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Abstract 

1. In the face of biodiversity loss worldwide, it is paramount to quantify species’ extinction 

risk to guide conservation efforts. The International Union for the Conservation of Nature 

(IUCN)’s Red List is considered the global standard for evaluating extinction risks. IUCN 

criteria also inform national extinction risk assessments. Bayesian models, including the state-

of-the-art JARA (“Just Another Red List Assessment”) tool, deliver probabilistic statements 

about species falling into extinction risk categories, thereby enabling characterisation and 

communication of uncertainty in extinction risk assessments. 

2. We coupled the state-of-the-art VAST (“Vector Autoregressive Spatio-Temporal”) 

modelling tool and JARA, for better informed Red List assessments of marine fishes. In this 

framework, VAST is fitted to scientific survey catch rate data to provide indices to JARA 

whose uncertainty is propagated to JARA outcomes suggesting extinction risk categories 

(under the population reduction criterion). In addition, VAST delivers a valuable habitat 

assessment to better understand what may be driving extinction risk in the study region. Here, 

we demonstrate the coupled VAST-JARA modelling framework by applying it to five 

contrasting North Sea species, with or without a quantitative stock assessment and with 

different conservation statuses according to the latest global Red List assessments. 

3. The North Sea application coupled with previous assessments and studies suggest that, 

among the three elasmobranchs, starry ray is in most need for urgent research (and 

conservation actions where appropriate), followed by spurdog, whilst lesser-spotted dogfish is 

increasing in biomass. Moreover, both the VAST-JARA modelling framework and previous 

research indicate that, while European plaice is not of conservation concern, cod has likely 

met the IUCN criteria for being listed as Endangered recently.    

4. Synthesis and applications. The predictions of the VAST-JARA modelling framework for 

North Sea species, including JARA output and VAST habitat assessment, constitute valuable 
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supporting information to make interpretations based on Red List guidelines, which will help 

decision-makers in their next North Sea Red List assessment. We foresee applications of the 

modelling framework to assist Red List assessments of numerous marine fishes worldwide. 

Our modelling framework has many potential advantageous uses, including informing 

resource management about climate change impacts on species’ extinction risks. 

Keywords: Red List assessments, state-space models, VAST, JARA, habitat assessment, 

survey data, fishes 
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Introduction 

In the face of biodiversity loss worldwide, it is paramount to quantify species’ 

extinction risk to guide conservation efforts (Hoffmann et al., 2008; Butchart et al., 2010). 

The International Union for the Conservation of Nature (IUCN)’s Red List of Threatened 

Species (“Red List”) is considered the global standard for evaluating species’ extinction risks 

(Mace et al., 2008; Regan et al., 2013). IUCN criteria also inform national assessments of 

species’ conservation status and extinction risk, such as the Committee on the Status of 

Endangered Wildlife in Canada (COSEWIC)’s assessment of endangerment under the Species 

at Risk Act (COSEWIC, 2019). Red List assessments are currently widely used to assess 

progress towards United Nations Sustainable Development Goals and to set Biodiversity 

Targets of the Convention on Biological Diversity. Following IUCN criteria, Red List 

assessments classify species into extinction risk categories: Critically Endangered (CR), 

Endangered (EN), Vulnerable (VU) (threatened categories), Near Threatened (NT), or Least 

Concern (LC). It is important to note that numerous species are also classified as Data 

Deficient (DD), i.e., that the extinction risk of numerous species cannot be assessed due to a 

lack of data yet many of those non-assessed species may be threatened (IUCN, 2023). 

