MARCH 2024 MARINESCU ET AL. 523

An Evaluation of NOAA Modeled and In Situ Soil Moisture Values and Variability
across the Continental United States?

PETER J. MARINESCU®,*? DANIEL ABDL°® KYLE HILBURN,? ISIDORA JANKOV,® AND LIAO-FAN LIN¢

% Colorado State University, Fort Collins, Colorado
® Cooperative Institute for Research in the Atmosphere/Colorado State University, Fort Collins, Colorado
¢ Cooperative Institute for Research in Environmental Sciences/University of Colorado Boulder, Boulder, Colorado
4 Global Systems Laboratory, NOAA/OAR, Boulder, Colorado

(Manuscript received 8 August 2023, in final form 29 January 2024, accepted 31 January 2024)

ABSTRACT: Estimates of soil moisture from two National Oceanic and Atmospheric Administration (NOAA) models
are compared to in situ observations. The estimates are from a high-resolution atmospheric model with a land surface
model [High-Resolution Rapid Refresh (HRRR) model] and a hydrologic model from the NOAA Climate Prediction
Center (CPC). Both models produce wetter soils in dry regions and drier soils in wet regions, as compared to the in situ ob-
servations. These soil moisture differences occur at most soil depths but are larger at the deeper depths below the surface
(100 cm). Comparisons of soil moisture variability are also assessed as a function of soil moisture regime. Both models
have lower standard deviations as compared to the in situ observations for all soil moisture regimes. The HRRR model’s
soil moisture is better correlated with in situ observations for drier soils as compared to wetter soils—a trend that was not present
in the CPC model comparisons. In terms of seasonality, soil moisture comparisons vary depending on the metric, time of year,
and soil moisture regime. Therefore, consideration of both the seasonality and soil moisture regime is needed to accurately de-
termine model biases. These NOAA soil moisture estimates are used for a variety of forecasting and societal applications, and
understanding their differences provides important context for their applications and can lead to model improvements.

SIGNIFICANCE STATEMENT: Soil moisture is an essential variable coupling the land surface to the atmosphere. Ac-
curate estimates of soil moisture are important for forecasting near-surface temperature and moisture, predicting where
clouds will form, and assessing drought and fire risks. There are multiple estimates of soil moisture available, and in this
study, we compare soil moisture estimates from two different National Oceanic and Atmospheric Administration (NOAA)
models to in situ observations. These comparisons include both soil moisture amount and variability and are conducted at
several soil depths, in different soil moisture regimes, and for different seasons and years. This comprehensive assessment al-
lows for an accurate assessment of biases within these models that would be missed when conducting analyses more broadly.

KEYWORDS: Soil moisture; Model evaluation/performance; Data assimilation; Land surface model; Seasonal cycle

1. Introduction models, model developers have focused on increasing the cou-
pling between the land surface and atmosphere components of
their data assimilation systems to eliminate persistent atmo-
spheric prediction biases (e.g., Benjamin et al. 2022). Further-
more, NWP models are also beginning to explore the direct
assimilation of new soil moisture observations (e.g., Carrera
et al. 2019; Munoz-Sabater et al. 2019; Lin and Pu 2020).

For these reasons, it is critical to understand the differences
in the available soil moisture estimates from models and ob-
servations that are used in science, forecasting, and agricul-
tural applications. Different estimates of soil moisture exist
across the contiguous United States (CONUS), each with its
own benefits and shortfalls. For example, in situ observations
are often considered to be the most accurate and are there-
@ Denotes content that is immediately available upon publica-  fore used as a benchmark. However, they have limited spatial
tion as open access. coverage (e.g., Quiring et al. 2016). Other products, such as

those from low-Earth-orbiting satellites, have lower temporal
é’Supplemental information related to this paper is available — and spatial resolution (e.g., Liu et al. 2016). Soil moisture esti-
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Knowledge of both soil moisture amount and variability is es-
sential for many Earth system applications, such as forecasting
near-surface temperature and moisture, predicting cloud forma-
tion, including convective initiation (e.g., Ek and Holtslag 2004),
monitoring drought, flood, and fire risks (e.g., Svoboda et al.
2002; Rigden et al. 2020), and providing information for agricul-
tural production (e.g., Madadgar et al. 2017). As such, several
advancements in the estimation and utilization of soil moisture
have recently transpired. For example, in efforts to improve the
accuracy of numerical weather prediction (NWP) and climate

the influence of observation-based data to different degrees
(e.g., Smirnova et al. 1997; Huang et al. 1996; Mitchell et al.
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For example, some studies have compared soil moisture tem-
poral variability and memory between many large-scale land
surface models (LSMs) and in situ soil monitoring networks
across the CONUS, noting certain biases and uncertainties in
the various estimates (e.g., Robock et al. 2003; Xia et al. 2014,
2015a; Dirmeyer et al. 2016; Wan et al. 2022). Other studies
have extended soil moisture comparisons to include soil mois-
ture retrievals from new satellite platforms (e.g., Shellito et al.
2016; Pan et al. 2016; Ford and Quiring 2019; Beck et al.
2021).

While various LSMs have been compared to in situ obser-
vations for several decades, these prior studies have primarily
focused on models with horizontal resolutions on the scales of
1/8° or larger (i.e., the North American Land Data Assimila-
tion System models; Mitchell et al. 2004; Xia et al. 2012).
Given the local, mesoscale variability of soil moisture pro-
cesses and the subsequent impacts of soil moisture on atmo-
spheric prediction (e.g., Koster et al. 2004; Taylor et al. 2011),
high-resolution models should also be tested. Recently, Min
et al. (2021) compared near-surface atmospheric and soil vari-
ables from the High-Resolution Rapid Refresh (HRRR)
model (Dowell et al. 2022; James et al. 2022), which had a
horizontal grid spacing of 3 km, to observations from the New
York State Mesonet. They found that soil moisture was under-
estimated in HRRR, which contributed to warm and dry biases
in atmospheric forecasts. Lee et al. (2023) compared many sur-
face quantities in the HRRR model to in situ observations, in-
cluding soil moisture, for the year of 2021. They reported that at
5-10 cm below the ground, HRRR dry soils had wet bias and
wet soils had a dry bias, and when averaging over all locations
in CONUS, the largest biases occurred in January—February
2021. While these two studies have provided initial assessments
of HRRR soil moisture, there are many outstanding questions.
For example, how well does the HRRR model capture the vari-
ability in soil moisture, as compared to in situ observations?
Furthermore, do these soil moisture comparisons vary signifi-
cantly over different time periods (e.g., seasons to years)? How
do soil moisture estimates within 5 or 10 cm of the surface com-
pare to those around 100 cm below the surface?

