 251 relative bias and precision associated with estimates of red tide mortality in years 2005 and 2014
 252 were calculated for AMs that included estimation of these quantities. For these comparisons, θ_{OM}
 253 was specified as the red tide mortality rates obtained from each OM. Red tide mortality is
 254 reported in terms of apical rates and the proportion of biomass killed by red tides, with the latter
 255 metric considered a more appropriate metric for comparison given that apical values will have
 256 different population impacts (due to different ages ranges associated with the rate). Temporal
 257 trends in relative bias of red tide mortality estimates are also examined for AM4.

258 **3. Results**

259 *3.1 Operating model structure*

260 In producing OM2, the base-model was re-fit to actual data sets under the constraint that red tide
 261 mortality events in 2005 and 2014 affected only ages 5 and older. No major discrepancies in
 262 model performance were noted between OMs, although OM2 had a slightly lower negative log-

likelihood (by 2.028 units), a slightly larger gradient and a few additional recruitment deviations with CVs exceeding one (Table 3). Key parameter estimates were generally similar between fitting the OM_s to the actual data sets, with the exception of recruitment variability, which was higher in OM2 (0.860 vs 0.815), and apical red tide mortality rates, which were higher but less uncertain in OM2 (Table 3). Both OM_s revealed similar trends in total biomass, spawning stock biomass (SSB) and the SSB ratio, with large declines evident in 2005 and 2014 due to additional mortality attributed to red tide events (Fig. 3A-C). OM2 predicted a larger recruitment estimate for 2001, but smaller recruitment estimates for other above-average recruitment events, and terminal recruitment estimates were nearly identical (Fig. 3D). Fishing mortality trends were nearly identical between OM_s, and the proportions of biomass killed by red tides were similar among OM_s for both the 2005 (29.5 to 32.3%) and 2014 (21.3 to 27.3%) events (Table 3; Fig. 3E). When red tide mortality affected all age classes, the 'true' simulated red tide mortality was 0.34 year⁻¹ (CV = 0.31) for 2005 and 0.26 year⁻¹ (CV = 0.43) for 2014 in OM1 (Table 3), where each value represents the apical mortality rate. Following re-fitting to generate OM2, where red tide mortality affected ages 5+, red tide mortality for OM2 was 0.47 year⁻¹ (CV = 0.26) for 2005 and 0.37 year⁻¹ (CV = 0.35) for 2014 (Table 3). While small differences in current F and SSB were observed between models, the F reference point was identical and the SSB reference point was very similar, leading to no change in stock status determination (Table 3).

3.2 How well does the bycatch fleet approach estimate time-varying natural mortality?

When AM_s were specified such that years in which a red tide event occurred were known (i.e., AM1 and AM2), current spawning biomass and current fishing mortality rates were well estimated (CV range: 0.095 to 0.137) and had low bias (bias range: -0.091 to 0.047; Fig. 4; Table 4). In the cases of AM1 and AM2, virgin recruitment also showed minimal bias (-0.001; Fig. 5; Table 4). Across all four AM_s, the SSB ratio in 1986 was positively biased (bias range: 0.084 to 0.129), although this bias was largest for the case where red tide mortality was not estimated in model fitting (i.e., AM3; Table 4). This result occurred both when OM and AM were configured identically and when AM3 and AM4 were applied, thus it appears that this bias in initial population characteristics could be a complication in model specification that is unrelated to estimation of red tide mortality events.

Estimation of red tide mortality (apical rates) was imprecise across simulations (CV range for 2005: 0.281 to 0.799; CV range for 2014: 0.334 to 0.841), and in some circumstances, there was evidence of systematic underestimation of red tide severity (Fig. 6; Table 4). Considerable underestimation of red tide mortality in 2005 and 2014, both in terms of apical rates and the proportion of biomass killed by red tides, occurred for AM_s that assumed that all age classes were vulnerable to red tide (i.e., AM1 & AM4), regardless of OM. A strong negative bias in the proportion of biomass removed by red tides was evident for AM1 (bias range: -0.115 to -2.122) and AM4 (bias range: -0.371 to -2.689), with greater bias identified for the 2005 red tide event. Conversely, constraining estimation of red tide mortality to ages 5+ produced reasonably unbiased estimates of red tide mortality for 2014 (bias range: -0.034 to -0.043), again, regardless of whether OM1 or OM2 was used to generate simulated data sets. In contrast, AM2 also underestimated the proportion of biomass removed during 2005 (bias range: -1.309 to -1.882).

In examining AM4, it became apparent that AM configurations that allow for red tide mortality estimation freely in each year have a propensity for highly variable and strongly biased outcomes in estimates of red tide mortality (Fig. 6; Table 4). A substantial proportion of simulations produced a relative bias of -1 (or 100% underestimation; however, no issues with model convergence were evident) of apical red tide mortality rates in 2005 and 2014, suggesting

309 that allowing the AM to determine when episodic natural mortality events occur can overlook
310 years in which large mortality events actually occurred. For AM4 simulations, annual estimates
311 of red tide mortality in terms of both apical rates and the proportion of biomass killed by red
312 tides for both OMs were frequently estimated in non-red tide years, although median values
313 remained near zero for many years (Fig. 7). While imprecision in estimation of quantities using
314 AM4 also occurred for terminal spawning biomass (CV range: 0.118 to 0.127), the terminal
315 fishing mortality was extremely imprecise (CV range: 0.557 to 0.581; Table 4; Fig. 4). Thus,
316 given the frequency of red tide events that we simulated, it appears that allowing the AM to
317 freely estimate red tide mortality in each year can result in highly biased and highly variable
318 estimates of key quantities.

319 *3.3 What happens when stock assessment ignores red tide events?*

320 For AM3, bias and precision in estimation of terminal spawning stock biomass was not
321 demonstrably different from AM1 and AM2 (Fig. 4). The recruitment variability parameter had a
322 positive relative bias, on average, of 0.044 to 0.148, for OM2 and OM1, respectively (Fig. 5).
323 This positive bias did not, however, lead to temporal trends in age-0 recruitment, especially in
324 relation to years in which red tide events occurred (Fig. 8). Thus, we did not observe evidence to
325 suggest that recruitment deviations were inadvertently accounting for red tide-induced changes
326 to abundance. However, mortality rates for the fishing fleets were positively biased under AM3
327 (Fig. 8). Positive trends in relative bias of fishing mortality were evident in years surrounding
328 those where red tide events occurred, suggesting that fishing mortality can be inadvertently
329 inflated when time-varying natural mortality is not correctly accounted for in the fitting routine.

330 **4. Discussion**

331 In conducting simulation testing of the bias and precision of the bycatch fleet approach for
332 estimating episodic mortality, our results support three conclusions about accounting for time-
333 varying natural mortality events within stock assessment. First, accounting for episodic mortality
334 events by correctly specifying the years in which these events occurred was the most unbiased
335 and precise approach to estimation of those population quantities that typically support fishery
336 management, among the approaches we examined using simulated data. Our results suggest that
337 there is considerable informational value in being able to correctly identify years in which
338 episodic mortality events occurred (i.e., AM1 and AM2), rather than reliance on event estimation
339 freely across all years (i.e., AM4). Second, the bycatch fleet approach for estimating episodic
340 mortality produced (time-varying) red tide mortality estimates that were variable across
341 simulations, and thus, these estimates should be considered highly uncertain. Thus, while
342 accounting for episodic mortality events in stock assessment may help to improve reliability of
343 certain quantities of interest (e.g., fishing mortality rates), it is not advisable to rely on estimates
344 of event magnitudes, for example, in deriving correlations with ecological metrics, or as a sole
345 driver of decision-making reactivity. Third, assessment model configurations that do not account
346 for such events (i.e., AM3) can provide reasonably unbiased estimates of terminal biomass and
347 fishing mortality rate; quantities which are important to decision-making and are used in
348 conjunction with reference points obtained from projections to determine stock status.

349 Our results demonstrate that *a priori* selection of the correct years for estimating these
350 mortality rates can improve accuracy of quantities such as terminal SSB and fishing mortality
351 rate, which are used in conjunction with reference points to establish population status. Some
352 cautions are needed however, with respect to the way equilibrium reference points are defined
353 against the presence of time-varying natural mortality. In producing OMs that differed in

354 selectivity of the red tide bycatch fleet (i.e., by fitting or re-fitting against the actual data), we
355 obtained consistent biological reference points, principally because productivity parameters of
356 the OM were fixed and not estimated. However, the presence of red tide events could modify the
357 context for defining reference points, especially if red tide events become more frequent and
358 severe. For instance, the natural mortality rate derived from life history may differ from the
359 average lifetime natural mortality rate experienced by long-lived cohorts that encounter multiple
360 episodic natural mortality events during their lifetime. Legault and Palmer (2016) found that an
361 increase in natural mortality during the assessment period often led to decreased MSY reference
362 points. Additional simulation work (see O’Leary et al. (2021) for a noteworthy example) is
363 needed to determine how the frequency and magnitude of future red tide events may impact the
364 estimation of and context for defining fishery management reference points.

365 When considering the effects of observation error on AM bias and precision, our results
366 suggest that the bycatch fleet approach is not capable of estimating red tide mortality when
367 estimated freely across all years. There was a tendency for consecutive years to have non-trivial
368 estimates of red tide mortality, as the model appeared incapable of precisely distinguishing event
369 timing, perhaps due to the assumed constant selectivity-at-age and smearing of cohorts across
370 years. Previous simulation work aimed at accounting for underreported landings found increased
371 uncertainty in management quantities for noisy survey data (Bousquet et al., 2010). The
372 complexity of incorporating ecosystem considerations warrants additional simulation testing,
373 particularly using more complex OMs incorporating process and structural uncertainties. While
374 Harford et al. (2018) simulated complex biological mechanisms (including red-tide mortality)
375 with an assessment model that attempted to capture these complexities, their management
376 strategy evaluation highlighted the multi-faceted nature of the challenges associated with
377 assessment under time-varying natural mortality. There is a need to determine the most robust
378 approach for estimating red tide mortality in the historical time period of stock assessments given
379 increases in available data (e.g., time- and age-specific indices of red tide mortality; Vilas et al.,
380 2021). Further, we have shown that ignoring episodic mortality altogether can sometimes lead to
381 these events being misinterpreted in model fitting and resulting in inflated estimates of fishing
382 mortality where uncertainty in catch estimates is relatively high (i.e., $SE > 0.05$), potentially
383 leading to an overfishing status (Sagarese et al., 2021). This is particularly true in the Southeast
384 US where base stock assessments in the Gulf of Mexico often include highly uncertain time
385 series of both landings and discards, particularly for recreational fisheries that can dominate total
386 removals. Although acknowledging greater uncertainty in removals within the base-model can
387 appear more realistic to managers, this additional flexibility can have unintended consequences
388 on model performance and stability, and should be evaluated through simulation.