Although there exist five IUCN criteria (A to E; IUCN, 2023), Criterion A (the rate of 

population reduction scaled by generation length) is the most frequently and, often, the only 

criterion employed for the Red List assessments of marine fishes (d’Eon-Eggertson et al., 

2015; Rueda-Cediel et al., 2018). This is primarily because Criterion A generally matches the 

population statuses predicted by stock assessments (Davies & Baum, 2012; Pacoureau et al., 

2021). Different tools are available for assisting the Red List assessments that are based on 

Criterion A, including very rapid and easy-to-use approaches. However, misclassifying 

populations on the Red List can have substantial impacts on the prioritisation of conservation 

efforts and, consequently, on our ability to optimally counter biodiversity loss (Ale & Mishra, 
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2018; Rueda-Cediel et al., 2018). Therefore, analysts should seek to carry out the Red List 

assessments that are based on Criterion A (henceforth simply “Red List assessments”) with 

tools that adequately characterise and communicate uncertainty around extinction risk. 

Bayesian models represent powerful tools to evaluate extinction risks as they deliver 

probabilistic statements about species falling into extinction risk categories, thereby 

improving the characterisation and communication of uncertainty in extinction risk 

assessments (Boyd et al., 2017; Post et al., 2022). Currently, Red List assessments for marine 

fishes are generally supported by Bayesian state-space models implemented with the JARA 

(“Just Another Red List Assessment”) platform, because of JARA’s capacity to incorporate 

process error and uncertainty into the assessments (Sherley et al., 2020; Winker et al., 2020). 

One major advantage of JARA is that it is less sensitive to outliers (due to process and 

observation error) than simpler regression approaches and, therefore, more accurately 

captures rates of population change (Sherley et al., 2020; Winker et al., 2020). One of JARA’s 

main utilities is an easy-to-interpret graphic showing the probability of population decline 

against Red List categories. This graphic, along with other JARA products, provides 

practitioners with valuable insights into the weight of evidence that supports their Red List 

assessment (Winker et al., 2020). JARA has been employed to assist Red List assessments for 

around 100 elasmobranchs worldwide and other taxa including demersal bony fishes (da Silva 

et al., 2019; Sherley et al., 2020; Dulvy et al., 2021; Pacoureau et al., 2021, 2023). 

JARA inputs include abundance data and an estimate of generation length (the average 

age of breeding individuals). For marine fishes, abundance data can come in the form of the 

abundance trajectories predicted by stock assessment models or indices of relative abundance 

(henceforth simply “indices”) derived from scientific survey catch rates or fisheries catch 

rates (Winker et al., 2020), where abundance is either abundance in numbers or abundance in 

biomass (henceforth simply “biomass”). Because most fish species worldwide do not have a 
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stock assessment (Ovando et al., 2021; RAM Legacy Stock Assessment Database, 2021), 

indices are the most utilised data for JARA for marine fishes. Moreover, when available, 

indices estimated from survey catch rates are preferred to indices estimated from fisheries 

catch rates, because the stratified sampling design and well-defined sampling protocol (in 

terms of methods and effort) of most surveys result in catch rates that are more representative 

of the fish populations (National Research Council, 1998; Dennis et al., 2015). Indices are 

generated from catch rates via a catch rate standardisation procedure using regression models 

(Maunder & Punt, 2004). 

Whilst numerous different models are available for catch rate standardisation (Hoyle et 

al., 2024), there is increasing recognition of the critical role of spatial structure in species’ 

dynamics, extinction risks and recovery potential (Wilson et al., 2023). In this context. spatio-

temporal models, regression models that account for spatial and spatio-temporal structure, are 

increasingly preferred for catch rate standardisation (Thorson et al., 2020). Spatio-temporal 

models represent spatial variation (latent variation that is constant over time) and spatio-

temporal variation (latent variation that varies among years) at a very fine scale and, 

therefore, result in very precise estimates via the borrowing of information across adjacent 

locations and years (Shelton et al., 2014; Thorson et al., 2015). Simulation experiments also 

indicate that, compared to simpler regression models, spatio-temporal models generally 

produce more accurate estimates and/or better characterise uncertainty around these estimates 

(Grüss et al., 2019b; Brodie et al., 2020). One major advantage of spatio-temporal models is 

that, in addition to generating indices, they shed light on the spatio-temporal density patterns 

and patterns of distribution shifts and range expansion/contraction of fishes (Thorson et al., 

