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Executive  Summary 

Acropora coral, Guam. Credit: NOAA NCCOS 

Guam (Guåhan) is home to tens of thousands of U.S. military 
personnel stationed at Naval Base Guam (NBG), Andersen Air 
Force Base (AAFB), and other installations. Over the last two 
decades, this military buildup and increased military activities 
have brought economic stimulus to Guam but also directly and 
indirectly displaced and impacted marine ecosystems in the 
area. These cumulative impacts were described in the Navy’s 
environmental impact statement. Their integrated resource plan 
recommends potential ways to mitigate the impact of naval 
activities on Guam’s ecosystems, including its coral reefs. To 
implement these strategies, the Naval Facilities Engineering 
Command Marianas (NAVFAC Marianas) requested new maps 
for submerged lands around NBG. No benthic habitat maps had 
been produced around Guam since 2010. 

To meet this need, NOAA’s National Centers for Coastal Ocean 
Science (NCCOS) collaborated with NAVFAC Marianas to 
develop detailed maps of the distribution of seafloor habitats, 
beginning with Apra Harbor and Haputo Ecological Reserve 
Area (ERA). Two new types of map products were made for 
these locations. The first product type describes the spatial 
distribution of seven substrate (e.g., sand) and 12 biological 
(e.g., seagrass) cover types. These classes were used to 
create 19 map layers, where each 2 × 2 m grid cell denotes the 
probability that a given substrate or cover type is present (0% to 
100%). The second product was a classified map depicting the 
seven most common combinations of substrate and cover types 
in a single layer. 

Both product types were created using machine learning 
models called boosted regression trees (BRTs) and boosted 
classification trees (BCTs). These approaches model complex, 
nonlinear relationships between a response (the presence or 
absence of 19 habitat types in underwater photographs at 236 
sites) and predictors (43 spatial layers describing the marine 
environment). Performance and accuracy of these map products 
were evaluated using an independent set of underwater 
photographs from 241 validation sites. Results indicate that 
substrate and cover models and predictions were robust, since 
they had little bias, had a high probability of correctly predicting 
presences versus absences, and explained almost a quarter of 
the variation in the data. The classified habitat map was also 
high quality with an overall accuracy of 86.6%. 

Over 21 km2 of seafloor was characterized around NBG 
and Haputo ERA from 0- to 50-m depths. In Haputo ERA, 
“Pavement, Mixed Algae” was the most abundant habitat 
type, comprising 54.5% (1.1 km2) of the area. The largest 
continuous patches were located on the fore reef along the 
coastline. Live coral was distributed throughout the ERA, 
with encrusting corals being most prevalent. As expected, no 
mangroves or seagrasses were present. Around NBG, “Sand, 
Bare” was the most abundant habitat type, comprising 42.3% 
(8.2 km2) of the area. The largest continuous patches were in 
the eastern portion of Outer Apra Harbor, including Sasa Bay 
and south of Cabras Island. Live coral was common and most 
prevalent from San Luis Point around Point Udall to Acapa 
Point. Halodule uninervis seagrass was only documented 
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Executive Summary 
outside Apra Harbor at two sites approximately 500 m north of 
Acapa Point. Mangroves were found only in nearshore areas in 
Sasa Bay and Inner Apra Harbor. No Endangered Species Act 
(ESA)–protected corals or nuisance algae (angel hair algae, 
Chaetomorpha vieillardii) were photographed in either project 
areas. One crown-of-thorns sea star (Acanthaster planci) 
was photographed in Haputo ERA. The prevalence of coral 
bleaching, coral paling, crown-of-thorns scarring, and marine 
debris was also very low (<1%, 0%, and <4%, respectively). 

There are a wide range of applications for these new habitat 
predictions and maps, source imagery, and underwater 
photographs. In particular, these map products will be used by 
NAVFAC Marianas to inform their monitoring and management 
decisions and guide how best to minimize impacts to important 
habitats around NBG and Haputo ERA. In addition to supporting 
NAVFAC Marianas, these products may inform other local 
spatial-management decisions, such as identifying and 
quantifying essential fish habitat, planning development to 

minimize habitats damage, monitoring habitat and shoreline 
changes, calculating damage and costs following ship 
grounding or other impacts, sample design for monitoring or 
scientific studies, and planning for marine managed areas. 

An atlas showing the satellite imagery and classified habitat 
maps are provided at the end of this report. However, the best 
way to view and interact with these map products is by using 
geographic information system (GIS) software (e.g., ESRI 
ArcPro). These GIS products are archived at NOAA’s National 
Centers for Environmental Information and are available through 
NCCOS’s website at: https://coastalscience.noaa.gov/project/ 
characterizing-submerged-lands-around-navy-base-guam-cnmi/ 
and https://coastalscience.noaa.gov/project/characterizing-
benthic-habitats-in-haputo-ecological-reserve-area-guam/. For 
users without GIS software, an online map is also available on 
NOAA’s GeoPlatform to view and interact with the habitat maps, 
source imagery, and field data: https://experience.arcgis.com/ 
experience/7b6c0e7164234182985a89d5b5703475. 

Live coral in project area, including Porites rus. Credit: NOAA NCCOS 
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Chapter 1  Introduction 

Spanish Steps, Guam. Credit: NOAA NCCOS 

1.1 Guam (Guåhan) 
Guam is a U.S. island territory located approximately 1,700 
miles south of Japan, and 3,500 miles west of Hawaii in the 
Mariana Archipelago. Given its proximity to the Coral Triangle, 
Guam has one of the most species-rich marine ecosystems 
among U.S. jurisdictions (Veron, 2000) with over 5,100 marine 
species, including 300 species of hard coral (Paulay, 2003; 
Burdick et al., 2008). This diverse coral reef ecosystem is vitally 
important to the fisheries (Allen and Bartram, 2008) and tourism 
economy of Guam, estimated at approximately $127 million 
per year (van Beukering et al., 2007). These ecosystems are 
also important to the history and culture of the Chamorro and 
Carolinian people and provide numerous non-economic goods 
and services to the residents of Guam (Allen and Bartram, 
2008). Like many other populated islands in the Pacific, Guam’s 
coral reef ecosystems are stressed by several threats, including 
land-based sources of pollution, overfishing, invasive species, 
marine heatwaves, ocean acidification (Burdick et al., 2008), 
and military activities on the island (U.S. Navy, 2022). 

