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Executive Summary

Guam (Guahan) is home to tens of thousands of U.S. military
personnel stationed at Naval Base Guam (NBG), Andersen Air
Force Base (AAFB), and other installations. Over the last two
decades, this military buildup and increased military activities
have brought economic stimulus to Guam but also directly and
indirectly displaced and impacted marine ecosystems in the
area. These cumulative impacts were described in the Navy's
environmental impact statement. Their integrated resource plan
recommends potential ways to mitigate the impact of naval
activities on Guam'’s ecosystems, including its coral reefs. To
implement these strategies, the Naval Facilities Engineering
Command Marianas (NAVFAC Marianas) requested new maps
for submerged lands around NBG. No benthic habitat maps had
been produced around Guam since 2010.

To meet this need, NOAA's National Centers for Coastal Ocean
Science (NCCOS) collaborated with NAVFAC Marianas to
develop detailed maps of the distribution of seafloor habitats,
beginning with Apra Harbor and Haputo Ecological Reserve
Area (ERA). Two new types of map products were made for
these locations. The first product type describes the spatial
distribution of seven substrate (e.g., sand) and 12 biological
(e.g., seagrass) cover types. These classes were used to
create 19 map layers, where each 2 x 2 m grid cell denotes the
probability that a given substrate or cover type is present (0% to
100%). The second product was a classified map depicting the
seven most common combinations of substrate and cover types
in a single layer.

Acropora coral, Guam. Credit: NOAANCCOS

Both product types were created using machine learning
models called boosted regression trees (BRTs) and boosted
classification trees (BCTs). These approaches model complex,
nonlinear relationships between a response (the presence or
absence of 19 habitat types in underwater photographs at 236
sites) and predictors (43 spatial layers describing the marine
environment). Performance and accuracy of these map products
were evaluated using an independent set of underwater
photographs from 241 validation sites. Results indicate that
substrate and cover models and predictions were robust, since
they had little bias, had a high probability of correctly predicting
presences versus absences, and explained almost a quarter of
the variation in the data. The classified habitat map was also
high quality with an overall accuracy of 86.6%.

Over 21 km? of seafloor was characterized around NBG

and Haputo ERA from 0- to 50-m depths. In Haputo ERA,
‘Pavement, Mixed Algae” was the most abundant habitat
type, comprising 54.5% (1.1 km2) of the area. The largest
continuous patches were located on the fore reef along the
coastline. Live coral was distributed throughout the ERA,

with encrusting corals being most prevalent. As expected, no
mangroves or seagrasses were present. Around NBG, “Sand,
Bare” was the most abundant habitat type, comprising 42.3%
(8.2 km?) of the area. The largest continuous patches were in
the eastern portion of Outer Apra Harbor, including Sasa Bay
and south of Cabras Island. Live coral was common and most
prevalent from San Luis Point around Point Udall to Acapa
Point. Halodule uninervis seagrass was only documented

Characterizing Submerged Lands Around Naval Base Guam, Mariana Islands i



Executive Summary

outside Apra Harbor at two sites approximately 500 m north of
Acapa Point. Mangroves were found only in nearshore areas in
Sasa Bay and Inner Apra Harbor. No Endangered Species Act
(ESA)-protected corals or nuisance algae (angel hair algae,
Chaetomorpha vieillardii) were photographed in either project
areas. One crown-of-thorns sea star (Acanthaster planci)

was photographed in Haputo ERA. The prevalence of coral
bleaching, coral paling, crown-of-thorns scarring, and marine
debris was also very low (<1%, 0%, and <4%, respectively).

There are a wide range of applications for these new habitat
predictions and maps, source imagery, and underwater
photographs. In particular, these map products will be used by
NAVFAC Marianas to inform their monitoring and management
decisions and guide how best to minimize impacts to important
habitats around NBG and Haputo ERA. In addition to supporting
NAVFAC Marianas, these products may inform other local
spatial-management decisions, such as identifying and
quantifying essential fish habitat, planning development to

minimize habitats damage, monitoring habitat and shoreline
changes, calculating damage and costs following ship
grounding or other impacts, sample design for monitoring or
scientific studies, and planning for marine managed areas.

An atlas showing the satellite imagery and classified habitat
maps are provided at the end of this report. However, the best
way to view and interact with these map products is by using
geographic information system (GIS) software (e.g., ESRI
ArcPro). These GIS products are archived at NOAA's National
Centers for Environmental Information and are available through
NCCOS's website at: https://coastalscience.noaa.gov/project/
characterizing-submerged-lands-around-navy-base-guam-cnmi/
and https://coastalscience.noaa.gov/project/characterizing-
benthic-habitats-in-haputo-ecological-reserve-area-guam/. For
users without GIS software, an online map is also available on
NOAA's GeoPlatform to view and interact with the habitat maps,
source imagery, and field data: https://experience.arcgis.com/
experience/7b6c0e7164234182985a89d5b5703475.

Live coral in project area, including Porites rus. Credit: NOAA NCCOS
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1.1 Guam (Guahan)

Guamis a U.S. island territory located approximately 1,700
miles south of Japan, and 3,500 miles west of Hawaii in the
Mariana Archipelago. Given its proximity to the Coral Triangle,
Guam has one of the most species-rich marine ecosystems
among U.S. jurisdictions (Veron, 2000) with over 5,100 marine
species, including 300 species of hard coral (Paulay, 2003;
Burdick et al., 2008). This diverse coral reef ecosystem is vitally
important to the fisheries (Allen and Bartram, 2008) and tourism
economy of Guam, estimated at approximately $127 million

per year (van Beukering et al., 2007). These ecosystems are
also important to the history and culture of the Chamorro and
Carolinian people and provide numerous non-economic goods
and services to the residents of Guam (Allen and Bartram,
2008). Like many other populated islands in the Pacific, Guam'’s
coral reef ecosystems are stressed by several threats, including
land-based sources of pollution, overfishing, invasive species,
marine heatwaves, ocean acidification (Burdick et al., 2008),
and military activities on the island (U.S. Navy, 2022).

To mitigate these stresses, multiple marine reserves have been
established to protect these resources. Three of these reserves
are located within the project areas described here (Figure 1.1),
including Sasa Bay Ecological Reserve Area (ERA), Orote Point
ERA, and Haputo ERA. Haputo ERA is a 2-km? area on the
west or leeward side of the island, west of Marine Corps Base
Camp Blaz and Andersen Air Force Base (AAFB). This reserve
is about 8 mi north of the capital city of Hagatfia, and hosts a
patchwork of coral reefs and sandy beaches adjacent to karstic

Spanish Steps, Guam. Credit: NOAANCCOS

cliffs. Previous research has documented 944 species of marine
animals in Haputo ERA, including 154 species of corals and
207 species of fishes (Amesbury et al., 2001; Donaldson et al.,
2008; Burdick et al., 2008).

South of Haputo ERA is Orote Point ERA. This 0.5-km? ERA

is located outside Apra Harbor along the southern shoreline

of Orote Peninsula and was established to mitigate the
construction of a naval wharf in Apra Harbor (Donaldson et al.,
2008; U.S. Navy, 2012). The submerged lands in the Orote
Point ERA are primarily carbonate pavement colonized by
crustose coralline and turf algae. Approximately 1,252 species
of marine animals have been recorded within the ERA, including
156 coral species (Paulay et al., 2001; Donaldson et al., 2008).

East of the Orote Peninsula is Sasa Bay ERA, which is located
inside Outer Apra Harbor. Apra Harbor generally and the

Sasa Bay reserve in particular are well protected from ocean
swells because of the Orote Peninsula to the south and Glass
Breakwater to the north. The only opening to the ocean is a
1-km) wide channel to the west, providing unique conditions for
coral, sponge (lanthella basta), and mangrove habitats, which
are found nowhere else on the island. This protection is also
the reason Apra Harbor is a major port, with multiple marinas,
industries, and U.S. military wharfs lining its shore. The Navy
operates three wharfs in Outer Apra Harbor, and several other
wharfs in Inner Apra Harbor. The largest of these installations is
U.S. Naval Base Guam (NBG), located in Inner Apra Harbor.

Characterizing Submerged Lands Around Naval Base Guam, Mariana Islands 1



Intfroduction

144"[36'E 144? 38'E 144°|40'E
:% Cabras Island
ol Glass Breakwater Part Authority
Ll /ﬁ(ﬁm R

Guam
ry Doc
Orote
Island
=
©
o~
&
— Inner
Harbor

I Apra Harbor, Guam AOL

_~, sasa Bay Reserve

[77) Orote Ecological

Reserve Area

[ Naval Base Guam

Depth
= N
B A
o~
[}
™
—

144°49°E 144950'E 144951E 144952'E

13°37'N

=z
©
g’l— =
a \
/
i
Guam /
\
Haputo Ecological
z| Reserve Area
on_"l [ Haputo ERA, Guam AT
F_ Haputo ERA Boundary
DoD Footprint
[] Andersen AFB
[] camp Blaz
1 NW Field Andersen AFB
Depth
Om
_Z . 60 m N
2 A
N 0 0.5 1 km
—

Figure 1.1. Key geographic features and place names around Apra Harbor (top) and Haputo Ecological Reserve Area (ERA)
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1.2 U.S. Military Presence on Guam

Guam is home to tens of thousands of U.S. military personnel
stationed at NBG, AAFB, and other installations on the island
(Figure 1.2). The majority of these personnel arrived after 2008,
although Apra Harbor has been a strategic location for the U.S.
military since before World War Il (U.S. Navy, 2012, 2022). Over
the last two decades, population growth and the associated
dredging and construction of new facilities has brought
economic stimulus to Guam but also directly and indirectly
displaced and impacted marine species and coral reefs in the
area (Marler and Moore, 2011). These cumulative impacts were
described in the Navy’s environmental impact statement in
2010 (U.S. Navy, 2010). This environmental impact statement
also outlined proposed mitigation strategies and preferred
alternatives for the region.

Since 2008, Apra Harbor has and is being used by the Navy
for a variety of training exercises and activities (U.S. Navy,
2012, 2022), which have the potential

Oceanic and Atmospheric Administration (NOAA) (U.S. Navy,
2012, 2022). This plan is updated no less than every five years,
and its goal is “to provide for the restoration and enhancement
of habitats for native species including listed species over

the long-term in @ manner that is consistent with the military
mission” (U.S. Navy, 2012, 2022). To meet this goal, the
INRMP recommends potential ways for the Navy and NAVFAC
Marianas to mitigate the impact of naval activities on Guam’s
ecosystems, including coral reefs. Mitigation strategies include:
(1) establishing long-term ecosystem-based management plans
to maintain submerged lands and ERAs, (2) implementing
strategies to monitor health, reduce threats, and enhance

coral reefs, (3) implementing management actions to protect
and improve the status of marine species of the greatest
concern, and (4) enhancing management through the use of
geographic information system (GIS) information, development
of cooperative partnerships, and education programs.

to impact nearby marine organisms and
ecosystems. Like other federal agencies,
the Navy is responsible for compliance with
all territorial and federal environmental and
natural resource laws and regulations that
apply to the marine environment. This list
includes (but is not limited to) the National
Environmental Policy Act, the Marine
Mammal Protection Act, the Endangered
Species Act (ESA), the Magnuson-Stevens
Fishery Conservation and Management Act/
Sustainable Fisheries Act, the Sikes Act (10
U.S.C. 670), and Executive Order 13089

on Coral Reef Protection. Naval Facilities
Engineering Command Marianas (NAVFAC
Marianas) ensures compliance and manages
the natural resources for Marine Corps Base
Camp Blaz, AAFB, NBG, and all submerged
lands adjacent to its holdings from the
shoreline out 3 nautical miles (U.S. Navy,
2022). In total, NAVFAC Marianas manages
approximately 345 km? of submerged lands
around the island of Guam, which encompass
Haputo, Orote, and Sasa Bay ERAs (U.S.
Navy, 2022).