2016). Thus, spatio-temporal models can deliver a habitat assessment (e.g., information about 

changes in species’ range) that complements JARA outputs for better informed Red List 

assessments, as JARA informs only about species’ extinction risks in relation to population 
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trends. One of the most widely used spatio-temporal modelling approaches is the VAST 

(“Vector Autoregressive Spatio-Temporal”) state-space modelling tool (Thorson, 2019), 

which is now commonly employed worldwide for the standardisation of the survey catch rates 

of fishes (e.g., Hodgdon et al., 2020; O’Leary et al., 2020; Adams et al., 2021). 

Here, we couple the state-of-the-art VAST and JARA state-space modelling tools for 

better informed Red List assessments of marine fishes. VAST is fitted to survey catch rate 

data to provide indices to JARA, but also density maps and other habitat information to better 

understand what may be driving extinction risks in the study region. We demonstrate our 

coupled VAST-JARA modelling framework by applying it to five contrasting North Sea 

species. 

Materials and methods 

VAST 

The VAST generalised linear mixed modelling platform was originally developed to 

standardise fish catch rate data, which generally include many zeros (Thorson et al., 2015). As 

such, VAST was designed as a delta modelling platform, that is a framework that combines 

together the encounter probabilities estimated by a first linear predictor and the positive catch 

rates estimated by a second linear predictor (Lo et al., 1992). 

VAST delta models fitted to survey catch rate data estimate two linear predictors at 

each site and in each year in the logarithm scale, as a function of: (1) year intercepts treated as 

fixed effects; (2) spatial variation terms treated as random effects; (3) spatio-temporal 

variation terms treated as random effects; and, potentially (4) density covariates and/or 

catchability covariates (covariates related to sampling). The product of the two linear 

predictors is equal to density, 𝑑𝑑. The spatial and spatio-temporal variation terms represent the 

core of VAST models and account, respectively, for latent static and latent dynamic variables 
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that influence fish densities (Shelton et al., 2014; Thorson et al., 2015). Details about the 

estimation and evaluation procedures of VAST models can be found in Appendix S1 in 

Supporting Information. 

The densities predicted by VAST models at each site s and in each year t, 𝑑𝑑(𝑠𝑠, 𝑡𝑡), can 

be summed up over space to produce indices, 𝐼𝐼(𝑡𝑡), which can then be provided as input to 

JARA. However, VAST model predictions can also be processed to deliver a habitat 

assessment for the species of interest (Thorson et al., 2016; Grüss & Thorson, 2019; Han et 

al., 2021; Grüss, Moore, et al., 2023): (1) density maps can be generated; (2) annual centres of 

gravity (COGs) can be computed, to shed light on distribution shift patterns; and (3) changes 

in effective area occupied and population boundaries over time can be evaluated, to determine 

patterns of range expansion/contraction (Appendix S1). Eastward and northward COGs 

represent, respectively, the weighted mean longitude and weighted mean latitude of the 

species of interest in a given year, where each location of the modelled domain is weighted by 

the species’ biomass at that location in that year (Thorson et al., 2016). As such, COGs 

contribute to highlight locations where species are faring well versus locations where this is 

not the case; e.g., a substantial distribution shift to the east suggests the species is undergoing 

depletion in some westernmost locations. Habitat assessments are not used as inputs in JARA 

yet constitute valuable complementary information for Red List assessments to better 

understand what may be driving species’ extinction risk. 

JARA 

JARA is a generalised Bayesian state-space modelling tool that analyses one or several 

indices simultaneously, to determine in which Red List category species are likely to fall 

(Winker et al., 2020). In JARA, posterior distributions are estimated using Markov Chain 

Monte Carlo simulation. Uninformative priors are employed for all estimable parameters so 
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215 that all  the information on which inferences are  based come from the  indices considered and 

their associated uncertainty.  For simplicity, we consider only the cases where one single  

VAST index  is used in JARA.  