The goal of this study is a comprehensive evaluation of soil
moisture estimates in NOAA models to in situ observing net-
works over a multiyear period. In particular, we include soil
moisture estimates from the NOAA operational HRRR
model, which utilizes the NOAA Rapid Update Cycle land
surface model (RUC LSM; Smirnova et al. 1997) and have
only recently been validated across CONUS in a systematic
manner in the peer-reviewed literature (Lee et al. 2023). We
also include the NOAA Climate Prediction Center (CPC)
leaky-bucket hydrological model (Huang et al. 1996; van den
Dool et al. 2003) and in situ observations from two nation-
wide networks: the NOAA/NCEI United States Climate Ref-
erence Network (USCRN; Bell et al. 2013) and the U.S.
Department of Agriculture Soil Climate Analysis Network
(SCAN; Schaefer et al. 2007). This work provides an assessment
of the similarities and differences of soil moisture amounts and
variability across three different products, which are all used in
various operational and research applications.
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FIG. 1. In situ data locations (x marks) used for comparisons be-
tween in situ, HRRR, and CPC soil moisture amounts and variabil-
ity. Black values represent in situ data that passed all quality control
checks, while red values represent locations that did not pass error-
variance-based quality control checks, as described in section 3b. Se-
lect major rivers and lakes are shown with blue lines.

2. Soil moisture data
a. In situ observations

The study uses in situ soil moisture observations from two
nationwide networks. USCRN provides climate monitoring
measurements of atmospheric and soil properties. To increase
the coverage of the in situ observations, SCAN is also in-
cluded. SCAN uses similar sensors to USCRN (i.e., Hydra
Probe sensors) and typically have volumetric soil moisture
(VSM; m3,,., m_3) measurements at the same soil depths
(~5, ~10, ~20, ~50, and ~100 cm) as USCRN. Only data
from these five levels are used for consistency. Dirmeyer et al.
(2016) also found that these two networks have similar error
variances. The observations represent point measurements of
the soil moisture at specific sites across the United States.
Daily data are used in this study and represent the average
VSM of the entire 24-h period based on local standard time.
The locations of these in situ observations are shown in Fig. 1.

b. HRRR model

The HRRR model is NOAA’s operational, convection-
allowing model, which has 3-km horizontal grid spacing and
covers CONUS with a 1-h temporal refresh rate (Dowell et al.
2022; James et al. 2022). In this study, we use HRRRv3, which
was operational between 12 July 2018 and 2 December 2020.
The HRRR model utilizes a one-dimensional land surface
model (RUC LSM; Smirnova et al. 1997), which predicts heat
and moisture transfer vertically throughout the soil column.
The RUC LSM has undergone several enhancements over
the years, including increasing its resolution and incorporating
new features, such as snow and ice models (Smirnova et al.
2000, 2016). The current version predicts VSM at nine vertical
levels (0, 1, 4, 10, 30, 60, 100, 160, and 300 cm) and utilizes cy-
cling of soil conditions over several years to better capture the
soil moisture state. The HRRR utilizes moderately coupled
land data assimilation, meaning that near-surface atmospheric
data assimilation increments are used to adjust the soil analy-
sis (e.g., Benjamin et al. 2022). Given the recent and continued
development of the HRRR data assimilation system and land
surface model, it is critical for assessments of HRRR’s soil
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FIG. 2. The 1.6-m ISM mean amounts, temporally averaged over the study period for (a) the HRRR model and
(b) the CPC model. (c),(d) As in (a) and (b), but for the 1.6-m ISM standard deviations. Filled symbols represent loca-
tions of the 172 in situ observations that pass all quality control checks, as described in the text, with the symbol color
representing the in situ ISM mean or standard deviation, respectively. The symbols (V, ll, @, €, A) represent the dif-
ferent soil moisture quintiles for 1.6-m ISM from the driest to wettest regimes, respectively.

moisture to other estimates. This study provides a benchmark
for HRRR soil moisture estimates in support of the continued
development of NOAA'’s land surface prediction capabilities in
the Unified Forecast System (UFS; https;/ufscommunity.org),
which is a community-based, coupled Earth modeling system
that is application-based to facilitate combining multiple forecast
systems into a single forecast suite. The UFS is also designed to
be the source system for NOAA operational applications. The fo-
cus of this study is on the analyzed soil moisture field (i.e., the
model’s initial conditions), rather than forecast fields, and thus
our results are most directly relevant to the LSM and data assimi-
lation system development.

¢. CPC leaky-bucket model

The CPC soil moisture product utilizes a leaky-bucket
model that solves the time tendency equation in soil moisture
over a region from several inputs: precipitation minus evapo-
transpiration, net streamflow divergence and net groundwater
loss (Huang et al. 1996; van den Dool et al. 2003). These in-
puts to the time tendency equation for soil moisture have
been improved over the years with new observations and pa-
rameterizations (Fan and van den Dool 2004; Arevalo et al.
2021). The CPC model provides 1.6-m-deep integrated soil
moisture (ISM; mm), and these estimates are provided daily
for each of the NOAA climate divisions across the United
States (Guttman and Quayle 1996). There are typically about
7-10 climate divisions per state, although there are fewer for
states with smaller geographical areas, like those in the North-
east United States. The CPC soil moisture data are used as an
input to the U.S. Drought Monitor (Svoboda et al. 2002) in
addition to a suite of other tools,! and continues to be used
as a reference dataset in various soil moisture application

! https://www.drought.gov/topics/soil-moisture.
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studies, from assessing soil moisture impacts on carbon fluxes
(e.g., Yao et al. 2021) to understanding climate impacts on
agricultural production (e.g., Atiah et al. 2022).

