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Abstract20

Designing effective spatial management strategies is challenging because marine ecosystems

are highly dynamic and opaque, and extractive entities such as fishing fleets respond en-

dogenously to ecosystem changes in ways that depend upon ecological and policy context.

We present a modeling framework, marlin, that can be used to efficiently simulate the bio-

economic dynamics of marine systems in support of both management and research. We

demonstrate marlin’s capabilities by focusing on two case studies on the conservation and

food production impacts of marine protected areas (MPAs): a coastal coral reef and a pelagic

tuna fishery. In the coastal coral reef example, we explore how heterogeneity in species dis-

tributions and fleet preferences can affect distributional outcomes of MPAs. In the pelagic

case study, we show how our model can be used to assess the climate resilience of different

MPA design strategies, as well as the climate sensitivity of different fishing fleets. This paper

demonstrates how intermediate complexity simulation of coupled bio-economic dynamics can

help communities predict and potentially manage trade-offs between conservation, fisheries

yields, and distributional outcomes of management policies affected by spatial bio-economic

dynamics.
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Introduction

Communities around the world are increasingly looking to spatial strategies for managing ma-

rine ecosystems. For example, the “30x30” movement calls for implementation of marine

protected areas (MPAs), a form of spatial management, across 30% of the world’s oceans by

the year 2030 (Grorud-Colvert et al., 2021 and references therein). Recent agreements such

as the United Nations (UN) agreement on the conservation and sustainable use of marine bio-

diversity of areas beyond national jurisdiction (BBNJ) calls for expanded area-based manage-

ment in the high seas. However, designing spatial management strategies to achieve desired

objectives – which may include recovery and resilience of overfished species, increased food

production and economic well being, and equitable distribution of benefits - is not straight-

forward. Different species have different resilience to fishing, distributions in space and time,

and value to fishing fleets; fishing fleets themselves can have varying ranges of incentives and

reactions to policy structures. These dynamics pose challenges even for single-species assess-

ment and management strategies, which are only amplified when we consider management

policies designed around multiple species, fleets, and spatial features in the oceans (Field et

al., 2006).

To illustrate, policies such as MPAs designed for both conservation and food production must

consider factors such as the optimal size and placement of a protected area network given a

wide array of life history, species distributions, exploitation levels, fleet dynamics, and policy-

dependent behavior (Reimer et al., 2017), all of which may fluctuate over time, particularly

given the impacts of climate change. Efforts to effectively design spatial management strate-

gies such as MPAs are further constrained by a lack of empirical evidence describing the size

(Ovando, Caselle, et al., 2021) and time required (Nickols et al., 2019) for MPAs to produce
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substantial effects across a range of social-ecological settings (McClanahan, 2021).

Many models have been developed to support the theory and design of spatial management

strategies (see Fulton et al. (2015) for a review). However, these models have tended to

be either highly complex and tactical models designed for use in a specific location, or to

be extremely stylized representations intended to provide theoretical insights with less rele-

vance for specific applications. This lack of accessible models capable of representing reason-

able amounts of complexity presents a challenge to stakeholders charged with marine spatial

planning exercises. It also presents a barrier to the scientific community, wherein compar-

isons across spatial management simulation studies are clouded by discrepancies in underlying

model structures beyond differences in the core phenomenon in question.

To help address this challenge, we present a bio-economic modeling tool called marlin that

allows for efficient simulation of spatio-temporal biological and economic dynamics. marlin

allows users to simulate the impacts of marine management policies across a range of species

targeted by various fleets across heterogeneous and dynamic seascapes. This model can help

users seek Pareto-optimal solutions that produce win-wins or minimize trade-offs across mul-

tiple management objectives, such as food production and conservation (Lester et al., 2013).

Here we present the core methods and functionality of marlin, and demonstrate its use in

two case-study applications; a coral reef system and a pelagic system. Our results show how

interacting ecological, economic, and design attributes can affect the degree of benefits, costs,

and trade-offs between conservation and food production outcomes of MPAs. More broadly,

this paper demonstrates the functionality of our model and the critical need for considering

sufficiently realistic coupled ecological and economic dynamics in policy evaluations.
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Methods

The model presented here focuses on representing the dynamics of heterogeneous habitats and

movement dynamics, along with the simultaneous impacts of fishing fleets across multiple

species (frequently called “technical interactions”). In its general form, marlin simulates the

behavior of populations of spatially explicit biologically independent animal populations with

age and subsequent size structure affected by one or more fishing fleets in time steps and a

spatial resolution specified by the user.

The front end of the software package accompanying this paper, marlin, is written in R (R

Core Team, 2021) to facilitate use, while the underlying population model is written in C++,

integrated through the Rcpp package (Eddelbuettel & Balamuta, 2018). Users on standard

computers should be able to simulate one age-structured population distributed across two-

dimensional spatial surface represented by a ten by ten grid of cells over 20 years in fractions

of a second. It is very important to note that the parameters of this model cannot be fit to data

directly within the marlin package; users must set model parameters themselves based on

externally available data and their best judgement.

While marlin does not simulate species interactions, fishing fleets in marlin are capable of

targeting and affecting multiple species simultaneously. This allows the model to simulate

processes such as fisheries bycatch or effort displacement in a way that accounts for how fleet

behavior might affect multiple species in the system. The ability to track the impacts of fishing

fleets acrossmultiple species simultaneously is particularly important as very few fishing fleets

are truly single species.

We define a few commonly used terms here. Yields refers to the volume of catch from fishing
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activity. Spawning stock biomass refers to the total biomass of reproductively mature fish in

the water, a function of numbers, weight, fecundity, and sexual maturity at age. We measure

the size of the population by the ratio of the spawning stock biomass (SSB) in a given time

step relative to unfished spawning stock biomass (SSB0), SSB/SSB0. An SSB/SSB0 value

of 1 means that the population is unfished, a SSB/SSB0 value of 0 means the population is

extinct.

As a demonstration of the use of this modeling tool, we explore two general situations

1. Trade-offs and distributional outcomes for food production and multi-species biomass

in a coastal coral reef fishery

2. Implications of climate-driven range shifts for MPA design in a pelagic fishery

We chose these two examples to illustrate the use of marlin in contrasting systems in which

spatial management strategies such as MPAs are increasingly considered.

Below we provide a summary of the marlin model, as well as details of the case studies.
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Model Summary

marlin simulates the dynamics of one or more species, currently best representing fish-like

species, using age-structured population dynamics. Ages are then converted to lengths using

the von Bertalanffy growth equation with log-normally distributed variation in the length at

age. Each time step, species move throughout the simulated seascape using both diffusion

and “taxis” (active movement towards preferred habitat), experience natural and potentially

fishing mortality, and potentially spawn using one of the possible forms of density dependence
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implemented in the model, with the ability to include auto-correlated stochastic deviations in

the amount of offspring produced, generally called “recruitment deviates”.

These species can be caught by fishing fleets. A fishing fleet is defined in marlin by a set

of fishers that have the same fishing skill, prices, and contact selectivity (Sampson, 2014) for

individual species (each of which we denote as a métier). For example, both a longline and

purse-seine fleet may capture bigeye (Thunnus obesus, Scombridae) and skipjack (Katsuwonus

pelamis, Scombridae) tunas, but the longline fleet can be made much more likely to catch

larger bigeye than skipjack, and vice versa. It is important to note that contact selectivity

reflects the ability of the fishing method in question to capture fish of different sizes that

come into “contact” with the gear. The contact selectivity of each of the specified métiers

will then interact with the distribution of fish sizes and fishing effort in space simulated by

marlin to produce a net “population” selectivity, which may differ from the individual contact

selectivities of each of themétiers (Sampson, 2014;Waterhouse et al., 2014). Each fishing fleet

distributes its fishing effort in space according to a specified spatial allocation rule (see Spatial

Allocation of Effort section), for example in proportion to profit-per-unit-effort, conditional on

management policies in places such as quotas and/or the presence of any spatial restrictions

such as MPAs.