389 While failing to account for episodic mortality events can still provide reasonably unbiased
390 estimates of terminal biomass and fishing mortality rates in the circumstances we evaluated,
391 there was also cause to avoid this short-coming where episodic events are prevalent.
392 Stakeholders have adamantly expressed concerns over the impacts of red tides on grouper
393 populations, and accounting for red tide mortality directly in the assessment model notably
394 improved the fits to multiple indices of relative abundance for Gulf red grouper (Sagarese et al.,
395 2021). In cases where episodic natural mortality events are severe enough for population level
396 impacts, fleet mortality rates can inadvertently become inflated when time-varying natural
397 mortality is ignored. Accordingly, where an episodic mortality event is thought to have occurred
398 towards the terminal assessment year, but is not explicitly accounted for in stock assessment,
399 caution should be taken in interpreting fishing mortality estimates relative to overfishing

400 benchmarks. The model which did not estimate red tide mortality (i.e., AM3) performed fairly
401 well in terms of bias and precision in management quantities relative to AM1 and AM2.
402 However, this result was largely due to the timing of the red tide events (i.e., not in the terminal
403 years).

404 In situations where it is challenging to identify specific years in which episodic mortality
405 events have occurred, scientific partnerships with industry and with coastal communities can
406 directly contribute to the information available for stock assessment. For example, the 2019 Gulf
407 red grouper stock assessment relied heavily on input from stakeholders to determine years where
408 red tides were deemed severe (SEDAR, 2019). Observations were obtained from an online data
409 collection tool hosted by the Gulf of Mexico Fishery Management Council. In addition, two
410 stakeholder driven engagements were hosted by the Southeast Fisheries Science Center (SEFSC)
411 in response to the 2018 red tide event that occurred on the West Florida Shelf: (1) participatory
412 stakeholder workshops focused on elucidating the impacts of red tides on local resources and
413 reliant communities; and (2) oral history interviews to obtain insights from fishermen on the
414 water, allowing the development of a timeline of historical red tide events and their impacts
415 (Karnauskas et al., 2019). Ongoing efforts by SEFSC to reconstruct historical timelines of red
416 tide events from oral histories and reviews of available literature will be invaluable in helping
417 pinpoint severe years, particularly for the time period prior to the availability of satellite data.

418 While simulation testing was disappointing with respect to the precision of red tide mortality
419 estimates, improvements upon the statistical basis for time-varying aspects of stock assessment
420 could ultimately provide defensible indices of red tide severity or mortality along with estimates
421 of observation error. For instance, natural mortality can be directly linked to an environmental
422 index (aka the model method, Schirripa et al., 2013) or annual blocks can be specified for each
423 age class, with the environmental index value treated as a prior estimate (e.g., of extra mortality
424 added to baseline levels) with an associated standard deviation (aka the modified data method,
425 Schirripa et al., 2013). A recent capability added to Stock Synthesis can be used in specifying
426 episodic mortality as a “predator” where extra mortality (M2) is estimated as an addition to the
427 base natural mortality instead of estimating it as a pseudo fishing fleet (Methot et al., 2021).
428 Although this approach does not remove the need to specify selectivity, treating red tide or other
429 sources of episodic mortality as a predator is more intuitive and reduces confusion with treating
430 it as a type of fishing mortality. Further, the bycatch fleet approach to estimating episodic
431 mortality as applied in this study may be too flexible. Modeling red tide mortality as a
432 “predator”, where red tide indices allow, would directly incorporate observation error inherent in
433 the environmental index and bound the red tide mortality estimates between plausible values
434 based on available estimates (e.g., index of red tide mortality as in Vilas et al. (2021)). However,
435 episodic events may still warrant consideration of a binary approach to inclusion (i.e., only
436 considered when above a statistical threshold), since baseline levels of episodic mortality could
437 already be captured in base natural mortality estimates based on longevity estimates.

438 A potential limitation of the present study is the reliance on bootstrapped datasets to
439 adequately capture the full breadth of variation that can arise in data streams, as simulated data
440 can be more constrained in this manner than observed data. For example, while comparisons
441 across all OM and AM combinations illustrated imprecision in estimation of derived quantities
442 such as the SSB ratio and fishing mortality rates for each fishery, the process of generating
443 bootstrap samples could constrain the resulting level of imprecision of those key quantities.
444 Estimation of initial conditions such as fishing mortality is largely dependent on the bootstrapped
445 age composition data, and it is possible that the bootstrapped dataset is not representing the full

446 range of uncertainty in initial conditions (e.g., bootstrapped data may not be as poor quality as
447 observed data). Unfortunately, an inability to begin modeling from an unfished state is common
448 for grouper assessments in the Gulf because of incomplete and highly uncertain removals due to
449 species identification issues and other data limitations (SEDAR, 2014, 2015).

450 Growing evidence of negative impacts of red tides on groupers (Driggers et al., 2016;
451 DiLeone and Ainsworth, 2019; Karnauskas et al., 2019) has led to one of the most transparent
452 fish-environment relationships for inclusion into a stock assessment. It is clear that severe red
453 tides lead to death - whether through absorption (Abbott et al., 1975; Baden, 1988), ingestion of
454 toxic biota (Landsberg, 2002), or, from resulting hypoxic or anoxic zones (Walter et al., 2013) -
455 and some positive relationship exists between density of the dinoflagellate *Karenia brevis* and
456 the resulting mortality rates on fishes. While incorporating this mechanism into a stock
457 assessment would appear relatively straightforward, the red tide-grouper story in the Gulf has
458 demonstrated challenges associated with taking an ecosystem approach to fisheries management.
459 The first complication is data availability, in this case the lack of a continuous and consistent
460 time series of red tide severity (or red tide mortality) coupled with large observation errors and
461 difficulties associated with classifying event severity. The second hurdle is the specification of
462 (or allowing the model to specify) the exact relationship between environmental covariates and
463 grouper population dynamics – is it only episodic natural mortality? Could these events lead to
464 changes in catchability or recruitment events? Or could it be all of the above? Recent research
465 suggests that severe years of red tide are associated with hypoxic conditions (Turley et al., 2021),
466 and further reports from fishermen indicate that grouper aggregate outside these hypoxic zones,
467 making them increasingly vulnerable to intense fishing. In addition, the areas hard hit can remain
468 vacant of groupers and any marine life for many years (SEDAR, 2019). Additional field studies
469 (e.g., tagging studies) and advancements in stock assessment techniques or simulation studies are
470 needed to help disentangle the various mechanisms behind mortality, catchability, and
471 recruitment -- all of which are highly variable across space – and their impacts within the stock
472 assessment (e.g., what is the risk of misspecification of the mechanism?).

473 Recent events highlighting the unpredictable nature of both the environment and economy
474 (e.g., COVID-19), combined with the lack of or lags associated with data collection, highlight
475 the importance of building relationships and obtaining insights from fishermen “on the water”
476 who could help identify unfavorable situations (e.g., concerning drops in abundance) or when
477 important factors are at play. Such information could then allow for quick turn-around, e.g.,
478 forecast potential risks with projections. Alternatively, interim assessment approaches could be
479 developed to quickly determine whether the projected population dynamics deviate from
480 expectation, potentially due to environmental factors, without having to directly incorporate and
481 understand the exact mechanistic causes of abundance fluctuations (SEFSC, 2019; Huynh et al.,
482 2020). For example, the 2020 interim analysis conducted for Gulf red grouper employed an
483 index-based harvest control rule that compared the forecasted relative abundance with the
484 observed relative abundance derived from the NMFS bottom longline survey (SEFSC, 2019).
485 This analysis confirmed that the 2018 red tide event had a notable impact on the population, and
486 that the assumption of high red tide mortality in 2018 (i.e., approximating the 2005 red tide)
487 made during the projections used to determine catch advice was appropriate. Such interim
488 approaches are valuable “health checks” and will allow more adaptive management in the face of
489 a changing climate.

490 Focusing solely on incorporating the environment into a single-species stock assessment
491 ultimately may not be the best use of resources. Rather than, or in addition to, direct

incorporation into the stock assessment model, environmental considerations can also support the assessment process through other means, such as rationale for setting of precautionary catch buffers that acknowledge the potential for re-occurrence of fish die-offs (Harford et al., 2018). In addition, decision tables can be used to communicate alternative states of nature, such as those presented during the 2019 Gulf red grouper assessment which projected stock conditions across a range of potential 2018 red tide severity scenarios for consideration by managers when setting catch advice (SEDAR, 2019; Sagarese et al., 2021). In reality, and particularly where resources are limited, moving beyond traditional single-species stock assessment will likely require an “outside-the-box” multi-disciplinary approach. While grouper assessments that include red tide considerations in the Gulf represent a noteworthy step towards implementing ecosystem-based fisheries management, continued data collection on how red tides affect marine resources and continued community and stakeholder engagements are needed to gain an understanding of the historical timing and impact of red tide events.

Author credit statement

Both authors contributed via conceptualization, methodology, and writing - review and editing. WH conducted the analyses.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank all the researchers and stakeholders for their contributions to the Gulf red grouper stock assessments, as well as Richard Methot Jr. for his guidance throughout the process. This work would not have been possible without the efforts of NOAA/National Marine Fisheries Service staff, GMFMC staff, state partners, and academic partners. Additional thanks are extended to M. Karnauskas, L. Ailloud, K. Siegfried, and the reviewers for their input. This work was supported by the National Oceanic and Atmospheric Administration Marine Fisheries Initiative Program. This research was carried out [in part] under the auspices of the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), a Cooperative Institute of the University of Miami and the National Oceanic and Atmospheric Administration, cooperative agreement #NA10OAR4320143. The scientific results and conclusions, as well as any views and opinions expressed herein, are those of the authors and do not necessarily reflect those of any government agency.