To guide compliance, the Navy developed

a resource management plan—called an P

integrated natural resources management

Pacific Ocean
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plan (INRMP)—for the Marianas Region
in collaboration with various federal and
territorial agencies, including National

Figure 1.2. Location of Joint Region Marianas (JRM) sites on Guam. Figure adapted from U.S. Navy
(2022). AFB = Air Force Base; NBG = Naval Base Guam; NMS = Naval Munitions Site; NCTS = Naval
Computer and Telecommunications Station; NWF = Northwest Field; MSA = Munitions Storage Area.
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1.3 Characterizing Submerged Lands Around NBG

To implement mitigation strategies in INRMP, NAVFAC Marianas
requested new benthic habitat maps for submerged lands
around Naval Base Guam, beginning with Apra Harbor (including
Sasa Bay and Orote ERAs) and Haputo ERA. These maps

will help NAVFAC Marianas evaluate different management
scenarios, monitor changes, and validate the efficacy of
mitigation strategies over time. A few benthic habitat maps have
been produced around Guam since 2001. Habitats and biota
were first mapped and characterized in 2001 (Amesbury et

al., 2001; Paulay et al., 2001) as part of a baseline survey for
Haputo and Orote ERAs. These surveys resulted in a coarse
depiction of macrohabitats. In 2005, NOAA National Centers

for Coastal Ocean Science (NCCOS) mapped all shallow-water
(<30 m) habitats around Guam (NOAANCCOS, 2005) as part

of its comprehensive initiative to characterize U.S. coral reef
ecosystems (NOAA, 2002). This habitat map used a standard
minimum mapping unit of 4,047 m? (i.e., habitat features smaller
than 4,047 m? were not digitized and classified). It also used a
hierarchical classification scheme that included attributes for reef
zone, geomorphological structure, and density of
biological cover (Figure 1.3; NOAANCCOS, 2005).

based computational power has enabled a new generation

of habitat map products. The result is a dramatic increase in
map detail, from approximately 4,047-m? polygons that were
hand digitized to a 4-m? grid that was attributed using machine
learning models. Here, machine learning models called boosted
regression trees (BRTs) and boosted classification trees (BCTs)
were applied to model complex, nonlinear relationships between
a response (the presence or absence of 19 habitat types

and seven habitat classes in underwater photographs) and
predictors (43 spatial layers describing the marine environment).
The resulting products included 19 individual substrate and
biological cover spatial predictions and a single classified
benthic habitat map for the project area. The thematic and
spatial accuracy of these products was qualitatively evaluated
by local experts and quantitatively measured using independent
field data. This report describes the methods used and accuracy
of these products, the broad spatial distribution of habitats in the
project area, and the potential applications of these maps for
marine science and management decisions in Guam.

& 144°40'E 144°50'E
Habitats were also digitized using the same imagery 3
at a finer spatial scale by Burdick (2005). In 2010, ~ || Benthic Habitat
the Pacific Islands Benthic Habitat Mapping Center B o
developed a hard and soft seafloor substrate map [ Coraliine Algae
classified for Apra Harbor (PIBHMC, 2010). I Ermergent Vegetation
B Macroalgae
Since these last mapping products were completed, [ seagrass
several natural disasters have potentially altered B Turf
benthic habitats around the island. Perhaps most Bl Uncolonized
notable, four near-consecutive coral bleaching = [ Land
events (2013, 2014, 2016, and 2017) occurred 8
around Guam, with up to 80% of corals bleachingat 2
some locations (NOAA CRCP, 2018). These events M’“
led to live coral cover declining by 37% at sites along ,:3;%‘
the leeward coast and by 34% at shallow seaward Q‘ o o
slope sites around the island (Raymundo et al., ] 4
2019). These events severely impacted the condition
of Guam’s leeward reefs, including in Apra Harbor
and Haputo ERA, causing their substantial decline ‘
(NOAA CRCP, 2018). These coral bleaching events,
coupled with the ongoing impacts from the military g_ ‘
buildup on Guam, have increased the need for an ™
updated map of benthic habitats around Guam. WE
Here, the goal was to produce new, highly detailed
maps of benthic habitats around NBG and Haputo
ERA for NAVFAC Marianas in 0- to 50-m depths
(Figure 1.1). Recent advancements in remote

sensing, machine learning models, and cloud-

Figure 1.3. Benthic features mapped by NOAA NCCOS (2005) around Guam.
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Chapter 2 Methods

Several steps were needed to map and characterize habitats
inside Haputo ERA, Apra Harbor, and along the coast between
the Apra Harbor mouth and Dadi Beach (Figure 1.1). This
section describes the steps used during map development,
including: (1) customizing a habitat classification scheme;

(2) processing environmental variables including satellite,
topographic, acoustic, and geographic predictors; (3) collecting
and annotating underwater photographs; (4) creating habitat
predictions and a classified map using two spatial predictive
modeling techniques—BRTs and BCTs, and (5) assessing the
performance and accuracy of the habitat predictions and the
classified map.

2.1 Benthic Habitat Classification Scheme

A habitat classification scheme allows scientists to
systematically group benthic features based on their ecological
characteristics. The classification scheme used here was
developed by reviewing the previous habitat classifications
applied in Guam and in the Northern Mariana Islands (Cloud,
1959; NOAANCCOS, 2005; Houk and van Woesik, 2008;
Kendall et al., 2017) and consulting with local scientists and
managers about their informational needs. The scheme is
based on 19 benthic habitats including seven substrate (e.g.,
sand) and 12 biological (e.g., turf algae) cover types found
around Guam (Table 2.1). These 19 habitats guided collection
of field data and development of two types of map products.
The first products were spatial predictions for 19 substrate and
biological cover types inside the project area. This modeling

Live coral in Apra Harbor, including Porites rus. Credit: NOAA NCCOS

resulted in 19 individual map layers with each 2 x 2 m grid cell
denoting the mean probability (from 0% to 100%; averaged from
100 bootstrapped model iterations) that a given habitat type is
present.

The second product was a classified habitat map depicting
commonly occurring combinations of substrates and cover
types. It was developed using the 19 probability of occurrence
predictions described above. Habitats in the classified map
were defined based on cluster analysis of the field data (R Core
Team, 2022; Maechler, 2023; performed in R using the agnes,
diana, and hclust functions in the cluster package). Clustering is
a statistical technique used to identify groups of similar objects
based on multiple attributes. Six clustering techniques were
tested (average, single, complete, Ward, divisive, and McQuitty)
using percent cover for each substrate and cover type as the
input. Percent cover was grouped into five, six, seven, and eight
clusters at all training and validation sites. The technique and
number of clusters with the highest agglomerative coefficient
was selected (i.e., Ward, seven clusters, agglomerative
coefficient = 0.99). The resulting seven habitat classes (Table
2.2) were the basis of the new benthic habitat map. These
classes were also translated into the Coastal and Marine
Ecological Classification Standard (CMECS) (Tables 2.1 and
2.2; CMECS, 2023). NOAA s required to use CMECS by the
Federal Geographic Data Committee.
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Table 2.1. Substrate and cover types used to develop individual benthic habitat predictions. Equivalent Coastal and Marine Ecological Classification Standard
(CMECS) classifications are suggested.

1

N

Substrate
N

[$2]

Biological Cover
S © ®©® N o a » w N -

—_

1

Habitats

Live Coral Reef (All Species)

Upright Dead Coral Reef

Rock

Pavement

Rubble

Sand

Mud

Mangrove

Live Coral (Branching)
Live Coral (Encrusting)
Live Coral (Foliose)

Live Coral (Porites rus)
Seagrass (Halodule uninervis)
Algae (Crustose Coralline)
Algae (Halimeda spp.)
Algae (Turf)

Algae (Other)

Sponges

Bare

Definition

Presence of live coral reef. Comprising live, upright hermatypic (reef-
building) hard corals, including all hard coral species

Presence of dead hard coral reef that is still upright

Presence of non-biogenic rock

Presence of flat, low-relief or sloping solid carbonate rock with little
or no fine-scale rugosity that is covered with algae, coral, zoanthids
or other sessile vertebrates that are dense enough to partially
obscure the underlying surface.

Presence of dead, unstable coral rubble often colonized with
filamentous or other macroalgae. This habitat often occurs landward
of well-developed reef formations.

Presence of coarser sediment (with grain sizes between 0.0625 and
2 mm) typically found in areas exposed to currents or wave energy.

Presence of fine sediment (with grain sizes less than 0.0625 mm)
typically found in areas with little wave energy.

Presence of various species of mangrove
Presence of live branching coral

Presence of live encrusting coral

Presence of live foliose coral

Presence of Porites rus coral

Presence of Halodule uninervis seagrass
Presence of crustose coralline algae (CCA)
Presence of Halimeda algae

Presence of turf algae

Presence of mixed macroalgae not already identified
Presence of sponges, primarily lanthella basta

No biological cover

CMECS IDs

42.5,2.2.1,
212

§2.5,2.2.1

1.1

g1.44,2.2.1

222

1222

1.2.25

28.14
2.1.21
2123
2124
21214
2521
2513
25112
2518
251
221.21

No Equivalent

CMECS Class

Geoform — Shallow/Mesophotic Coral Reef,
Substrate — Coral Reef Substrate,
Biotic — Shallow/Mesophotic Coral Reef Biota

Geoform — Shallow/Mesophotic Coral Reef,
Substrate — Coral Reef Substrate

Substrate — Rock Substrate

Geoform — Pavement Area,
Substrate — Coral Reef Substrate

Substrate — Coral Rubble

Substrate — Sand

Substrate — Mud

Biotic — Tidal Mangrove Forest
Biotic — Branching Coral Reef
Biotic — Encrusting Coral Reef
Biotic — Foliose Coral Reef
Biotic — Branching Porites Reef
Biotic — Seagrass Bed

Biotic — Coralline/Crustose Algal Bed
Biotic — Halimeda Communities
Biotic — Turf Algal Bed

Biotic — Benthic Macroalgae
Biotic — Attached Sponges
NULL

Mangroves in Sasa Bay, Guam. Credit: David Burdick (NOAA)
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Table 2.2. Commonly co-occurring substrate and cover types used to create the classified benthic habitat map. Equivalent Coastal and Marine Ecological
Classification Standard (CMECS) classifications are suggested.

CMECS ID
(Geoform or CMECS Class (Geoform or CMECS ID
Code Habitat Definition Substrate)  Substrate) (Biotic) CMECS Class (Biotic)

Geoform - Shallow/Mesophotic
925,221  Coral Reef, Substrate - Coral 212
Reef Substrate

Live Coral Reef, Majority live coral reef with live hard coral. The remaining
Live Coral percent is primarily dead reef with macroalgae.

Shallow/Mesophotic
Coral Reef Biota

Majority pavement primarily covered with turf algae. The
remaining percent is mixed proportions of hard and soft ~ g1.44,2.2.1
substrates with macroalgae.

Geoform - Pavement Area,
Substrate - Coral Reef Substrate

Pavement, Mixed

Algae 251 Benthic Macroalgae

Majority sand that is bare or covered with macroalgae.
3 Sand, Mixed Algae  The remaining percent is mixed proportions of hard 1222 Substrate - Sand
substrates with macroalgae.

Majority upright dead coral reef covered with primarily
Upright Dead Coral turf algae. The remaining percent is mixed proportions

NULL, No equivalent, Benthic
251 Macroalgae

Geoform - Shallow/Mesophotic

4 Reef, Mixed Algae  of hard and soft substrates with some live coral and 925,22.1  Coral Reef, Substrate - Coral 251 Benthic Macroalgae
Reef Substrate
macroalgae.
5 Sand, Bare >90% Sand that is >90% bare 1222 Substrate - Sand NULL No Equivalent
6 Mud, Bare >90% Mud that is >90% bare 1225 Substrate - Mud NULL No Equivalent
7 Mud, Mangrove >90% Mud that is >90% mangroves 1225 Substrate - Mud 2814 Tidal Mangrove Forest

In addition to the habitats above, other biological organisms
were identified and observations made from the underwater
photographs at the request of local managers. These
organisms and observations were not modeled because
either: (1) their prevalence was too low (<3%) to develop
model predictions or (2) their model predictions did not meet
the minimum performance thresholds (i.e., receiver operating
characteristic [ROC] area under the curve [AUC] 20.7 and
percent deviance explained [PDE] >0). Organisms that were
not modeled specifically included: cyanobacteria, angel hair
algae (Chaetomorpha vieillardii), mushroom corals, soft
corals, fire corals, crown-of-thorns sea stars (Acanthaster
planci), and species listed under the ESA (Acropora globiceps,
Isopora palifera, Acropora retusa, and Seriatopora aculeata).
The presence of coral bleaching, coral paling, crown-of-
thorns scarring, and marine debris were also observed and
documented. The spatial distributions of these organisms and
observations are reported in the results.

2.2 Predictor Data

Forty-three environmental variables were used to create the
model predictions for individual substrate and cover types.
These predictors were divided into four broad categories:

23 spectral variables derived from satellite imagery, three
geographic variables based on relative location, two predictors
from acoustic backscatter, and 15 topographic surfaces derived
from the depth and elevation surface.
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2.2.1 Spectral Predictors

Twenty-three of the 43 environmental predictors were derived
from WorldView-2 (WV2) and WorldView-3 (WV3) satellite
images. The WV2 sensor collects eight multispectral bands in
the visible near infrared at 2 x 2 m spatial resolutions, and the

WV3 sensor collects eight multispectral bands in the visible near

infrared at 1.4 x 1.4 m spatial resolutions (upsampled to 2 x 2
m). These images were acquired on 11 January 2016, 12 March
2017, and 30 January 2018 in Apra Harbor; and 18 February
2020 in Haputo ERA. The satellite scenes were very high quality
but contained some artifacts due to the presence of ships,
clouds, ship wakes, and turbidity. Additionally, no one scene
covered the entire project area. Consequently, these scenes
were mosaicked to remove artifacts and create a single satellite
image for the project area (Figure 2.1).