Unconstrained by management, the total amount of effort exerted by each fleet can follow one

of two dynamics: open access or constant effort (seeCalculating Total Effort). Under constant

effort, the total amount of effort of each fleet is fixed over time, with the possible exception

of attrition due to MPA placement. Under open access, the total amount of effort in a given

time step is a function of the profitability of the fleet in the previous time step, evolving until a

bionomic equilibrium of zero total profits is reached. Profitability is a function of the volume

and price of each species caught, as well as the cost of the total amount of fishing effort per
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fleet and the travel costs as a function of distance from a port (see Fleet Dynamics).

The dynamics of each fleet can be modified by management in a variety of ways. Managers

can impose size limits for individual species within each fleet. They can also impose total catch

quotas for each species in each time step. When quotas are activated, if the total catch across

all fleets for a given species under the model’s effort dynamics would exceed the allowable

quota for that species, the total effort for each fleet is decreased proportional to its contribution

to the total catch until the quota is satisfied. As an alternative to catch quotas, managers can

set an effort cap per fleet, which prevents effort from exceeding a given amount under open

access dynamics, though effort may be reduced below this cap if required by the profit equation

(i.e. the fleet can choose to fish less than the quota or effort cap). marlin also allows users

to specify closed fishing seasons for one or more species in the system. Lastly, managers can

specify locations of no-take MPAs, which can change in size and location if needed. When

MPAs are implemented, fishing effort that used to operate inside the MPAs can either leave

the fishery, or be redistributed outside the MPA (the default behavior).

On the biological side, at a minimum users must for each species being simulated supply

the common or scientific name of the species in question, a measure of the level of fishing

intensity the species is experiencing at the start of the simulation, and the diffusion rates for

adult and larvae. Given a common or scientific name, the model will then input default life

history parameters based on FishLife (internet connection required, Thorson, 2020), though

users are encouraged to check these values and supply their own life history parameter values

when possible.

On the fleet side, users must for each fleet they wish to simulate at a minimum specify the

contact selectivity curves for each species caught by the fleet, as well relative price per unit
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weights greater than 0 for any target species. Species caught by but not targeted by the fleet

can be represented by prices of 0 (not targeted) or below 0 (actively avoided).

191

192

Fleet Dynamics

Each fishing fleet (f ) generates catches or yield (Y ), revenues (R), and costs (C) from fishing

individual species (s) that it targets in a given time step (t) and patch (p). The fleet then makes

decisions around fishing locations and intensity, subject to regulatory constraints, based on the

total profitability across all species in space and time.

Revenues for each fleet in a time step are a function of the total amount of each species caught

and its price (Π). The amount caught is a function of the contact selectivity at age of each

species for each fleet (𝛼), the fishing efficiency of the fleet for that that species (also called
“catchability”, q), the amount of fishing effort of the fleet in question in that patch in a given

time step (E), and the total instantaneous fishing mortality (u) at age (a) (including all other

fleets) for that particular species in that patch and time step.

𝑁𝑠 𝑁𝑎 𝛼𝑅𝑡,𝑝,𝑓 = ∑ ∑ Π 𝑎,𝑠,𝑓𝑞𝑠,𝑓𝐸𝑡,𝑝,𝑓
𝑠,𝑓 × 𝑌 (1)

𝑠 𝑎 𝑢 𝑡,𝑝,𝑠,𝑎
𝑡,𝑝,𝑠,𝑎

Total catches or yield Y are calculated through the Baranov equation (Baranov, 1918), which

accounts for the total instantaneous mortality (both fishing and natural, z) and divides the total

amount of the population biomass (b) killed between natural (m) and fishing (u) sources, with

the amount of biomass killed through fishing called “yield”.
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𝑢𝑌𝑡,𝑝,𝑠,𝑎 = 𝑡,𝑝,𝑠,𝑎 × 𝑏 −𝑧 𝑡,𝑝,𝑠,𝑎 × (1 𝑒−𝑧𝑡,𝑝,𝑠,𝑎) (2)
𝑡,𝑝,𝑠,𝑎

𝑁𝑓

𝑢𝑡,𝑝,𝑠,𝑎 = ∑ 𝛼𝑎,𝑠,𝑓𝑞𝑠,𝑓𝐸𝑡,𝑝,𝑓 (3)
𝑓=1

Contact selectivity at age 𝛼 is modeled through either a logistic form or a dome-shaped form.

The logistic form is based on the lengths l at which 50% of individuals are selected by the

fishing gear, 𝑙𝑠𝑒𝑙, and 𝛿 which is the difference between the length at 50% selectivity and the

length at 95% selectivity.

1𝛼𝑎,𝑠,𝑓 = 𝑠𝑒𝑙𝑙
(4)

𝑎,𝑠−𝑙
−𝑙𝑜𝑔(19)× 𝑠,𝑓

(1 + 𝑒 𝑠𝑒𝑙𝛿𝑠,𝑓 )

We approximate the dome-shaped form as a normal distribution with mean 𝑙𝑠𝑒𝑙 and standard

deviation 𝜎. The normal density function is re-scaled such that the selectivity is 1 at 𝑙𝑠𝑒𝑙.

2
1 𝑠𝑒𝑙𝑙 −𝑙−0.5( 𝑎,𝑠

𝛼𝑎,𝑠,𝑓 √ 𝑒 𝜎 )= 𝑠,𝑓 (5)𝜎𝑠,𝑓 2𝜋

Lastly z is total mortality, the sum of fishing mortality (u) and natural mortality (m).

𝑧𝑡,𝑝,𝑠,𝑎 = 𝑢𝑡,𝑝,𝑠,𝑎 + 𝑚𝑠,𝑎 (6)
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This means that each species experiences a total mortality at age in a time step in a patch,

individual fractions of which are portioned off as catches and subsequently revenues for each

fleet. Given revenues R, we then calculate profits 𝜙 based on revenues and costs. Costs C are

calculated as a function of base costs per unit effort (𝛾) as well as potential additional costs per
unit effort of fishing in particular patches (𝜂) for fleet f. 𝛽 allows for the cost per unit effort

effort to scale non-linearly. Travel costs (𝜂) are calculated based on the Euclidean distance of
each patch to the nearest port of a given fleet, and users can specify any number from zero to

the number of patches of port locations. When no ports are specified, travel costs are zero.

𝜙𝑡,𝑝,𝑓 = 𝑅𝑡,𝑝,𝑓 − 𝐶𝑡,𝑝,𝑓 (7)

𝛽𝐶𝑡,𝑝,𝑓 = 𝛾𝑓 (𝐸 𝑓
𝑡,𝑝,𝑓 + 𝜂𝑓,𝑝𝐸𝑡,𝑝,𝑓) (8)
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Calculating Total Effort

marlin allows for two general modes of effort. The simplest is “constant effort”, in which the

total effort of each fishing fleet remains constant over time.

The more complex option is “open access”. Under open access, the total amount of effort in a

given time step for fleet f is a function of the profitability of that fleet in the proceeding time

steps in which fishing was open, where 𝜃 controls the responsiveness of fleet f to the log of the
ratio of total revenues R to total costs C, and approximates the proportional change in effort in

response to a one unit changes in the log revenue to cost ratio.
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𝐸𝑡+1,𝑓 = 𝐸𝑡,𝑓 × 𝑒𝜃𝑓𝑙𝑜𝑔(𝑅𝑡,𝑓/𝐶𝑡,𝑓) (9)

This is essentially a Gompertz model for fishing effort, that has been used for other theoretical

studies of fishing effort dynamics (Thorson et al., 2013).

231

232

Tuning Fishing Fleet Parameters

The degree of fishing pressure exerted by a given set of fishing fleets on each species is a

function of a range of parameters including the total amount of effort (E), the contact selectivity

ogives (𝛼), fishing cost (C), the spatial distribution of the species affected by the fleet, the
relative prices across species (Π), and the catchability coefficient of each fleet for each species

(𝑞). marlin provides a tuning option to help users achieve desired biological outcomes from

their fleets.