References

Abbott, B., Siger, A., Spiegelstein, M., 1975. Toxins from the blooms of *Gymnodinium breve*, in: LoCicero, V.R. (Ed.), Proceedings of the First International Conference on Toxic Dinoflagellate Blooms. Massachusetts Science and Technology Foundation, Wakefield, MA, pp. 355–365.

Baden, D., 1988. Public health problems of red tides, in: Tu, A.T. (Ed.), Handbook of Natural Toxins. Marcel Dekker, New York, NY, pp. 259–277.

Bousquet, N., Cadigan, N., Duchesne, T., Rivest, L.P., 2010. Detecting and correcting underreported catches in fish stock assessment: trial of a new method. Can. J. Fish. Aquat. Sci. 67(8), 1247–1261. <https://doi.org/10.1139/F10-051>.

538 Chagaris, D., Sinnickson, D., 2018. An index of red tide mortality on red grouper in the Eastern
539 Gulf of Mexico. SEDAR61-WP06. SEDAR, North Charleston, SC, 16 pp.
540 https://sedarweb.org/docs/wpapers/S61_WP_06_red_tide_mortality_index.pdf.

541 Cook, G.S., Fletcher, P.J., Kelble, C.R., 2014. Towards marine ecosystem based management in
542 South Florida: investigating the connections among ecosystem pressures, states, and
543 services in a complex coastal system. *Ecol. Indic.* 44, 26–39.
544 <https://doi.org/10.1016/j.ecolind.2013.10.026>.

545 Dell'Apia, A., Fullerton, A., Schwing, F., Brady, M.M., 2015. The status of marine and coastal
546 ecosystem-based management among the network of U.S. federal programs. *Mar. Policy*
547 60, 249–258. <https://doi.org/10.1016/j.marpol.2015.07.011>.

548 Deroba, J.J., Schueller, A.M., 2013. Performance of stock assessments with misspecified age-and
549 time-varying natural mortality. *Fish. Res.* 146, 27–40.
550 <https://doi.org/10.1016/j.fishres.2013.03.015>.

551 DiLeone, A.G., Ainsworth, C., 2019. Effects of *Karenia brevis* harmful algal blooms on fish
552 community structure on the West Florida Shelf. *Ecol. Mod.* 392, 250–267.
553 <https://doi.org/10.1016/j.ecolmodel.2018.11.022>.

554 Driggers, W.B., Campbell, M.D., Debose, A.J., Hannan, K.M., Hendon, M.D., Martin, T.L.,
555 Nichols, C.C., 2016. Environmental conditions and catch rates of predatory fishes
556 associated with a mass mortality on the West Florida Shelf. *Est. Coast. Shelf Sci.* 168,
557 40–49. <https://doi.org/10.1016/j.ecss.2015.11.009>.

558 Flaherty, K.E., Landsberg, J.H., 2011. Effects of a persistent red tide (*Karenia brevis*) bloom on
559 community structure and species-specific relative abundance of nekton in a Gulf of
560 Mexico estuary. *Estuar. Coast.* 34(2), 417–439. <https://doi.org/10.1007/s12237-010-9350-x>.

561 Fu, C., Quinn II, T.J., 2000. Estimability of natural mortality and other population parameters in
562 a length-based model: *Pandalus borealis* in Kachemak Bay, Alaska. *Can. J. Fish. Aquat.*
563 Sci. 57(12), 2420–2432. <https://doi.org/10.1139/f00-220>.

564 Gårdmark, A., Östman, Ö., Nielsen, A., Lundström, K., Karlsson, O., Pönni, J., Aho, T., 2012.
565 Does predation by grey seals (*Halichoerus grypus*) affect Bothnian Sea herring stock
566 estimates? *ICES J. Mar. Sci.* 69(8), 1448–1456. <https://doi.org/10.1093/icesjms/fss099>.

567 Grüss, A., Schirripa, M.J., Chagaris, D., Drexler, M., Simons, J., Verley, P., Shin, Y.-J.,
568 Karnauskas, M., Oliveros-Ramos, R., Ainsworth, C.H., 2015. Evaluation of the trophic
569 structure of the West Florida Shelf in the 2000s using the ecosystem model OSMOSE. *J.*
570 *Mar. Syst.* 144, 30–47. <https://doi.org/10.1016/j.jmarsys.2014.11.004>.

571 Harford, W.J., Grüss, A., Schirripa, M.J., Sagarese, S.R., Bryan, M., Karnauskas, M., 2018.
572 Handle with care: establishing catch limits for fish stocks experiencing episodic natural
573 mortality events. *Fisheries* 43, 463–471. <https://doi.org/10.1002/fsh.10131>.

574 Hoenig, J.M., 1983. Empirical use of longevity data to estimate mortality rates. *Fish. Bull.* 82,
575 898–903.

576 Huynh, Q.C., Hordyk, A.R., Forrest, R.E., Porch, C.E., Anderson, S.C., Carruthers, T.R., 2020.
577 The interim management procedure approach for assessed stocks: responsive
578 management advice and lower assessment frequency. *Fish. Fish.* 21(3), 663–679.
579 <https://doi.org/10.1111/faf.12453>.

580 Jiao, Y., Smith, E.P., O'Reilly, R., Orth, D.J., 2012. Modelling non-stationary natural mortality
581 in catch-at-age models. *ICES J. Mar. Sci.* 69(1), 105–118.
582 <https://doi.org/10.1093/icesjms/fsr184>.

584 Johnson, K.F., Monnahan, C.C., McGilliard, C.R., Vert-Pre, K.A., Anderson, S.C., Cunningham,
585 C.J., Hurtado-Ferro, F., Licandeo, R.R., Muradian, M.L., Ono, K., Szuwalski, C.S., 2015.
586 Time-varying natural mortality in fisheries stock assessment models: identifying a default
587 approach. *ICES J. Mar. Sci.* 72(1), 137–150. <https://doi.org/10.1093/icesjms/fsu055>.

588 Karnauskas, M., McPherson, M., Sagarese, S., Rios, A., Jepson, M., Stoltz, A., Blake, S., 2019.
589 Timeline of severe red tide events on the West Florida Shelf: insights from oral histories.
590 SEDAR61-WP20. SEDAR, North Charleston, SC, 16 pp.
591 https://sedarweb.org/docs/wpapers/S61_WP_20_Karnauskasetal_red_tide.pdf.

592 Kiel, B.L., 2004. Homing and spatial use of gag grouper, *Mycteroperca microlepis*. MS thesis,
593 University of Florida, Gainesville, FL.

594 Landsberg, J.H., 2002. The effects of harmful algal blooms on aquatic organisms. *Rev. Fish. Sci.*
595 10(2), 113–390. <https://doi.org/10.1080/20026491051695>.

596 Landsberg, J.H., Flewelling, L.J., Naar, J., 2009. *Karenia brevis* red tides, brevetoxins in the
597 food web, and impacts on natural resources: decadal advancements. *Harmful Algae* 8,
598 598–607. <https://doi.org/10.1016/j.hal.2008.11.010>.

599 Lee, H.H., Maunder, M.N., Piner, K.R., Methot, R.D., 2011. Estimating natural mortality within
600 a fisheries stock assessment model: an evaluation using simulation analysis based on
601 twelve stock assessments. *Fish. Res.* 109(1), 89–94.
602 <https://doi.org/10.1016/j.fishres.2011.01.021>.

603 Legault, C.M., Palmer, M.C., 2016. In what direction should the fishing mortality target change
604 when natural mortality increases within an assessment? *Can. J. Fish. Aquat. Sci.* 73(3),
605 349–357. <https://doi.org/10.1139/cjfas-2015-0232>.

606 Levin, P.S., Fogarty, M.J., Murawski, S.A., Fluharty, D., 2009. Integrated ecosystem
607 assessments: developing the scientific basis for ecosystem-based management of the
608 ocean. *PLoS Biol.* 7, e1000014. <https://doi.org/10.1371/journal.pbio.1000014>.

609 Lindberg, W.J., Frazer, T.K., Portier, K.M., Vose, F., Loftin, F., Murie, D.J., Mason, D.M.,
610 Nagy, B., Hart, M.K., 2006. Density-dependent habitat selection and performance by a
611 large mobile reef fish. *Ecol. Appl.* 16(2), 731–746. [https://doi.org/10.1890/1051-0761\(2006\)016\[0731:DHSAPB\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2006)016[0731:DHSAPB]2.0.CO;2).

612 Lorenzen, K., 2005. Population dynamics and potential of fisheries stock enhancement: practical
613 theory for assessment and policy analysis. *Philos. Trans. R. Soc. Lond., B, Biol. Sci.* 360,
614 171–189. <https://doi.org/10.1098/rstb.2004.1570>.

615 Marshall, K.N., Levin, P.S., Essington, T.E., Koehn, L.E., Anderson, L.G., Bundy, A., Carothers,
616 C., Coleman, F., Gerber, L.R., Grabowski, J.H., Houde, E., 2018. Ecosystem-based
617 fisheries management for social–ecological systems: renewing the focus in the United
618 States with next generation fishery ecosystem plans. *Conserv. Lett.* 11(1), e12367.
619 <https://doi.org/10.1111/conl.12367>.

620 Matich, P., Heithaus, M.R., 2012. Effects of an extreme temperature event on the behavior and
621 age structure of an estuarine top predator, *Carcharhinus leucas*. *Mar. Ecol. Prog. Ser.*
622 447, 165–178. <https://doi.org/10.3354/meps09497>.

623 Methot, R.D., Wetzel, C.R., 2013. Stock synthesis: a biological and statistical framework for fish
624 stock assessment and fishery management. *Fish. Res.* 142, 86–99.
625 <https://doi.org/10.1016/j.fishres.2012.10.012>.

626 Methot, R.D., Wetzel, C.R., Taylor, I.G., Doering, K., 2020. Stock Synthesis User Manual
627 Version 3.30.15. U.S. Department of Commerce, NOAA Processed Report NMFS-
628 NWFSC-PR-2020-05. <https://doi.org/10.25923/5wpn-qt71>.

630 Methot, R.D., Wetzel, C.R., Taylor, I.G., Doering, K., Johnson, K.F., 2021. Stock Synthesis User
 631 Manual Version 3.30.18. U.S. Department of Commerce. Available for download at
 632 <https://github.com/nmfs-stock-synthesis/doc/releases> (accessed 31 January 2022).