To correct geometric distortions, spectral bands were
orthorectified using 40 ground control points (GCPs) and a digital
elevation model (USGS, 2010; performed in PCI OrthoEngine).
The final orthorectified image (orthoimage) was georeferenced
to the World Geodetic System 1984, Universal Transverse
Mercator, Zone 55 North horizontal coordinate system (WGS84
UTM 55N). Positional accuracy was evaluated using an
independent set of 16 GCPs collected using a Trimble GeoXH
6000 global positioning system (GPS) receiver from 8 May to
13 May 2022. GCPs were evenly distributed in the project areas
and positioned on features that were clearly identifiable in the
imagery, such as street intersections, parking lots, crosswalks,
and other low-profile objects with distinct edges. Raw GPS data
were post-processed and differentially corrected with Trimble
Pathfinder Office software and data from the Mariana Island
Continuously Operating Reference System station.

The combined root mean square error (RMSE) is 6.1 m for the
Apra Harbor and Haputo satellite mosaic. This indicates that
pixels in the mosaic were on average + 6.1 m (three pixels)
from their true location. This positional uncertainty was taken
into account when evaluating the accuracy of the classified
benthic habitat map. The orthoimages and mosaic were

also corrected for changing atmospheric and water column
conditions (Lyzenga, 1978; Mumby and Edwards, 2000;
performed using ENVI 5.7: THOR atmospheric correction tool
and R code). These processes resulted in 15 atmospheric- and
water column—corrected band pairs (Figure A1).

2.2.2 Topographic Predictors

Seafloor depth and topography are known to be useful
predictors for marine habitats, such as sand, pavement,
and coral reefs. Elevation and topography are similarly
useful predictors for estuarine habitats, such as mangroves.
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Figure 2.1. Maps depicting the WorldView-2 (WV2) and WorldView-3 (WV3)
images acquired for Apra Harbor (top) and Haputo Ecological Reserve Area
(ERA) (bottom) used to create the habitat predictions. AOI = area of interest.
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Consequently, a single elevation and depth surface was created
by merging data from a 2017 R2 Sonic multibeam echosounder
survey (HDR and CSA Ocean Sciences, 2017) with a 2020
Leica Chioptera-4 lidar survey (NOAA NGS, 2020). Satellite-
derived bathymetry was also developed from the above satellite
mosaic (Kuhn et al., 2023; performed in R caret package) to fill
in remaining data gaps as needed. The resulting elevation and
bathymetry surface had a 2 x 2 m spatial resolution and was
referenced to mean lower low water tidal datum.

From this single elevation and bathymetry surface, 14
topographic predictors were derived: (1) Elevation and Depth
(Standard Deviation), (2) Aspect, (3) Aspect Northness
(Cosine), (4) Aspect Eastness (Sine), (5) General Curvature,
(6) Longitudinal Curvature, (7) Planform Curvature, (8) Profile
Curvature (Evans), (9) Profile Curvature (Zevenbergen and
Thorne), (10) Total Curvature, (11) Rugosity, (12) Slope, (13)
Slope Rate of Change, and (14) Surface Area (Figure A2). Each
topographic surface was calculated using the default 3 x 3 pixel
neighborhood (Hijmans, 2023a; performed using R code, raster
package). Multiple topographic metrics (e.g., curvature) were
derived to explore which surfaces most uniquely described

the complexity of the seafloor. Highly correlated surfaces
(Spearman rank p = 0.9 or p < -0.9) were removed later in the
modeling process.

2.2.3 Acoustic Predictors

While bathymetry is important for identifying benthic habitats,
depth and topography alone do not capture the complexity,
texture, and composition of seafloor substrates and habitats.
Acoustic backscatter can help fill this data gap and provide
additional critical information about the hardness and roughness
of the seafloor. Given the utility of backscatter, two acoustic
backscatter surfaces were also included in the modeling
process as environmental predictors. These surfaces were
developed from the 2017 multibeam echosounder data in
Outer Apra Harbor (HDR and CSA Ocean Sciences, 2017)
and from a 2001 sidescan survey in Inner Apra Harbor (NOAA,
2001; Figure A3). They only included areas deeper than 5 m in
Outer and Inner Apra Harbor. The effect of this data gap on the
modeling process is discussed in the results section.

2.2.4 Geographic Predictors

Three geographic predictors were used to account for spatial
variation in benthic habitats that was not explained by the
spectral, topographic, or acoustic predictors. These included
latitude (y), longitude (x), and distance to shore (Figure A4;
performed using the ArcGIS Pro 2.8 Euclidean Distance tool).
The shoreline was extracted from NOAA's previous benthic
habitat map (NOAA NCCOS, 2005).

2.3 Field Data

2.3.1 Field Data Acquisition

NOAA NCCOS collected underwater photographs at 477 sites
(Figure 2.2) between 2 May and 12 May 2022 throughout the
project areas. One portion of this dataset (n = 236 sites) was
used to train and tune the habitat models by correlating the
response (observed substrate and cover types) with the values
of the predictors (environmental layers). Locations of these
training sites were selected visually beforehand (using the
predictors) and spread out across the project areas to include
the full range of habitats, depths, and environmental conditions
found in Apra Harbor and Haputo ERA. The rest of the dataset (n
= 241 sites) was used to validate the performance of the habitat
models and evaluate the accuracy of the classified habitat map.
Locations of these validation sites were randomly stratified
based on an existing map of geomorphological structure types
around Guam (NOAA NCCOS, 2005). The total number of sites
was determined by the amount of allocated funding and the
availability of NCCOS staff to conduct the field work.

When in the field, the process for collecting overlapping,
underwater photographs was identical at each site. A handheld
Garmin 76 GPS unit was used to navigate to each site via a
small boat or paddle board. At sites accessed by small boat,

a drop camera system (Figure 2.3) was lowered to within 1.5

to 2 m of the seafloor. This drop camera system was designed
by NCCOS, and it included: (1) a downward-looking Sony a7
IV mirrorless 24 MP full-frame digital single-lens reflex (DSLR)
camera, (2) an oblique-looking GoPro HERO10 Black in a Spot
X Squid housing, (3) two green lasers spaced 10 cm apart, and
(4) a Blueprint Subsea SeaTrac ultra-short baseline (USBL)
transponder.

The downward-looking Sony camera collected still photographs
of the seafloor every 0.5 s. The camera settings included: focal
lengths = 18 mm, white balance = auto, and shutter speed
=1/200 s. Both jpeg and .RAW files were recorded. Each
photograph covered an estimated 4 m? of the seafloor (at 1.6
m altitudes) and overlapped other photographs by 60%-80%.
The lasers provided a measurement scale (10 cm) and were
visible in some but not all of the photographs. The Trimble
GeoXH GPS provided the location of the vessel every 1 s,

and the USBL transponder provided the location and depth
(XYZ) of the drop camera every 5 s. The Trimble GPS antenna
was positioned directly over the USBL transponder pole to
minimize lever arm offsets. For sites shallower than 2 m, the
Sony camera was attached to a paddle board with the Trimble
GPS directly over the camera. Photographs and GPS data
were acquired while moving the paddle board around the site,
imaging a minimum of a 4-m? area on the seafloor.
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Figure 2.3. (a) Equipment used to collect training and validation data in the field. (b) The drop camera was designed and 3D printed by NOAA NCCOS and included
a Sony camera (for high-resolution photographs), GoPro video camera (for real-time feed), ultra-short baseline (USBL; for underwater positioning), GPS (for above
water positioning), and lasers (spaced at 10 cm for scaling). DSLR = digital single-lens reflex
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2.3.2 Field Data Processing

The field data were processed to identify and annotate habitats
in the photographs, and to create georeferenced photomosaics
for each site. This process included four, main steps:

Underwater photographs were visually reviewed for quality, and
color corrected (performed using Adobe lightroom software).
The GPS data were differentially corrected using a Continuously
Operating Reference Station on Guam, and reprojected to

the WGS 1984 UTM 55 North coordinate system (performed
using GPS Pathfinder Office software). The USBL data were
exported from SeaTrac Pinpoint software, and matched with the
corrected GPS locations using synchronized timestamps.
Underwater photographs were georeferenced using these
combined GPS-USBL locations (ESRI 2023; performed

using ArcGIS Pro, Geotagged Photos To Points function).

Not all images were georeferenced because sampling
frequencies differed among the USBL (approximately 5 s),

GPS (approximately 1 s), and cameras (approximately 0.5 s).
To georeference the remaining photographs, a custom Python
script was created to interpolate positions between the GPS-
USBL locations. This script also mosaicked and developed 3D
models from the resulting georeferenced photographs (Pierce
and Winians, 2023; performed using Agisoft Metashape’s
application programming interface).

Seven substrate and 12 biological cover types (Table 2.1) were
identified visually in the above georeferenced photographs (n
= 674 annotations; training = 346; validation = 328). Multiple
substrate and cover types were often present at each site. The
amount of area annotated (4 m?) was standardized in each
photograph so that it matched the spatial resolution (i.e., 2 x 2
m pixels) of the environmental predictors. Percent cover was
estimated to the nearest 1% for each habitat type. Percent
coverages were also converted to presences (1) and absences
(0) and used to train or validate the habitat predictions.

Live Acropora coral in Apra Harbor. Credit: NOAA NCCOS
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2.4 Predicting and Classifying Benthic Habitats

BRTs and BCTs are machine learning techniques that combine
regression or classification trees with boosting to model the
complex, nonlinear relationships between habitat types and
environmental variables. BRTs and BCTs model these complex
relationships by developing many (hundreds to thousands)
simple classification or regression (tree) models. Classification
and regression trees (Breiman et al., 1984) relate a response to
predictors by iteratively splitting the data into two homogenous
groups.

These models are built in a stage-wise fashion, where existing
trees are left unchanged and the variance remaining from the
last tree is used to fit the next one. This stage-wise process

is called boosting. A random subset of data is used to fit a
model at each stage. This randomization helps improve model
performance (Friedman, 2002; Elith et al., 2008). These
simple models are then combined linearly to produce one final
combined model (Elith et al., 2008). The fitted values in this
combined model are more stable than values from an individual
model, improving its overall predictive performance (Friedman,
2002; Elith et al., 2006; Elith et al., 2008).

BRTs and BCTs were used for this project because they can
deal with data that are not normally distributed (Elith et al.,
2008) and are robust to missing data values (Breiman et al.,
1984; Elith et al., 2008). They can also handle many types of
response variables (presence, absence, count, diversity, and
abundance), environmental predictors (numeric, binary, or
categorical) and interactions among predictors (De’ath, 2007;
Elith et al., 2008). These techniques also compare favorably to
other modeling techniques both in predictive performance and
accuracy (De’ath and Fabricuis, 2000; Elith et al., 2006; Elith et
al., 2008). Please see the References and Glossary for more
information.

Here, BRTs were used to develop 19 habitat predictions
depicting the mean probability of occurrence for seven

substrate and 12 biological cover types. Mean probabilities were
calculated by creating and averaging 100 bootstrapped model
iterations for each substrate and cover type (n = 1,900). BCTs
were then used to create a single classified benthic habitat map
using these 19 mean habitat predictions. Three main steps were
used to create these map products: (1) preparing the data, (2)
creating and evaluating habitat predictions, and (3) creating

and evaluating a classified habitat map (Figure 2.4). This work
was conducted primarily in Microsoft Azure environment using
ArcGIS Pro (ESRI, 2023) and R software (R Core Team, 2022)
using the dismo (Hijmans et al., 2023b), caret (Kuhn et al.,
2023), and raster (Hijmans, 2023a) packages.
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Step 1. Prepare Input Data

BRT Response BRT Predictors Remove Correlated Input Table with BRT
(Presence & Absence) (Environmental Variables) BRT Predictors Response & Predictors
Topographic (n=15) pr—— l?ﬁ;?;:E;L;EUVWS’M:
Acoustic (n=2) & ; - | — E% :%::

cccemooccoo

i Geographic (n=3) e e
4 Spectral (n=23) S e
Training Sites  Validation Sites =1 e
h!
Record response (presence, Extract values from
absence, % cover) of 7 substrate & environmental » Remove correlated
12 cover types (Table 2.1) at training => variables (n=43) at env.lronmental
(n=236) & validation (n=241) sites each training site variables (n=6)

Step 2. Create & Validate BRT Habitat Predictions

Input Table with BRT Test BRT Create BRT Predictions Validate Performance of
Response & Predictors Parameters (Mean & Precision) BRT Predictions
ls{ﬁl%l‘%s-“"e_u%ﬁ.unt‘gs BRT Model Values kCV | Test
::ﬁ ;3:; Z : Parameters Tested PDE | PDE
1675568 3539643 0 o Learning Rate (Ir) 0.01, 0.001, 0.005 = 37% | 35%
e 5 F Tree Complexity (tc) |2,3,4,5, 10,20 - =
e smos oo Bag Fraction (bf)  0.5,0.75 S
Test BRT model parameters (listed above) Create BRT predictions Assess performance of
& choose model that explains the most [ 2 for 7 substrate & 12 mm)p  BRT predictions (n=19)
variation (highest PDE) cover types using using kCV & validation
bootstrapping (n=100) sites (n=241)

Step 3. Create & Validate BCT Classified Habitat Map

BCT Response BCT Predictors Test BCT Create BCT Validate Accuracy
(Habitat Classes)  (Substrate & Cover Predictions) — Parameters Classified Map of BCT Classified
L = Map
Regularization Values Tested ‘ zE - ==l
Parameters L
Learning Rate (Ir) 0.01,0.001, E—‘-'— ||
+ Tree Complexity (tc) [2,5,10 — e |
Number of Trees 500, 750, 1000, — .
(n.trees) 2000, 3000 See
Minimum Terminal o
Node Size 3,5,10 Sy
\ (n.minobsinnode)
Extract values Test BCT model [ Assess
from 7 substrate parameters (listed Create 1 accuracy of
» & 12 cover » above) & choose » classified » classified
predictions model that habitat map habitat map
(from step 2) at explains the most depicting 7 (n=1) using
training sites variation (highest habitat classes validation sites
(n=236) PDE) (Table 2.2) (n=241)

Figure 2.4. Diagram depicting steps in modeling process to predict substrate and cover distributions and develop a classified benthic habitat map. BRT
= boosted regression tree; BCT = boosted classification tree; PDE = percent deviance explained; kCV = k-fold cross validation; RMSE = root mean
square error; AUC = area under the curve
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2.4.1 Step 1- Prepare Input Data

The presence (1) or absence (0) of seven substrate and 12
biological cover types was used as the response variable in
the BRT modeling process. This binary response variable
was modeled using a binomial (two groups) distribution. No
transformations were applied. All of the 43 environmental (i.e.,
spectral, geographic, topographic) predictors were numeric.
For the spectral predictors, natural color satellite imagery was
used to predict mangrove habitats above the water, and water
column—corrected satellite imagery was used to predict marine
habitats below the water. These predictors differed because
correcting the imagery for water column changes was not
relevant to mangrove habitats.