Users can tune their fleets in one of two ways, conditional on the underlying population dy-

namics of the species in question. First, they can specify a target exploitation rate u for each

species in their simulation. Taking all the other parameters of the model as given, marlin then

adjusts the catchability coefficients 𝑞𝑓,𝑠 for each fleet f and species s such that the equilibrium

exploitation rate for each species matches the desired level. Second, they can specify a target

total spawning stock biomass under fishing divided by total unfished spawning stock biomass,

and the model will adjust the catchability coefficients 𝑞𝑓,𝑠 for each fleet f and species s such

that the equilibrium ratio of fished to unfished spawning biomass for each species matches the

desired level.
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Users can also tune the fleet dynamics by specifying the ratio of costs to revenues. Price data

for use in the model can be obtained relatively simply through literature reviews, market sur-

veys, or local experts. However, cost parameters are more complicated, as translating say cost

per day of fishing into the same representation of fishing effort used in the model is not straight

forward to accomplish. As an alternative, users can specify an equilibrium cost-to-revenue ra-

tio for the fleet, essentially the profit margins of the fleet in question, and marlin will tune

the cost parameter to achieve this desired cost to revenue ratio given the other parameters in

the model.

249
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Spatial Allocation of Effort

Each fishing fleet decides how to allocate its effort in space based on one of four possible

spatial allocation strategies. The ideal free distribution (IFD) is the standard method for dis-

tributing fishing fleets in spaces (see Gillis (2003) and references therein). However, analytical

solutions to the IFD present a number of complications for our model. The IFD for a single

fleet would commonly be modeled as a Nash-equilibrium based on the actions of each of the

individual fleet conditional on the actions of all other fleets. While possible to implement, this

would slow down our model runs to the point of practically preventing large-scale evaluation

of the spatial management policies.

As such we explored a series of “next best” fleet distribution algorithms. While not the IFD

in any individual time step, over time they start to approximate the IFD, as each assumes

that fleets base their decisions for the current time step on the outcomes in the prior timestep,

meaning that the impacts of the actions of other fishing fleets are eventually accounted for.

The timeline required for the fleets to reach an equilibrium distribution will vary and depend
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on factors such as the population dynamics of the species in question and the number and

degree of competition across fleets. Users should explore different simulation times to ensure

that any results they wish to use are not simply a reflection of the fleet dynamics fluctuating

on their way to an equilibrium condition.

The four possible fleet distribution algorithms are

1. Revenue per unit effort (RPUE): The fleet distributes itself in space based on the realized

revenue per unit effort in each patch in the preceding time step

2. Revenue: The fleet distributes itself in space based on the realized total revenue in each

patch in the preceding time step

3. Profit per unit effort (PPUE): The fleet distributes itself in space based on the realized

profit per unit effort in each patch in the preceding time step

4. Profit: The fleet distributes itself in space based on profit in each patch in the preceding

time step

Revenue based spatial distribution is not likely to be very realistic; in general we would ex-

pect fishing fleets to respond to profits on some core level. However, due to the complexity

of parameterizing cost functions, fleet dynamics are often evaluated based on yield or rev-

enue alone, and so we include those scenarios here to allow users to evaluate the potential

implications of this choice. The decision on whether to allocate the fleet based on absolute or

relative (per unit effort) metrics is more complex. When effort represents the actions of sepa-

rate and individual fishing actors (e.g. independent fishing vessels), a per-unit-effort strategy,

in which fishers distribute themselves based on the expected catch of their individual efforts,

may be more realistic (Hilborn & Walters, 1987). Conversely, a system defined by a sole
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owner seeking to maximize total profits might be better represented by a fleet model based on

total profits.

293

294

Population Model

The underlying population model used is an age structured single-species model in the manner

of Ovando, Caselle, et al. (2021). The population model requires many parameters. However,

if the user supplies either a scientific or common name for the species in question (scientific

preferred), the model will supply default values for that species based on the values reported in

FishLife (Thorson, 2020). FishLife provides estimates of core life history parameters for fish

species based on a model integrating published values and evolutionary connections. FishLife

provides reasonable default values for given species, but these default values should be not

be taken as definitive and users should check the default values and input best available pa-

rameters specific to the stock in question if they wish to best represent the dynamics of their

specific system.
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Movement

marlin’s movement dynamics are based on a continuous-time Markov chain (CTMC), as de-

scribed in Thorson et al. (2021). Within this framework, the model allows for movement to be

broken down into three components of advection (drifting with currents), taxis (active move-

ment towards preferred habitat), and diffusion (essentially remaining variation in movement

not explained by advection or taxis). For now, marlin focuses just on the diffusion and taxis

components of this model, assuming that advection is zero, though future extensions could

incorporate advection vectors from oceanographic models. In this way, marlin allows users
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to run anything from a simple Gaussian dispersal kernel up to a system governed by species

that passively diffuse out from a core habitat defined by a dynamic thermal range. The model

currently focuses on diffusion and taxis, which allows for general representation of animals

following physical or oceanographic features, but research on the incorporation and impor-

tance of advective forces would be of value going forward.

We provide a brief overview of the the general CTMC method here (see Thorson et al. (2021)

for a detailed description). Under this framework, movement of individuals from each patch

to each other patch in the system in a given timestep t for life stage a of species s is defined

by a movement matrix 𝑀𝑀𝑀 𝑡,𝑠,𝑎. 𝑀𝑀𝑀 𝑡,𝑠,𝑎 is calculated as a function of diffusion 𝐷𝐷𝐷 and taxis 𝜏𝜏𝜏
matrices scaled by the width of the time step (e.g. one year) Δ𝑡 and the length of the edge of

each patch (e.g. one kilometer) Δ𝑑 specified by the user. This parameterization allows users

to set the effective area of the spatial domain through two avenues; the number of patches,

which effectively scales the resolution of the model, and the area of each patch, which scales

the spatial extent of the simulation.

The individual components (M) of the movement matrix (𝑀𝑀𝑀 ) are filled based on an adjacency

matrix, which defines whether two patches are both adjacent and water (as opposed to land or

another physical barrier), a diffusion rate 𝐷 defined in units of area of a patch per unit of time,

and a habitat preference function H in units of length of a side of a patch per unit time. For

example, if we are defining the time units as years and the distance units as kilometers, for a

tuna 𝐷 might be 1,000 𝐾𝑀2
𝑌 𝑒𝑎𝑟 . We then use parameters Δ𝑡 and Δ𝑑 parameters to translate the

diffusion rate𝐷 to match the time step and patch size used in a simulation. For example, if we

were to run a model on a monthly timestep given time units of years, then Δ𝑡 = 1/12𝑦𝑒𝑎𝑟𝑠.
If one square patch in the simulation has an area of 100km2, then Δ𝑑 = 10𝐾𝑀 . This “scale

free” parameterization means that appropriate value of 𝐷 can be identified for a species and

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

17



then set, regardless of the time step or patch size used in the simulation model itself.

The taxis component of the movement process is a function of the difference in habitat quality

H. The habitat preference function itself can take any form the user wishes. Exponentiating

the difference in the habitat preference function between patches turns the taxis matrix into a

multiplier of the diffusion rate D. As such, when creating habitat layers for simulation, users

can tune the scale of the habitat gradient function to result in realistic multipliers of the dif-

fusion rate. This parameterization ensures that the off-diagonal elements of the movement

matrix𝑀𝑀𝑀 𝑡,𝑠,𝑎 are all non-negative, a requirement of the CTMC method.

⎧ Δ Δ𝑡(𝐻(𝑝2,𝑡,𝑠,𝑎)−𝐻(𝑝1,𝑡,𝑠,𝑎))
{= 𝑡 if{ Δ2 𝐷𝑒 Δ𝑑 p2 and p1 are adjacent
{ 𝑑

𝑀𝑝1,𝑝2,𝑡,𝑠,𝑎 = ⎨= − ∑
{ ′ 𝑀 (10)

𝑝 ≠𝑝1 𝑝1,𝑝2,𝑡,𝑠,𝑎 if p1 = p2
{{= 0 otherwise.⎩

For both the diffusion and taxis matrices, we allow for the inclusion of physical barriers to

movement (i.e. land). Pairs of patches that are adjacent but in which one or both patches are

a barrier to movement are set as non-adjacent. The CTMC model then produces movement

dynamics that move around barriers rather than over them.