 In JARA, the trend of the  indices  is assumed  to follow a Markovian process  such that  

the  index in year  𝑡𝑡, 𝐼𝐼(𝑡𝑡), is conditioned upon the index in year  𝑡𝑡 − 1, 𝐼𝐼(𝑡𝑡 − 1).  A 

conventional exponential growth is  assumed for the trend of the underlying population, such 

that  the process equation  on the log scale is:  

𝜇𝜇(𝑡𝑡) = 𝜇𝜇(𝑡𝑡 − 1) + 𝑟𝑟(𝑡𝑡 − 1)   eqn 1  

where  𝜇𝜇(𝑡𝑡) = log�𝐼𝐼(𝑡𝑡)�; and 𝑟𝑟(𝑡𝑡) = log�𝜆𝜆(𝑡𝑡)�  is the  annual rate of change, with  𝜆𝜆(𝑡𝑡)  being 

growth rate in year  𝑡𝑡, and is considered to follow a random walk:   

𝑟𝑟(𝑡𝑡) = 𝑟𝑟 +  𝜂𝜂(𝑡𝑡) − 0.5𝜎𝜎2𝜂𝜂  eqn 2  

where  𝑟𝑟  is the estimable mean rate of  change;  and  𝜂𝜂(𝑡𝑡)  is the process error following a zero-

centered  normal distribution with standard deviation 𝜎𝜎2𝜂𝜂 .  

The observation equation corresponding to equation 1 is:  

log�𝑦𝑦(𝑡𝑡)� = 𝜇𝜇(𝑡𝑡) + 𝜀𝜀(𝑡𝑡)  eqn 3  

where 𝑦𝑦(𝑡𝑡)  is the relative  abundance observation in year  𝑡𝑡; and 𝜀𝜀(𝑡𝑡)  is the log-normal  

observation error in year  𝑡𝑡. T he observation variance  is given by the sum  of the inputted 

squared standard error estimates  for the abundance index (here from VAST)  and a dditional  

variance estimated  by JARA. The Bayesian  implementation of the state-space model and the 

diagnostics  employed to evaluate  it  are described in Appendix S2.  

  The  posterior of the  population trajectory pr edicted by JARA, 𝐼𝐼(𝑡𝑡) =  exp�𝜇𝜇(𝑡𝑡)�, is 

used to calculate  a posterior probability for the percent change in the fish population  (%C).  If  

𝐼𝐼(𝑡𝑡)  spans more than three generation lengths (GLs),  %C  is estimated as the difference 

between the three-year  median around the final year of  𝐼𝐼(𝑡𝑡), denoted 𝑇𝑇, and  the three-year  

median around the year  corresponding t o 𝑇𝑇 − (3 × 𝐺𝐺𝐺𝐺)  (Sherley et  al., 2020).  To diminish the  
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impact of short-term fluctuations, JARA always projects the year 𝑇𝑇 + 1 to produce a three-

year median around 𝑇𝑇. When 𝐼𝐼(𝑡𝑡) represents a time span smaller than three GLs, forward 

projections are conducted in JARA; specifically, additional years without observations are 

provided to JARA until 𝐼𝐼(𝑡𝑡) spans a period greater than (3 × 𝐺𝐺𝐺𝐺) + 2. Projections are based 

on the posterior of the median of 𝑟𝑟(𝑡𝑡) over all 𝑇𝑇 years (Sherley et al., 2020). 

JARA’s main outcome is a graphic displaying the posterior distribution for %C over 

three GLs against the thresholds for Red List categories under IUCN Criterion A2 (Appendix 

S2). Another useful JARA outcome is retrospective analyses, where the terminal years of the 

index 𝐼𝐼(𝑡𝑡) are sequentially removed and forward projections are subsequently carried out to 

attain three GLs. These retrospective analyses allow for the identification of years in which 

%C traversed new Red List categories (Winker et al., 2020). 