Pairwise testing was conducted to identify and remove
predictors that were highly correlated (i.e., Spearman rank p
= 0.9 or p = -0.9) with three or more other predictors. One
predictor (water column corrected satellite band 12 Red
Coastal Blue) was removed from the predictor set for marine
habitats. Five predictors (natural color satellite spectral bands
1-5) were highly correlated and removed from the predictor
set for mangroves. The training sites (i.e., locations denoting
the presence or absence of substrate and cover types) were
intersected with the remaining environmental predictors to
extract their value at each location. This spatial intersection
combined the response and predictor datasets into a single
table used in step 2.

2.4.2 Step 2 - Create and Validate BRT Habitat Predictions

In this step, the table with the response and predictor values
was used to test different BRT model tuning parameter
combinations in R (R Core Team, 2022; Hijmans et al., 2023b;
performed using the dismo package). A range of input values
were tested for the following tuning parameters: learning rate
(Ir), tree complexity (tc), and bag fraction (bf). Learning rate
(Ir) controls how much each tree contributes to the model.
The larger the learning rate, the more each tree contributes

to the model. Tree complexity (tc) dictates how many nodes
(splits) there are in a tree. The more splits there are, the more
complex the model. The bf specifies the proportion of data that
is randomly chosen at each step. The larger the bf, the more
data available to train the model at each step. For each of the
seven substrate and 12 cover types, 36 combinations of Ir, tc,

and bf were tested (Table 2.3). k-fold cross validation (kCV) was
used to identify the combinations of Ir, tc, and bf that created the

model that explained the most variation. Here, the kCV process
divided the input table into 10 folds (i.e., 10 data subsets). Nine
of these were used to create models, while the one remaining
was used to evaluate the model’s performance.

This process was repeated 10 times (i.e., one time for each
fold) x 36 model parameter combinations x 19 substrate and
cover types (n = 6,840 models total). Model performance was
measured using PDE, which was calculated using the one
remaining fold and then averaged across the 10 folds. PDE is
the amount (%) of variation explained in the response data.
PDE values normally range between 0% and 100%, with higher
values indicating better model performance. The models with
the highest PDE were selected for each substrate and cover
type (n = 19 models). The remaining models were discarded.

These 19 best models were then applied spatially to predict
the distribution of the seven substrate and 12 cover types
throughout the project area (R Core Team, 2022; Hijmans,
2023a; performed using the raster package in R). These raster
predictions represent the average of 100 model iterations
created using bootstrapping (See Glossary for terminology)
for each substrate and cover type. These predictions describe
the mean probability of occurrence for each habitat (i.e., the
likelihood [%] that a particular substrate or cover type is present
in a pixel). Larger probabilities indicate it is more likely the
substrate or biological cover type is present.

The precision associated with each probability of occurrence
prediction was also quantified using the same 100 bootstrapped
model iterations for each substrate and cover type. Precision is
reported as the coefficient of variation (CoV), which represents
the standard deviation as a proportion of the mean. Instead

of reporting two values (i.e., minimum and maximum), CoV
captures the range of probabilities in a single value for each
pixel. CoV can be multiplied by the probability of occurrence

to derive the standard deviation and thereby quantiles and
confidence intervals for the estimated probabilities in a pixel.
Smaller CoVs indicate that the prediction has higher precision
and less uncertainty. Larger CoVs indicate there is more
uncertainty associated with the spatial prediction. Sometimes,
large CoV's occur artificially because the mean predicted

values are extremely small (most notably in areas of predicted
absence). Consequently, CoVs should be viewed along with the
mean prediction to avoid misinterpretation.

Table 2.3. Suite of boosted regression tree (BRT) model parameters and
values tested.

Regularization Parameters Definition
Parameters Tested

Determines contribution of each tree
to the growing model

Controls how many predictor
interactions are fitted in a tree
Controls proportion of data randomly
selected to build each tree

Learning Rate (I) ~ 0.01, 0.001, 0.005
Tree Complexity (tc) 2, 3, 4,5, 10, 20

Bag Fraction (bf) 0.5,0.75
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Finally, the performance of the substrate and biological cover
predictions was evaluated using five different metrics: (1) kCV
PDE, (2) test PDE, (3) test bias, (4) test RMSE, and (5) test
area under the ROC curve (AUC). kCV PDE was calculated
during kCV by comparing the observed values (in one randomly
chosen validation fold) to the predicted values (from the

models developed using the remaining nine training folds). Test
PDE, test bias, test RMSE, and test AUC were independently
calculated using the validation sites. Test PDE, like kCV PDE,
is the amount (%) of variation explained in the response data.
PDE values normally range between 0% and 100%, with

higher values indicating better model performance. Conversely,
bias and RMSE measure the error associated with a model

by calculating the difference between the predicted values
(extracted from the model) and the observed values (extracted
from the underwater photographs). Here, bias is used to
describe the direction (+ or -) of the error, and RMSE is used to
describe the size of the error. Bias closer to 0 and lower RMSE
denote better model performance.

ROC curves measure a model’s predictive performance in a
different way compared to PDE, bias, and RMSE. Specifically,
ROC curves compare a model’s sensitivity (i.e., true positive
prediction rate) to its specificity (i.e., false positive prediction
rate). This rate depends on the choice of a particular probability
of occurrence threshold above which substrate or cover types
are classified as “present” and below which they are classified
as “absent.” AUC does not require selecting a threshold and
can be used to measure the overall predictive performance of a
model (compared to a random guess). AUC values ranging from
0.7 t0 0.8 denote “good” model performance, values from 0.8 to
0.9 denote “excellent” model performance, and values greater
than 0.9 denote “outstanding” model performance (Hosmer and
Lemeshow, 2000). AUC values at or below 0.5 indicate that the
model’s prediction was no better than one created by chance
alone. Spatial autocorrelation of model residuals was also tested

using global Moran’s | (R Core Team, 2022; performed using
the ape package in R). Five different metrics (plus Moran’s [)
were calculated because they describe model performance in
different ways and, when viewed together, can provide a more
thorough understanding of the model’s limitations.

2.4.3 Step 3 - Create and Validate BCT Classified Habitat Map

In this step, BCTs were used to develop a classified habitat
map depicting the distribution of the seven habitats identified
by cluster analysis (Table 2.2). This response variable was
modeled using a multinomial (many groups) distribution. The
19 probability of occurrence maps for individual substrate
and cover types were used as predictors. No predictors
were eliminated prior to modeling since they were not highly
correlated (Spearman rank p < 0.9 or p > -0.9). The 236
training sites (each of which were assigned one of the seven
habitat types) were intersected with the 19 probability of
occurrence predictions to extract their value at each location.
This spatial intersection combined the training and predictor
values into a single table.

Next, BCT models were fit and tuning parameters optimized

in R (R Core Team, 2022; Kuhn et al., 2008; performed using
the caret package). One hundred and eighty combinations of

Ir, tc, number of trees (n.trees), and minimum terminal node
size (n.minobsinnode) were tested (Table 2.4). The Ir and

tc parameters are the same as those used to develop BRTs
above. Number of trees denotes the number of classification
trees that are fitted to the response data. The minimum terminal
node size tells the modeling process when to stop splitting the
response data and denotes the number of observations (e.g.,

3, 5, or 10) for each end point in a classification. KCV PDE

was used to identify the combinations of Ir, tc, n.trees, and
n.minobsinnode that created the highest performing model. This
highest performing model was then applied spatially to create
the classified habitat map for the project areas.

Table 2.4. Suite of boosted classification tree (BCT) model parameters and values tested.

Regularization Parameters Definition
Parameters Tested
Learning Rate (I 0.01, 0.001, Determines contribution of each tree to
9 0.005 the growing model

. Controls how many predictor
Tree Complexity (tc) - 2, 5,10 interactions are fitted in a tree
Number of Trees 500, 750, 1000, Describes the number of classification
(n.trees) 2000, 3000 trees that are fitted to the response data
Minimum Terminal . .
Node Size 3.5,10 Describes the number of observations

. . at each endpoint in a classification tree
(n.minobsinnode)

Impact Definition
Decreasing (slowing) Ir increases the number of  Ir=0.005
trees required for optimal prediction will grow more trees than Ir = 0.01
Decreasing tc will shrink the size (number of tc. =20 .

) will grow larger trees (with more nodes)
nodes) in a tree _

thantc =2

More classification trees will create more complex n.trees = 500

models (at the risk of overfitting the data)

will grow 500 classification trees
n.minobsinnode = 3

Alower number of observations will increase the

risk of overfitting the model

will stop fitting when a classification tree
has 3 observations
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2.5 Measuring Thematic Accuracy

The thematic accuracy of the classified habitat map was
qualitatively assessed by local experts on Guam (Appendix

B), and quantitatively assessed using 328 photographs at 241
validation sites. The validation sites were grouped into the same
seven habitats identified by the cluster analysis. Sites were
considered correct if the same habitat was present within 6.1 m
(approximately 3 pixels) of the validation site due to the +6.1-
m positional uncertainty of the satellite mosaic. A confusion
matrix was developed using the validation data describing the
classified map’s overall accuracy, producer’s accuracy (PA),
and user’s accuracy (UA; Story and Congalton, 1986). This
matrix was constructed as an array with seven rows (denoting
the predicted classification by the BCT) and seven columns
(denoting the observed classification from validation sites).

The overall accuracy was calculated as the sum of the major
diagonal (i.e., matching predicted and observed classifications),
divided by the total number of validation samples.

The PA and UA were calculated to describe the thematic
accuracy of individual map categories. PA describes errors
due to omission and is a measure of how well the cartographer
classified a particular habitat (e.g., the percent of times that a
site recorded as sand in the field was correctly classified as
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Live Acropora coral near Spanish Steps. Credit: NOAA NCCOS

Spon
Credit: NOAANCCOS

(lanthella asta) and Halimeda algae in Apr‘é‘ Harbor.

sand). UA describes commission errors and is a measure of
how often certain habitat types were classified correctly (e.g.,
the percentage of times that a pixel classified as sand was
actually verified as sand in the field). Each diagonal element
was divided by the column total (n) to yield a PA, and by the row
total (n) to yield a UA. The tau coefficient was also calculated

to account for the random, chance agreement between the map
and training data (Ma and Redmond, 1995). The probability of
random agreement decreases as the number of habitat classes
increases.

While stratification helps ensure all habitat classes are
adequately evaluated, it has the undesired effect of introducing
bias into the confusion matrix. This bias is due to different sizes
(km?) of areas occupied by each habitat class (Card, 1982),
causing rare habitats (e.g., live coral) to be sampled at a greater
density than common habitats (e.g., sand). This sampling bias
was removed using the method of Card (1982), which uses the
proportion (%) of the map occupied by each habitat to correct
thematic accuracies. These proportions were also used to
compute confidence intervals for the overall accuracy (Card,
1982; Congalton and Green, 1999).
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Chapter 3 Results and Discussion

Over 21 km? of seafloor was characterized in and around
Apra Harbor (19 km?) and Haputo ERA (2 km?) from 0- to
approximately 50-m depths. This section presents the results
from these models, highlights some of the main features of
the habitat predictions, reports the performance of the habitat
predictions and accuracy of the maps, and discusses the
limitations and potential applications of these products to meet
particular research and management needs.