The movement of individuals across patches is then calculated by matrix multiplication of the

pre-movement vector of the number of individuals (𝑛𝑛𝑛) of species s at age a in time step t across
all patches p times the matrix exponential of the movement matrix𝑀𝑀𝑀

𝑛𝑛𝑛𝑡+1,𝑠,𝑎 = 𝑛𝑛𝑛𝑡,𝑠,𝑎𝑒𝑀𝑀𝑀𝑡,𝑠,𝑎 (11)
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While this CTMC approach to movement simulation is to date not commonly seen in the

marine modeling literature, it has numerous advantages that warrant its seeming complexity.

First, the parameters of the model have interpretable biological meaning (e.g. the diffusion rate

D). Second, when only diffusion is present, the model will generalize to the familiar dynamics

of a Gaussian dispersal kernel at whatever spatial and temporal resolution the simulation is set

to. Third, the taxis model allow for clearly parameterized active habitat choices by species,

allowing us to simulate preferences of species in space and time efficiently. Lastly, the CTMC

form has the advantage that its parameters are directly estimable from real data. So, if provided

with for example spatial abundance data and a tagging study, users can estimate the diffusion

and taxis movement parameters in the same manner as Thorson et al. (2021), and then pass

their estimated parameters to marlin for simulation (so long as the estimating method uses

the same functional form as the movement model in marlin).
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Population Growth

For the population model, numbers N at time t for age a are a function of growth, death, and

recruitment

⎧{= 𝐵𝐻(𝑆𝑆𝐵 if 𝑎 ={ 𝑡−1,𝑝,𝑠,𝑎) 1
{

𝑁𝑡,𝑝,𝑠,𝑎 = ⎨= 𝑁 𝑒−(𝑧𝑡−1,𝑝,𝑠,𝑎−1)
𝑡−1,𝑝,𝑠,𝑎−1 , if 1 < 𝑎 < 𝑚𝑎𝑥(𝑎𝑔𝑒)

{{{= 𝑁𝑡−1,𝑝,𝑠,𝑎𝑒−(𝑧𝑡−1,𝑝,𝑠,𝑎) + 𝑁 𝑒−(𝑧
⎩ 𝑡−1,𝑝,𝑠,𝑎−1)

𝑡−1,𝑎−1 , if 𝑎 = 𝑚𝑎𝑥(𝑎)
(12)

where BH is the Beverton-Holt recruitment function (Beverton & Holt, 1957) and SSB is
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spawning-stock-biomass. Per convention, the model allows for a “plus group”, wherein rather

than tracking numbers of every possible age, individuals greater than or equal to a given max-

imum age are grouped together.

Spawning stock biomass SSB is calculated by converting age to mean length at age, calculat-

ing weight at age, maturity at age, and then calculating spawning stock biomass as the sum of

spawning potential at age in a given time step, taking into account the potential for hyperal-

lometry in the manner of Marshall et al. (2021). Age is converted to length through the von

Bertalanffy growth equation given parameters asymptotic length (𝑙∞), growth (k) and theo-

retical age at length zero (𝑎0) assuming log-normally distributed variation u in the length at

age with CV 𝜎𝑠.

𝑙𝑎,𝑠 = 𝑙∞,𝑠 (1 − 𝑒−𝑘𝑠(𝑎−𝑎0𝑠)) 𝑒𝑢𝑠 (13)

𝑢𝑠 ∼ 𝑁(0, 𝜎𝑠) (14)

Users can manually supply a vector of of natural mortality at age (m). Or, they can supply

one value of natural mortality which is then converted into mortality at age through one of

two means. Under the default behavior, natural mortality at age given a target mean mortality

across all ages 𝑚𝑠 is calculated using a length-inverse mortality function (Lorenzen, 2022).

𝑙𝑚𝑖𝑛𝑣𝑠𝑎
= ( 𝑠,𝑎 )−1 (15)𝑙∞,𝑠
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𝑚𝑖𝑛𝑣𝑚𝑠,𝑎 = 𝑠,𝑎 𝑚𝑚𝑒𝑎𝑛(𝑚𝑖𝑛𝑣𝑠,𝑎) 𝑠 (16)

Alternatively, users can set mortality at age to be constant

𝑚𝑠,𝑎 = 𝑚𝑠 (17)

Biomass B at age is then given by the weight at length equation governed by a scaling coeffi-

cient Ω𝑠 and an exponent Φ𝑠 that controls the rate at which volume scales with length

𝐵𝑎,𝑠 =𝑠 ×𝑙𝑤𝑏𝑠𝑎,𝑠 (18)

The proportion of sexually mature individuals (mat) at a given age is then calculated as a

logistic function where 𝑙𝑚𝑎𝑡 is the length at which on average 50% of individuals are sexually

mature, and 𝛿𝑚𝑎𝑡 is the unit of length beyond 𝑙𝑚𝑎𝑡 at which on average 95% of fish are sexually

mature.

1𝑚𝑎𝑡𝑎,𝑠 = 𝑙
(1 + 𝑒−𝑙𝑜𝑔(19)× 𝑎,𝑠−𝑙𝑚𝑎𝑡𝑠 (19)

𝛿𝑚𝑎𝑡𝑠 )

Spawning stock biomass at time t is then calculated as a function of the numbers at age, the

maturity at age, and the weight at age raised by a parameter 𝛾. When 𝛾 is greater than 1,

the species is said to experience hyperallometric fecundity, i.e. fecundity increases faster than

weight.

383

384

385

386

387

388

389

390

391

392

393

21



𝑁𝑎

𝑆𝑆𝐵𝑡,𝑝,𝑠 = ∑ 𝑤𝛾𝑠
𝑎,𝑠,𝑡𝑚𝑎𝑡𝑡,𝑎𝑁𝑡,𝑝,𝑠,𝑎 (20)

𝑎=1

Recruitment

Recruitment (i.e. the number of age 1 individuals entering the population) follows Beverton-

Holt dynamics parameterized around steepness (h) with log-normally distributed recruitment

deviates 𝜖. When steepness is one recruitment is independent of spawning biomass. As steep-

ness approaches 0.2 recruitment becomes a linear function of spawning biomass. marlin

allows users to specify a target unfinished spawning stock biomass (𝑆𝑆𝐵0), which will be
achieved by tuning the total unfished recruitment (𝑟0), given the remaining life history pa-
rameters and independent of any characteristics of the fishing fleets.

We allow for five variants in the timing of density dependent recruitment, building off of

Babcock & MacCall (2011) :

1. Global density dependence: Density dependent recruitment is a function of the sum

of spawning biomass across all patches, and recruits are then distributed according to

habitat quality

0.8× ∑𝑃 𝑟0 × ℎ × ∑𝑃 𝑆𝑆𝐵
𝑁𝑡,𝑝,𝑠,𝑎=1 = ⎛⎜ 𝑝=1 𝑝,𝑠 𝑠 𝑝=1 𝑡−1,𝑝,𝑠 ⎟⎞

0.2 × ∑𝑃 ×
𝑆𝑆𝐵0𝑝,𝑠 × (1 − ℎ𝑠) + (ℎ𝑠 − 0.2) × ∑𝑃 𝑆𝑆𝐵⎝ 𝑝=1 𝑝=1 𝑡−1,𝑝,𝑠 ⎠

𝑃
𝑟0𝑝,𝑠/ ∑ 𝑟0𝑝,𝑠 × 𝜖𝑡,𝑠

𝑝
(21)
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where 𝑟0 is is a vector of recruits under unfished conditions in a given patch.

2. Local density dependence: Density dependent recruitment occurs independently in each

patch and recruits are retained in their home patch.