To mitigate these stresses, multiple marine reserves have been 
established to protect these resources. Three of these reserves 
are located within the project areas described here (Figure 1.1), 
including Sasa Bay Ecological Reserve Area (ERA), Orote Point 
ERA, and Haputo ERA. Haputo ERA is a 2-km2 area on the 
west or leeward side of the island, west of Marine Corps Base 
Camp Blaz and Andersen Air Force Base (AAFB). This reserve 
is about 8 mi north of the capital city of Hagåtña, and hosts a 
patchwork of coral reefs and sandy beaches adjacent to karstic 

cliffs. Previous research has documented 944 species of marine 
animals in Haputo ERA, including 154 species of corals and 
207 species of fishes (Amesbury et al., 2001; Donaldson et al., 
2008; Burdick et al., 2008). 

South of Haputo ERA is Orote Point ERA. This 0.5-km2 ERA 
is located outside Apra Harbor along the southern shoreline 
of Orote Peninsula and was established to mitigate the 
construction of a naval wharf in Apra Harbor (Donaldson et al., 
2008; U.S. Navy, 2012). The submerged lands in the Orote 
Point ERA are primarily carbonate pavement colonized by 
crustose coralline and turf algae. Approximately 1,252 species 
of marine animals have been recorded within the ERA, including 
156 coral species (Paulay et al., 2001; Donaldson et al., 2008). 

East of the Orote Peninsula is Sasa Bay ERA, which is located 
inside Outer Apra Harbor. Apra Harbor generally and the 
Sasa Bay reserve in particular are well protected from ocean 
swells because of the Orote Peninsula to the south and Glass 
Breakwater to the north. The only opening to the ocean is a 
1-km) wide channel to the west, providing unique conditions for
coral, sponge (Ianthella basta), and mangrove habitats, which
are found nowhere else on the island. This protection is also
the reason Apra Harbor is a major port, with multiple marinas,
industries, and U.S. military wharfs lining its shore. The Navy
operates three wharfs in Outer Apra Harbor, and several other
wharfs in Inner Apra Harbor. The largest of these installations is
U.S. Naval Base Guam (NBG), located in Inner Apra Harbor.
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Figure 1.1. Key geographic features and place names around Apra Harbor (top) and Haputo Ecological Reserve Area (ERA) 
(bottom). AFB = air force base; AOI = area of interest. 
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1.2 U.S. Military Presence on Guam 
Guam is home to tens of thousands of U.S. military personnel 
stationed at NBG, AAFB, and other installations on the island 
(Figure 1.2). The majority of these personnel arrived after 2008, 
although Apra Harbor has been a strategic location for the U.S. 
military since before World War II (U.S. Navy, 2012, 2022). Over 
the last two decades, population growth and the associated 
dredging and construction of new facilities has brought 
economic stimulus to Guam but also directly and indirectly 
displaced and impacted marine species and coral reefs in the 
area (Marler and Moore, 2011). These cumulative impacts were 
described in the Navy’s environmental impact statement in 
2010 (U.S. Navy, 2010). This environmental impact statement 
also outlined proposed mitigation strategies and preferred 
alternatives for the region. 

Since 2008, Apra Harbor has and is being used by the Navy 
for a variety of training exercises and activities (U.S. Navy, 
2012, 2022), which have the potential 
to impact nearby marine organisms and 
ecosystems. Like other federal agencies, 
the Navy is responsible for compliance with 
all territorial and federal environmental and 
natural resource laws and regulations that 
apply to the marine environment. This list 
includes (but is not limited to) the National 
Environmental Policy Act, the Marine 
Mammal Protection Act, the Endangered 
Species Act (ESA), the Magnuson-Stevens 
Fishery Conservation and Management Act/ 
Sustainable Fisheries Act, the Sikes Act (10 
U.S.C. 670), and Executive Order 13089 
on Coral Reef Protection. Naval Facilities 
Engineering Command Marianas (NAVFAC 
Marianas) ensures compliance and manages 
the natural resources for Marine Corps Base 
Camp Blaz, AAFB, NBG, and all submerged 
lands adjacent to its holdings from the 
shoreline out 3 nautical miles (U.S. Navy, 
2022). In total, NAVFAC Marianas manages 
approximately 345 km2 of submerged lands 
around the island of Guam, which encompass 
Haputo, Orote, and Sasa Bay ERAs (U.S. 
Navy, 2022). 

To guide compliance, the Navy developed 
a resource management plan—called an 
integrated natural resources management 
plan (INRMP)—for the Marianas Region 
in collaboration with various federal and 
territorial agencies, including National 

Oceanic and Atmospheric Administration (NOAA) (U.S. Navy, 
2012, 2022). This plan is updated no less than every five years, 
and its goal is “to provide for the restoration and enhancement 
of habitats for native species including listed species over 
the long-term in a manner that is consistent with the military 
mission” (U.S. Navy, 2012, 2022). To meet this goal, the 
INRMP recommends potential ways for the Navy and NAVFAC 
Marianas to mitigate the impact of naval activities on Guam’s 
ecosystems, including coral reefs. Mitigation strategies include: 
(1) establishing long-term ecosystem-based management plans
to maintain submerged lands and ERAs, (2) implementing
strategies to monitor health, reduce threats, and enhance
coral reefs, (3) implementing management actions to protect
and improve the status of marine species of the greatest
concern, and (4) enhancing management through the use of
geographic information system (GIS) information, development
of cooperative partnerships, and education programs.