3. Methods
a. In situ observations

Since the CPC product only provides 1.6-m ISM, VSM values
from the in situ and HRRR data are vertically integrated in order
to compare 1.6-m ISM in all three datasets. The VSM values are
assumed to represent the mean value over a depth between the
midpoints of the specified levels, as has been done in other stud-
ies (e.g., Dirmeyer et al. 2016; Ford and Quiring 2019). For exam-
ple, the 10-cm VSM observation in the in situ data is assumed to
represent the average VSM for the layer between 7.5 cm (i.e., the
midpoint between 5 and 10 cm) and 15 cm (i.e., the midpoint be-
tween 10 and 20 cm). The 100-cm VSM in the in situ data is also
assumed to be constant to the depth of 160 cm. The HRRR ISM
calculations are better constrained than the in situ ISM calcula-
tions, since the HRRR VSM data span 3.0 m below ground using
nine levels. VSM values are also compared between the HRRR
and in situ data to glean whether certain vertical levels are driving
the ISM differences between these two datasets. An understand-
ing of soil moisture differences at varying depths is also critical
since soil moisture’s role in Earth system processes is depth de-
pendent. In this study, comparisons are focused on 5-, 10-, and
100-cm depths. HRRR data, which is present at 4 and 10 cm be-
low ground, is interpolated linearly to 5 cm for comparisons with
in situ data at this depth. The surface layer in HRRR is also com-
pared to the in situ data that is nearest to the surface (5-cm
depth). In terms of spatial comparisons, the HRRR and CPC
data are linearly interpolated to the locations of the in situ sta-
tions. The analysis is completed over a ~2.4-yr period from
12 July 2018 to 2 December 2020, which is the timeframe that
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FIG. 3. Comparisons of the 1.6-m ISM mean differences between (a),(b) HRRR and in situ data; (c),(d) CPC and
in situ data; and (e),(f) HRRR and CPC data. Note, (e) and (f) only show results from the same locations where in
situ data are available for consistency. (left) Geographical space and (right) soil moisture space. The symbols (V, H,
@, & A) represent the different ISM quintiles from the driest to wettest regimes, respectively. In (b), (d), and (f), the
horizontal solid and dashed lines represent the mean and median differences, respectively, for the entire dataset (lon-
gest line) and for the five soil moisture quintiles. Horizontal lines are colored purple if their associated mean differ-
ences pass statistical significance using a paired Student’s  test at the 99.9th percentile.

HRRRV3 was operational. By confining the analyses to this time
frame, uncertainties associated with model version changes are
avoided.

b. Quality control

In situ data provide the most direct physical estimate of soil
moisture, but it is important to ensure that the in situ data are
of the highest quality. As such, a variety of quality control
procedures are undertaken. First, in situ data are only in-
cluded if they have VSM values available at all five vertical
levels (~5, ~10, ~20, ~50, and ~100 cm), since missing data
could lead to larger uncertainties in the ISM calculation. Sec-
ond, in situ stations directly along the coast are removed due
to unphysical spatial interpolations from the CPC and HRRR
data. From the remaining in situ data (235 stations), we estimate
the ratio of error variance to ISM variance using the method de-
fined in Robock et al. (1995) and used in more recent soil mois-
ture comparisons studies (e.g., Dirmeyer et al. 2016). In essence,
soil moisture can be well approximated by a red-noise process
(i.e., first-order Markov process; e.g., Delworth and Manabe
1988; Vinnikov and Yeserkepova 1991) with the natural loga-
rithm of the soil moisture autocorrelation [In(r)] decreasing line-
arly with increased lag times (7). For this study, autocorrelations
are computed for T of 1-30 days for each station’s ISM daily

Brought to you by Colorado State University Libraries |

anomalies. A linear fit is applied to the In(r) versus 7 data and is
extrapolated to 7 = 0. Deviations from 1 at 7 = 0 can be used to
solve for to the ratio of error variance to ISM variance (e.g.,
Robock et al. 1995). For this study, stations where this ratio is
greater than 0.08 are removed. This error ratio threshold is in-
line with estimates of the mean error ratio of the USCRN and
SCAN networks (Dirmeyer et al. 2016). While this error vari-
ance ratio threshold results in the removal of 63 (~27%) of the
235 available in situ stations, it provides more confidence that
only the highest quality in situ observations are being used in
the analyses. Even with the significant reduction of the in situ
data, the stations span the entirety of the CONUS (Fig. 1). Dif-
ferent thresholds, autocorrelation lengths and dataset lengths
were tested and did not qualitatively impact the results. Further-
more, statistical analyses with the dataset that did not include
the error-variance-based quality control (235 stations) resulted
in qualitatively similar results to those shown in this manuscript
(see in the online supplemental material).

¢. Quintile analysis

To determine whether differences in soil moisture estimates
vary in different soil moisture regimes (i.e., wetter versus drier
conditions), we composite the comparisons over locations
with similar soil moisture amounts. The ISM or VSM values
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FIG. 4. Comparisons of the VSM mean differences between HRRR and in situ data at four different soil depths:
(a),(b) surface in HRRR to 5 cm below ground in the in situ data; (c),(d) S cm below ground for both; (e),(f) 10 cm
below ground for both; and (g),(h) 100 cm below ground for both. (left) Geographical space and (right) soil moisture
space. The symbols (V, ll, @, ¢, A) represent the different VSM quintiles from the driest to wettest regimes, respec-
tively. In (b), (d), (f), and (h), the horizontal solid and dashed lines represent the mean and median differences, re-
spectively, for the entire dataset (longest line) and for the five soil moisture quintiles. Horizontal lines are colored pur-
ple if their associated mean differences pass statistical significance using a paired Student’s ¢ test at the 99.9th
percentile.