0.8×𝑟0 𝑆𝐵𝑛 𝑝,𝑠 × ℎ𝑠 × 𝑆 𝑡−1,𝑝,𝑠
𝑡,𝑝,𝑠,𝑎=1 = ( ) × 𝜖 (22)0.2 × 𝑆𝑆𝐵0𝑝,𝑠 × (1 − ℎ𝑠) + (ℎ𝑠 − 0.2) × 𝑆𝑆𝐵 𝑡,𝑠

𝑡−1,𝑝,𝑠

3. Local density dependence then disperse: Density dependent recruitment occurs inde-

pendently in each patch and recruits are then dispersed.

0.8×𝑟0 ×= ( 𝑝,𝑠 ℎ𝑠 × 𝑆𝑆𝐵𝑛 𝑡−1,𝑝,𝑠 ) × 𝑑𝑑𝑑𝑙𝑙𝑙
𝑡,𝑝,𝑠,𝑎=1 0.2 × 𝑆𝑆𝐵0 × (1 − ℎ𝑠 + (ℎ𝑠 − 0.2) × 𝑆𝑆𝐵 𝑠𝑠

𝑝,𝑠 ) 𝑠 × 𝜖𝑡,𝑠
𝑡−1,𝑝,𝑠

(23)

where dl is the recruitment movement matrix

4. Post-dispersal density dependence: Larvae are distributed throughout the system, and

then density dependent recruitment occurs based on the density of spawning biomass at

the destination patch.

𝑙𝑎𝑟𝑣𝑡,𝑝,𝑠 = 𝑆𝑆𝐵𝑡−1,𝑝,𝑠 × 𝑑𝑑𝑑𝑙𝑙𝑙
𝑠𝑠𝑠 (24)
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0.8×𝑟0 ×𝑛𝑡,𝑎=1,𝑝,𝑠 = ( 𝑝,𝑠 ℎ𝑠 × 𝑙𝑎𝑟𝑣𝑡,𝑝,𝑠 ) × 𝜖 (25)0.2 × 𝑆𝑆𝐵0𝑝,𝑠 × (1 − ℎ𝑠) + (ℎ𝑠 − 0.2) × 𝑙𝑎𝑟𝑣 𝑡,𝑠
𝑡,𝑝,𝑠

5. Global density dependence allocated by spawning biomass: Density dependence is a

function of the sum of spawning biomass across all patches, and recruits are then dis-

tributed according to the distribution of spawning biomass

0.8× ∑𝑃 𝑟0𝑝,𝑠 × ℎ
𝑛𝑡,𝑝,𝑠,𝑎=1 = ⎛⎜ 𝑝=1 𝑠 × ∑𝑃 𝑆𝑆𝐵𝑝=1 𝑡−1,𝑝,𝑠 ⎞⎟ ×

0.2 × ∑𝑃 𝑆𝑆𝐵0⎝ 𝑝=1 𝑝,𝑠 × (1 − ℎ 𝑃
𝑠) + (ℎ𝑠 − 0.2) × ∑ 𝑆𝑆𝐵𝑝=1 𝑡−1,𝑝,𝑠 ⎠

𝑆𝑆𝐵𝑡−1,𝑝,𝑠

∑𝑃 × 𝜖𝑡,𝑠𝑆𝑆𝐵𝑝=1 𝑡−1,𝑝,𝑠
(26)

Log-normal recruitment deviates are calculated with the potential for autocorrelation defined

with strength 𝜌

⎧{𝑁(0, 𝜎𝑟,𝑠), if 𝑡 = 1
𝜐𝑡,𝑠 ∼ (27)⎨{𝜌𝑠𝜐𝑡−1,𝑠 + √1 − 𝜌2𝑠𝑁(0, 𝜎𝑟,𝑠), if 𝑡 > 1⎩

And log recruitment deviates are converted to raw units using the bias correction factor

𝜖𝑡,𝑠 = 𝑒𝜐𝑡,𝑠−𝜎2
𝑟,𝑠/2 (28)
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Reference Points

Fisheries management is often concerned with measuring stock status relative to maximum

sustainable yield (MSY) based reference points, though the exact level of stock status relative

to MSY reference points desired by societal objectives may vary widely. MSY based refer-

ence points present a problem for a multi-fleet and spatial-temporal model such as marlin.

MSY and the fishing mortality rate that would produce MSY, 𝐹𝑀𝑆𝑌 , are a function of fishery

selectivity. Fishery selectivity in this model can vary by fleet, and species can be distributed

unevenly in both space and time. This means that the net effective fishing selectivity on a

species can vary depending on the dynamics at a given moment, making the definition of an

equilibrium concept such as MSY challenging (Berger et al., 2017 and references therein).

As such, we do not report MSY based reference points in the model by default. There are

many different strategies for estimating reference points in spatially explicit systems (Kapur

et al., 2021). We leave it to users to define and find relevant reference points as required by

their specific needs.
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Case Studies

We include two examples demonstrating how marlin can be used to support marine spatial

planning. In the first, we show how marlin can be used to compare the total and distributional

impacts of MPAs designed in a heavily fished coastal coral reef ecosystem. In the second, we

demonstrate how marlin can be used to assess components of climate resilience of alternative

MPA design strategies in a pelagic system.
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Each of the case studies contains too many parameters and options to be succinctly presented

in the text here. Readers should consult the accompanying code to view the precise details

of each simulation. Targeted applications must carefully consider and document all decisions

made around model parameters.
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MPA Design Strategies

We make use of three potential “rule of thumb” MPA design strategies in our case studies

1. Rate: MPAs are placed based on the pre-MPA SSB/SSB0 weighted catch relative to the

total catch in a patch. So, patches with high rates of catch of depleted species relative

to total catch are prioritized.

2. Target Fishing: MPAs locations are prioritized proportional to fishery catches. Patches

with high total catches are prioritized over patches with low catches.

3. Spawning Ground: MPAs are centered on the grounds of a known spawning aggrega-

tion. This strategy is only used in the coral reef case study.

In theory, the design of MPA networks can be optimized through the use of a modeling frame-

work, and depending on the validity of the model, this process is likely to produce better

outcomes than manually-designed strategies (Rassweiler et al., 2012, 2014). However, de-

signing optimal MPA networks becomes increasingly difficult as the range of objectives and

the complexity of the model increase. Therefore, we focus here on the design and performance

of these more rule of thumb design strategies that may be more accessible to a wider range of

users. We allow all MPAs to be designed in a mosaic fashion in these examples, but users can

easily extend the analysis to compare outcomes between contiguous (MPA is made up of one
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continuously connected block) and mosaic (MPAs can be separated in space) MPA designs

(Pons et al., 2022).
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Coastal Coral Reef Fishery

In our coastal coral reef example, we model the dynamics of four tropical Pacific species: a

grouper (Epinephelus fuscoguttatus, Serranidae), a shallow-reef snapper (Lutjanus malabari-

cus, Lutjanidae), a deep-reef snapper (Pristipomoides filamentosus, Lutjanidae), and a reef

shark (Carcharhinus amblyrhynchos, Carcharhinidae). The simulated groupers undergo a

mass migration to a spawning aggregation once per year, followed by the sharks. Shallow-

reef snappers stay in reefs closer to shore above a steep drop-off year-round, while deep-water

snappers stay in the deeper reefs past the drop-off (Figure 1).

These species are targeted by two different fleets. Fleet One primarily targets the grouper

and near-shore snapper populations, but will land any incidentally captured sharks. Fleet One

has a logistic selectivity pattern for all species, as they retain any fish caught for consump-

tion or sale. Fleet One is totally dependent on fishing for their livelihood, meaning the local

community takes advantage of every possible opportunity to fish, and as such we model it

as a “constant effort” fishery. Due to having less efficient boats, Fleet One has a higher cost

per distance coefficient than Fleet Two. Fleet One’s home port is located near the site of the

grouper spawning grounds.