Figure 1.2. Location of Joint Region Marianas (JRM) sites on Guam. Figure adapted from U.S. Navy 
(2022). AFB = Air Force Base; NBG = Naval Base Guam; NMS = Naval Munitions Site; NCTS = Naval 
Computer and Telecommunications Station; NWF = Northwest Field; MSA = Munitions Storage Area. 
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Introduction 

1.3 Characterizing Submerged Lands Around NBG 
To implement mitigation strategies in INRMP, NAVFAC Marianas 
requested new benthic habitat maps for submerged lands 
around Naval Base Guam, beginning with Apra Harbor (including 
Sasa Bay and Orote ERAs) and Haputo ERA. These maps 
will help NAVFAC Marianas evaluate different management 
scenarios, monitor changes, and validate the efficacy of 
mitigation strategies over time. A few benthic habitat maps have 
been produced around Guam since 2001. Habitats and biota 
were first mapped and characterized in 2001 (Amesbury et 
al., 2001; Paulay et al., 2001) as part of a baseline survey for 
Haputo and Orote ERAs. These surveys resulted in a coarse 
depiction of macrohabitats. In 2005, NOAA National Centers 
for Coastal Ocean Science (NCCOS) mapped all shallow-water 
(<30 m) habitats around Guam (NOAA NCCOS, 2005) as part 
of its comprehensive initiative to characterize U.S. coral reef 
ecosystems (NOAA, 2002). This habitat map used a standard 
minimum mapping unit of 4,047 m2 (i.e., habitat features smaller 
than 4,047 m2 were not digitized and classified). It also used a 
hierarchical classification scheme that included attributes for reef 
zone, geomorphological structure, and density of 
biological cover (Figure 1.3; NOAA NCCOS, 2005). 
Habitats were also digitized using the same imagery 
at a finer spatial scale by Burdick (2005). In 2010, 
the Pacific Islands Benthic Habitat Mapping Center 
developed a hard and soft seafloor substrate map 
classified for Apra Harbor (PIBHMC, 2010). 

Since these last mapping products were completed, 
several natural disasters have potentially altered 
benthic habitats around the island. Perhaps most 
notable, four near-consecutive coral bleaching 
events (2013, 2014, 2016, and 2017) occurred 
around Guam, with up to 80% of corals bleaching at 
some locations (NOAA CRCP, 2018). These events 
led to live coral cover declining by 37% at sites along 
the leeward coast and by 34% at shallow seaward 
slope sites around the island (Raymundo et al., 
2019). These events severely impacted the condition 
of Guam’s leeward reefs, including in Apra Harbor 
and Haputo ERA, causing their substantial decline 
(NOAA CRCP, 2018). These coral bleaching events, 
coupled with the ongoing impacts from the military 
buildup on Guam, have increased the need for an 
updated map of benthic habitats around Guam. 

Here, the goal was to produce new, highly detailed 
maps of benthic habitats around NBG and Haputo 
ERA for NAVFAC Marianas in 0- to 50-m depths 
(Figure 1.1). Recent advancements in remote 
sensing, machine learning models, and cloud-

based computational power has enabled a new generation 
of habitat map products. The result is a dramatic increase in 
map detail, from approximately 4,047-m2 polygons that were 
hand digitized to a 4-m2 grid that was attributed using machine 
learning models. Here, machine learning models called boosted 
regression trees (BRTs) and boosted classification trees (BCTs) 
were applied to model complex, nonlinear relationships between 
a response (the presence or absence of 19 habitat types 
and seven habitat classes in underwater photographs) and 
predictors (43 spatial layers describing the marine environment). 
The resulting products included 19 individual substrate and 
biological cover spatial predictions and a single classified 
benthic habitat map for the project area. The thematic and 
spatial accuracy of these products was qualitatively evaluated 
by local experts and quantitatively measured using independent 
field data. This report describes the methods used and accuracy 
of these products, the broad spatial distribution of habitats in the 
project area, and the potential applications of these maps for 
marine science and management decisions in Guam. 

Figure 1.3. Benthic features mapped by NOAA NCCOS (2005) around Guam. 
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Chapter 2  Methods 

Live coral in Apra Harbor, including Porites rus. Credit: NOAA NCCOS 

Several steps were needed to map and characterize habitats 
inside Haputo ERA, Apra Harbor, and along the coast between 
the Apra Harbor mouth and Dadi Beach (Figure 1.1). This 
section describes the steps used during map development, 
including: (1) customizing a habitat classification scheme; 
(2) processing environmental variables including satellite,
topographic, acoustic, and geographic predictors; (3) collecting
and annotating underwater photographs; (4) creating habitat
predictions and a classified map using two spatial predictive
modeling techniques—BRTs and BCTs, and (5) assessing the
performance and accuracy of the habitat predictions and the
classified map.

2.1 Benthic Habitat Classification Scheme
A habitat classification scheme allows scientists to 
systematically group benthic features based on their ecological 
characteristics. The classification scheme used here was 
developed by reviewing the previous habitat classifications 
applied in Guam and in the Northern Mariana Islands (Cloud, 
1959; NOAA NCCOS, 2005; Houk and van Woesik, 2008; 
Kendall et al., 2017) and consulting with local scientists and 
managers about their informational needs. The scheme is 
based on 19 benthic habitats including seven substrate (e.g., 
sand) and 12 biological (e.g., turf algae) cover types found 
around Guam (Table 2.1). These 19 habitats guided collection 
of field data and development of two types of map products. 
The first products were spatial predictions for 19 substrate and 
biological cover types inside the project area. This modeling 

resulted in 19 individual map layers with each 2 × 2 m grid cell 
denoting the mean probability (from 0% to 100%; averaged from 
100 bootstrapped model iterations) that a given habitat type is 
present. 