633 O'Leary, C.A., Thorson, J.T., Miller, T.J., Nye, J.A., 2020. Comparison of multiple approaches
 634 to calculate time-varying biological reference points in climate-linked population-
 635 dynamics models. *ICES J. Mar. Sci.* 77(3), 930–941.
 636 <https://doi.org/10.1093/icesjms/fsz215>.
 637

638 Piner, K.R., Lee, H.-H., Maunder, M.N., Methot, R.D., 2011. A simulation-based method to
 639 determine model misspecification: examples using natural mortality and population
 640 dynamics models. *Mar. Coast. Fish.* 3, 336–343.
 641 <https://doi.org/10.1080/19425120.2011.611005>.

642 Reum, J.C., Townsend, H., Gaichas, S., Sagarese, S., Kaplan, I.C., Grüss, A., 2021. It's not the
 643 destination, it's the journey: multispecies model ensembles for ecosystem approaches to
 644 fisheries management. *Front. Mar. Sci.* 8, 75. <https://doi.org/10.3389/fmars.2021.631839>.

645 Sagarese, S.R., Bryan, M.D., Walter, J.F., Schirripa, M.J., Grüss, A., Karnauskas, M., 2015. Incorporating ecosystem considerations within the Stock Synthesis integrated assessment
 646 model for Gulf of Mexico Red Grouper (*Epinephelus morio*). SEDAR42-RW01.
 647 SEDAR, North Charleston, SC, 27 pp.
 648 https://sedarweb.org/docs/wpapers/S42_RW_01_red_tide.pdf.

649 Sagarese, S.R., Lauretta, M.V., Walter III, J.F., 2017. Progress towards a next-generation
 650 fisheries ecosystem model for the northern Gulf of Mexico. *Ecol. Mod.* 345, 75–98.
 651 <https://doi.org/10.1016/j.ecolmodel.2016.11.001>.

652 Sagarese, S.R., Walter III, J.F., Harford, W.J., Grüss, A., Stumpf, R.P., Christman, M.C., 2018. Updating indices of red tide severity for incorporation into stock assessments for the
 653 shallow-water grouper complex in the Gulf of Mexico. SEDAR61-WP07. SEDAR, North
 654 Charleston, SC, 12 pp. http://sedarweb.org/docs/wpapers/S61_WP_07_Red_Tide_Severity_SWG.pdf.

655 Sagarese, S.R., Vaughan, N.R., Walter III, J.F., Karnauskas, M., 2021. Enhancing single-species
 656 stock assessments with diverse ecosystem perspectives: a case study for Gulf of Mexico
 657 Red Grouper (*Epinephelus morio*) and red tides. *Can. J. Fish. Aquat. Sci.* 78, 1168–1180.
 658 <https://doi.org/10.1139/cjfas-2020-0257>.

659 Saul, S., Walter III, J., Die, D., Naar, D., Donahue, B., 2013. Modeling the spatial distribution of
 660 commercially important reef fishes on the West Florida Shelf. *Fish. Res.* 143, 12–20.
 661 <https://doi.org/10.1016/j.fishres.2013.01.002>.

662 Schirripa, M.J., Methot, R.D., et al., 2013. Incorporating various Gulf of Mexico Integrated
 663 Ecosystem Assessment products into the Stock Synthesis Integrated Assessment Model
 664 framework. SEDAR33-DW10. SEDAR, North Charleston, SC, 17 pp.
 665 https://sedarweb.org/docs/wpapers/SEDAR33-DW10-Schirripa%2C_Methot%2C_et_al_2013_Incorporation_ofIEA_Products_for_SEDAR_33.pdf.

666 SEDAR (Southeast Data, Assessment, and Review), 2006a. SEDAR 10 Gulf of Mexico Gag
 667 Grouper Stock Assessment Report. SEDAR, North Charleston, SC, 250 pp.
 668 https://sedarweb.org/docs/sar/S10SAR2_GOM_Gag_Assessment_Report.pdf.

669 SEDAR (Southeast Data, Assessment, and Review), 2006b. SEDAR 12 Gulf of Mexico Red
 670 Grouper Stock Assessment Report. SEDAR, North Charleston, SC, 358 pp.
 671 https://sedarweb.org/docs/sar/S12SAR1_Gulf_Red_Grouper_Completev2.pdf.
 672

673

676 SEDAR (Southeast Data, Assessment, and Review), 2009a. SEDAR 10 Update Gulf of Mexico
677 Gag Grouper Stock Assessment Report. SEDAR, North Charleston, SC, 171 pp.
678 https://sedarweb.org/docs/suar/Gag_2009_Assessment_Update_Report.pdf.

679 SEDAR (Southeast Data, Assessment, and Review), 2009b. SEDAR 12 Update Gulf of Mexico
680 Red Grouper Stock Assessment Report. SEDAR, North Charleston, SC, 143 pp.
681 https://sedarweb.org/docs/suar/Red_Grouper_2009_Assessment_Update_Report.pdf.

682 SEDAR (Southeast Data, Assessment, and Review), 2014. SEDAR 33 Gulf of Mexico Gag
683 Stock Assessment Report. SEDAR, North Charleston, SC, 609 pp.
684 https://sedarweb.org/docs/sar/SEDAR_33_SAR-Gag_Stock_Assessment_Report_FINAL_sizereduced.pdf.

685 SEDAR (Southeast Data, Assessment, and Review), 2015. SEDAR 42 Gulf of Mexico Red
686 Grouper Stock Assessment Report. SEDAR, North Charleston, SC, 612 pp.
687 https://sedarweb.org/docs/sar/S42_SAR_0.pdf.

688 SEDAR (Southeast Data, Assessment, and Review), 2019. SEDAR 61 Gulf of Mexico Red
689 Grouper Stock Assessment Report. SEDAR, North Charleston, SC, 285 pp.
690 https://sedarweb.org/docs/sar/S61_Final_SAR.pdf.

691 SEDAR (Southeast Data, Assessment, and Review), 2021. SEDAR 72 Gulf of Mexico Gag
692 Grouper Stock Assessment Report. SEDAR, North Charleston, SC, 318 pp.
693 https://sedarweb.org/docs/sar/S72_SAR_FINAL.pdf.

694 SEFSC (Southeast Fisheries Science Center), 2019. Interim analysis for Gulf of Mexico Red
695 Grouper. Technical Report prepared for the January 2020 Gulf of Mexico Fishery
696 Management Council Scientific and Statistical Committee Meeting. SEFSC, Miami, FL,
697 9 pp. <https://gulfcouncil.org/scientific-and-statistical-meetings/archive/> (item 08a
698 downloaded via meeting materials).

699 Smith, G.B., 1975. The 1971 red tide and its impact on certain reef communities in the mid-
700 eastern Gulf of Mexico. Environ. Lett. 9(2), 141–152.
701 <https://doi.org/10.1080/00139307509435843>.

702 Steidinger, K.A., 2009. Historical perspective on *Karenia brevis* red tide research in the Gulf of
703 Mexico. Harmful Algae 8, 549–561. <https://doi.org/10.1016/j.hal.2008.11.009>.

704 Steidinger, K.A., Haddad, K., 1981. Biologic and hydrographic aspects of red tides. Bioscience
705 1981, 814–819. <https://doi.org/10.2307/1308678>.

706 Steidinger, K.A., Ingle, R.M., 1972. Observations on the 1971 summer red tide in Tampa Bay,
707 Florida. Environ. Lett. 3(4), 271–278. <https://doi.org/10.1080/00139307209435473>.

708 Steidinger, K.A., Vargo, G.A., 1988. Marine dinoflagellate blooms: dynamics and impacts, in:
709 Lembi, C., Waaland, J.R. (Eds.), Algae and Human Affairs. Cambridge University Press,
710 Cambridge, UK, pp. 373–401.

711 Turley, B., Kelble, C., Karnauskas, M., 2021. Association between hypoxia and red tide between
712 2003-2019 on the West Florida Shelf. SEDAR72-DW10. SEDAR, North Charleston, SC,
713 14 pp. https://sedarweb.org/docs/wpapers/S72_WP_10_gag_hypoxia.pdf.

714 Vilas, D., Chagaris, D., Buczkowski, J., 2020. Red tide mortality on gag grouper from 2002-
715 2018 generated by an Ecospace model of the West Florida Shelf. SEDAR72-WP01.
716 SEDAR, North Charleston, SC, 17 pp.
717 https://sedarweb.org/docs/wpapers/S72_WP_01_red_tide_Mortality_Ecospace_v3.pdf.

718 Walter, J.F., Christman, M.C., Landsberg, J.H., Linton, B., Steidinger, K., Stumpf, R., Tustison,
719 J., 2013. Satellite derived indices of red tide severity for input for Gulf of Mexico Gag
720 grouper stock assessment. SEDAR33-DW08. SEDAR, North Charleston, SC, 43 pp.

721

722 https://sedarweb.org/docs/wpapers/SEDAR33-DW08- Walter et al. 2013 red tide indices
723 for Gag.pdf.
724 Walter III, J.F., Sagarese, S.R., Harford, W.J., Grüss, A., Stumpf, R.P., Christman, M.C., 2015.
725 Assessing the impact of the 2014 red tide event on red grouper (*Epinephelus morio*) in
726 the Northeastern Gulf of Mexico. SEDAR42-RW02. SEDAR, North Charleston, SC, 27
727 pp. https://sedarweb.org/docs/wpapers/S42_RW_02_Red Tide event_2014_Final_v2.pdf.
728
729

730 **Figure Captions**

731 Fig. 1. Summary of life history and fishery dynamics for Gulf red grouper.

732
733 Fig. 2. Data sources included in the Gulf red grouper assessment model. Values in parentheses
734 are the SE for each data input assumed in the model where necessary, whereas values in the
735 boxes are input sample sizes set to the square root of the number of observations for composition
736 data. Distributions are described in the text.

737
738 Fig. 3. Derived quantities for Gulf red grouper model runs where red tide mortality affects ages-
739 0+ (red) and ages-5+ (blue). Metrics include (A) total biomass, (B) SSB, (C) SSB ratio, (D)
740 recruitment, and (E) mortality including fishing mortality (lines, landings + dead discards) and
741 red tide mortality in years where estimated (vertical bars).