3.1 Model Performance

Nineteen BRT models and resulting spatial predictions describe
the probabilities of occurrence for seven substrate and 12 cover
types. Prevalence (i.e., number of presences divided by the
total number of samples) of these habitats ranged from common
(e.g., 74% for turf algae) to rare (e.g., 1% for Halodule uninervis
seagrass). Despite these differences, model performance was
considered “good to excellent” based on five evaluation metrics.
Specifically, kCV PDE ranged from 14.9% to 88.7% (x= 39.3%
+4.1 SE), and test PDE ranged from 3.8% to 86.7% (X=27.3%
15.0 SE). The Mangrove model had the highest kCV and test
PDEs (88.7% and 86.7%). The Rubble model had the lowest
kCV PDE (14.9%), and the Live Coral (Foliose) model had the
lowest test PDE (3.8%). Test AUC values ranged from 0.70
(good) to 0.99 (excellent) for all the models (x=0.86 +£0.02

SE). The Mangrove model had the highest test AUC (0.99), and
Rubble and Live Coral (Foliose) models had the lowest test
AUC (0.70).

Characterizing Submerged Lands Around Naval Base Guam, Mariana Islands

Free diving to explore benthic habitats in Haputo ERA. Credit: NOAA NCCOS

Test bias was small for all models, ranging between -0.1 to
+0.05 (x =-0.02 £0.01 SE). Bias indicates whether the model
under predicted (-) or over predicted (+) the probability of
occurrence. The Seagrass (Halodule uninervis), Live Coral
(Porites rus), and Live Coral (Encrusting) models showed

no systematic test bias. The Mud, Sponge, and Mangrove
models had a positive test bias, and consistently over-predicted
probabilities by 0.05, 0.04, and 0.01, respectively. The
remaining models had negative test biases, and under-predicted
probabilities by 0.01 to 0.1. Lastly, test RMSE values ranged
from 0.08 to 0.47 (x = 0.32 £0.03 SE). The Sponge model had
the largest amount of error (0.47), while the Seagrass (Halodule
uninervis) had the smallest (0.08).

Spatial autocorrelations of model residuals were also quantified
using Moran'’s |. Residuals were autocorrelated if the probability
value (p value) was < 0.05, indicating the observed value

of | was significantly different from expected value. Here,
probabilities ranged from 0 to 0.53 for all models. Residuals for
four models (Live Coral (Branching), Live Coral (Encrusting),
Bare and Rock) were not spatially autocorrelated (p = 0.15).
Residuals for the remaining 15 of the 19 models were spatially
autocorrelated (p < 0.03). This pattern suggests that there

are influential environmental predictors missing from the BRT
modeling process for 15 of the 19 habitat predictions.
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3.2 Geographic patterns of substrate and cover types

Substrate: Live Coral (All Species)

“Live Coral (All Species)” (Figure 3.1a) was common and
present at 49% (236/480) of the training and validation sites
(Figure 3.1b). Most observations were documented between
Point Udall and Apaca Point or clustered along the reef crests
and patch reefs inside Outer Apra Harbor. Live coral was also
found through Haputo ERA. The Live Coral (All Species) model
showed a similar spatial pattern, with the highest likelihood of
presence along the shoreline from San Luis to Acapa Points,
from Tristar Dock to the mouth of Outer Apra Harbor and at
reefs west and east of Dry Dock Island (Figure 3.1c). Probability
of occurrence values were also high throughout Haputo ERA.
The maximum probability was 98% for Live coral (All Species).
CoV values were lowest (<0.25) in these same locations (Figure
3.1d), indicating higher precision and lower uncertainty for
places where live coral is more likely to be present. These spatial
patterns broadly match the distributions of the “Coral” habitat
class depicted in the 2005 map by NCCOS (NOAANCCOS,
2005). The one notable exception is the area from Point Udall to
Tantapalo Point, where live coral was predicted in 2023 but not
mapped in 2005. This exception is due to the different scales
used in the 2005 map (4,047 m?) versus the 2023 map (4 m?).

Substrate: Upright Dead Coral Reef

“Upright Dead Coral Reef” (Figure 3.2a) was fairly common and
was present at 37% (175/480) of the training and validation sites
(Figure 3.2b). Upright dead coral reef was primarily present
along the reef crest from San Luis Beach to Orote Island,
offshore Dadi Beach, along the Glass Breakwater, and at reefs
west of Dry Dock Island and in Sasa Bay. Upright dead coral
reef was also found through Haputo ERA. The model showed
similar spatial patterns, with the highest likelihood of presence
in these same locations (Figure 3.2c). Probability of occurrence
values were also moderately high throughout Haputo ERA. The
maximum probability was 84% for dead reef. CoV values were
lowest (<0.25) in these same locations (Figure 3.2d), indicating
higher precision and lower uncertainty for places where dead
coral reef is more likely to be present. These spatial patterns
broadly match the distributions of “Aggregate Reef,” “Individual
Patch Reef,” and “Spur and Groove” in the 2005 NCCOS map
(NOAANCCOS, 2005), except in Sasa Bay which was primarily
mapped as “Pavement.”

Substrate: Pavement

“Pavement” was common in the project area and was present at
51% (246/480) of the training and validation sites (Figure 3.3b).
“Pavement” was concentrated from San Luis Beach around
Point Udall to Acapa Point. Pavement was also dispersed on
reef features throughout Outer Apra Harbor and Haputo ERA.

The Pavement model showed similar spatial patterns, with

the highest likelihood of presence on reef crests around Orote
Peninsula (Figure 3.3c). Probability of occurrence values were
also moderately high throughout Haputo ERA. The maximum
probability was 94% for “Pavement.” CoV values were lowest
(<0.25) in these same locations (Figure 3.3d), indicating higher
precision and lower uncertainty for places where pavement is
more likely to be present. These spatial patterns for “Pavement’
match the 2005 NCCOS map (NOAA NCCOS, 2005) in Haputo
ERA and around Orote Peninsula, but they differ in Sasa Bay
and along the north side of Outer Apra Harbor.

Substrate: Rock

“Rock” (Figure 3.4a) was present at 9% (43/480) of the training
sites and was rare except for sites along the coastline from
Orote Island to just north of Apuntua Point, and along the Glass
Breakwater, which was built from limestone post World War

Il (Figure 3.4b). Rock was not present in Haputo ERA. The
Rock model showed similar spatial patterns, with the highest
likelihood nearshore the Glass Breakwater and southern Orote
Peninsula (Figure 3.4c). Probabilities were moderate to low in
Haputo. The maximum probability was 93% for “Rock.” Like the
other models, CoV values were lowest (<0.5) in these same
locations (Figure 3.4d), indicating higher precision and lower
uncertainty. However, CoV was high (>1) everywhere else in the
project area. “Rock” was not mapped in the 2005 NCCOS map
(NOAANCCOS, 2005) in Apra Harbor or Haputo ERA.

Substrate: Rubble

“Rubble” (Figure 3.5a) was present at 27% (129/480) of the
training sites (Figure 3.5b). It was more common in Apra
Harbor and less common in Haputo ERA. Overall, “Rubble”
distributions were similar to “Pavement” and were primarily
present offshore from San Luis Beach to Dadi Beach, along the
Glass Breakwater’s southern shoreline, south of Cabras Island,
and at reef features in Outer Apra Harbor. This habitat was also
present in the southern third of Haputo ERA. The Rubble model
showed similar spatial patterns with higher probabilities offshore
Dadi Beach, and moderate to low probabilities also being
predicted in the center of Outer Apra Harbor and in Haputo
(Figure 3.5¢). The maximum probability was 81% for “Rubble.”
Similar to the Rock model, CoV values were lowest (<0.25) in
locations with high probabilities (Figure 3.5d) but moderate to
high (>0.75) in all other locations. In both the CoV and mean
prediction surfaces, there is also a visual artifact starting near
San Luis Beach trending north to the Glass Breakwater from

a seamline in the satellite image mosaic. Compared to the
2005 NCCOS map, “Rubble” was predicted over a much larger
geographic area (NOAA NCCOS, 2005).

Characterizing Submerged Lands Around Naval Base Guam, Mariana Islands
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Figure 3.1. Predicted presence of “Live Coral (All Species).” Figure panels depict: a) a photo of live coral reef; b) maps denoting the presences and absences of live
coral in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The
insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE =
percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.2. Predicted presence of “Upright Dead Coral Reef.” Figure panels depict: a) a photo of upright dead coral reef; b) maps denoting the presences and
absences of upright dead coral reef in the and validation data; ¢) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient
of variation. The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross
validation; PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.3. Predicted presence of “Pavement.” Figure panels depict: a) a photo of pavement; b) maps denoting the presences and absences of pavement in the
training and validation data; ¢) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the
bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent
deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.4. Predicted presence of “Rock.” Figure panels depict: a) a photo of rock; b) maps denoting the presences and absences of rock in the training and
validation data; ¢) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the bottom
panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent deviance
explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.5. Predicted presence of “Rubble.” Figure panels depict: a) a photo of rubble; b) maps denoting the presences and absences of rubble in the training

and validation data; ¢) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the bottom
panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent deviance
explained; AUC = area under the curve; RMSE = root mean square error.
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Substrate: Sand

“Sand” (Figure 3.6a) was present at 57% (272/480) of the
training sites and was most common in Outer Apra Harbor,
offshore Dadi Beach and Acapa Point, as well as in deeper
areas inside Haputo ERA (Figure 3.6b). However, it had notably
lower abundances inside Inner Apra Harbor, from Point Udall

to Tipalao Bay and in the northern section of Haputo ERA. The
Sand model showed similar spatial patterns, with the highest
likelihood of sand in the center of Outer Apra Harbor, Sasa Bay,
south of Cabras Island, and in depths greater than 25 m offshore
Dadi Beach, and greater than 15 m in Haputo ERA (Figure 3.6¢).
The maximum probability was 96% for “Sand.” Like the other
models, CoV values were lowest (<0.25) in these same locations
(Figure 3.6d), indicating higher precision and lower uncertainty.
These spatial patterns broadly match the distributions of “Sand”
and “Sand with Scattered Coral and Rock” classes in the 2005
NCCOS map (NOAANCCOS, 2005). The notable exception is
Inner Apra Harbor, which was mapped as “Sand” in 2005 but
predicted to be both “Mud” and “Sand” in 2023.

Substrate: Mud

“Mud” (Figure 3.7a) was present at 11% (53/480) of the training
sites and was most common inside Inner Apra Harbor and near
the shoreline in Sasa Bay (Figure 3.7b). It was not present in
Haputo ERA. The Mud model showed similar spatial patterns,
with the highest likelihood in Inner Apra Harbor and around the
mangroves in Sasa Bay (Figure 3.7¢). The maximum probability
was 90% for “Mud.” Like the other models, CoV values were
lowest (<0.5) in these same locations (Figure 3.7d) but high
(>1) everywhere else. These spatial patterns broadly match the
distributions of the “Mud” class in the 2005 NCCOS map (NOAA
NCCOS, 2005). The notable exception is Inner Apra Harbor,
which was mapped as “Sand” in 2005 but predicted to be both
“Mud” and “Sand” in 2023.

Cover: Mangrove

Mangroves (Figure 3.8a) were very rare in the project areas,
occurring at only 3% (15/480) of the training and validation
sites (Figure 3.8b). No mangroves were documented and
modeled in Haputo ERA. All of the mangrove occurrences
were inside the Sasa Bay and Inner Apra Harbor, and absent
everywhere else in the project area. The Mangrove model
showed similar spatial patterns, with the highest likelihood of
mangrove presence along the Sasa Bay shoreline and at the
Abo Cove and Atantano River in Inner Apra Harbor (Figure
3.8¢). The maximum probability was 99% for “Mangrove.” Unlike
the previous models, the CoV values were low (<0.25) where
the model predicted high and low probabilities of occurrence
(Figure 3.8d). CoV was high (>1) in near the shoreline around
Orote Peninsula and Glass Breakwater, and further inland in

Sasa Bay and Inner Apra Harbor. This “Mangrove” probability of
occurrence prediction broadly matches the distributions of the
“‘Emergent Vegetation” class in the 2005 NCCOS map (NOAA
NCCOS, 2005). The notable exception is in Inner Apra Harbor,
where the 2005 NCCOS map did not depict any “Emergent
Vegetation.”

Cover: Live Coral (Branching Corals)

“Live Coral (Branching Coral)” (Figure 3.9a) occurred at 19%
(93/480) of the training and validation sites (Figure 3.9b). Inside
the Harbor, branching corals were present on or near prominent
dive locations, including Dogleg Reef, Dry Dock Reef, Seabee
Junkyard, Fingers Reef and Gab Reef. Outside the Harbor,
they primarily occurred around Orote Island, from Point Udall to
Acapa Point and in the southern three-quarters of Haputo ERA.
The branching coral model showed similar spatial patterns, with
the highest likelihood of these taxa being present around Orote
Island and in less than two m depths inside Haputo ERA (Figure
3.9¢). The maximum probability was 85% for branching corals.
Like the other models, CoV values were lowest (<0.25) in these
same locations (Figure 3.9d), indicating higher precision and
lower uncertainty for predicted presences. CoV were moderate
(>0.75) everywhere else. No comparison was made to the 2005
NCCOS map (NOAANCCOS, 2005) because this taxonomic
group was not explicitly mapped in that study.