The second product was a classified habitat map depicting 
commonly occurring combinations of substrates and cover 
types. It was developed using the 19 probability of occurrence 
predictions described above. Habitats in the classified map 
were defined based on cluster analysis of the field data (R Core 
Team, 2022; Maechler, 2023; performed in R using the agnes, 
diana, and hclust functions in the cluster package). Clustering is 
a statistical technique used to identify groups of similar objects 
based on multiple attributes. Six clustering techniques were 
tested (average, single, complete, Ward, divisive, and McQuitty) 
using percent cover for each substrate and cover type as the 
input. Percent cover was grouped into five, six, seven, and eight 
clusters at all training and validation sites. The technique and 
number of clusters with the highest agglomerative coefficient 
was selected (i.e., Ward, seven clusters, agglomerative 
coefficient = 0.99). The resulting seven habitat classes (Table 
2.2) were the basis of the new benthic habitat map. These 
classes were also translated into the Coastal and Marine 
Ecological Classification Standard (CMECS) (Tables 2.1 and 
2.2; CMECS, 2023). NOAA is required to use CMECS by the 
Federal Geographic Data Committee. 
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Methods 
Table 2.1. Substrate and cover types used to develop individual benthic habitat predictions. Equivalent Coastal and Marine Ecological Classification Standard 
(CMECS) classifications are suggested. 

Habitats Definition CMECS IDs CMECS Class 

Bi
ol

og
ica

l C
ov

er
 

Su
bs

tra
te

 

1 

2 

Live Coral Reef (All Species) 

Upright Dead Coral Reef 

Presence of live coral reef. Comprising live, upright hermatypic (reef-
building) hard corals, including all hard coral species 

Presence of dead hard coral reef that is still upright 

g2.5, 2.2.1, 
2.1.2 

g2.5, 2.2.1 

Geoform – Shallow/Mesophotic Coral Reef, 
Substrate – Coral Reef Substrate, 
Biotic – Shallow/Mesophotic Coral Reef Biota 
Geoform – Shallow/Mesophotic Coral Reef, 
Substrate – Coral Reef Substrate 

3 Rock Presence of non-biogenic rock 1.1 Substrate – Rock Substrate 

4 

5 

6 

7 

Pavement 

Rubble 

Sand 

Mud 

Presence of flat, low-relief or sloping solid carbonate rock with little 
or no fine-scale rugosity that is covered with algae, coral, zoanthids 
or other sessile vertebrates that are dense enough to partially 
obscure the underlying surface. 
Presence of dead, unstable coral rubble often colonized with 
filamentous or other macroalgae. This habitat often occurs landward 
of well-developed reef formations. 
Presence of coarser sediment (with grain sizes between 0.0625 and 
2 mm) typically found in areas exposed to currents or wave energy. 
Presence of fine sediment (with grain sizes less than 0.0625 mm) 
typically found in areas with little wave energy. 

g1.44, 2.2.1 

2.2.2 

1.2.2.2 

1.2.2.5 

Geoform – Pavement Area, 
Substrate – Coral Reef Substrate 

Substrate – Coral Rubble 

Substrate – Sand 

Substrate – Mud 

1 Mangrove Presence of various species of mangrove 2.8.1.4 Biotic – Tidal Mangrove Forest 

2 Live Coral (Branching) Presence of live branching coral 2.1.2.1 Biotic – Branching Coral Reef 

3 Live Coral (Encrusting) Presence of live encrusting coral 2.1.2.3 Biotic – Encrusting Coral Reef 

4 Live Coral (Foliose) Presence of live foliose coral 2.1.2.4 Biotic – Foliose Coral Reef 

5 Live Coral (Porites rus) Presence of Porites rus coral 2.1.2.1.4 Biotic – Branching Porites Reef 

6 Seagrass (Halodule uninervis) Presence of Halodule uninervis seagrass 2.5.2.1 Biotic – Seagrass Bed 

7 Algae (Crustose Coralline) Presence of crustose coralline algae (CCA) 2.5.1.3 Biotic – Coralline/Crustose Algal Bed 

8 Algae (Halimeda spp.) Presence of Halimeda algae 2.5.1.1.2 Biotic – Halimeda Communities 

9 Algae (Turf) Presence of turf algae 2.5.1.8 Biotic – Turf Algal Bed 

10 Algae (Other) Presence of mixed macroalgae not already identified 2.5.1 Biotic – Benthic Macroalgae 

11 Sponges Presence of sponges, primarily Ianthella basta 2.2.1.21 Biotic – Attached Sponges 

14 Bare No biological cover No Equivalent NULL 

Mangroves in Sasa Bay, Guam. Credit: David Burdick (NOAA) 
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Table 2.2. Commonly co-occurring substrate and cover types used to create the classified benthic habitat map. Equivalent Coastal and Marine Ecological 
Classification Standard (CMECS) classifications are suggested. 

CMECS ID 
(Geoform or  
Substrate) 

CMECS Class (Geoform or  
Substrate) 

CMECS ID 
(Biotic) CMECS Class (Biotic) Code Habitat Definition 

1 Live Coral Reef, 
Live Coral 

Majority live coral reef with live hard coral. The remaining 
percent is primarily dead reef with macroalgae. g2.5, 2.2.1 

Geoform - Shallow/Mesophotic 
Coral Reef, Substrate - Coral 
Reef Substrate 

2.1.2 Shallow/Mesophotic 
Coral Reef Biota 

2 Pavement, Mixed 
Algae 

Majority pavement primarily covered with turf algae. The 
remaining percent is mixed proportions of hard and soft 
substrates with macroalgae. 

g1.44, 2.2.1 Geoform - Pavement Area, 
Substrate - Coral Reef Substrate  2.5.1 Benthic Macroalgae 

3 Sand, Mixed Algae 
Majority sand that is bare or covered with macroalgae. 
The remaining percent is mixed proportions of hard 
substrates with macroalgae. 