Fleet Two is a more commercial fleet that primarily targets the snapper populations. This fleet

primarily sells their catch to local restaurants and distributors where plate-sized fish are prized,

and so for both snapper and grouper Fleet Two has a dome-shaped selectivity pattern (Kinds-

vater et al., 2017). While plate-sized deep snapper are the primary target of Fleet Two, we
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model Fleet Two’s selectivity for deep snapper as logistic due to high levels of discard mor-

tality for deep-water snapper resulting from barotrauma. Fleet Two catches groupers, though

less than Fleet One, and receives no price for sharks due to the requirements of a certification

program through which they sell their deep-water snapper. Accidental captures (bycatch) of

sharks do occur, which results in mortality. Fleet Two operates under open-access dynamics,

as fishing is not the only means of subsistence for this community; short-term effort expands

and contracts in response to profitability of the primarily grouper-driven fishery. Fleet two’s

home port is located in the northwest corner of the simulation space.

We used marlin to simulate the outcomes for both food production and conservation for each

of the species and both of the fleets as a function of both MPA size and MPA design strategy.

For this exercise, MPAs are placed with perfect information and have no design constraints

for continuity. We ran the simulation for in quarter year time steps for 20 years (Δ𝑡 = 1/4)
√

and set the area of each patch to be 5km2 (Δ𝑝 = 5), using 144 patches for a total area of
2,000 KM2.
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Pelagic Fishery

We model our pelagic case study loosely on the characteristics of the Western and Central

Pacific Ocean (WCPO) tuna fisheries. Note that this is an illustrative example only and sim-

ulated stock status, species distributions, and projections presented here should not be inter-

preted as a indicative of the current or future state of the WCPO. We simulate trajectories of

9 species commonly caught in the region, including both the highly abundant skipjack tuna

and the heavily depleted oceanic whitetip shark (Carcharhinus longimanus, Carcharhinidae)

(Figure 2). We use publicly available data on catch-per-unit-effort of each of these species
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from the WCPO as a very rough proxy for baseline habitat distributions, noting that where

possible, fishery-independent abundance indices would be preferable (Figure 3).

These pelagic species are caught by a longline fleet that primarily targets large adult tunas such

as bigeye and yellowfin (Thunnus albacares, Scombridae) for high-grade consumption, and a

purse-seine fishery that primarily targets skipjack tunas for bulk canning. Contact selectivities

weremodeled as logistic for the longline fleet, and dome-shaped for the purse-seine fleet. Both

fleets operate under open-access dynamics with an effort cap. The effort cap was set at the

level of effort that resulted in the desired levels of SSB/SSB0 for each species under open-

access dynamics (Figure 3), intended to simulate a scenario where managers step in to prevent

further expansion of fishing effort in a fully developed fishery. For forward-simulation, open-

access dynamics can result in effort decreasing in response to profitability, but cannot result

in effort beyond the effort cap set for each fleet.

For this exercise, we focused on using marlin to assess resilience of the selected Target Fish-

ing and RateMPA design strategies to a climate-driven range shift. Specifically, we simulate

an extreme example where the centroid of each population shifts northward at a rate of ~62km

per year over a 20 year time horizon (Figure 2). We designed MPA networks given the condi-

tions in the starting year, and then held that network constant over the years of the experiment,

running one simulation with and another without the climate-drive range shift. We then com-

pared the effects of this range shift on food production and conservation outcomes from MPA

networks designed based on the pre-range shift world. We ran the pelagic simulation at a

quarterly level (Δ𝑡 = 1/4 year), and set the area of each cell to be roughly 97,000 KM2 across

144 patches each with a side length of roughly 311 KM, for a total area of 14e6 KM2, broadly

commensurate with the area of the WCPO.
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Results530

Coastal Coral Reef Fishery

MPAs were capable of producing a range of positive and negative outcomes for food security

and conservation in the coral reef case study depending on the design strategy used and the size

of MPA implemented. Both of the MPA design strategies were capable of increasing fisheries

yield for Fleet Two, up to a value of 16%, even when MPAs covered more than 50% of the

simulated area. However Fleet One only benefited from MPAs under the Spawning Ground

design strategy, with a maximum increase of 5%; the Target Fishing design strategy produced

a roughly linear decrease in fishing yields as a function of increasingMPA size (Figure 4 A).

MPAs were uniformly beneficial to the spawning biomass of all species under the Target Fish-

ing design strategy, with the most rapid increases in spawning biomass for the deep snapper

population. The Spawning Ground strategy primarily benefited the shallow snapper popula-

tion, producing little change in the grouper population and decreasing spawning biomass of

both the deep snapper and reef shark populations for MPA sizes covering less than 50% of the

simulated area (Figure 4 B).

In total, the Spawning Ground strategy was capable or providing net increases in fishing yield

(summed across both fleets) of up to roughly 7%, with positive net yield impacts up to network

size of nearly 60% of the area. However, even MPAs covering 60% of the area only produced

a maximum increase of roughly 5% in total SSB/SSB0 when designed around the spawning

ground. Conversely, the Target Fishing design strategy was capable of producing a nearly

25% increase in total SSB/SSB0 for the same MPA size, but at a much greater cost to the total

food production from the system’s fisheries (Figure 4 C).
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Pelagic Fishery

Yields of the purse-seine fleet were more resilient to the range shift under the Rate design

strategy, while the longline fleet had the opposite result. Under the Rate strategy, longline

yields were relatively stable across a large range of MPA sizes under the status quo conditions,

but declined rapidly under the range shift conditions. For the purse-seine fleet, yields were

more stable under the range shift conditions under the Target Fishing design scenario, but

declined quickly as a function of MPA size under the status quo conditions (Figure 5 A). The

Target Fishing strategy produced better yield outcomes for both fishing fleets under the range

shift conditions, but the Rate strategy performed best under the status quo.

The primary tuna species (bigeye, skipjack, and yellowfin) were most sensitive to design strat-

egy and climate scenario, with the Target Fishing strategies producing for example rapid con-

servation gains for bigeye and skipjack under the status quo, while the Rate strategy resulted

in small net conservation losses for both species until the MPA became extremely large. How-

ever, under the range shift scenario theMPAs had little impact on many of the tuna populations

until the MPA size became extremely large, due to movement of the primary fishing grounds

outside of the current hotpots where the MPAs are placed based on status quo conditions. The

20 year time horizon simulated here was not enough to produce substantial gains for any of

the shark species even with 100% closures except for the more rapidly growing blue shark

(Figure 5 B).
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Discussion571

Marine ecosystems are driven by complex social-ecological dynamics. Communities must

often make decisions on how to manage these systems based on limited empirical evidence.

Modeling tools such as the one presented here can help users answer scientific questions and

design marine management policies informed by a better understanding of sensitivities to key

uncertainties.
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Insights from Case Studies

Our coastal coral reef example illustrates both the potential for MPAs to benefit conservation

and food production in these systems, and the potential for the same MPA to benefit some

fleets and species while harming others when fishing fleets affected by an MPA do not share

the same objectives and species are not uniformly distributed. Our pelagic case study illustrates

how marlin can be used to assess the climate resiliency of spatial management strategies, and

identify strategies that best meet the needs of both current and future conditions. Results from

this type of work could be used to help prioritize communities and species at particular risk to

climate change impacts.

Holding constant other social-ecological variables in the coral reef example, the Spawning

GroundMPA network was able to provide more equitable yield outcomes across the two fish-

ing communities, whereas the Target FishingMPAnetwork only benefited Fleet Two (Figure 4

A). This is because Fleet One has two primary fishing grounds; the spawning grounds, and the

offshore area where the deep snapper live. Fleet Two primarily fishes in the northern portions

of the simulation grid. Under the Spawning Ground strategy, while Fleet One quickly losses
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fishing grounds on the spawning grounds, it can compensate for this by moving offshore and

fishing the deep snapper population harder, while also being able to fish some of the spillover

of snapper from the spawning ground closure. This displacement of Fleet One’s fishing effort

is why biomass of deep snapper actually declines under the Spawning Ground strategy.

Conversely, most of the catch in the coral reef fishery comes from the nearshore and deep water

snapper populations, which overlaps with both of Fleet One’s fishing grounds. The Target

Fishing strategy then begins closing both the nearshore and offshore snapper fishing grounds,

resulting in too much of a loss in fishing grounds for Fleet One to be offset by spillover from

the MPAs. As a result of primarily placing MPAs on Fleet One’s fishing grounds, Fleet Two

gains spillover benefits at little cost to their fishing grounds until the MPAs reach their fishing

grounds once protection nears 100%.