742
743 Fig. 4. Histograms of relative bias in terminal year (2017) spawning stock biomass (SSB) and
744 fishing mortality rate (F) for simulations from two operating models (OMs; columns) and with
745 fitting according to four assessment model configurations (AMs; rows). Note that x- and y-axes
746 differ between panels, the thin dashed lines represent the 25th and 75th percentiles, and the thick
747 dashed line represents the median.

748
749 Fig. 5. Histograms of relative bias in virgin recruitment (R_0) and inter-annual recruitment
750 variability (σ_R) for simulations from two operating models (OMs; columns) and with fitting
751 according to four assessment model configurations (AMs; rows). Note that x- and y-axes differ
752 between panels, the thin dashed lines represent the 25th and 75th percentiles, and the thick
753 dashed line represents the median.

754
755 Fig. 6. Histograms of relative bias in red tide mortality (fraction of biomass killed by red tide) in
756 2005 and 2014 for simulations from two operating models and with fitting according to
757 assessment model configurations that included estimation of these quantities. Note that x- and y-
758 axes differ between panels, the thin dashed lines represent the 25th and 75th percentiles, and the
759 thick dashed line represents the median.

760
761 Fig. 7. Annual red tide mortality estimates (apical rates and proportion of biomass killed)
762 obtained from AM4 for simulations from two operating models (OMs). Box plots show
763 distribution of estimates across simulations according to median estimates (thick lines), inter-
764 quartile range (boxes), 1.5 time the inter-quartile range (whiskers) and outliers (open circles).
765 Vertical bars indicate years with red tide mortality specified in each operating model. Note that
766 y-axes differ between panels.

768 Fig. 8. Annual relative bias of age-0 recruitment and estimated fishing mortality (landings + dead
 769 discards) for AM3 for simulations from two operating models (OMs). Box plots show
 770 distribution of bias across simulations according to median bias (thick lines), inter-quartile range
 771 (boxes), 1.5 time the inter-quartile range (whiskers) and outliers (open circles). Vertical bars
 772 indicate years with red tide mortality specified in each operating model.
 773
 774

775 Table 1. Summary of model structure for the Gulf red grouper base model. Additional details are
 776 provided in SEDAR (2019).

Process	Details
No. of areas and seasons	1
Modeled time period	1986-2017
Life history	
Age classes	0 to 20+ (plus group)
Length to weight	Fixed
Age to length	Von Bertalanffy growth with fixed asymptotic length ($L_\infty = 79.99$ cm Fork Length) and variability ($CV_{young} = 0.142$; $CV_{old} = 0.164$); estimated growth rate (K) and length at minimum age (1-year)
Natural mortality	Age-specific vector estimated externally and fixed; based on Lorenzen (2005) with Base $M = 0.144$ year $^{-1}$ (Hoenig 1983) and vulnerable to the fishery at 5 years
Maturity	Logistic function of age fixed; 50% at 2.8 years and 29.2 cm Fork Length
Sexual transition	Logistic function of age; 50% at 11.2 years and 70.7 cm Fork Length
Batch fecundity	Function of length and converted to age using the growth curve
Fecundity-at-age	Product of maturity-at-age, transition-at-age, and batch fecundity-at-age; fixed
Recruitment	
Stock-recruit relationship	Beverton-Holt
Steepness	Fixed at 0.99 (for convenience of projections; not biologically realistic)
Natural logarithm of virgin recruitment ($\ln(R_0)$)	Estimated
Recruitment variability (σ_R)	Estimated
Recruitment deviations	Estimated from 1993-2017 (age composition data start in 1991); no early estimates
Commercial	
Vertical line and longline	
Length-based selectivity	Dome-shaped; estimated peak and width of plateau parameters; fixed ascending and descending width parameters; set initial and final selectivity parameters to decay
Retention: 1986-1989	Fixed at full retention for all sizes
Retention: 1990-2008	Fixed inflection at federal size limit and at full retention; fixed knife-edge for vertical line but estimated width parameter for longline
Retention: 2009-2017	Fixed inflection at federal size limit and at full retention; estimated width parameter
Trap	
Length-based selectivity	Dome-shaped; estimated peak and width of plateau parameters; fixed ascending and descending width parameters; set initial and final selectivity parameters to decay
Retention: 1986-1989	Fixed at full retention for all sizes
Retention: 1990-2006	Fixed inflection at federal size limit, knife-edge, and at full retention
Recreational	
Length-based selectivity	Dome-shaped; estimated peak, width of plateau, ascending and descending width parameters; set initial and final selectivity parameters to decay
Retention: 1986-1989	Fixed at full retention above Florida state size limit
Retention: 1990-2017	Fixed inflection at federal size limit and knife-edge; estimated asymptote due to bag limits

Fishery-independent survey

Combined video	Logistic; estimated size at inflection and width for 95% selection parameters
Summer groundfish	Dome-shaped; estimated peak, width of plateau, ascending and descending width parameters; set initial and final selectivity parameters to decay
Bottom longline	Logistic; estimated size at inflection and width for 95% selection parameters
Repetitive time drop	Logistic; estimated size at inflection and width for 95% selection parameters

777 Table 2. Differences in red tide configurations between operating models (OMs) and assessment
 778 models (AMs) and scenarios (X) testing the performance of the bycatch fleet approach to
 779 estimating red tide mortality.

Red tide specifications	AM1 / OM1	AM2 / OM2	AM3	AM4
Red tide mortality estimated	2005 and 2014	2005 and 2014	-	1986-2017
Constant selectivity	Ages 0+	Ages 5+	-	Ages 0+
Model	AM1	AM2	AM3	AM4
OM1	X (Self-test)	X	X	X
OM2	X	X (Self-test)	X	X

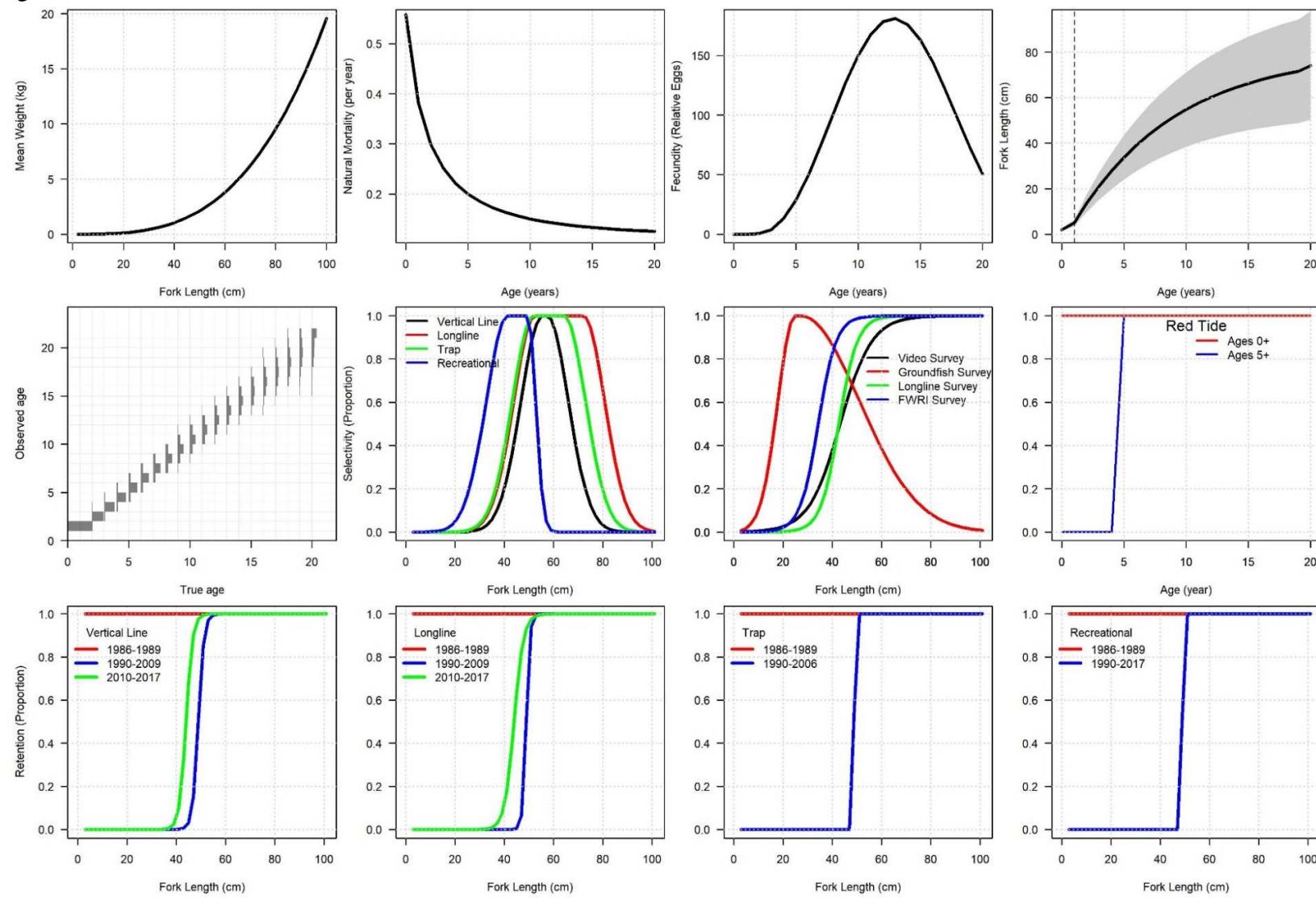
780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808