1.2.2.2 Substrate - Sand NULL, 
2.5.1 

No equivalent, Benthic 
Macroalgae 

4 Upright Dead Coral 
Reef, Mixed Algae 

Majority upright dead coral reef covered with primarily 
turf algae. The remaining percent is mixed proportions 
of hard and soft substrates with some live coral and 
macroalgae. 

g2.5, 2.2.1 
Geoform - Shallow/Mesophotic 
Coral Reef, Substrate - Coral 
Reef Substrate

 2.5.1 Benthic Macroalgae 

5 Sand, Bare >90% Sand that is >90% bare 1.2.2.2 Substrate - Sand NULL No Equivalent 

6 Mud, Bare >90% Mud that is >90% bare 1.2.2.5 Substrate - Mud NULL No Equivalent 

7 Mud, Mangrove >90% Mud that is >90% mangroves 1.2.2.5 Substrate - Mud 2.8.1.4 Tidal Mangrove Forest 

In addition to the habitats above, other biological organisms 
were identified and observations made from the underwater 
photographs at the request of local managers. These 
organisms and observations were not modeled because 
either: (1) their prevalence was too low (<3%) to develop 
model predictions or (2) their model predictions did not meet 
the minimum performance thresholds (i.e., receiver operating 
characteristic [ROC] area under the curve [AUC] ≥0.7 and 
percent deviance explained [PDE] >0). Organisms that were 
not modeled specifically included: cyanobacteria, angel hair 
algae (Chaetomorpha vieillardii), mushroom corals, soft 
corals, fire corals, crown-of-thorns sea stars (Acanthaster 
planci), and species listed under the ESA (Acropora globiceps, 
Isopora palifera, Acropora retusa, and Seriatopora aculeata). 
The presence of coral bleaching, coral paling, crown-of-
thorns scarring, and marine debris were also observed and 
documented. The spatial distributions of these organisms and 
observations are reported in the results. 

2.2 Predictor Data 
Forty-three environmental variables were used to create the 
model predictions for individual substrate and cover types. 
These predictors were divided into four broad categories: 
23 spectral variables derived from satellite imagery, three 
geographic variables based on relative location, two predictors 
from acoustic backscatter, and 15 topographic surfaces derived 
from the depth and elevation surface. 

Benthic habitats in Haputo ERA. Credit: NOAA NCCOS 
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Methods 

2.2.1 Spectral Predictors 
Twenty-three of the 43 environmental predictors were derived 
from WorldView-2 (WV2) and WorldView-3 (WV3) satellite 
images. The WV2 sensor collects eight multispectral bands in 
the visible near infrared at 2 × 2 m spatial resolutions, and the 
WV3 sensor collects eight multispectral bands in the visible near 
infrared at 1.4 × 1.4 m spatial resolutions (upsampled to 2 × 2 
m). These images were acquired on 11 January 2016, 12 March 
2017, and 30 January 2018 in Apra Harbor; and 18 February 
2020 in Haputo ERA. The satellite scenes were very high quality 
but contained some artifacts due to the presence of ships, 
clouds, ship wakes, and turbidity. Additionally, no one scene 
covered the entire project area. Consequently, these scenes 
were mosaicked to remove artifacts and create a single satellite 
image for the project area (Figure 2.1). 

To correct geometric distortions, spectral bands were 
orthorectified using 40 ground control points (GCPs) and a digital 
elevation model (USGS, 2010; performed in PCI OrthoEngine). 
The final orthorectified image (orthoimage) was georeferenced 
to the World Geodetic System 1984, Universal Transverse 
Mercator, Zone 55 North horizontal coordinate system (WGS84 
UTM 55N). Positional accuracy was evaluated using an 
independent set of 16 GCPs collected using a Trimble GeoXH 
6000 global positioning system (GPS) receiver from 8 May to 
13 May 2022. GCPs were evenly distributed in the project areas 
and positioned on features that were clearly identifiable in the 
imagery, such as street intersections, parking lots, crosswalks, 
and other low-profile objects with distinct edges. Raw GPS data 
were post-processed and differentially corrected with Trimble 
Pathfinder Office software and data from the Mariana Island 
Continuously Operating Reference System station. 

The combined root mean square error (RMSE) is 6.1 m for the 
Apra Harbor and Haputo satellite mosaic. This indicates that 
pixels in the mosaic were on average ± 6.1 m (three pixels) 
from their true location. This positional uncertainty was taken 
into account when evaluating the accuracy of the classified 
benthic habitat map. The orthoimages and mosaic were 
also corrected for changing atmospheric and water column 
conditions (Lyzenga, 1978; Mumby and Edwards, 2000; 
performed using ENVI 5.7: THOR atmospheric correction tool 
and R code). These processes resulted in 15 atmospheric- and 
water column–corrected band pairs (Figure A1). 

2.2.2 Topographic Predictors 
Seafloor depth and topography are known to be useful 
predictors for marine habitats, such as sand, pavement, 
and coral reefs. Elevation and topography are similarly 
useful predictors for estuarine habitats, such as mangroves. 

Figure 2.1. Maps depicting the WorldView-2 (WV2) and WorldView-3 (WV3) 
images acquired for Apra Harbor (top) and Haputo Ecological Reserve Area 
(ERA) (bottom) used to create the habitat predictions. AOI = area of interest. 
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Methods 
Consequently, a single elevation and depth surface was created 
by merging data from a 2017 R2 Sonic multibeam echosounder 
survey (HDR and CSA Ocean Sciences, 2017) with a 2020 
Leica Chioptera-4 lidar survey (NOAA NGS, 2020). Satellite-
derived bathymetry was also developed from the above satellite 
mosaic (Kuhn et al., 2023; performed in R caret package) to fill 
in remaining data gaps as needed. The resulting elevation and 
bathymetry surface had a 2 × 2 m spatial resolution and was 
referenced to mean lower low water tidal datum. 