By protecting both the spawning ground and the offshore areas, the Target Fishing network

provides conservation benefits to all of the species, in contrast to the SpawningGround strategy

that only provides meaningful conservation gains to the snapper population up until very large

MPA sizes. Our result that protection of a dedicated spawning ground did not provide substan-

tially greater conservation outcomes for the species using that spawning ground (groupers and

sharks) than an alternative design strategy is supported by other modeling studies that show

that the impacts of spawning ground protection on conservation and yields may be highly vari-

able, and that displacement of high levels fishing effort from the spawning grounds can offset

potential conservation gains of the protection (Grüss et al., 2014). That being said there is also

evidence for the benefits of spawning aggregation protection (Erisman et al., 2015) , and our

results are not nearly sufficiently resolved to provide any general statements as to the relative

value of spawning aggregation protection relative to other design strategies. Further research

could for example alter both the distribution of species in space and the susceptibility of the
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species to fishing gear when aggregated.

The two design strategies produced very different outcomes in terms of total changes in yield

and conservation outcomes for the coral reef case study (Figure 4 C). Both MPA network de-

sign strategies were capable of producing net “win-win” outcomes in which both food security

and conservation. However, in general for the same size MPA network the Spawning Ground

design strategy produced better food security outcomes but worse conservation outcomes, and

vice versa for the Target Fishing strategy. The coral reef case study shows how the modeling

framework presented here can help stakeholders explore how different management strate-

gies affect outcomes both in total (Figure 4 C) and across species (Figure 4 A) and fishing

communities (Figure 4 B).

Turning to our Pelagic Ecosystem case study, the yield outcomes of the purse-seine fleet were

much more sensitive to the presence of a range shift than the longline fleet, particularly un-

der the Target Fishing design strategy. This is because the purse-seine fleet primarily targets

skipjack tuna, which in this simulation are concentrated in a relatively narrow latitudinal band

(Figure 3), and the purse-seine fleet makes up a large portion of the total catch in the sim-

ulated fishery. So, the “Target Fishing” strategy starts by closing off the main purse-seine

fishing grounds, which while only small part of the spatial domain of the model represents a

large portion of the purse-seine fleet’s fishing grounds, resulting both in more rapid conser-

vation gains and fishery losses under the status quo species distributions. The Rate strategy

places more MPAs in areas that are of lesser importance fo the purse-seine fleet but overlap

more with species such as oceanic whitetip shark. Conversely, the purse-seine fleet appears to

do have better MPA yield outcomes under the range shift scenario, not because of rebuilding

of the skipjack population, but due to future fishing grounds being essentially unprotected by

smaller MPAs targeting the current skipjack distribution ( Figure 5 ).
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The conservation outcomes of the skipjack, bigeye, and yellowfin tunas were among the most

sensitive to range shifts, whereas even complete closure of the region was not sufficient to see

significant increases in severely depleted species like oceanic whitetip sharks within the 20-

year timeline of the simulation. Future research could be conducted then to see what sorts of

timelines might be needed to see recovery of these species, and which design strategies result

in the fastest recovery at the lowest cost to other objectives such as food security.

These case studies are intended to illustrate the capabilities of the model and the importance of

considering the bio-economic dynamics represented in marlin; it is beyond the scope of this

paper to provide broader conclusions about the performance of MPAs under different contexts

or a comprehensive comparison of simulation and empirical results ofMPAs around the world.

That being said, the kinds of dynamics resulting in our case studies are well supported by both

modeling and empirical studies. Our results support conceptual (Gaines et al., 2010; Hilborn

et al., 2004) and empirical (Ban et al., 2019) evidence that under the right conditions no-take

MPAs can benefit fisheries and conservation. Rassweiler et al. (2014) demonstrated that the

kinds of design choices presented in our case studies can greatly drive MPA outcomes.

MPAs based around coral-reef style ecosystems have been extensively studied around the

world, with much of the empirical evidence of their performance centered on demonstrat-

ing higher metrics such as biomass densities inside protected areas relative to fished reference

areas (“response ratios,” Lester et al., 2009). Our model predicts a similar rapid increase of

the simple ratio of mean biomass inside MPAs relative to outside (Fig. S5, acknowledging

that designing a proper response ratio would require controlling for habitat characteristics and

MPA design criteria). However, despite producing clear response ratios, the net conservation

and fishery outcomes of our simulated coral-reef ecosystem MPAs were not nearly as large or

clear as the response ratio results (Figure 4); this result is supported by works such as Ferraro
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et al. (2018) an Ovando, Caselle, et al. (2021) showing that response ratios alone may be a

poor indicator of the net causal impacts of MPAs at the population scale.

Studies such as Gilman et al. (2020), Abbott & Haynie (2012), Davies et al. (2018) and

Pons et al. (2022) provide empirical support for our case study results showing that MPAs

can produce trade-offs across the conservation of different species and fleets when the spatial-

temporal distributions and life history traits of affected species are heterogeneous, and MPAs

result in some degree of effort displacement or concentration in the remaining fishing grounds.

Hampton et al. (2023) supports our pelagic case study result showing that both conservation

and fishery impacts of MPAs on the highly mobile species of the open oceans can be limited

unless protected areas are very large. Brown et al. (2018) supports our result showing how

heterogeneity in the behavior and objectives of fishing fleets sharing an ecosystem can affect

the magnitude and equity of fishery reform outcomes. Davies et al. (2017) discusses the

importance of considering the potential of climate driven range shifts when assessing spatial

management policies; our work builds on this by allowing users to not just simulate species

distributions but also distribution of biomass and age composition of fish in space and time

under climate change.
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Putting marlin In Context

The role of this paper is not to conduct a review of themany tools for spatial-temporal modeling

available in the literature, each of which provide useful functionality for specific applications.

However, we highlight here the specific gaps that we feel marlin fills in the modeling litera-

ture and in the policy support toolbox using some selected publications. More end-to-endmod-

els such as ATLANTIS (Audzijonyte et al., 2019) , OSMOSE (Shin & Cury, 2001), Ecopath
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with Ecosim (Christensen & Walters, 2004), POSEIDON (Bailey et al., 2019), DISPLACE

(Bastardie et al., 2013), or SEAPODYM (Lehodey et al., 2008) are capable of representing

tremendous amounts of complexity, but can be time consuming to design and run. marlin

allows some of the realism of these more end-to-end models while being simpler and faster to

parameterize and run.

Tools such as virtualspecies (Leroy et al., 2016), STEPS (Visintin et al., 2020), RangeShifter

(Bocedi et al., 2014), and SMS can be efficiently constructed to model the dispersal and distri-

bution of species in space and time as a function of environmental covariates. However, these

typically require specifying a covariate-response curve without explicitly acknowledging how

this arises from habitat-specific movement and demography (virtualspecies), or model move-

ment using a dispersal kernel (RangeShifter, STEPS) or a least-cost path algorithm (SMS,

STEPS). By contrast, marlin uses a continuous-time Markov chain movement model, which

integrates multiple paths (including their path-dependent probability based on intervening

habitat types and species preferences) while using scale-free parameters that can be measured

experimentally in laboratory or tagging studies. In addition, marlin allows for simulating not

only the distribution of the species but also biomass, age, and length structure in space and

time.

Simplified bio-economic models such as those used in Hastings et al. (2017), Sala et al.