from each dataset are averaged temporally over the ~2.4-yr  each of these quintiles. Stations within a quintile will often be
study period for each location and are then averaged among located in similar regions across the United States (Fig. 2).
the available datasets (i.e., all three datasets for ISM; the in  For example, the intermountain west regions (longitudes be-
situ and HRRR datasets for VSM). Using this mean, the loca-  tween ~100° and ~120°W) are generally drier than other re-
tions are separated into five quintiles. For example, locations  gions. Although, there are instances when stations that are
with a mean ISM estimate that is greater than or equal to the  located in proximity fall into very different quintiles, which are
Oth percentile ISM and less than the 20th percentile ISM are  often due to local geographic features. For example, southern
placed in the lowest quintile of soil moisture amounts (i.e., and central Utah have 1.6-m ISM mean values that fall into
driest locations). These locations are termed Lgg_oo. Similarly, — Lgo o0 Or Lag 40, While northern Utah have 1.6-m ISM mean val-
locations that fall within the 20th-40th, 40th—-60th, 60th—-80th,  ues that fall in L,y 49, Lo 60, OF Leo_g0, With the one Lgg g sta-
and 80th-100th percentiles are termed Lo 40, Lao-c0, Leo-so, tion being located right along the Cutler Reservoir and Bear
and Lgy_100, respectively, and represent dry to wet soil mois-  River. Therefore, station that are located in similar regions may
ture regimes. There are either 34 or 35 stations included in  fall into very different soil moisture regimes. It is also important
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FIG. 5. Comparisons of the 1.6-m ISM standard deviation differences between (a),(b) HRRR and in situ data;
(c),(d) CPC and in situ data; and (e),(f) HRRR and CPC data. Note, (¢) and (f) only show results from the same loca-
tions where in situ data are available for consistency. (left) Geographical space and (right) soil moisture space. The
symbols (V, ., @, & A) represent the different ISM quintiles from the driest to wettest regimes, respectively. In (b),
(d), and (f), the horizontal solid and dashed lines represent the mean and median differences, respectively, for the en-
tire dataset (longest line) and for the five soil moisture quintiles. Horizontal lines are colored purple if their associated
mean differences pass statistical significance using a paired Student’s ¢ test at the 99.9th percentile.

to note that different parts of the United States can have similar
soil moisture amounts; for example, the Pacific Northwest and
the Atlantic Northeast have similar 1.6-m ISM mean values and
thus, fall into the same quintiles (Figs. 2a,b). The quintiles
groupings allow for an assessment of whether there are system-
atic biases as a function of soil moisture, regardless of region or
location. For clarity, we include maps for both ISM and VSM
comparisons that show which stations fall into which quintiles in
the following sections.

We assume that the station locations within each quintile
represent a sample from the full population of locations within
each quintile (i.e., soil moisture regime) across CONUS. Us-
ing the Student’s ¢ test, comparisons of the quintile sample
means of soil moisture amounts and variability between the
datasets can be used to determine whether the dataset differ-
ences are statistically significant (i.e., unlikely to be a result of
random chance).

4. Soil moisture amount

a. ISM mean bias

Stark, regionally dependent mean differences are apparent
in the ISM estimates (Figs. 2 and 3). The HRRR ISM values
(Fig. 2a) have a more muted range than the CPC ISM values
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(Fig. 2b). The HRRR ISMs are larger (i.e., wetter) than the
CPC ISMs across the drier regions of CONUS (most of the
western CONUS; Figs. 2a,b and 3e) and are smaller (i.e., drier)
than the CPC ISMs in the wetter regions of CONUS (eastern
half of CONUS and the coastal regions of the Pacific North-
west). These regional biases are associated with the varying soil
moisture amounts in the different regions of CONUS.

When compared to both in situ ISM (Figs. 3a,b) and CPC ISM
(Figs. 3e,f), HRRR is wetter in Ly (+101% and +97%, re-
spectively, when taking the mean percentage bias for all locations
in Log o) and drier in Lgy 100 (—34% and —13%, respectively).
Therefore, while CPC also has a wet bias in the driest regimes,
and a dry bias in the wettest regime, as compared to in situ obser-
vations, the CPC biases are significantly smaller than the HRRR
biases. There are fewer moisture quintiles with statistically signifi-
cant differences between the CPC and in situ ISM mean
amounts, but this is a result of the middle three quintiles (L 4,
Lo 60, Leo-go) having both positive and negative biases that re-
sults in a relatively small bias in the quintile mean (Fig. 3d). In
fact, the CPC and in situ data have the largest differences
among the dataset comparisons within these middle quintiles,
which are clearly associated with specific geographic regions
(Figs. 3c,d). For example, both L, 9 and Lgg_go show minimal
mean differences between the CPC and in situ ISMs, but at



MARCH 2024 MARINESCU ET AL. 529

(a) 0 cm: HRRR - 5 cm: In Situ 0.10 0.1 —2) 0 cm: HRRR - 5 cm: In Situ .
. ¥
50°N — 2 S _“..r.“, = ) . 0.054 wY ® .é A2 -80
45°N IO, X s J 005 c3 c3 e s LA "
R ~ AN z 0wl o0 | o2 W02 AA ) _ °
40°N ] Vo4 1A e 0.00 85 99 0.00 . 90 2
o : oh O ©
35°N Z o G2 S —0.05 WESED St 4 -100 £
30°N a7 vos 52 EB v o ¢ f 3
< A . —0.05a0> 0> _4104 -110
25°N o
120°W110°W100°W 90°W 80°W 70°W -0.10 -0.15 o1 o2 o3 o -120
Mean VSM
(c) 5 cm: HRRR - In Situ 0.10 0.10 (d) 5 cm: HRRR - In Situ .
50°N ; DY~ T Y
ason | PpB Nl T bt W plms ~ 78] [Loos £33 %] e e w80,
. 2 ; 0B 90 I o) N Dy A _op O
40°N 3 A 25 25 0.00 A A 90 2
35° ; 02 000 57 o )
5N st s O= —0.051 P -100 §
N | S 00552 58 v ¢ -
Ve : —0.10 & * -110
25°N N
120°W110°W100°W 90°W 80°W 70°W —0.10 —0.15 o1 o o3 o -120
Mean VSM
. f (f) 10 cm: HRRR - In Situ
(e) 10 cm: HRRR - In Situ 0.10 0.10 ~70
50°N DY e
45°N s o8] [foos c3 <3 0% | 1 -8
. eB 9B 4404 vout¥® & o —90 3
40°N i ¢s g2g © S IR 2
35°N 5t 000 ga ga 0.05 100 €
(a [ —U. 1 o = - -
30°N £2 £Z Lt 3 e/ 3
8 7 -0.05a8> Ao> ~0.10 1 = & -110
\ - ) = 2
25°N o
120°W110°W100°W 90°W 80°W 70°W —0.10 —0.15 o1 o2 o3 o —-120
Mean VSM
. f (h) 100 cm: HRRR - In Situ
(g) 100 cm: HRRR - In Situ 0.10 0.10 ~70
50°N ) DY e~ o ¥
45°N | e ng oL W Pdms ~ 2 |Loos g3 3 0097 8o
40°N | {0 o - 32 39 0.00- -90 3
. : IS 000 §3 §3 =S
35°N T2 B2 —0.05- -100 £
30°N S oosEd E0 S
¢ A —0.058> a> 410 -110
25°N N
120°W110°W100°W 90°W 80°W 70°W —0.10 —0.15 o1 o o3 o -120
Mean VSM