809
810
811
812
813

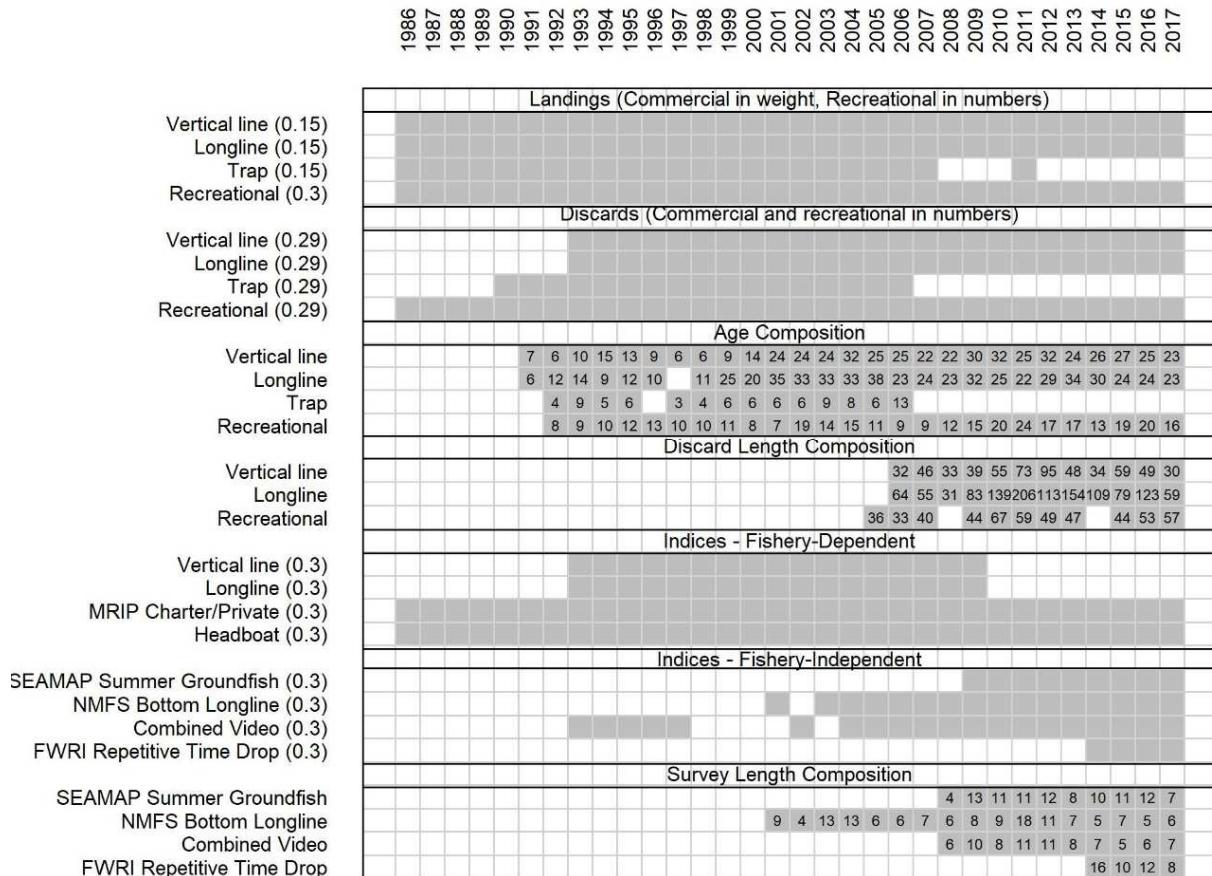
814 Table 3. Comparison of model performance and key parameter estimates (with coefficients of
815 variation) for base model (OM1) and the sensitivity run with red tides affecting ages 5+.

Metric	OM1	OM2
Model Performance		
Negative log-likelihood	537.486	535.458
Gradient	0.000105	0.000156
Number of estimated parameters (bounded)	178 (0)	178 (0)
Correlations exceeding 0.7 (0.95)	6 (0)	5 (0)
Parameters with CVs exceeding 1	8 (recruitment deviations)	11 (recruitment deviations)
Parameter Estimates		
Initial fishing mortality rate (year ⁻¹)		
Commercial vertical line	0.129 (0.187)	0.128 (0.187)
Commercial longline	0.090 (0.200)	0.089 (0.200)
Commercial trap	0.019 (0.219)	0.019 (0.219)
Recreational	0.245 (0.204)	0.245 (0.204)
Recruitment variability (σ_R)	0.815 (0.137)	0.860 (0.136)
Natural log of virgin recruitment ($\ln(R_0)$)	9.925 (0.004)	9.931 (0.004)
Unfished SSB (relative eggs)	2,494,130 (0.035)	2,509,200 (0.036)
2017 SSB (relative eggs)	613,517 (0.103)	661,791 (0.106)
2017 SSB/unfished SSB	0.246 (0.099)	0.264 (0.100)
2017 Fishing mortality	0.160 (0.140)	0.148 (0.143)
Virgin recruitment (1000s of fish)	20,443 (0.035)	20,567 (0.036)
2005 red tide mortality rate (year ⁻¹)	0.339 (0.309)	0.469 (0.255)
2005 percent of biomass killed by red tide	29.5%	32.3%
2014 red tide mortality rate (year ⁻¹)	0.257 (0.429)	0.369 (0.346)
2014 percent of biomass killed by red tide	21.3%	27.3%
Stock Status		
F reference point ($F_{MSYproxy}$)	0.259	0.259
Current F (2015-2017 mean)	0.203	0.192
Overfishing occurring (Current F/ $F_{MSYproxy}$)	No (0.77)	No (0.74)
SSB reference point (0.5SSB _{MSYproxy})	374,120	376,402
Overfished (2017 SSB/0.5SSB _{MSYproxy})	No (1.64)	No (1.76)

816
817


818
819
820
821

822 Table 4. Performance of derived quantities for simulations from two operating models (OMs)
823 and with fitting according to four assessment model configurations (AMs).


Model	Precision of estimator (CV)				Median relative bias of estimator			
	AM1	AM2	AM3	AM4	AM1	AM2	AM3	AM4
Terminal (2017) Spawning Stock Biomass								
OM1	0.104	0.106	0.110	0.127	-0.008	0.047	-0.032	0.075
OM2	0.096	0.095	0.102	0.118	-0.049	0.026	-0.070	0.056
Terminal (2017) Fishing Mortality								
OM1	0.135	0.137	0.141	0.557	-0.046	-0.091	-0.025	0.005
OM2	0.130	0.129	0.135	0.581	0.000	-0.070	0.018	0.016
Virgin Recruitment ($\ln(R_0)$)								
OM1	0.003	0.003	0.003	0.010	-0.001	-0.001	-0.005	0.016
OM2	0.003	0.003	0.003	0.010	-0.001	0.000	-0.005	0.019
Recruitment Variability (σ_R)								
OM1	0.085	0.096	0.087	0.083	-0.056	0.008	0.148	-0.056
OM2	0.073	0.084	0.086	0.072	-0.150	-0.116	0.044	-0.141
Unfished Spawning Stock Biomass (SSB_0)								
OM1	0.033	0.034	0.031	0.103	-0.012	-0.009	-0.045	0.172
OM2	0.033	0.034	0.030	0.103	-0.011	-0.002	-0.053	0.211
1986 Spawning Stock Biomass Ratio (SSB / SSB_0)								
OM1	0.070	0.069	0.067	0.095	0.091	0.095	0.126	0.110
OM2	0.071	0.071	0.067	0.100	0.085	0.084	0.129	0.107
2005 Red Tide Mortality (apical estimate)								
OM1	0.426	0.390	-	0.799	-0.365	-0.126	-	-0.536
OM2	0.343	0.281	-	0.658	-0.427	-0.134	-	-0.499
2014 Red Tide Mortality (apical estimate)								
OM1	0.424	0.439	-	0.841	-0.131	0.045	-	-0.411
OM2	0.399	0.334	-	0.716	-0.354	-0.053	-	-0.458
Biomass Removed by 2005 Red Tide								
OM1	-	-	-	-	-2.122	-1.882	-	-2.689
OM2	-	-	-	-	-1.784	-1.309	-	-2.034
Biomass Removed by 2014 Red Tide								
OM1	-	-	-	-	-0.115	-0.034	-	-0.377
OM2	-	-	-	-	-0.269	-0.043	-	-0.371