Cover: Live Coral (Encrusting)

“Live Coral (Encrusting)” (Figure 3.10a) were present at 36%
(173/480) of the training and validation sites (Figure 3.10b),
and was most common near the mouth of Apra Harbor, from
Point Udall to Acapa Point and throughout Haputo ERA. The
remaining presences were sparsely west of Dry Dock Island
and in Sasa Bay. The Live Coral (Encrusting) model showed
similar spatial patterns, with moderate probabilities from the
mouth of Apra Harbor to Acapa Point (Figure 3.10c). A few other
areas also had moderate to high probabilities of occurrence,
including the reefs in the northern section of Haputo ERA. The
maximum probability was 74% for encrusting corals. Like other
habitat models, the CoV values were lowest (<0.5) where the
model predicted the highest probabilities of occurrence and
highest (>0.75) where the model predicted low probability of
occurrence values (Figure 3.10d). Like with branching corals,
no comparison was made to the 2005 NCCOS map (NOAA
NCCOS, 2005) because this taxonomic group was not explicitly
mapped in that study.
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Figure 3.6. Predicted presence of “Sand.” Figure panels depict: a) a photo of sand; b) maps denoting the presences and absences of sand in the training and
validation data; ¢) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the bottom
panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent deviance
explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.7. Predicted presence of “Mud.” Figure panels depict: a) a photo of mud; b) maps denoting the presences and absences of mud in the training and validation
data; ¢) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the bottom panels show the
input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent deviance explained; AUC =
area under the curve; RMSE = root mean square error.
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Figure 3.8. Predicted presence of “Mangrove.” Figure panels depict: a) a photo of mangrove; b) maps denoting the presences and absences of mangrove in the
training and validation data; ¢) a map denoting the predicted average probability of occurrence; and d) a map denoting the coefficient of variation. The insets at the
bottom show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent deviance
explained; AUC = area under the curve; RMSE = root mean square error..
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Figure 3.9. Predicted presence of “Live Coral, Branching Coral.” Figure panels depict: a) a photo of branching coral species; b) maps denoting the presences

and absences of branching corals in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the
coefficient of variation. The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV =
k-fold cross validation; PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.10. Predicted presence of “Live Coral (Encrusting).” Figure panels depict: a) a photo of encrusting corals; b) maps denoting their presences and absences
of encrusting corals in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of
variation. The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross
validation; PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Cover: Live Coral (Foliose)

“Live Coral (Foliose)” (Figure 3.11a) were rare and present

at 5% (25/480) of the training sites (Figure 3.11b). This
taxonomic group was most common in depths greater than 30
m inside Outer Apra Harbor. Only two sites had foliose corals
inside Haputo ERA. The Live Coral (Foliose) model showed
similar spatial patterns, with the relatively higher likelihood

of presences on the sides of reefs west of Dry Dock Island,
and the fore reef from San Luis Beach to Orote Island (Figure
3.11c¢). Higher probabilities of occurrence were also found on
fore reefs offshore Haputo Beach and in the northern half of
Haputo ERA. However, the maximum probability was 33% for
foliose corals, and these higher probabilities were still very
low compared to other taxonomic groups. The CoV values
were lowest (<0.5) where the model predicted the lowest
probabilities of occurrence in both Apra Harbor and Haputo
ERA (Figure 3.11d). Like with branching and encrusting corals,
no comparison was made to the 2005 NCCOS map (NOAA
NCCOS, 2005) because this taxonomic group was not explicitly
mapped in that study.

Cover: Live Coral (Porites rus)

“Live Coral (Porites rus)” (Figure 3.12a) was present at 19%
(90/480) of the training sites (Figure 3.12b). This species

was most common along fore reefs in Outer Apra Harbor

and throughout Haputo ERA. The remaining presences were
concentrated offshore Dadi Beach and Acapa Point. The Live
Coral (Porites rus) model showed similar spatial patterns, with
the highest likelihood of presence along fore reefs in Outer
Apra Harbor, at reefs west Dry Dock Island, inside Sasa Bay
and along the fore reef offshore Dadi Beach (Figure 3.12c).

An expert reviewer commented that Porites rus probabilities
should have been higher on deeper reefs (>15 m) offshore Gab
Gab Beach (Appendix B). Higher probabilities of occurrence
were also predicted on the shelf and fore reefs in Haputo ERA.
CoV values were lowest (<0.25) where the model predicted the
highest probabilities of occurrence. Pockets of high CoV values
(>1) coincided with low probabilities, and were dispersed in
Outer Apra Harbor and on bank shelf locations in Haputo ERA
(Figure 3.12d). Like with other corals taxa, no comparison was
made to the 2005 NCCOS map (NOAANCCOS, 2005) because
this taxonomic group was not explicitly mapped in that study.
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Live foliose corals inside Apra Harbor. Credit: NOA

Cover: Seagrass (Halodule uninervis)

“‘Seagrass (Halodule uninervis)’ (Figure 3.13a) was only present
at 1% (3/480) of the training sites (Figure 3.13b). These two
sites were located approximately 500 m north of Acapa Point.
The Seagrass (Halodule uninervis) model showed similar
spatial patterns, with the highest likelihood of presence between
Dadi Beach and Acapa Point (Figure 3.13c). Probabilities were
at or near zero in Haputo ERA. The maximum probability was
55% for H. uninervis. CoV values were lowest (<0.5) in areas
with low probabilities (Figure 3.13d). Areas of high CoV (>1)
were present on reef features in Haputo ERA, in Inner Apra
Harbor, and offshore Dadi Beach. Horizontal artifacts are also
visible offshore Dadi Beach in the probability and in the CoV
surfaces, which is likely an artifact from the latitude predictor.
The predicted patterns in Haputo ERA matched the “Seagrass”
class mapped in the 2005 NCCOS map (NOAA NCCOS, 2005).
However, these mapped and predicted seagrass distributions
differed offshore Dadi Beach. Specifically, the 2005 map
showed “Seagrass” nearshore Dadi Beach, whereas the 2023
map predicted “Halodule uninervis” mainly offshore Acapa Point.

Cover: Algae (Crustose Coralline)

Crustose coralline algae (Figure 3.14a) was present at 23%
(112/480) of the training sites (Figure 3.14b). This taxonomic
group was most common in Haputo ERA and from Gab Beach
around Point Udall to Acapa Point. The remaining presences
were distributed in the middle of Outer Apra Harbor. No
presences were documented in Sasa Bay or Inner Apra Harbor.
The Algae (Crustose Coralline) model showed similar spatial
patterns, with the highest likelihood of presence on bank shelf
locations in Haputo ERA and around Orote Peninsula (Figure
3.14d). Probability of occurrence was lowest or zero south of
Cabras Island, in Sasa Bay, and in Inner Apra Harbor. The
maximum probability was 99% for crustose coralline algae
overall. CoV values were lowest (<0.25) in places with high
probabilities of occurrence (Figure 3.14e), indicating lower
uncertainty for places where it is very likely to be present.

The spatial patterns differed from than the distributions of the
“Coralline Algae” classes in the 2005 NCCOS map (NOAA
NCCOS, 2005). Specifically, the Algae (Crustose Coralline)
model predicted these habitats are likely to be present more
widely in the project areas than in the 2005 maps.
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Figure 3.11. Predicted presence of “Live Coral (Foliose).” Figure panels depict: a) a photo of foliose corals; b) maps denoting their presences and absences of foliose
corals in the training and validation data; ¢) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The
insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE =
percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.12. Predicted presence of “Live Coral (Porites rus).” Figure panels depict: a) a photo of Porites rus; b) maps denoting their presences and absences of
Porites rus in the training and validation data; ¢c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation.
The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation;
PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.13. Predicted presence of “Seagrass, Halodule uninervis.” Figure panels depict: a) a photo of Halodule uninervis; b) maps denoting the presences and
absences of Halodule uninervis in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the
coefficient of variation. The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV =
k-fold cross validation; PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.14. Predicted presence of “Algae (Crustose Coralline)” (CCA). Figure panels depict: a) a photo of CCA habitat; b) maps denoting the presences and
absences of CCA in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of
variation. The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross
validation; PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Cover: Algae (Halimeda spp.)

Halimeda algae (Figure 3.15a) was present at 32% (155/480) of
the training sites (Figure 3.15b). This taxonomic group was most
common in Haputo ERA and from Gab Beach around Point Udall
to Acapa Point. The remaining presences were distributed along
the Glass Breakwater and in the middle of Outer Apra Harbor.
Fewer Halimeda presences were documented in Sasa Bay or
Inner Apra Harbor. The Algae (Halimeda spp.) model showed
similar spatial patterns, with the with the highest likelihood of
presence in Haputo ERA and from Tipalao Bay to Acapa Point
(Figure 3.15c¢). Probabilities of occurrence were lower in Sasa
Bay and in Inner Apra Harbor. The maximum probability was
85% for Halimeda overall. CoV values were lowest (<0.25) in
places with high probabilities of occurrence (Figure 3.15d),
indicating lower uncertainty for places where it is likely to be
present. No comparison was made to the 2005 NCCOS map
(NOAANCCOS, 2005) because Halimeda was not explicitly
mapped in 2005.

Cover: Algae (Turf)

Turf algae (Figure 3.16a) was the most common habitat, and was
present at 68% (328/480) of the training sites (Figure 3.16b). This
taxonomic group was distributed throughout the project area,
with fewer occurrences in Inner Apra Harbor. The Algae (Turf)
model showed similar spatial patterns, with the highest likelihood
of presence on reefs in Haputo ERA, Outer Apra Harbor, and
from Point Udall south to Acapa Point (Figure 3.16¢). Probability
of occurrence was lowest in places predicted to have majority
unconsolidated sediments, including Inner Apra Harbor and
non-reef areas in eastern Outer Apra Harbor. The maximum
probability of occurrence was 98% for turf algae. CoV values
were lowest (<0.25) in places with high probabilities of occurrence
(Figure 3.16d) and highest (>0.75) in places with low probabilities
of occurrence. This turf algae probability of occurrence prediction
partially matched the distributions of the “Turf” biological cover
class in the 2005 NCCOS map (NOAANCCOS, 2005). The
notable exceptions are deeper (>25 m) areas in Apra Harbor

and from Apuntua Point to Acapa Point, where turf algae was
predicted by the 2023 map but not in the 2005 map.

Cover: Algae (Other)

Other types of algae (not listed above) (Figure 3.17a) were
present at 63% (303/480) of the training sites (Figure 3.17b).
This taxonomic group was common throughout Haputo ERA
and throughout Outer Apra Harbor and in Sasa Bay. Fewer
presences were documented near the shoreline in Sasa Bay
and in Inner Apra Harbor. The Algae (Other) model showed
similar spatial patterns, with the with the moderate likelihood
of presence in Haputo ERA and in Outer Apra Harbor (Figure
3.17¢). Probabilities of occurrence were lowest in places

predicted to have soft substrates, including Inner Apra Harbor
and non-reef areas in eastern Outer Apra Harbor and Sasa Bay.
The maximum probability of occurrence was 83% for other types
of algae. CoV values were generally moderate (>0.5) throughout
the project areas, with the highest values (>0.75) in Inner Apra
Harbor (Figure 3.17d). This probability of occurrence prediction
did not match the distributions of the “Macroalgae” biological
cover class in the 2005 NCCOS map (NOAANCCOS, 2005).
The notable exceptions where the maps did match are areas
around Dry Dock Island and Port Authority Beach.

Cover: Sponge

Sponges (Figure 3.18a) were present at 25% (119/480) of the
training sites (Figure 3.18b). This taxonomic group was most
common from Point Udall to Acapa Point. Elephant ear sponges
(lanthella basta) were also found frequently in Outer Apra Harbor.
The remaining presences were distributed throughout Haputo
ERA. Few presences were documented in Sasa Bay or inside
Inner Apra Harbor. The Sponge model showed similar spatial
patterns, with the highest likelihood of presence in Outer Apra
Harbor from Dry Dock Island to the Harbor mouth (Figure 3.18c).
Probability of occurrence was lowest east of Dry Dock Island
south of Cabras Island, Sasa Bay, and Inner Apra Harbor, and

in soft sediments in Haputo ERA. The maximum probability was
79% for “Sponge.” CoV values were lowest (<0.25) in places

with high probabilities of occurrence (Figure 3.18d), and highest
(>0.25) in locations with moderate to low probabilities. No
comparison was made to the 2005 NCCOS map (NOAANCCOS,
2005) because sponges were not explicitly mapped in 2005.

Cover: Bare

Locations without biological cover (i.e., “Bare”) (Figure 3.19a)
were common and widely distributed in the project areas. “Bare”
cover was present at 71% (341/480) of the training sites (Figure
3.19b). The Bare model showed similar spatial patterns, with the
lowest likelihood of this habitat being present on hard bottom

in Apra Harbor and Haputo ERA (Figure 3.19c). Probability of
occurrence for “Bare” cover was highest in most other soft bottom
substrates inside the project areas. The maximum probability
was 97% for bare substrate. CoV values were lowest (<0.25)

in locations with high probabilities of occurrence (Figure 3.19d)
throughout the project areas. The highest (>0.25) CoV values
were located along the fore reef in Haputo ERA, and in Apra
Harbor from Kilo Wharf around Point Udall to Tipalao Bay. This
“Bare” probability of occurrence prediction broadly matched the
distributions of the “Uncolonized” class in the 2005 NCCOS map
(NOAANCCOS, 2005). The notable exceptions are from Point
Udall to Dadi Beach and in southern Haputo ERA, where the
2005 NCCOS map did not depict any uncolonized substrates.