F1G. 6. Comparisons of the VSM standard deviation differences between HRRR and in situ data at four different
soil depths: (a),(b) surface in HRRR to 5 cm below ground in the in situ data; (c),(d) 5 cm below ground for both;
(e),(f) 10 cm below ground for both; and (g),(h) 100 cm below ground for both. (left) Geographical space and (right)
soil moisture space. The symbols (¥, l, @, €, A) represent the different VSM quintiles from the driest to wettest re-
gimes, respectively. In (b), (d), (f), and (h), the horizontal solid and dashed lines represent the mean and median dif-
ferences, respectively, for the entire dataset (longest line) and for the five soil moisture quintiles. Horizontal lines are
colored purple if their associated mean differences pass statistical significance using a paired Student’s ¢ test at the
99.9th percentile.

eastern locations the CPC ISM means have a wet bias (Fig. 3d, and thus, the potential shortfalls of conducting CONUS-
green/yellow circles and diamonds) and at western locations wide means.

the CPC ISM means have a dry bias (Fig. 3d, blue circles and For some locations where CPC has very large differences
diamonds), demonstrating that differences between the CPC  from the in situ data, HRRR aligns more closely. These occur-
and in situ ISM means are more dependent on geographic lo-  rences are typically associated with localized soil characteristics
cation and less dependent on soil moisture amount, as com-  or topography, which are not captured in the coarser climate di-
pared to the differences between the HRRR and in situ data.  vision regions used in the CPC product. For example, based on
Note that we have also included mean absolute difference  comparisons with the in situ ISM, the HRRR produces similarly
analyses in the supplemental material, which may be especially  dry soil moisture conditions within the Sand Hills region of
useful for these instances with both positive and negative Nebraska (e.g., red square at 42.1°N, 101.4°W in Fig. 2). The
biases in the same quintile. As is also shown in Fig. 2, Fig. 3  temporally averaged mean ISM for this location is 138 and
demonstrates both regional and soil-moisture-regime rela- 165 mm for the in situ and HRRR data, respectively, as com-
tionships to these ISM differences between the datasets pared to 372 mm in the CPC data (2-3 times larger).
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F1G. 7. Comparisons of 1.6-m ISM temporal correlation coefficients between (a),(b) HRRR and in situ data;
(c),(d) CPC and in situ data; and (e),(f) HRRR and CPC data. Note, (e) and (f) only show results from the same loca-
tions where in situ data are available for consistency. (left) Geographical space and (right) soil moisture space. The sym-
bols (V,H, @, &, A) represent the different ISM quintiles from the driest to wettest regimes, respectively. The horizon-
tal solid and dashed lines represent the mean and median differences, respectively, for the entire dataset (longest line)

and for the five soil moisture quintiles.

b. VSM mean comparisons at varying depths

To evaluate the depth dependence of soil moisture differ-
ences, the VSM data at different depths are compared in the
HRRR and in situ data (Fig. 4). Since CPC only provides the
1.6-m integrated soil moisture, it is not included in the VSM
analyses. Note, that the VSM data are also separated into
quintiles from driest to wettest in a similar way to the ISM
data, and this procedure is done for each vertical level. There-
fore, in situ locations may fall into different quintiles for dif-
ferent vertical levels.

The same trend of the HRRR being wetter in Lgo o0 (i.€.,
the driest regions) and drier in Lgg 109 (i.e., the wettest re-
gions) is present at all depths. This result is in-line with Lee
et al. (2023), which recently found similar biases depending
on soil moisture amount when comparing HRRR and
USCRN at 5- and 10-cm depths for the year 2021. There are
generally smaller differences in the middle quintiles, as com-
pared to the wettest and driest regimes. At the lowest depths
(100 cm below ground; Figs. 4g,h), the differences between
the HRRR and in situ VSMs have larger magnitudes than
shallower depths, especially for the driest and wettest regimes
(Loo_no difference of +0.08 and Lgg 0o difference of —0.18).
Near the surface (Figs. 4a,b), the driest 40% of the regions
have relatively small differences (+0.02), although significant
dry biases are present for the wetter regions (—0.11). The
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VSM data demonstrate that while the deeper soil layers (i.e.,
100 cm below ground) are the primary drivers of the ISM
trends, the shallower soil layers have similar trends.

5. Soil moisture variability
a. ISM standard deviation comparisons

Quantifying the variability (e.g., standard deviations and
correlations) in soil moisture allows for an assessment on how
models are capturing the magnitude and timing of soil mois-
ture changes, as compared to in situ observations. Maps of the
ISM standard deviations in the HRRR and CPC ISM data
show similar patterns, with the highest variance occurring
along the Pacific Northwest coast (Figs. 2c,d). The lowest ISM
standard deviations occur along the Intermountain West and
High Plains regions. In general, the HRRR ISMs have lower
variance than the CPC data across the CONUS except for in
the parts of the Rocky Mountains and in the Great Lakes and
Northeast regions (Figs. 2¢,d and 5e¢). HRRR produces larger
spatial variability within the mountain and valley regions
across the western United States that cannot be resolved in
the CPC data.

The in situ observations generally have the highest ISM
variance for most quintiles followed by CPC and HRRR,
which has the lowest variances of the three datasets (Fig. 5).
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F1G. 8. Comparisons of the VSM temporal correlation coefficients between HRRR and in situ data at four different

soil depths: (a),(b) surface in HRRR to 5 cm below ground in the in situ data; (c),(d) 5 cm below ground for both;
(e),(f) 10 cm below ground for both; and (g),(h) 100 cm below ground for both. (left) Geographical space and (right)
soil moisture space. The symbols (V, l, @, @, A) represent the different VSM quintiles from the driest to wettest re-
gimes, respectively. In (b), (d), and (f), the horizontal solid and dashed lines represent the mean and median differ-

ences, respectively, for the entire dataset (longest line) and for the five soil moisture quintiles.