824
825
826

827 Fig. 1.

829 Fig. 2.

830

831

832

833

834

835

836

837

837

858

839

840

841

842

843

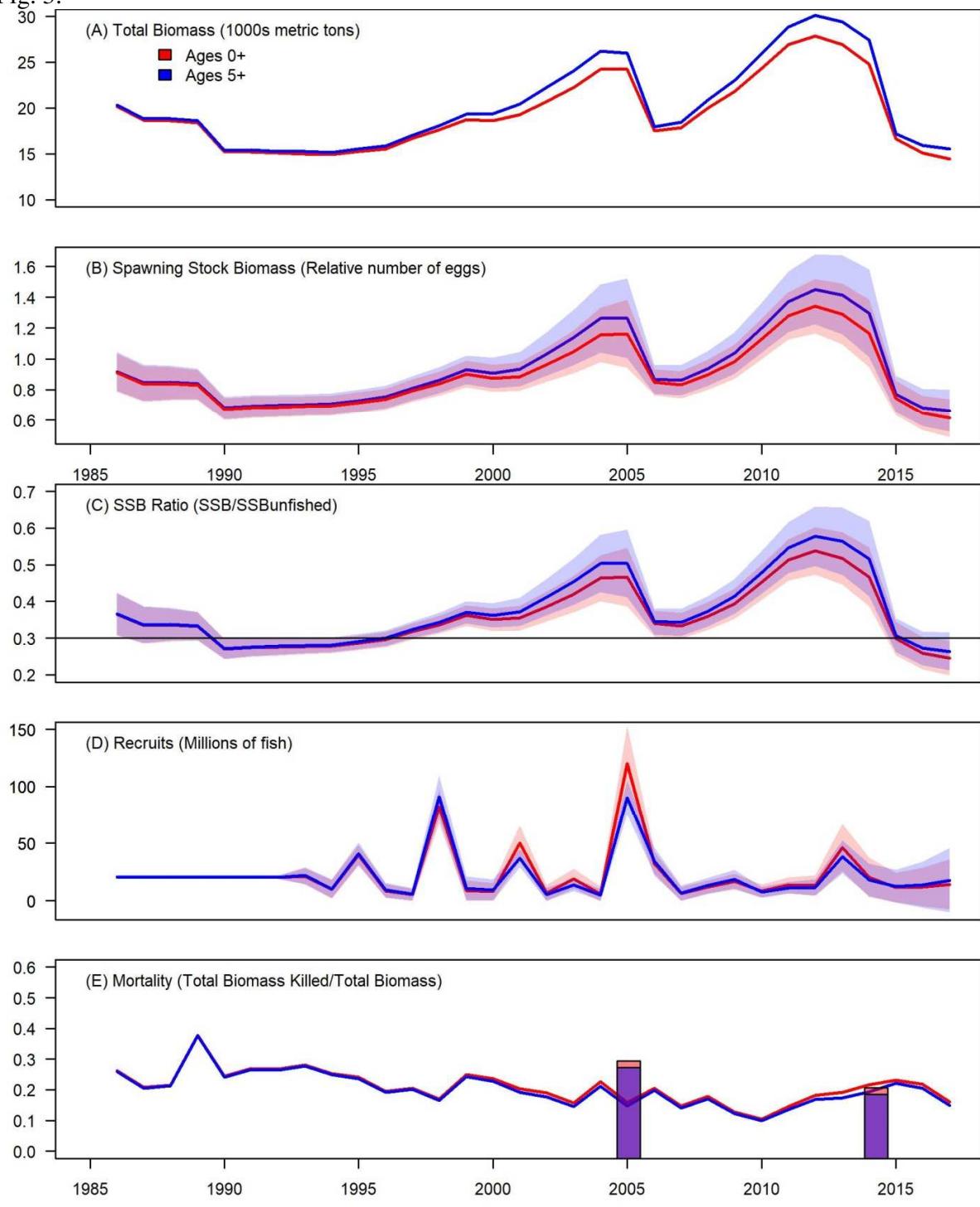
844

845

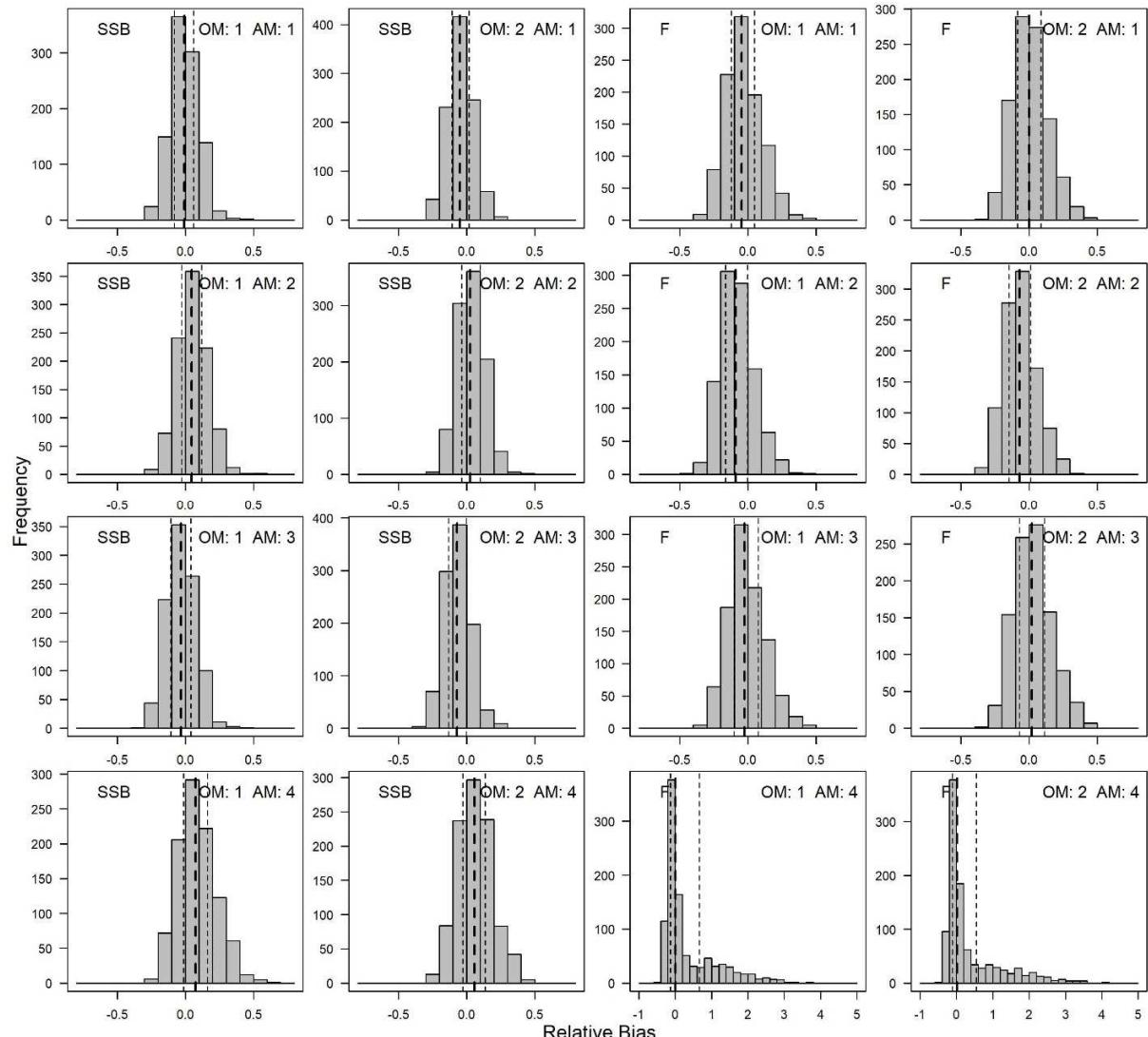
846

847

848

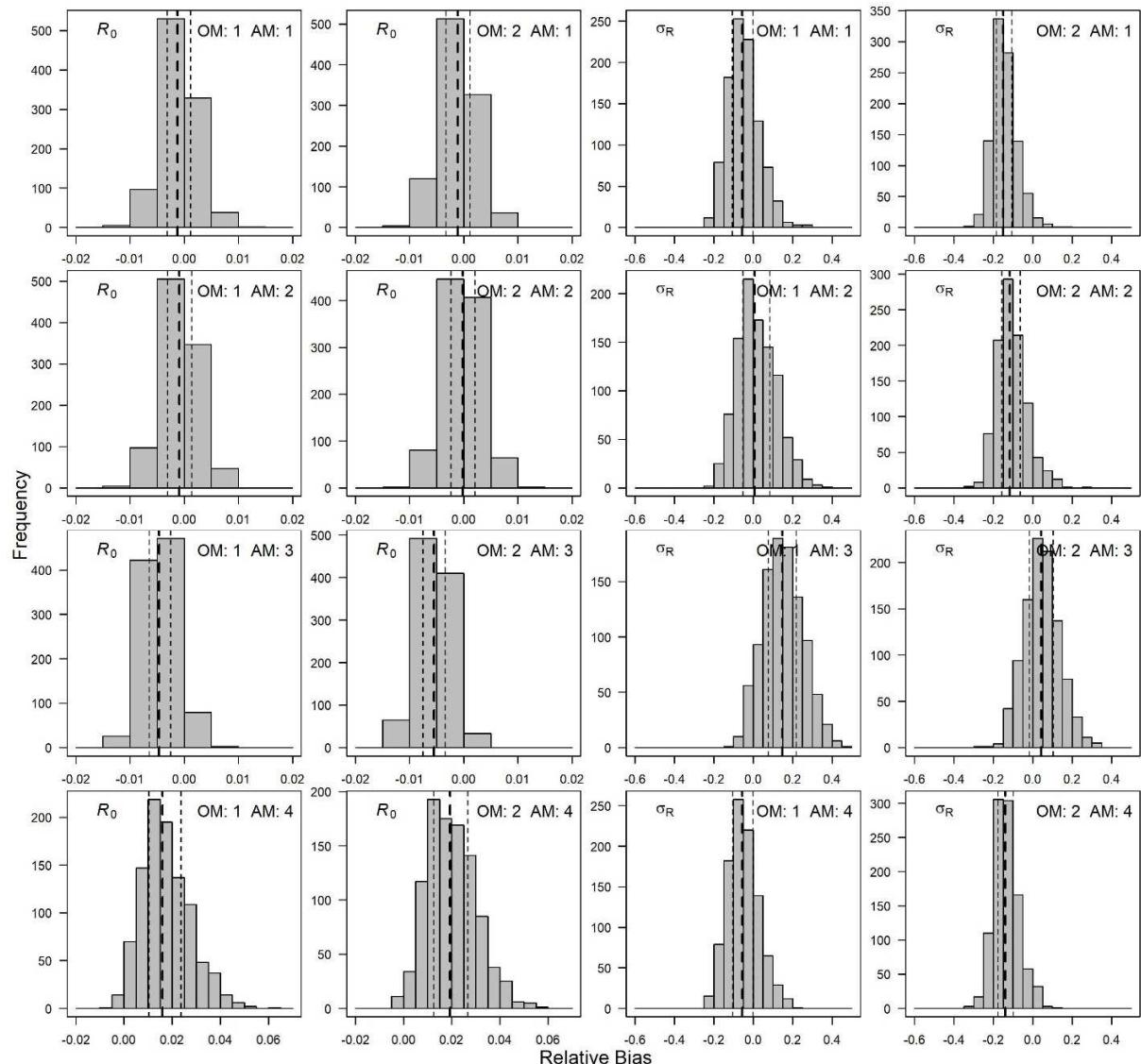

849

850

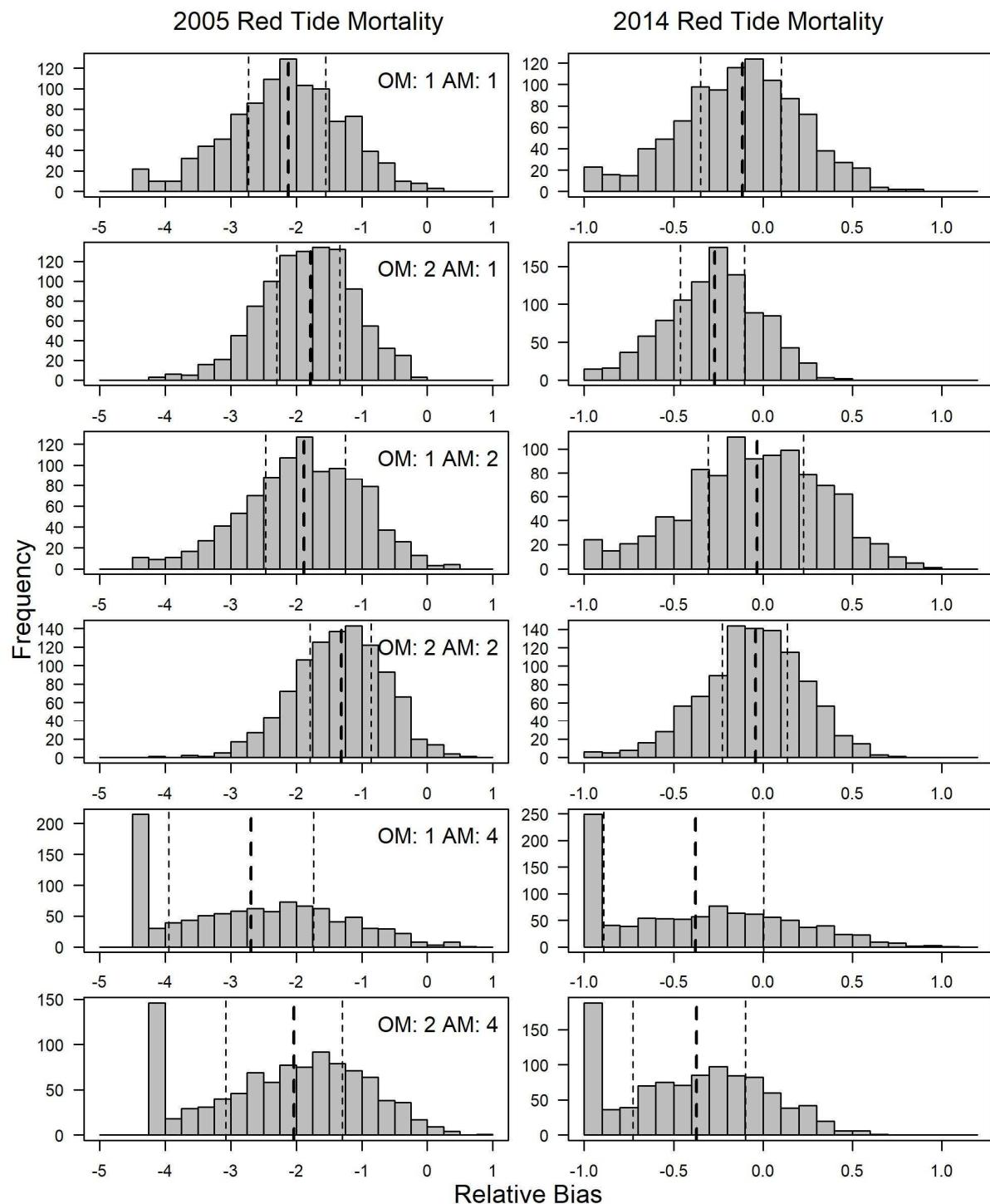

851

884

Fig. 3.

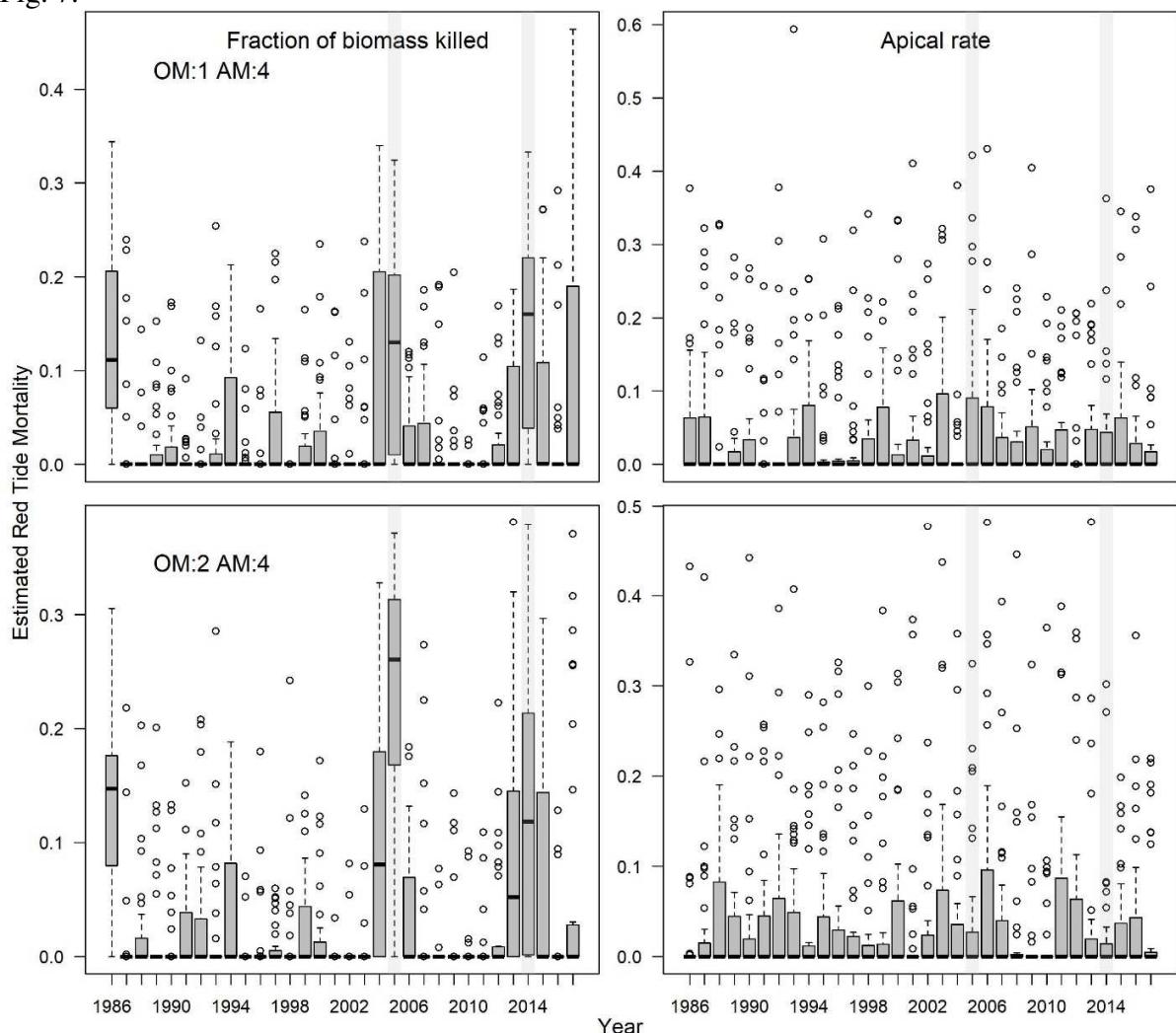