Characterizing Submerged Lands Around Naval Base Guam, Mariana Islands

34



Results and Discussion

Algae (Ha”meda SPp-) 144‘;38'E 144140'5 14474915 144°|50'E
s" b ™
= b
&
& z
-
&
=
&
& ® Presence
Absence =
L A
f
z a3
&
144°38' 144°40E 144°38 144°40
N c d
= A =
£ | &
& ?2
=z =
& | <
9 &
Probability of Coefficient of
Occurrence Variation
100% 025
[Jos
= 0.75 =
§— B oy 10 &
b >2.0 2
0 1 2 Kilometers =
L1
144049 144°50° 144°49°E 144°|50'E
c d
= =
B L2
) &
Model Inputs Model Performance
Tree Complexity = 20 kCV PDE = 29.23
Learning Rate = 0.005 Test PDE =29.30
Bag Fraction =0.75 Test AUC=0.83
#Trees = 600 Test Bias = -0.07
Test RMSE = 0.41
=z =
S in
oma —mM
& =

Figure 3.15. Predicted presence of “Algae (Halimeda spp.).” Figure panels depict: a) a photo of Halimeda habitat; b) maps denoting the presences and absences of
Halimeda in the training and validation data; ¢) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The
insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE =
percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.16. Predicted presence of “Algae (Turf).” Figure panels depict: a) a photo of turf algae habitat; b) maps denoting the presences and absences of turf algae
in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in
the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent
deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.17. Predicted presence of “Algae (Other).” Figure panels depict: a) a photo of other algae habitat; b) maps denoting the presences and absences of other
algae in the training and validation data; ¢) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The
insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE =
percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.18. Predicted presence of “Sponge.” Figure panels depict: a) a photo of sponge habitat; b) maps denoting the presences and absences of sponges in the
training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the
bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent
deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.19. Predicted presence of “Bare” cover. Figure panels depict: a) a photo of mixed bare cover habitat; b) maps denoting the presences and absences of bare
cover in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The
insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE =
percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Other Habitats Not Predicted

In addition to the cover types above, other biological organisms
were identified and observations made using the underwater
photographs. These organisms and observations were not
modeled because: (1) their prevalence was too low (<1%) to
develop reasonable predictions or (2) their model predictions
did not meet the minimum performance thresholds (i.e., AUC
>0.7 and PDE >0). These rare or absent organisms specifically
included species listed under the ESA (i.e., Acropora globiceps,
Isopora palifera, Acropora retusa, Seriatopora aculeata),
seagrass (Halophila), and nuisance species (angel hair algae
[Chaetomorpha vieillardii] and crown-of-thorns sea stars
[Acanthaster planci]). One crown-of-thorns was photographed
ata 13-m depth in Haputo ERA (Figure 3.20). No ESA corals
or angel hair algae were documented in the project areas. The
presences of coral bleaching or paling, crown-of-thorns scarring,
and marine debris were also recorded, but their prevalences
were also very low (<1%, 0%, and <4%, respectively)
throughout the project areas.

3.3 Classified Habitat Map

Approximately 21 km? of seafloor was characterized around
Naval Base Guam and inside Haputo ERA from 0- to
approximately 50-m depths. This classified habitat map displays
the predicted distribution of seven common combinations

of substrate and cover types (Figure 3.21). In Haputo ERA,
“Pavement, Mixed Algae” was the most abundant habitat type
mapped, comprising 54.5% (1.1 km?) of the area. The largest
continuous patches were located on the fore reef along the
coastline. “Sand, Bare” was the next most abundant habitat
mapped, comprising 24.8% (0.5 km?) of the area. Large,
continuous patches of bare sand were mainly offshore in the
northern area of the reserve. Smaller patches of pavement were
also located along the reef tract, along with patches of “Upright
Dead Coral Reef, Mixed Algae” (15.1% or 0.3 km?) and “Live
Coral Reef, Live Coral” (5% or 0.1 km?). These habitat types
were the third and fourth most abundant habitats, respectively,
mapped in the Haputo ERA. “Sand, Mixed Algae” was the least
abundant (0.6% or 0.01 km2) habitat overall.

In Apra Harbor and from Point Udall to Acapa Point, “Sand,
Bare” was the most abundant habitat type mapped, comprising
42.3% (8.2 km?) of the area. The largest continuous patches
were in the eastern portion of Outer Apra Harbor, including Sasa
Bay and south of Cabras Island. “Pavement, Mixed Algae” was
the next most abundant habitat mapped, comprising 35.9%

(6.9 km?) of the area. Large, continuous patches of pavement
covered by algae were concentrated nearshore from San Luis
Beach around Point Udall to Acapa Point. Smaller patches of
pavement were also located in the western half of Outer Apra

Figure 3.20. Crown-of-thorns (Acanthaster planci) documented in Haputo
Ecological Reserve Area in May 2022.

Harbor. “Mud, Bare” was the third most abundant habitat (8%

or 1.5 km?), which was concentrated nearshore Sasa Bay and
mixed with bare sand in Inner Apra Harbor. “Sand, Mixed Algae”
was the fourth most abundant habitat (5.2% or 1 km?) and

was often located where bare mud transitioned to bare sand.
“Upright Dead Coral Reef, Mixed Algae” and “Live Coral Reef,
Live Coral” were the fifth (4.2% or 0.8 km?) and sixth (3.0% or
0.6 km?) most abundant habitats (respectively). These habitats
were often co-located on the fore reef along the inside perimeter
of Outer Apra Harbor, and from Tipalao Bay to Acapa Point.
“Mud, Mangrove” was the least abundant habitat (1.3% or 0.3
km?), found only in nearshore areas in Sasa Bay and Inner Apra
Harbor.

3.3.1 Map Accuracy

The relative prevalence and proportions of the seven habitat
types were very similar (+5%) in both the training data and the
classified habitat map. Agreement between the training data and
classified habitat map suggests the BCTs were able to describe
the relationships among the habitats and environmental
predictors reasonably well. The notable exceptions were the
“Upright Dead Coral Reef, Mixed Algae” and “Sand, Bare”
habitats. “Sand, Bare” was more prevalent in the classified
habitat map (40.7%) than in the training data (19.4%). Upright
dead reef was conversely less prevalent in the classified map
(5.2%) than in the training data (13.9%).
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Figure 3.21. This figure depicts the 7 benthic habitats mapped throughout Apra Harbor (left) and Haputo Ecological Reserve Area (ERA; right). The numbers inside

the legend denote the amount of area (km2) occupied by each habitat class.

The overall accuracy and tau value for the classified habitat
map (quantified using the validation points) was high at

86.6% and 0.84 +0.04, respectively (Table 3.1). The overall
accuracy was very similar after correcting for proportional
biases (86.1% * 4.0% at the 95% confidence level; Table 3.2).
The UAs were also high, ranging from 80% to 100% for the
individual habitat classes. Most habitat misclassifications were
evenly distributed in the confusion table, suggesting that the
habitat characterization process did not consistently confuse
the majority of substrate and cover type pairs. The notable
exceptions were the three hard substrate categories (‘Live
Coral Reef,” “Upright Dead Reef,” and “Pavement”), which were
confused with each other (n = 8 and 9) more than with the soft
bottom habitat categories. Similarly, “Sand, Bare” and “Sand,
Mixed Algae” were more often confused with each other (n =
7) than with any other categories. Despite these class-specific
biases, the above overall map accuracies are similar to the
other benthic habitat maps created by NOAANCCOS in the
Pacific Region (NOAA NCCOS, 2005; Battista et al., 2007;
Kendall et al., 2017). As a result, this habitat map can be used
with high levels of confidence for a variety of research and
management applications.

3.4 Map Applications

3.4.1 Using the Map Products

Spatial and spectral resolution of satellite sensors, computing
power, and model-based mapping techniques have advanced
considerably in the last decade, and the map products created
here take maximum advantage of those improvements to
preserve the fine-scale heterogeneity, habitat gradients, and
smaller features present in the real landscape.

These new maps were also designed to be flexible, scalable,
and customizable to suit specific applications and user needs.
Users may apply spatial filters to change the map scale
(Kendall and Miller, 2008), enhance dominant or important
habitat types, or smooth out variability in heterogeneous areas.
Habitat classes can also be aggregated into broader categories
(e.g., hard bottom instead of multiple types of reef substrates)
or translated into other classification systems (e.g., NOAA
NCCOS [2005] or CMECS [2023]) for qualitative comparisons.
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Table 3.1. The confusion matrix for the classified habitat map. Observed habitats at validation sites are listed as columns, and corresponding predicted habitats, as
rows. Cell values are the number of matches (along the gray diagonal) or mismatches (off diagonal) between the two. nj = row total; ni = column total; OA = overall
accuracy; Cl = confidence interval; UA = user’s accuracy; PA = producer’s accuracy.

Predicted (j)

Observed (i)
Live Coral Upright Dead User's
Reef, Live Pavement, Sand, Mixed Coral Reef, Accuracy
Coral Mixed Algae Algae Mixed Algae Sand, Bare Mud, Bare |Mud, Mangrove| N (%)
HDIETENEC 16 0 0 0 1 0 0 17 94%
Live Coral
Rilutalal b0 9 106 6 8 2 1 0 132 | 80%
Algae
Sand, Mixed Algae 0 0 17 1 1 0 0 19 89%
Upright Dead Coral 0
Reef, Mixed Algae f 0 2 = 0 0 0 35 9%
Sand, Bare 3 2 7 0 80 0 0 92 87%
Mud, Bare 0 0 0 0 0 20 0 20 100%
Mud, Mangrove 0 0 0 0 0 0 13 13 100%
n, 29 108 32 41 84 21 13 328
PA (%) 55% 98% 53% 78% 95% 95% 100% OA = 86.6%
Tau=0.84
Cl(£) = 0.04

Table 3.2. The confusion matrix for the classified habitat map corrected for proportional biases. Observed habitats at validation sites are listed as columns, and

corresponding predicted habitats, as rows. Cell values are the number of matches (along the gray diagonal) or mismatches (off diagonal) corrected for proportional bias;

OA = overall accuracy; Cl = confidence interval; UA = user’s accuracy; PA = producer’s accuracy; 1j = observed habitat proportion, pi = predicted habitat proportion.

Predicted (j)

Observed (i)
Live Coral Upright Dead
Reef, Live Pavement, Sand, Mixed Coral Reef, Mud, UACI
Coral Mixed Algae Algae Mixed Algae | Sand, Bare Mud, Bare Mangrove m UA (*)

D el 0.030 0.000 0.000 0.000 0.002 0.000 0.000 0.032 | 94.1% |0.86%
Live Coral
:f;’:;“e“t’ ke 0.026 0.302 0.017 0.023 0.006 0.003 0.000 0.377 | 80.3% |3.33%
Sand, Mixed Algae 0.000 0.000 0.043 0.003 0.003 0.000 0.000 0.048 | 89.5% | 1.43%
L[l eea Gl 0.001 0.000 0.003 0.048 0.000 0.000 0.000 0.052 | 91.4% |1.04%
Reef, Mixed Algae
Sand, Bare 0.013 0.009 0.031 0.000 0.354 0.000 0.000 0.407 | 87.0% |3.58%
Mud, Bare 0.000 0.000 0.000 0.000 0.000 0.072 0.000 0.072 100.0% | 0.00%
Mud, Mangrove 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.012 100.0% | 0.00%
Py 0.071 0.311 0.094 0.073 0.364 0.075 0.012
PA (%) 42.7% 97.2% 45.5% 65.4% 97.2% 96.2% 100.0% OA= 86.1%
PACI (£) 14.14% 9.01% 13.89% 15.47% 8.10% 7.29% 000% | Cl()=40%
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Predictions for individual substrate and cover types may also
be converted from the continuous probability values ideal

for examining gradients into classified categories to better
characterize subtle or more dramatic shifts in presence. Users
can explore these shifts by customizing and applying their own
probability thresholds.

In addition to probability thresholds, users can also explore the
impacts of map uncertainty on potential management scenarios
and on their decisions (Costa et al., 2019). Here, uncertainty
was quantified as CoV. Smaller CoVs indicate that the prediction
has higher precision and less uncertainty (and vice versa). CoV
can be multiplied by mean probability of occurrence to derive
the standard deviation and thereby quantiles and confidence
intervals associated with the estimated probabilities in a pixel.
For example, if the mean probability is 0.5 and the CoV is 0.1 in
a pixel, then 0.5 x 0.1 = £0.05 or £1 standard deviation (SD).
Assuming normally distributed errors, 68.3% of the data will fall
between £0.05 (or 1 SD), 95.5% of the data will fall between
£0.1 (or 2 SD), and 99.7% of the data will fall between £0.15 (or
3 SD).