The in situ and CPC quintile mean ISM standard deviations
are not significantly different for most quintiles, while the
HRRR quintile mean standard deviations are significantly
lower for all quintiles when compared to both other datasets.
Dirmeyer et al. (2016) showed that spatial scaling differences
do not have a large impact (~10%) on in situ observation
standard deviations via conducting tests where many stations
that are separated by several kilometers to up to 100 km are
averaged together. Therefore, the differences between the in
situ and NOAA modeled standard deviations are likely due
to other factors outside of dataset spatial scale differences,
such as the representation of model processes or model input
data. Furthermore, the large scatter in the ISM standard devi-
ation differences (with both positive and negative differences)
between the in situ data and both models (Figs. 5a—d) suggests
that the cause of these differences may often be specific to a
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station location. The differences between HRRR and CPC
ISM standard deviations, however, demonstrate a systematic
bias with less scatter between these two modeling frameworks
(Figs. Se.f).

b. VSM standard deviation comparisons at
varying depths

VSM standard deviations at four different depths are com-
pared between HRRR and in situ data (Fig. 6). Regardless of
the soil moisture regime, the HRRR surface VSM standard de-
viations compare well to the 5-cm in situ observations in a mean
sense, although there is more scatter in these comparisons than
other levels (Figs. 6a,b). When averaging over all CONUS loca-
tions, the mean near-surface percentage differences in HRRR
soil moisture from the in situ value is only —3.0% (Figs. 6a,b;
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FIG. 9. (left) Monthly 1.6-m ISM means for HRRR, CPC, and in situ data for (a) Loy 0, (b) Lao60, and (c) Lgo_100- (right)
Monthly mean (solid) and median (dashed) differences in ISM means for the three quintiles are shown for (d) HRRR minus
in situ data, (¢) CPC minus in situ data, and (f) HRRR minus CPC data.

longest, solid line). Larger standard deviations at the near-sur-
face level in the HRRR model, as compared to lower levels,
may be a result of improvements made in the HRRR’s RUC
LSM and the moderately coupled land data assimilation system
that have been applied (Benjamin et al. 2022). However, at
depths of 5 cm below ground and deeper (Figs. 6¢c-h), most
quintiles have statistically significant differences in the standard
deviations, in line with the ISM standard deviation differences
between HRRR and in situ data (Figs. 5a,b). The mean per-
centage differences over all CONUS locations are —38.7%,
—36.4% and —45.2% for the 5-, 10-, and 100-cm levels, re-
spectively, with the HRRR always having lower standard de-
viations than the in situ datasets for every quintile. These
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differences in VSM standard deviations are larger for wetter
soil moisture regimes (Lo 100)-

c. ISM temporal correlations

In addition to comparing standard deviations, temporal cor-
relations over each station’s time series over the entire time
period are also compared among the datasets to determine
how well the datasets vary together (Fig. 7). Depending on
the station, these correlations included between 171 and 806
daily data points, with most stations (i.e., the median) having
more than 737 daily data points. Because of the presence of
outliers (Fig. 7), the focus is on median statistics. Comparing
the entire datasets, the median correlation coefficient (r)
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3
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for both, and (d) 100 cm for both.

among the station locations are +0.66, +0.64, and +0.63 for
the HRRR versus in situ data, the CPC versus in situ data,
and the HRRR versus CPC data, respectively. While there is
no clear trend in correlation as a function of soil moisture re-
gime between the CPC and in situ datasets (Fig. 7b), the
HRRR and in situ comparisons (Fig. 7a) show decreasing cor-
relations with increasing soil moisture for all regimes except
the driest regime (Lgo_20)- Thus, when compared to in situ ob-
servations, the HRRR model better captures the changes in
soil moisture for drier regimes than wetter regimes, except for
some of the driest locations. When comparing both the
HRRR and CPC ISMs with the in situ data, the driest (Lgo_20)
and wettest (Lgo_100) quintiles have the lowest correlations
with the in situ data (medians between 0.58 and 0.64). Also, it
is important to note that the northeast and northwest U.S. sta-
tions (Fig. 7) consistently have some of the best correlations
among all three datasets.

d. VSM temporal correlations at varying depths

When assessing the varying soil moisture depths in the HRRR
and in situ data, the highest correlations occur at the 5- and
10-cm depths (Figs. 8c—f). The median correlations for the entire
dataset for the 5- and 10-cm levels are 0.60 and 0.62, respectively.
These are much stronger correlations than when correlating the
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m_3) at four different soil depths: (a) 0 cm in HRRR and 5 cm in the in situ data, (b) 5 cm for both, (c) 10 cm

100-cm levels (r = 0.50) and comparing the surface level in
HRRR with the 5-cm level in the in situ data (r = 0.46). Note
that the correlations of the surface level in HRRR to the 5-cm
level in the in situ data are the lowest, while their standard devia-
tions comparisons had the smallest mean differences (Fig. 6).

Importantly, regardless of depth, there is the same general
trend of decreasing correlations for increasing soil moisture
that is present in the ISM data. For example, for the 10-cm
comparisons, Lgg o have temporal correlations of 0.69, while
Lgy_100 have temporal correlations of 0.55. These results show
that the trends in ISM temporal correlations between HRRR
and in situ datasets (Figs. 7a,b) are generally consistent for all
soil depths presented in this study.