From this single elevation and bathymetry surface, 14 
topographic predictors were derived: (1) Elevation and Depth 
(Standard Deviation), (2) Aspect, (3) Aspect Northness 
(Cosine), (4) Aspect Eastness (Sine), (5) General Curvature, 
(6) Longitudinal Curvature, (7) Planform Curvature, (8) Profile
Curvature (Evans), (9) Profile Curvature (Zevenbergen and
Thorne), (10) Total Curvature, (11) Rugosity, (12) Slope, (13)
Slope Rate of Change, and (14) Surface Area (Figure A2). Each
topographic surface was calculated using the default 3 × 3 pixel
neighborhood (Hijmans, 2023a; performed using R code, raster
package). Multiple topographic metrics (e.g., curvature) were
derived to explore which surfaces most uniquely described
the complexity of the seafloor. Highly correlated surfaces
(Spearman rank ρ ≥ 0.9 or ρ ≤ −0.9) were removed later in the
modeling process.

2.2.3 Acoustic Predictors 
While bathymetry is important for identifying benthic habitats, 
depth and topography alone do not capture the complexity, 
texture, and composition of seafloor substrates and habitats. 
Acoustic backscatter can help fill this data gap and provide 
additional critical information about the hardness and roughness 
of the seafloor. Given the utility of backscatter, two acoustic 
backscatter surfaces were also included in the modeling 
process as environmental predictors. These surfaces were 
developed from the 2017 multibeam echosounder data in 
Outer Apra Harbor (HDR and CSA Ocean Sciences, 2017) 
and from a 2001 sidescan survey in Inner Apra Harbor (NOAA, 
2001; Figure A3). They only included areas deeper than 5 m in 
Outer and Inner Apra Harbor. The effect of this data gap on the 
modeling process is discussed in the results section. 

2.2.4 Geographic Predictors 
Three geographic predictors were used to account for spatial 
variation in benthic habitats that was not explained by the 
spectral, topographic, or acoustic predictors. These included 
latitude (y), longitude (x), and distance to shore (Figure A4; 
performed using the ArcGIS Pro 2.8 Euclidean Distance tool). 
The shoreline was extracted from NOAA’s previous benthic 
habitat map (NOAA NCCOS, 2005). 

2.3 Field Data 
2.3.1 Field Data Acquisition 
NOAA NCCOS collected underwater photographs at 477 sites 
(Figure 2.2) between 2 May and 12 May 2022 throughout the 
project areas. One portion of this dataset (n = 236 sites) was 
used to train and tune the habitat models by correlating the 
response (observed substrate and cover types) with the values 
of the predictors (environmental layers). Locations of these 
training sites were selected visually beforehand (using the 
predictors) and spread out across the project areas to include 
the full range of habitats, depths, and environmental conditions 
found in Apra Harbor and Haputo ERA. The rest of the dataset (n 
= 241 sites) was used to validate the performance of the habitat 
models and evaluate the accuracy of the classified habitat map. 
Locations of these validation sites were randomly stratified 
based on an existing map of geomorphological structure types 
around Guam (NOAA NCCOS, 2005). The total number of sites 
was determined by the amount of allocated funding and the 
availability of NCCOS staff to conduct the field work. 

When in the field, the process for collecting overlapping, 
underwater photographs was identical at each site. A handheld 
Garmin 76 GPS unit was used to navigate to each site via a 
small boat or paddle board. At sites accessed by small boat, 
a drop camera system (Figure 2.3) was lowered to within 1.5 
to 2 m of the seafloor. This drop camera system was designed 
by NCCOS, and it included: (1) a downward-looking Sony α7 
IV mirrorless 24 MP full-frame digital single-lens reflex (DSLR) 
camera, (2) an oblique-looking GoPro HERO10 Black in a Spot 
X Squid housing, (3) two green lasers spaced 10 cm apart, and 
(4) a Blueprint Subsea SeaTrac ultra-short baseline (USBL)
transponder.

The downward-looking Sony camera collected still photographs 
of the seafloor every 0.5 s. The camera settings included: focal 
lengths = 18 mm, white balance = auto, and shutter speed 
= 1/200 s. Both jpeg and .RAW files were recorded. Each 
photograph covered an estimated 4 m2 of the seafloor (at 1.6 
m altitudes) and overlapped other photographs by 60%–80%. 
The lasers provided a measurement scale (10 cm) and were 
visible in some but not all of the photographs. The Trimble 
GeoXH GPS provided the location of the vessel every 1 s, 
and the USBL transponder provided the location and depth 
(XYZ) of the drop camera every 5 s. The Trimble GPS antenna 
was positioned directly over the USBL transponder pole to 
minimize lever arm offsets. For sites shallower than 2 m, the 
Sony camera was attached to a paddle board with the Trimble 
GPS directly over the camera. Photographs and GPS data 
were acquired while moving the paddle board around the site, 
imaging a minimum of a 4-m2 area on the seafloor. 
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Figure 2.2. Locations where georeferenced underwater photographs were collected for model training and validation in Apra Harbor (top) and Haputo ERA (bottom). 

a b 
Figure 2.3. (a) Equipment used to collect training and validation data in the field. (b) The drop camera was designed and 3D printed by NOAA NCCOS and included 
a Sony camera (for high-resolution photographs), GoPro video camera (for real-time feed), ultra-short baseline (USBL; for underwater positioning), GPS (for above 
water positioning), and lasers (spaced at 10 cm for scaling). DSLR = digital single-lens reflex 
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2.3.2 Field Data Processing 
The field data were processed to identify and annotate habitats 
in the photographs, and to create georeferenced photomosaics 
for each site. This process included four, main steps: 

Underwater photographs were visually reviewed for quality, and 
color corrected (performed using Adobe lightroom software). 
The GPS data were differentially corrected using a Continuously 
Operating Reference Station on Guam, and reprojected to 
the WGS 1984 UTM 55 North coordinate system (performed 
using GPS Pathfinder Office software). The USBL data were 
exported from SeaTrac Pinpoint software, and matched with the 
corrected GPS locations using synchronized timestamps. 
Underwater photographs were georeferenced using these 
combined GPS-USBL locations (ESRI 2023; performed 
using ArcGIS Pro, Geotagged Photos To Points function). 
Not all images were georeferenced because sampling 
frequencies differed among the USBL (approximately 5 s), 
GPS (approximately 1 s), and cameras (approximately 0.5 s). 
To georeference the remaining photographs, a custom Python 
script was created to interpolate positions between the GPS-
USBL locations. This script also mosaicked and developed 3D 
models from the resulting georeferenced photographs (Pierce 
and Winians, 2023; performed using Agisoft Metashape’s 
application programming interface). 