Testing and changing maps based on their CoV may lead
users to different conclusions and courses of action. Defining
acceptable levels of uncertainty upfront is critical for users

to ensure that they will meet their marine resource goals. It
can also help users more confidently identify priority sites,
adequately protect habitats, convey the range of potential
outcomes, and ensure that limited resources are used as
efficiently as possible (Margules and Pressey, 2000; Nicholson
and Possingham, 2007; Tulloch et al., 2013). That said, it

is important to note that high CoV's may occur in areas of
predicted absence where mean probabilities are extremely
small (values are close to 0). Users should be aware that

high CoVs in those locations do not necessarily indicate high
uncertainty, and these areas should be reviewed alongside the
mean predictions to avoid misinterpretation.

3.4.2 Informing Management Decisions

Submerged lands in and around Apra Harbor are used by
the Navy for a variety of training exercises and activities,
which have the potential to impact coral reef ecosystems.
Naval activities and actions that potentially affect coral reef
ecosystems must be mitigated under Executive Order 13089.
These map products will be used by NAVFAC Marianas to
comply with this executive order and to guide how best to
minimize impacts to important habitats in Apra Harbor and
Haputo ERA.

In addition to supporting NAVFAC Marianas, the map products
described here were designed with these and other potential
management uses in mind. Notably, these products may inform
other local marine monitoring and management decisions,

such as identifying and monitoring nuisance species (e.g.,
Chaetomorpha vieillardii and Acanthaster planci) (Guam BSP,
2018), quantifying the economic value of coral reefs (van
Beukering, 2007), calculating damage and costs following ship
grounding or other impacts (Brown, 2015), monitoring habitat
changes through time (Pendleton et al., 2005), minimizing
development impacts to important habitats (Nelson et al., 2016),
designing sampling plans for monitoring or scientific studies
(Guam and NOAA CRCP, 2010), and conducting education and
outreach.

Regardless of the application, the best way to access and use
these highly resolved maps is through GIS or other software
that allows users to zoom in and out as needed. The GIS-ready
products from this project are listed below:

1. Map of classified benthic habitats in and around Apra
Harbor and in Haputo ERA from 0- to 50-m depths;

2. Maps of the predicted occurrence of 19 substrate and
biological cover types;

3. Orthorectified, atmospheric- and water column—corrected
satellite images;

4. Maps depicting the depth, roughness, hardness, and
topography of the seafloor. These data for Inner Apra
Harbor are restricted and are not publicly available.

5. Underwater photographs and annotations used to train
model development and validate their performance and
accuracy;

6. Atechnical report (this document) describing the
methods, results, and limitations for scientific and
management applications of these products.

These GIS products are freely available for download here:
https://coastalscience.noaa.gov/project/characterizing-
submerged-lands-around-navy-base-guam-cnmi/
https://coastalscience.noaa.gov/project/characterizing-benthic-
habitats-in-haputo-ecological-reserve-area-guam/

If users do not have GIS software, tiled versions of the satellite
imagery (Appendix C) and classified habitat maps (Appendix
D) are available for printing, and a data viewer is available
online for viewing and querying these habitat products without
any specialized software: https://experience.arcgis.com/
experience/7b6c0e7164234182985a89d5b5703475
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Glossary

Note: many of these definitions are specific to the context of this
project.

Bag fraction (bf) — In a boosting context, a parameter that defines
the fraction of the data drawn at random, without replacement, from
the full training dataset at each iteration.

Boosted classification tree (BCT) model — A modeling approach
that combines a machine learning technique, boosting, with
traditional tree-based statistical modeling. In this approach, a large
number of classification trees are fit stage-wise (i.e., after each tree
is fit, the remaining variation in the data is used to fit the next tree)
and then combined to generate a final ensemble model.

Boosted regression tree (BRT) model - A modeling approach
that combines a machine learning technique, boosting, with
traditional tree-based statistical modeling. In this approach, a large
number of regression trees are fit stage-wise (i.e., after each tree
is fit, the remaining variation in the data is used to fit the next tree)
and then combined to generate a final ensemble model.

Boosting - A technique for fitting models that employs an iterative
approach. Models are built in a stage-wise fashion, where existing
trees are left unchanged and the variance remaining from the last

tree is used to fit the next one.

Bootstrapping — A data resampling technique for estimating the
statistical uncertainty (precision) in model predictions.

Coefficient of variation (CoV) — Measure of dispersion for a
distribution, representing the standard deviation as a proportion
of the mean. In the context of a model prediction, a larger CV
indicates more variation (uncertainty) in the prediction relative to
the mean prediction.

Environmental predictor — An independent variable in a model
that is used to explain variation in the response.

k-fold cross-validation (kCV) - A technique for evaluating the
predictive ability of a fitted model. The data are divided into k = 10
data subsets (i.e., folds). Nine of these folds are used to create
models, while the one remaining is used to evaluate the model’s
performance.

Learning rate (Ir) — In a boosting context, the degree to which
each base learner contributes to the final model. The optimal
learning rate is one that minimizes prediction error in the fewest
number of boosting iterations.

Percent deviance explained (PDE) - A measure of the variation
in the data explained by a model (beyond that explained by a
model without predictor variables). Values normally range between
0% and 100%. Higher values indicate better model performance.
kCV PDE is calculated using the training data and k-fold cross
validation. Test PDE is calculated using the validation data only.

Receiver operating characteristic (ROC) area under the curve
(AUC) - An ROC curve is a graphical representation of how well
a model can discriminate between (or predict) two categories of
data (e.g., presence/absence). The AUC is the integral of an ROC
curve. AUC values range between 0 and 1 where a value >0.5
indicates performance better than a random guess. Higher AUC
values indicate better model performance. Test AUC is calculated
using the validation data only.

Resampling — A method of using randomly drawn subsets of
data to estimate statistical precision (e.g., variation in model
predictions), perform a significance test (e.g., permutation test

of predictor importance), or perform model validation (e.g.,
cross-validation). The term “resampling” can also be used in a
geographic information system (GIS) to describe the interpolation
methods used to change the resolution of a raster dataset.

Root mean square error (RMSE) - RMSE measures the error
associated with a model by calculating the difference between
the predicted values (extracted from the model) and the observed
values (extracted from the field data). Test RMSE is calculated
using the validation data only.

Spatial autocorrelation — A measure of similarity (correlation)
between nearby observations.

Spatial predictive modeling — A modeling technique whereby
relationships between environmental predictors and a response
variable are estimated for locations with survey data (e.g.,
underwater photographs). These relationships are then used to
predict the response in locations without survey data.

Sensitivity — Also known as the true positive rate, a measure of
model performance for binary classification models (e.g., presence
versus absence) that measures the proportion of positives that are
correctly identified as positives.

Specificity — Also known as the true negative rate, a measure of
model performance for binary classification models (e.g., presence
versus absence) that measures the proportion of negatives that are
correctly identified as negatives.

Validation data — Data that are excluded during model fitting and
later used to independently validate the predictive performance of
the fitted model and/or accuracy of the classified map.

Training data — Data to which a model is fitted (using kCV) in
order to test and optimize model parameter values.

Tree complexity (tc) — In boosted regression and classification
tree models, a parameter that controls the number of allowable
nodes in a tree. This limits the number of possible interactions
between predictor variables. In general, greater tree complexity
results in fewer iterations needed for model convergence.
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Appendix A Apra Harbor
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Haputo Ecological Reserve Area
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Figure A2. Maps depicting
the orthorectified,
atmospheric- and water
column-corrected WV2
and WV3 band pairs

used to create the habitat
predictions for Haputo
ERA.
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Apra Harbor
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Figure A3. Maps depicting
the topographic predictors
used to create the habitat
predictions for Apra
Harbor.
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Figure A4. Maps depicting
the topographic predictors
used to create the habitat
predictions for Haputo
ERA.
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Figure A5. Map
depicting the sidescan
(left) and multibeam
(right) backscatter used
to create the habitat
predictions for Apra
Harbor.

Figure A6. Maps
depicting the geographic
predictors used to create
the habitat predictions
for Apra Harbor.

Figure A7. Maps
depicting the geographic
predictors used to create
the habitat predictions
for Haputo ERA.
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Figure B1. Map showing location of feedback provided during expert review of habitat predictions and map in Apra Harbor. No comments were made about habitat
predictions or maps in Haputo ERA. The numbers in the map correspond to the numbers in Table B1.

Table B1. Feedback from and responses to expert review of habitat predictions and map in Apra Harbor. No comments were made about habitat predictions or maps
in Haputo ERA.

# Comment Response

1 I'm surprised that this doesn't have a higher probability for Porites rus; as ~ You're correct. The main driver of the Porites rus model (slide 2) is total curvature (slide 3).
| recall, that's what makes up most of this reef. This area shows a high In that location, total curvature is low compared with surrounding reef (slides 4 & 5), which
probability of Live Coral Reef (All Species), but not for Porites rus. This may explain why probabilities are lower than expected. This is a limitation of the bathy data
makes me wonder if there is some factor that reduces the model's ability ~ resolution and, therefore, a limitation of the prediction. We'll plan to discuss/highlight this

to predict this species? area in the report in the use/limitations section.

2 From the areas | am familiar with, the maps look fairly accurate within That's great to hear the maps look reasonably accurate! About branching corals along
the harbor. Outside of the harbor, along Orote point, | am surprised by Orote point, we found multiple locations with low % cover of branching corals (slide 6),
the high probability of occurrence for branching (but not surprised by which is why the model predicts higher probabilities. For this exercise, branching corals

encrusting) corals probability of occurrence. Overall | think the map looks  included Acropora, Pocillopora, and Porites, and were marked present if they had 1%

great, and | look forward to using this map to inform our reef restoration cover. At the end of this project, we plan to make the georeferenced DLSR underwater

activities! photos available publicly so that folks can see for themselves what's on the seafloor at
each location. The goal is to make all the data publicly available by March/April.
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Figure C1. Map showing the location of tiles 1 to 7 for Apra Harbor. AOI = area of interest.
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Figure C2. Tile 1 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest.
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Figure C3. Tile 2 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest.
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Figure C4. Tile 3 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest.
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Figure C5. Tile 4 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest.
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Figure C6. Tile 5 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest.
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Figure C7. Tile 6 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest.
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Figure C8. Tile 7 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest.
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Figure C9. Map showing the location of tiles 1 and 2 for Haputo Ecological Reserve Area. AOI = area of interest.
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Figure C10. Tile 1 showing the satellite image mosaic used to create benthic habitat maps for Haputo Ecological Reserve Area. AOI = area of interest.
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Figure C11. Tile 2 showing the satellite image mosaic used to create benthic habitat maps for Haputo Ecological Reserve Area. AOI = area of interest.
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Figure D1. Map showing the location of tiles 1 to 7 for Apra Harbor. AOI = area of interest.
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Figure D2. Tile 1 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest.
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Figure D3. Tile 2 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest.
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Figure D4. Tile 3 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest.
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Figure D5. Tile 4 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest.
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Figure D6. Tile 5 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest.
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Figure D7. Tile 6 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest.
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Figure D8. Tile 7 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest.
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Figure D9. Map showing the location of tiles 1 to 2 for Haputo Ecological Reserve Area. AOI = area of interest.
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Figure D10. Tile 1 showing the classified benthic habitat map for Haputo Ecological Reserve Area. AOI = area of interest.
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Figure D11. Tile 2 showing the classified benthic habitat map for Haputo Ecological Reserve Area. AOI = area of interest.

Characterizing Submerged Lands Around Naval Base Guam, Mariana Islands 75



U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Oceanic and Atmospheric Administration
Richard Spinrad, Under Secretary for Oceans and Atmosphere

National Ocean Service
Nicole LeBoeuf, Assistant Administrator for National Ocean Service

The mission of the National Centers for Coastal Ocean Science is to provide managers with scientific information and tools needed
to balance society’s environmental, social and economic goals. For more information, visit:



http://www.coastalscience.noaa.gov/

	Table of Contents
	Executive	Summary
	Chapter 1 Introduction
	1.1 Guam (Guåhan)
	1.2 U.S. Military Presence on Guam
	1.3 Characterizing Submerged Lands Around NBG

	Chapter 2 Methods
	2.1 Benthic Habitat Classification Scheme
	2.2 Predictor Data 
	2.2.1 Spectral Predictors
	2.2.2 Topographic Predictors
	2.2.3 Acoustic Predictors
	2.2.4 Geographic Predictors

	2.3 Field Data
	2.3.1 Field Data Acquisition
	2.3.2 Field Data Processing

	2.4 Predicting and Classifying Benthic Habitats
	2.4.1 Step 1 – Prepare Input Data 
	2.4.2 Step 2 – Create and Validate BRT Habitat Predictions
	2.4.3 Step 3 – Create and Validate BCT Classified Habitat Map

	2.5 Measuring Thematic Accuracy

	Chapter 3 Results and Discussion
	3.1 Model Performance
	3.2 Geographic patterns of substrate and cover types
	3.3 Classified Habitat Map
	3.3.1 Map Accuracy

	3.4 Map Applications
	3.4.1 Using the Map Products
	3.4.2 Informing Management Decisions


	References
	Glossary
	Appendices