COUPLING JARA WITH VAST 

We demonstrate the benefits of coupling the state-of-the-art VAST and JARA 

modelling tools through an application for five North Sea species. In particular, we show how 

VAST, in addition to delivering an index (and its associated standard errors) to JARA, also 

provides a habitat assessment that helps better interpret JARA outcomes. The five study 

species represent contrasting fish populations: starry ray (Amblyraja radiata) and lesser-

spotted dogfish (Scyliorhinus canicular), elasmobranchs without a quantitative assessment 

and which latest global Red List assessments found to be VU and LC, respectively; spurdog 

(Squalus acanthias), an assessed elasmobranch species which latest global Red List 

assessments found to be LC; and cod (Gadus morhua) and European plaice (Pleuronectes 

platessa), assessed bony fishes which latest global Red List assessments found to be VU and 

LC, respectively. (Table 1). The VAST models were fitted to the data that were collected by 

the North Sea International Bottom Trawl Survey (NS-IBTS), which were retrieved from the 
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International Centre for the Exploration of the Sea (ICES) on their DATRAS platform 

(DATRAS, 2023) to be made available in the FISHGLOB database (Maureaud et al., 2024) 

(Appendix S3). None of the VAST models included density or catchability covariates. The 

GLs used in JARA were those employed in the most recent Red List assessments for the study 

species or were obtained from R package FishLife (Thorson, 2020) when not available in Red 

List assessments (Appendix S4). 

Our North Sea application using FISHGLOB showcases this large international 

collaborative effort. FISHGLOB integrates scientific bottom trawl survey data collected 

worldwide that are pre-processed and homogenised (Maureaud et al., 2024). Here, we focus 

on the NS-IBTS survey data collected in Quarter 1 (January-March; NS-IBTS Q1) between 

1983–2020 (DATRAS, 2023) that are available in the FISHGLOB database (Grüss, 2023), 

while acknowledging some limitations of the NS-IBTS Q1 survey for some of the study 

species (Appendix S4). 

The authors of the present study did not conduct the research surveys themselves and, 

therefore, ethical approval did not apply to the present study. All of the R codes developed for 

the application are publicly available (Grüss, 2024). 

Results 

STARRY RAY 

VAST predicted that starry ray relative biomass significantly decreased between 

1983–2020 in the North Sea (Fig. 1). More specifically, VAST predicted that the starry ray 

population increased until 1993 and sharply declined afterwards (Figs 1 and 2). VAST 

predicted a dramatic habitat shrinkage for starry ray in the North Sea over the period 1983– 

2020: the COG of starry ray was predicted to significantly move eastwards and its effective 

area occupied to significantly diminish (Fig 1). VAST predicted that, in 2020, starry ray 
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310

density hotspots became concentrated in the east of the North Sea, particularly in the 

Skagerrak Strait (Fig. 2). 

JARA provided a percent change in the fish population (%C) estimate over three GLs 

for starry ray of -88.3%, with 97% of the posterior falling in CR (Fig. 3 and Table 1). 

Retrospective analyses with JARA suggested that starry ray switched from the CR status to 

the EN status in the last two years of the period 1983–2020 (Appendix S4).    

COD 

VAST predicted a significant decrease in cod relative biomass between 1983–2020 

(Appendix S4). More precisely, the cod population was predicted to considerably dwindle 

until 2006, increase until 2016, and substantially decline again afterwards. VAST also 

estimated that the COG of cod significantly moved northwards (as well as westwards) 

between 1983–2020 and that the effective area occupied by the species significantly 

diminished. Consequently, VAST predicted that, while cod high-density areas were found 

throughout the North Sea in 1983, they tended to concentrate in the north of the region in 

2020, particularly in the area between Shetland Islands and Scandinavia. 