(2021), and Cabral et al. (2019) can be applied at scale and provide analytically tractable

results, but as a result must abstract over many bio-economic dynamics that can be important

for more tactical applications. Our results demonstrate how nuances in fleet dynamics and

species distributions can dramatically impact MPA outcomes. marlin allows for more realis-

tic representations of spatial social-ecological systems while maintaining processing speed.
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marlin does not represent trophic interactions. Anthropgenic changes in species abundance

can result in trophic cascades. However, studies such as Gilman et al. (2020), Ovando, Caselle,

et al. (2021), Bruno et al. (2019) , and Malakhoff & Miller (2021) found no clear signs of

MPA driven trophic cascades within the first decades of protection. Signals of trophic cascades

may be masked by variations in the direction and strength of species interactions driven by

environmental context (Liu & Gaines, 2022), or may simply take longer to develop detectable

effects than the coverage of many time series of MPAs. While marlin does not incorporate

trophic interactions, what empirical evidence we have does not suggest that management-

mediated trophic cascades are so common and clear that they must be incorporated into any

credible multi-species simulation model. However, research on the trophic impacts of spatial-

temporal management actions is clearly of value and models like Atlantis (Audzijonyte et al.,

2019), Ecopath with Ecosim (Christensen & Walters, 2004), and EASI-Fish (Griffiths et al.,

2019) can help users explore those kinds of trophic processes, in the manner of Baskett et al.

(2007).
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General Recommendations for Use

The model presented here is designed to help users explore the impacts of different variables

on policy outcomes. But, that freedommeans that users have a large number of options at their

disposal that they must decide on. Our recommended strategy is for users to try and narrow

down a list of parameters that they feel are sufficiently “known” and another list of parameters

that are highly uncertain and / or contentious which the users feel may impact results. Where

possible, parameters from locally estimated stock assessment models can be used to provide a

foundation around which sensitivity analyses around specific uncertainties of interest (Berger

et al., 2017), though care should be taken interpreting population selectivity curves estimated

723

724

725

726

727

728

729

730

731

38



from stock assessment as contact selectivity curves required as inputs to marlin (Sampson,

2014).

For example, a community seeking to a model a well-studied coastal coral reef ecosystem

might leave as fixed the habitat distribution (as represented by reef locations) and general

life history of the species in question (growth rates, age at maturity, etc). From there, users

may wish to test the sensitivity of proposed MPA networks to key unknowns such as adult

and larval dispersal rates or the the economic incentives and contact selectivity of the fishing

fleets. As an example of this, we ran an alternative version of our coral reef case study in which

Fleet Two was assigned logistic selectivity for the snapper and grouper species, rather than the

dome-shaped selectivity presented in our main results. We found that the impacts of MPAs

on conservation and food security were relatively insensitive to the form of contact selectivity

specified for Fleet Two (Fig.S1). This does not mean that knowing the “correct” form of

contact selectivity may not be extremely important in providing accurate assessment results

(Waterhouse et al., 2014), but rather that in this case misspecifying the contact selectivity curve

is projected to have little impact on the simulated outcomes of MPAs, conditional on holding

other parameters constant.

Given a set of model runs, the choice of whether to use those results “strategically” or “tacti-

cally” will depend on the needs of the user. Since marlin is not fit to data directly it is more

easily applied to strategic questions. The extent to which users are comfortable using the out-

puts of marlin tactically will depend on the confidence they have in their parameterization of

the model relative to the precision policy-makers require in order to make a decision. Other

models may be better suited to address specific forms of complexity. Particularly for more

tactical applications, we would encourage users to explore multiple modeling frameworks to

help design policies that are likely to be robust to many different kinds of complexities.
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At this time, marlin assumes that all evaluated policies are perfectly implemented; e.g. that

MPAs are 100% no-take and perfectly enforced, that quotas and closed seasons are respected,

that there is no discard mortality, etc. In reality no policy is perfectly implemented, and users

should consider the extent to which the policies they simulate are actually feasible to imple-

ment. There is value though in being able to simulate and compare the outcomes of perfectly

implemented policies to isolate the concept of the policy itself from its implementation.

Fish populations often exhibit variation in demographic traits across dimensions such as space,

time, and sex. Models such as Stock Synthesis (Methot Jr. & Wetzel, 2013) capture these

processes through the use of “morphs”. marlin does not currently allow for these kinds of

processes explicitly. Users should be cautious interpreting simulation results from marlin for

species in which these sorts of dynamics are likely to be particularly prevalent. For strongly

sexually dimorphic species, we would recommend picking the sex most likely to drive the

outcomes of management policies, which is often females given the general prevalence of

eggs as the limiting reproductive material in marine ecosystems. Users should also proceed

with caution using marlin for species with more complex reproductive biology, such as sex-

changing fish (Kindsvater et al., 2017).
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Conclusions772

marlin complements the existing spatial marine modeling literature by allowing scientists,

decision makers, and other stakeholders to efficiently examine the impacts of realistic bio-

economic dynamics on academic and applied problems. We envision marlin being applicable

to research on dynamic ocean management, range shifts, management strategy evaluation,

policy interactions, and spatial stock assessment. marlin can help researchers generate data
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for further testing of the performance and design of spatially explicit integrated population

models, in the manner of Bosley et al. (2022). In addition, the process-based movement

model used in marlin can directly use empirical estimates of movement dynamics derived in

the manner of Thorson et al. (2021), providing a link between empirical and simulation based

approaches to marine resource management that has been challenging to implement in spatial

simulations (Berger et al., 2017).

Fisheries models, assessments, management have often abstracted away many of the spatial-

temporal complexities of marine social-ecological systems (Berger et al., 2017; Ovando, Liu,

et al., 2021). The modeling framework described here can help facilitate the science and

application of spatial fisheries management by supporting the simulation of different spatial-

temporal dynamics to aid in testing of various aspects of the marine resource management

process.

Even the most complex marine model is a stylized cartoon of the true dynamics of ocean

ecosystems. However, for all their limitations, models can help users understand factors that

drive the performance of marine management strategies. The goal of this tool is to empower

people to design policies based on evaluation of key uncertainties and trade-offs, and in doing

so support more effective and equitable marine resource management.
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Data Availability Statement798

The code, novel code, data, and materials needed to reproduce the results and all as-

pects of this manuscript are publicly available at https://github.com/DanOvando/marlin-

paper, with supporting novel code available at https://github.com/DanOvando/marlin/.

Upon acceptance, all data, materials, code, and novel code needed to reproduce the

results and all aspects of this manuscript will be publicly available via GitHub at

https://github.com/DanOvando/marlin-paper and https://github.com/DanOvando/marlin/

and through figshare at https://figshare.com/articles/preprint/marlin-paper/21843582
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Figure Legends1017

Figure 1: Distribution of fish spawning biomass (cell color, yellow = higher, blue = lower)
each season (columns) under unfished conditions. The x-axis represents longitude,
y-axis latitude. Numbers show the approximate location of each fleet’s (one or two)
port. Columns indicate quarterly seasons that repeat each year.
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Figure 2: Spawning biomass divided by unfished spawning biomass in the time period prior to
implementation of MPAs for the pelagic case study. Simulated species include skip-
jack tuna, yellowfin tuna, bigeye tuna, shortfin mako (Isurus oxyrinchus, Lamnidae),
swordfish (Xiphias gladius, Xiphiidae), albacore tuna (Thunnus alalunga, Scombri-
dae), blue shark (Prionace glauca, Carcharhinidae), silky shark (Carcharhinus fal-
ciformis, Carcharhinidae), and oceanic whitetip shark.
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Figure 3: Distribution of unfished spawning biomass in space under status quo (left col-
umn) and range-shifted (right column) conditions for blue-water simulation for each
species. The x-axis represents longitude,53 the y-axis latitude.



Figure 4: Percent change in yield per fleet (A) and SSB/SSB0 (spawning biomass divided by
unfished spawning biomass) per species (B) as a function of MPA size and MPA
design strategy for the coastal coral reef case study. Percent change in total yield
across both fleets (y-axis) and total SSB/SSB0 across all species (x-axis) and place-
ment strategies (line color) (C). Color of points along each line in panel C indicates
the percent of the simulation area in an MPA. All results reflect outcomes after 20
years of simulated MPA protection.
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Figure 5: Change in yield (A) and SSB/SSB0 (spawning biomass divided by unfished spawn-
ing biomass) (B) as a function of MPA size and design strategy by fishing fleet and
species. Blue lines indicate impacts of MPAs under status quo habitat, red impacts
under climate-driven range shift. Results reflect the outcome of 20 years of simu-
lated MPA protection.
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