Seven substrate and 12 biological cover types (Table 2.1) were 
identified visually in the above georeferenced photographs (n 
= 674 annotations; training = 346; validation = 328). Multiple 
substrate and cover types were often present at each site. The 
amount of area annotated (4 m2) was standardized in each 
photograph so that it matched the spatial resolution (i.e., 2 × 2 
m pixels) of the environmental predictors. Percent cover was 
estimated to the nearest 1% for each habitat type. Percent 
coverages were also converted to presences (1) and absences 
(0) and used to train or validate the habitat predictions.

Live Acropora coral in Apra Harbor. Credit: NOAA NCCOS 

2.4 Predicting and Classifying Benthic Habitats 
BRTs and BCTs are machine learning techniques that combine 
regression or classification trees with boosting to model the 
complex, nonlinear relationships between habitat types and 
environmental variables. BRTs and BCTs model these complex 
relationships by developing many (hundreds to thousands) 
simple classification or regression (tree) models. Classification 
and regression trees (Breiman et al., 1984) relate a response to 
predictors by iteratively splitting the data into two homogenous 
groups. 

These models are built in a stage-wise fashion, where existing 
trees are left unchanged and the variance remaining from the 
last tree is used to fit the next one. This stage-wise process 
is called boosting. A random subset of data is used to fit a 
model at each stage. This randomization helps improve model 
performance (Friedman, 2002; Elith et al., 2008). These 
simple models are then combined linearly to produce one final 
combined model (Elith et al., 2008). The fitted values in this 
combined model are more stable than values from an individual 
model, improving its overall predictive performance (Friedman, 
2002; Elith et al., 2006; Elith et al., 2008). 

BRTs and BCTs were used for this project because they can 
deal with data that are not normally distributed (Elith et al., 
2008) and are robust to missing data values (Breiman et al., 
1984; Elith et al., 2008). They can also handle many types of 
response variables (presence, absence, count, diversity, and 
abundance), environmental predictors (numeric, binary, or 
categorical) and interactions among predictors (De’ath, 2007; 
Elith et al., 2008). These techniques also compare favorably to 
other modeling techniques both in predictive performance and 
accuracy (De’ath and Fabricuis, 2000; Elith et al., 2006; Elith et 
al., 2008). Please see the References and Glossary for more 
information. 

Here, BRTs were used to develop 19 habitat predictions 
depicting the mean probability of occurrence for seven 
substrate and 12 biological cover types. Mean probabilities were 
calculated by creating and averaging 100 bootstrapped model 
iterations for each substrate and cover type (n = 1,900). BCTs 
were then used to create a single classified benthic habitat map 
using these 19 mean habitat predictions. Three main steps were 
used to create these map products: (1) preparing the data, (2) 
creating and evaluating habitat predictions, and (3) creating 
and evaluating a classified habitat map (Figure 2.4). This work 
was conducted primarily in Microsoft Azure environment using 
ArcGIS Pro (ESRI, 2023) and R software (R Core Team, 2022) 
using the dismo (Hijmans et al., 2023b), caret (Kuhn et al., 
2023), and raster (Hijmans, 2023a) packages. 
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Step 1. Prepare Input Data

Step 2. Create & Validate BRT Habitat Predictions

Test BRT model parameters (listed above) 
& choose model that explains the most 
variation (highest PDE)

Create BRT predictions 
for 7 substrate & 12 
cover types using 
bootstrapping (n=100)

Assess performance of 
BRT predictions (n=19) 
using kCV & validation 
sites (n=241)

Step 3. Create & Validate BCT Classified Habitat Map 

Use cluster 
analysis to 
group % cover 
at training & 
validation sites 
into 7 habitat 
classes (Table 
2.2) 

Assess 
accuracy of 
classified 
habitat map 
(n=1) using 
validation sites 
(n=241)

Record response (presence, 
absence, % cover) of 7 substrate & 
12 cover types (Table 2.1) at training 
(n=236) & validation (n=241) sites

Extract values from 
environmental 
variables (n=43) at 
each training site

BRT Predictors

+

Input Table with BRT 
Response & Predictors

kCV
PDE
37%

RMSE
0.65

Test
PDE
35%

AUC
0.9

Validate Performance of 
BRT Predictions

Remove Correlated 
BRT Predictors

Test BRT 
Parameters

Extract values 
from 7 substrate 
& 12 cover 
predictions 
(from step 2) at 
training sites 
(n=236)

Create 1 
classified 
habitat map 
depicting 7 
habitat classes    
(Table 2.2)

+ =
Test BCT model 
parameters (listed 
above) & choose 
model that 
explains the most 
variation (highest 
PDE)

+

Create BCT 
Classified Map

Test BCT 
Parameters(Substrate & Cover Predictions)

Validate Accuracy 
of BCT Classified 

Map
(Habitat Classes)

_

=+

Remove correlated 
environmental 
variables (n=6) 

Create BRT Predictions                      
(Mean & Precision)

Input Table with BRT 
Response & Predictors

=

Regularization
Parameters

Values Tested

Learning Rate (lr) 0.01, 0.001, 
Tree Complexity (tc) 2, 5, 10
Number of Trees 
(n.trees)

500, 750, 1000, 
2000, 3000

Minimum Terminal 
Node Size
(n.minobsinnode)

3, 5, 10

BRT Response

BCT Response BCT Predictors

Topographic (n=15)

Geographic (n=3)
Acoustic (n=2)

Spectral (n=23)

(Environmental Variables)

Validation SitesTraining Sites

(Presence & Absence)