JARA provided a %C over three GLs for cod of -69.3%, with 100% of the posterior 

falling in EN. The drop in cod relative biomass worsened in the most recent GL of 1983–2020 

(Appendix S4). Retrospective analyses with JARA suggested that increases in the cod 

population between 2006 and 2016 resulted in cod becoming LC in 2016, but that the large 

decline in cod relative biomass afterwards led the threshold for the EN status to be exceeded 

again in 2019–2020 (Fig. 4). 

SPURDOG 
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VAST predicted an overall decline in spurdog relative biomass between 1983–2020 

(Appendix S4). More precisely, the spurdog population was predicted to increase until 1990, 

dwindle until 2010, and slightly increase afterwards. Its COG significantly moved northwards 

between 1983–2020. The extent of spurdog high-density areas varied over time in response to 

changes in population size. While spurdog density hotspots were located primarily around 

Orkney Island in 1983, they were also found on the Fladen Ground and in the north of the 

Skagerrak Strait in 2020. 

JARA provided a %C estimate over three GLs for spurdog of -52.6%, with 53% of the 

posterior falling in EN. Retrospective analyses with JARA suggested that increases in the 

spurdog population after 2010 have resulted in spurdog switching from the CR status to the 

EN status in 2013 (Appendix S4). 

LESSER-SPOTTED DOGFISH 

VAST predicted a very significant improvement in lesser-spotted dogfish relative 

biomass between 1983–2020 (Appendix S4). The increase in relative biomass started from 

1999 and accelerated after 2010. VAST also predicted that the effective area occupied by 

lesser-spotted dogfish significantly diminished in 1983–2020 and that its COG significantly 

moved southwards and eastwards. Thus, VAST predicted that the highest lesser-spotted 

dogfish densities in 2020 were located in the eastern English Channel and southern North Sea. 

JARA estimated that the lesser-spotted dogfish population was LC with a 100% probability 

(Appendix S4). 

EUROPEAN PLAICE 

VAST predicted a significant improvement in European plaice relative biomass 

between 1983–2020 (Appendix S4). More precisely, VAST predicted an increase between 
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2005 and 2015 followed by a decrease. VAST predicted that plaice COG significantly moved 

westwards between 1983–2020 and that its density hotspots depended on the population 

trajectory. JARA estimated a %C over three GLs for European plaice of +55.5%, with 100% 

of the posterior falling in LC. 

Discussion 

Here, we showed the benefits of coupling the VAST and JARA modelling tools for 

better informed Red List assessments of marine fishes. One primary advantage of the VAST-

JARA modelling framework is its adequate characterisation and communication of 

uncertainty around extinction risks with the Bayesian JARA model, which is paramount for 

making and prioritising conservation decisions. Moreover, VAST not only delivers indices to 

JARA whose uncertainty is propagated to JARA outcomes, but also provides a habitat 

assessment for each species which complements JARA outputs. We illustrated those two 

advantages with an application to five North Sea species. 

The North Sea application coupled with previous assessments and studies (Appendix 

S4) suggest that, among the three study elasmobranchs, starry ray is in most need for urgent 

research and management action where deemed appropriate (noting that it has been listed as 

either a species not to be retained or a prohibited species on European Union fishing 

regulations since 2014), followed by spurdog, whilst lesser-spotted dogfish is increasing in 

biomass. We hasten to caveat that the NS-IBTS Q1 survey only partially covers the 

distribution area of the stock of spurdog in the North Sea, which is considered to occupy the 

whole of the Northeast Atlantic (ICES, 2022), and that some caution may therefore be 

required when interpreting our results for spurdog. As the NS-IBTS Q1 survey does not fully 

cover the spurdog stock and other stocks (e.g., the cod stocks as of 2023) that are considered 

by ICES, we encourage the integration of data from different sources (collected by different 

15 



 
 

   

     

     

     

    

     

  

   

   

   

    

    

   

    

      

   

    

    

  

   

  

   

   

   

 