6. Seasonal and annual variability
a. Mean ISM and VSM seasonality

The following sections show results where these same sta-
tistics (mean differences, standard deviation differences, cor-
relations) are calculated based on data for each month during
the ~2.4-yr study period in order to assess whether differ-
ences between the datasets have seasonal variability. Figure 9
shows the 1.6-m ISM for the driest (Lgg_29, Fig. 9a), middle
(L4o_60, Fig. 9b), and wettest (Lgg 100, Fig. 9¢) soil moisture
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FIG. 11. (left) Monthly 1.6-m ISM standard deviations for HRRR, CPC, and in situ data for (a) Lgo_20, (b) Lao_60,
and (c) Lgo_100- (right) Monthly mean (solid) and median (dashed) ISM standard deviation differences for the three
quintiles are shown for (d) HRRR minus in situ data, (¢) CPC minus in situ data, and (f) HRRR minus CPC data.

regimes as a function of month for all three datasets, including
the monthly differences (Figs. 9d-f) between the datasets.
Generally, both the HRRR and CPC models capture the tim-
ing of the maximum and minimum ISMs that occur in the in
situ data. For the driest regimes (Fig. 9a), the CPC and in situ
locations are much more in-line, with the HRRR values over-
estimating soil moisture throughout the year with the largest
biases occurring in the fall and winter months (Figs. 9a,d). For
L4g_60, both the CPC and HRRR models underestimate ISM
by ~50-100 mm in the March-May period and are closer to the
in situ data during the July—September time period (Fig. 9b). Fi-
nally, for the wettest locations (Lgg_j00; Fig. 9c), both HRRR
and CPC have low ISM biases compared to the in situ data

Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 04/24/24 06:09 PM UTC

throughout the year, but the timing of largest and smallest
biases varies between the comparisons.

When assessing the HRRR and in situ monthly compari-
sons over the different VSM depths (Fig. 10), similar seasonal
trends in soil moisture biases are present at all depths. Further-
more, the differences in the VSM mean biases at shallower lev-
els have stronger seasonal changes than at the deepest level. For
the driest regions (Lgy_o), the best comparisons occur in the
first half of the year, with the best-performing month depending
on the depth. The worst comparisons for Ly o occur in the sec-
ond half of the year. For the wettest regions (Lgo_10), the worst
comparisons are generally in March-May, and the best compari-
sons are in August-October. Generally, the timing of these
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FIG. 12. Monthly mean (solid) and median (dashed) differences between HRRR and in situ VSM standard devia-
tions (m3,,., m_3) at four different soil depths: (a) 0 cm in HRRR and 5 cm in the in situ data, (b) 5 cm, () 10 cm,

water

and (d) 100 cm.

peaks and troughs in the comparisons are consistent among the
different soil moisture depths. It is important to note that Lee
et al. (2023) found that when averaging across all stations, there
is minimal bias from May to November with larger biases in
January—February at the 5- and 10-cm levels. However, when
separating the data into the different soil moisture regimes, the
January-February bias reported by Lee et al. (2023) is likely
caused by the larger negative biases in the wettest soil moisture
regimes (Lgy_100), Which more than offsets the smaller magni-
tude positive biases in the drier regimes (e.g., Lgo_0). During
May-November, significant biases are still present for the differ-
ent soil moisture regimes, but these differences better balance
when averaging over all of the CONUS regions, resulting in
smaller CONUS-wide biases during this time period.

b. Mean ISM and VSM standard deviation seasonality

Similar to the ISM monthly mean values, both the HRRR
and CPC models produce similar seasonal cycles for ISM
standard deviations as compared to the in situ data in terms
of the timing of peaks and troughs (Figs. 11a—c). Both HRRR
and CPC underpredict standard deviations of ISMs through-
out the year for all soil moisture regimes, except for the CPC
during the June-November period for the driest regime
(Loo_20, Fig. 11e), and HRRR during January—-March for the
wettest regimes (Lgg_100)-
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When comparing the 5-, 10-, and 100-cm soil moisture
depths for the HRRR and in situ data (Figs. 12b—d), the worst
comparisons occur in the May-November time period, re-
gardless of soil moisture regime, except for the deepest levels
of the drier regimes (Fig. 12d; Loo_20 and L4g o), Which have
less seasonality in the comparisons. For most of the data, the
comparisons of soil moisture standard deviations between
HRRR and in situ data show minimal differences in the
months of December—March, with the worst comparisons dur-
ing this time period for L,y ¢o. Note that while the compari-
sons at the surface in HRRR to in situ 5-cm depth had
relatively low standard deviation differences (Figs. 6a,b),
there are larger positive and negative biases in different times
of the year (Fig. 12a) that offset each other when not consid-
ering this seasonal variability.

¢. ISM and VSM temporal correlation seasonality

For the driest regimes (Loo_20, red lines in Fig. 13), the tem-
poral correlations between both models and the in situ data
(Figs. 13a,b) are generally lowest in the January-February
and July-September periods and are highest in the March—
June period. Both the HRRR and CPC models also perform
similar when being compared to the in situ data for the wet-
test regimes, with the best correlations occurring in October
(mean and median r > 0.6), and the worst comparisons
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occurring in December and January. The CPC correlations
with the in situ data are lower than the HRRR correlations with
the in situ data for most times of the year. The consistencies be-
tween both modeling platforms comparisons with the in situ
data, in terms of best and worst performing time periods, may
suggest periods of relatively high and low ISM predictability.

In terms of the different depth comparisons between the
HRRR and in situ correlations, the 100-cm depth generally
has the poorest temporal correlations for all times of the year
(Fig. 14d), especially for the wettest regime (Lgo_190). Compar-
isons nearer to the surface (Figs. 14a—c) generally depict
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similar seasonal cycles regardless of depth, with the 5- and 10-cm
depth comparisons (Figs. 14b,c) having the strongest correla-
tions. For the wetter soil moisture regimes (L4060 and Lgg 100),
the near-surface, 5- and 10-cm temporal correlations have
similar seasonal trends, with the highest correlations from
May to October and lowest correlations from January to
April. For the driest regime (Lgo_20), the near-surface, 5-cm,
and 10-cm correlations also have similar seasonal cycles,
with the worst performing months being January and
August through September. These are generally in-line with
the ISM temporal correlations (Fig. 13a). While the 100-cm
depth has similar seasonal cycles to the shallower depths,
there are some months with significant differences between
the deep and shallow soil moisture correlations (i.e., May
for Lgy_100). Note that the median correlations results have
higher correlations than the mean, especially at the 100-cm
depth, showing the impact of outlier station results at these
deep soil levels.

d. Interannual variability

Because of the length of these analyses (~2.4 years), an as-
sessment of the consistency of the statistics presented can be
shown for two different years. Each statistic (mean bias, stan-
dard deviation bias, and temporal correlations) are compared
for two different year-long time periods (1 December 2018
2019 and 1 December 2019-2020; not shown), and the qualita-
tive conclusions that are drawn from the analyses presented
in this study do not change in the two individual analysis
years. Furthermore, the VSM mean bias results are in line
with the results presented in Lee et al. (2023), which focused
on a separate year that was not included in this study (2021),
further demonstrating the robustness of these results. It is im-
portant to note that soil moisture biases may vary on time scales
longer than that which can be assessed with the ~2.4-yr dataset
used in this study. Recall, this ~2.4-yr dataset was coinci-
dent with the operational HRRRv3 and used in order to
avoid biases introduced by using different model versions.
Additional research with longer datasets would be needed
for determining the interannual variability of these dataset
comparisons.