859 Fig. 4.


860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

875 Fig. 5.

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890


891 Fig. 6.

893
894
895
896
897
898

800

Fig. 7.

901

902

903

904

905

906

907

908

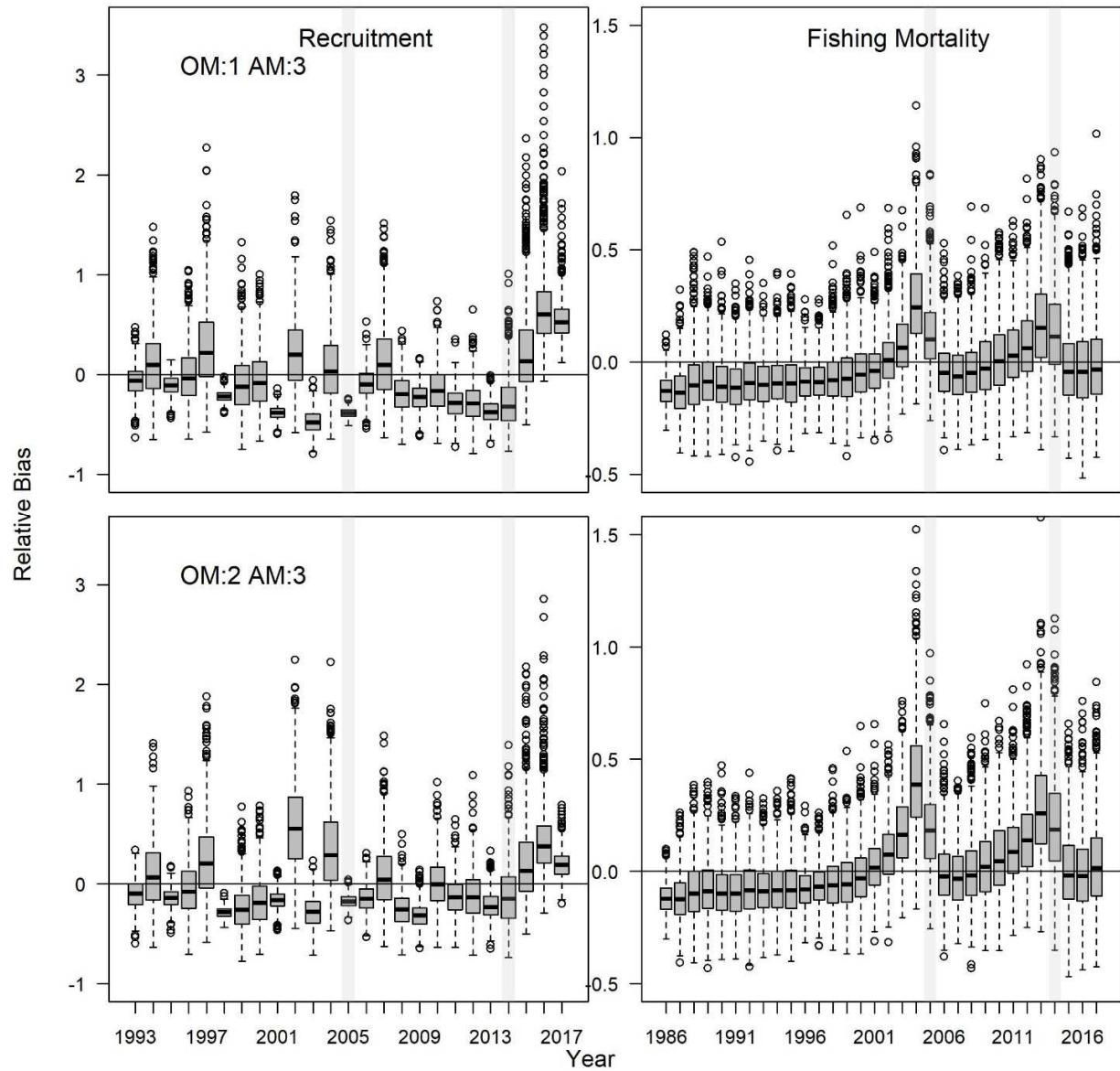
909

910

911

912

913


914

915

916

917

918 Fig. 8.

919