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

surveys and/or observer programs) in VAST in future applications of our VAST-JARA 

modelling framework for North Sea species. The major issue with a survey that does not fully 

cover stock units is that it does not allow for an accurate habitat assessment for those stock 

units (Grüss, Charsley, et al., 2023). Integrating different data sources in VAST will allow for 

improved habitat assessments, as well as for the generation of indices for JARA likely to have 

reduced uncertainty and interannual variability and to cover a longer time period (Grüss, 

Charsley, et al., 2023; Grüss, Thorson, et al., 2023). Data integration could be done with 

seasonal VAST models allowing for the sharing of information not only across locations, 

years and data sources, but also across seasons, to seek to further improve the quality of the 

indices estimated with VAST (Thorson et al., 2020). 

Moreover, both the VAST-JARA modelling framework and previous research 

(Appendix S4) indicate that, while European plaice is not of conservation concern, cod has 

likely met the IUCN criteria for being listed as Endangered (EN) recently. However, we 

hasten to note that our data were for 1983–2020 and that a new stock assessment is upcoming 

for cod at the time of the present study (in 2023), which will consider a new definition of the 

Northern Shelf cod stocks and may provide different insights into the status of those stocks 

(ICES, 2023). 

The population trends estimated by JARA were supported by the patterns of spatial 

density and distribution shifts predicted by VAST. The density maps and annual centres of 

gravity produced with VAST help distinguish between the areas of the study region where the 

species of interest is faring well from the areas where the species is undergoing depletion. 

Such information is invaluable for guiding spatial management efforts, including the design of 

marine protected areas (Grüss et al., 2019a; Paradinas et al., 2022). To further understand the 

patterns of spatial density and distribution shifts predicted by VAST and better exploit this 

information, we recommend research to determine the relative importance of fishing, 

16 



 
 

     

    

   

   

    

    

     

 

   

 

    

     

      

    

 

    

  

  

      

      

    

   

 

      

   

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

environmental variables, and multispecies interactions in explaining changes in density and 

distribution shifts in starry ray and cod, noting that both are boreal species that may have 

responded to increasing sea temperatures (Dulvy et al., 2008). 

VAST also provided insights into the patterns of range expansion/contraction of the 

study species, by predicting annual changes in effective area occupied and population 

boundaries. The effective area occupied metric estimated by VAST is similar to the metrics 

employed in the Red List assessments that relate species’ range size and extinction risk (i.e., 

based on Criterion B), namely the Area of Occupancy and the Extent of Occurrence (Keith et 

al., 2018). However, here, the population trend estimated with JARA did not always concur 

with the changes in effective area occupied in VAST. Thus, while the effective area occupied 

of the declining starry ray and cod was predicted to significantly diminish, the effective area 

occupied of the thriving lesser-spotted dogfish was not predicted to increase but rather to 

significantly decrease. Based on the above-mentioned results, we encourage research to 

improve understanding of the relationship between range changes and population trends in 

marine fishes and develop optimal IUCN range reduction thresholds for classifying 

population declines based on species’ range loss. This research will be important to uncover 

the risks of misclassifying IUCN conservation status when Criterion B (geographic range) is 

used instead of Criterion A (population change). 

While the VAST-JARA modelling framework constitutes a robust tool that adequately 

characterises uncertainty, we caution against unequivocally accepting its outcomes. We 

recommend that specialists of Red List assessments and the fish population of interest should 

be involved in any application of the modelling framework. VAST indices and JARA settings 

should be proofed and verified by experts, including both fish ecologists and survey scientists. 

Importantly, the VAST-JARA modelling framework is designed as a decision-support tool 

and its output should not be taken as a final classification of  extinction risk (Sherley et al., 
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2020). Instead, predictions from the VAST-JARA modelling framework, including JARA 

output and VAST habitat assessment, should be seen as supporting information to make 

interpretations based on Red List guidelines before a decision on the final Red List 

assessment outcome can be made (Lee et al., 2019; Sherley et al., 2020). 