7. Conclusions

A comparison of 1.6-m integrated soil moisture (ISM) across
the continental United States (CONUS) between two different
NOAA soil moisture modeling frameworks with in situ observa-
tions is conducted, including comparisons of both mean soil
moisture amount and variability. This analysis includes the
HRRR model with its RUC LSM, the CPC leaky-bucket
model and in situ observations from two national networks.
The same comparisons of volumetric soil moisture (VSM) at
several soil moisture depths (near-surface and 5, 10, and
100 cm below the ground) between HRRR and in situ data are
also conducted to assess the consistency of soil moisture com-
parisons at different depths. Soil moisture amount and vari-
ability are compared as a function of soil moisture regime,
geographical location, and time of year to provide a comprehensive
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FIG. 14. Monthly VSM mean (solid) and median (dashed) temporal correlation coefficients between HRRR and in
situ data for Log o0, L4060, and Lgg 100 Comparisons are shown for four different soil depths (a) 0 cm in HRRR and
5 cm in the in situ data, (b) 5 cm in both, (c) 10 cm in both, and (d) 100 cm in both.

assessment. These soil moisture data are used in many opera-
tional and research applications, including atmospheric forecast-
ing, drought and agricultural crop monitoring, and assessing
flood and fire risks. Therefore, quantifying differences in these
NOAA models to observational networks across CONUS is
critical.

Several conclusions are drawn from these comparisons.

1) The HRRR and CPC ISMs are both larger (i.e., wet-
ter) in the driest regions and smaller (i.e., drier) in the
wettest regions, as compared to in situ observations.
These results are in-line with a comparison of HRRR
VSM with in situ observations recently conducted by
Lee et al. (2023).

2) All depths show the trend of a dry bias in wetter regimes
and a wet bias in drier regimes in HRRR compared to in
situ observations, but the biases are smaller at shallower
depths.

3) CPC ISM differences from in situ data are more related
to specific geographic regions and less related to soil mois-
ture regimes. HRRR differences from in situ data have a
clearer trend as a function of soil moisture regime that is
less dependent on geographical location.

4) The in situ observations have the largest ISM standard devi-
ations, followed by the CPC leaky-bucket model and the
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HRRR model. The HRRR data has significantly smaller
ISM standard deviations than both other datasets for every
soil moisture regime.

5) Both ISM and VSM temporal correlations between HRRR
and in situ data generally decrease with increasing soil mois-
ture, suggesting better HRRR performance in drier re-
gimes, in terms of capturing changes in soil moisture that
concurrently match in situ observations; although some sta-
tions along the northeastern and northwestern CONUS
coasts have relatively wet soils and have some of the highest
correlations, and some of the driest locations have low cor-
relations at the deepest soil depths.

6) There is significant seasonal variability in soil moisture com-
parisons that can vary based on the soil moisture regime.
Therefore, it is important to consider both the seasonality
and soil moisture regime when quantifying differences be-
tween modeled estimates and observations of soil moisture.

In terms of modeled soil moisture, biases in the input datasets
(i.e., precipitation or radiation), whether they come from a cou-
pled atmospheric model in the case of HRRR or external sour-
ces in the case of CPC, have been shown to lead to biases in
land surface model calculations (e.g., Mitchell et al. 2004; Min
et al. 2021). Choices in the land surface model structure and pa-
rameterizations, such as the number and thickness of soil layers,
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the representation of soil and vegetation, and other model pa-
rameters, can also lead to biases in soil moisture prediction (e.g.,
Mitchell et al. 2004; Xia et al. 2014, 2015b). Min et al. (2021)
found that snowmelt, freezing/thawing, and/or biases in pre-
cipitation and evapotranspiration led to differences in
HRRR soil moisture as compared to in situ observations in
New York and that the most relevant processes causing
these differences varied throughout the year. These prior
works demonstrate that there are many combinations of error
sources for soil moisture prediction, which can vary for different
locations. The results in this study demonstrate that there are
biases in NOAA modeled soil moisture amounts and variability
as compared to in situ observations across CONUS and that
these biases are dependent on the soil moisture regime, the spe-
cific location, and the time of year. As such, future research
should focus on understanding the model processes that are caus-
ing these biases through systematic modeling experiments that
can better assess the impacts of the many assumptions within
land surface modeling. Our results show specific soil moisture re-
gimes, locations and/or times of the year with larger biases (e.g.,
both the wettest and driest regimes) that should be the focus of
additional research.

These results also provide important context to the cur-
rent users of these models and observations. For example,
HRRR'’s land data assimilation system has recently under-
gone changes that primarily impact the near-surface soil
state (Benjamin et al. 2022). The comparisons presented
may provide a first step toward understanding the impact
of these model changes. Furthermore, these results can assist
with the continued development and refinement of soil moisture
models and products. The analyses presented here were moti-
vated by preparing training and validation data for a machine
learning algorithm that uses data from the Advanced Baseline
Imager on board NOAA’s Geostationary Operational Environ-
mental Satellite to estimate the soil moisture state at very high
resolution (i.e., on the order of ~1 km). With a recent focus on
land-atmosphere coupling and a continued shift toward higher-
resolution models, such a product could be used as a supplemen-
tary input for strongly coupled land atmosphere data assimilation
in the next generation of atmospheric models. Understanding our
current estimates of soil moisture and their differences is an im-
portant first step for improving these estimates and land surface
modeling.
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