The predictions of the VAST-JARA modelling framework for North Sea species will 

help decision-makers in their next Red List assessment for the North Sea. We foresee 

applications of the VAST-JARA modelling framework to assist Red List assessments of 

numerous other marine fishes worldwide. In addition to the utilisation of multiple data 

sources in VAST, we also envision several avenues for future research including, among 

others, the use of VAST indices for different regions in JARA to derive weighted global %C 

estimates, the consideration of several species simultaneously in VAST and/or JARA, and 

investigations of climate change impacts on species’ extinction risks with the VAST-JARA 

modelling framework (Appendix S5). The VAST-JARA modelling framework can be 

implemented with only a few years of monitoring data, but requires a fair number of 

encounter monitoring observations per year for VAST models for individual species. The 

consideration of multiple species simultaneously in VAST would allow for the borrowing of 

information across locations and years but also across species, thereby allowing for the 

estimation of VAST indices and JARA extinction risks for data-limited Red List species for 

which this is not possible with the current VAST-JARA modelling framework. 
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631 Figures  

Fig. 1. Results of the VAST  model  for  starry  ray (Amblyraja radiata). Shaded  areas represent  

95% confidence intervals. 
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Fig. 2. Spatial patterns of log-density (in log(kg.km-2)) in select years of the period 1983-2020 

predicted by the VAST model for starry ray. Spatial patterns of log-density in each year are 

shown only for those areas where log-density is greater than 1% of the maximum expected 

log-density over the entire period 1983-2020. For each year, the areas where log-density is 

less than 1% of the maximum expected log-density over the entire period 1983-2020 are 

highlighted in light grey. 
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Fig. 3. Results of the JARA model for starry ray: (A) overall JARA fit (black line) to the 

VAST time-series and projected (dashed orange line) population trajectory over three 

generation lengths (GLs), and their 95% credible intervals (shaded areas); (B) the median and 

posterior probabilities for the percent annual change in the fish population (%C) calculated 

from all VAST years (in black), from the last 1 GL (in blue), from the last 2 GLs (in green) 

and from the last 3 GLs (in red), displayed relative to a stable population (with a %C of 0%; 

dotted line); (C) probabilities for %C over three GLs to fall within the International Union for 

the Conservation of Nature Red List categories under Red List Criterion A2 (also provided is 

the median %C over three GLs).  
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Fig. 4. Results of the retrospective analysis with JARA for cod (Gadus morhua): (A) 

retrospective pattern of relative biomass obtained through sequential removal of terminal 

years and subsequent forward projections to attain three generation lengths (GLs); and (B) 

corresponding retrospective status posteriors of change over three GLs – coloured according 

to the International Union for the Conservation of Nature Red List categories under Red List 

Criterion A2.  
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646 Tables  

Table 1. Study species: regional (North Sea) name, International Union for the Conservation 

of Nature (IUCN)  name, stock assessment  information, and Red List category according to  

the most recent global Red List assessment and  this study.   
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 Species   IUCN species 
 name 

 Has a 
 quantitative 

stock  
 assessment? 

   Red List category 
  according to the 

   most recent global 
   Red List assessment 

   Red List category 
  in this study 

 Starry ray (Amblyraja 
 radiata) 

  Cod (Gadus morhua) 
 Spurdog (Squalus 

 acanthias) 

 Lesser-spotted dogfish  
 (Scyliorhinus canicula) 

 European plaice 
  (Pleuronectes platessa) 

  Thorny Skate 

  Atlantic Cod 
  Spiny Dogfish 

Smallspotted  
 Catshark 
  European Plaice 

 No 

 Yes 
 Yes 

 No 

 Yes 

 VU 

 VU 
 VU 

 LC 

 LC 

    CR (97%), EN (3%) 

  EN (100%) 
  CR (2%), EN (53%), 

  VU (26%), NT (7%),  
  LC (12%) 
  LC (100%) 

  LC (100%) 
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