BRT Model 
Parameters

Values             
Tested

Learning Rate (lr) 0.01, 0.001, 0.005
Tree Complexity (tc) 2, 3, 4, 5, 10, 20
Bag Fraction (bf) 0.5, 0.75

Figure 2.4. Diagram depicting steps in modeling process to predict substrate and cover distributions and develop a classified benthic habitat map. BRT 
= boosted regression tree; BCT = boosted classification tree; PDE = percent deviance explained; kCV = k-fold cross validation; RMSE = root mean 
square error; AUC = area under the curve
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2.4.1 Step 1 – Prepare Input Data 
The presence (1) or absence (0) of seven substrate and 12 
biological cover types was used as the response variable in 
the BRT modeling process. This binary response variable 
was modeled using a binomial (two groups) distribution. No 
transformations were applied. All of the 43 environmental (i.e., 
spectral, geographic, topographic) predictors were numeric. 
For the spectral predictors, natural color satellite imagery was 
used to predict mangrove habitats above the water, and water 
column–corrected satellite imagery was used to predict marine 
habitats below the water. These predictors differed because 
correcting the imagery for water column changes was not 
relevant to mangrove habitats. 

Pairwise testing was conducted to identify and remove 
predictors that were highly correlated (i.e., Spearman rank ρ 
≥ 0.9 or ρ ≤ −0.9) with three or more other predictors. One 
predictor (water column corrected satellite band 12 Red 
Coastal Blue) was removed from the predictor set for marine 
habitats. Five predictors (natural color satellite spectral bands 
1–5) were highly correlated and removed from the predictor 
set for mangroves. The training sites (i.e., locations denoting 
the presence or absence of substrate and cover types) were 
intersected with the remaining environmental predictors to 
extract their value at each location. This spatial intersection 
combined the response and predictor datasets into a single 
table used in step 2. 

2.4.2 Step 2 – Create and Validate BRT Habitat Predictions 
In this step, the table with the response and predictor values 
was used to test different BRT model tuning parameter 
combinations in R (R Core Team, 2022; Hijmans et al., 2023b; 
performed using the dismo package). A range of input values 
were tested for the following tuning parameters: learning rate 
(lr), tree complexity (tc), and bag fraction (bf). Learning rate 
(lr) controls how much each tree contributes to the model. 
The larger the learning rate, the more each tree contributes 
to the model. Tree complexity (tc) dictates how many nodes 
(splits) there are in a tree. The more splits there are, the more 
complex the model. The bf specifies the proportion of data that 
is randomly chosen at each step. The larger the bf, the more 
data available to train the model at each step. For each of the 
seven substrate and 12 cover types, 36 combinations of lr, tc, 
and bf were tested (Table 2.3). k-fold cross validation (kCV) was 
used to identify the combinations of lr, tc, and bf that created the 
model that explained the most variation. Here, the kCV process 
divided the input table into 10 folds (i.e., 10 data subsets). Nine 
of these were used to create models, while the one remaining 
was used to evaluate the model’s performance. 

This process was repeated 10 times (i.e., one time for each 
fold) × 36 model parameter combinations × 19 substrate and 
cover types (n = 6,840 models total). Model performance was 
measured using PDE, which was calculated using the one 
remaining fold and then averaged across the 10 folds. PDE is 
the amount (%) of variation explained in the response data. 
PDE values normally range between 0% and 100%, with higher 
values indicating better model performance. The models with 
the highest PDE were selected for each substrate and cover 
type (n = 19 models). The remaining models were discarded. 

These 19 best models were then applied spatially to predict 
the distribution of the seven substrate and 12 cover types 
throughout the project area (R Core Team, 2022; Hijmans, 
2023a; performed using the raster package in R). These raster 
predictions represent the average of 100 model iterations 
created using bootstrapping (See Glossary for terminology) 
for each substrate and cover type. These predictions describe 
the mean probability of occurrence for each habitat (i.e., the 
likelihood [%] that a particular substrate or cover type is present 
in a pixel). Larger probabilities indicate it is more likely the 
substrate or biological cover type is present. 

The precision associated with each probability of occurrence 
prediction was also quantified using the same 100 bootstrapped 
model iterations for each substrate and cover type. Precision is 
reported as the coefficient of variation (CoV), which represents 
the standard deviation as a proportion of the mean. Instead 
of reporting two values (i.e., minimum and maximum), CoV 
captures the range of probabilities in a single value for each 
pixel. CoV can be multiplied by the probability of occurrence 
to derive the standard deviation and thereby quantiles and 
confidence intervals for the estimated probabilities in a pixel. 
Smaller CoVs indicate that the prediction has higher precision 
and less uncertainty. Larger CoVs indicate there is more 
uncertainty associated with the spatial prediction. Sometimes, 
large CoVs occur artificially because the mean predicted 
values are extremely small (most notably in areas of predicted 
absence). Consequently, CoVs should be viewed along with the 
mean prediction to avoid misinterpretation. 

Table 2.3. Suite of boosted regression tree (BRT) model parameters and 
values tested. 
Regularization 
Parameters 

Parameters 
Tested Definition

Learning Rate (lr) 0.01, 0.001, 0.005 Determines contribution of each tree 
to the growing model 

Tree Complexity (tc) 2, 3, 4, 5, 10, 20 Controls how many predictor 
interactions are fitted in a tree 

Bag Fraction (bf) 0.5, 0.75 Controls proportion of data randomly 
selected to build each tree 
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Finally, the performance of the substrate and biological cover 
predictions was evaluated using five different metrics: (1) kCV 
PDE, (2) test PDE, (3) test bias, (4) test RMSE, and (5) test 
area under the ROC curve (AUC). kCV PDE was calculated 
during kCV by comparing the observed values (in one randomly 
chosen validation fold) to the predicted values (from the 
models developed using the remaining nine training folds). Test 
PDE, test bias, test RMSE, and test AUC were independently 
calculated using the validation sites. Test PDE, like kCV PDE, 
is the amount (%) of variation explained in the response data. 
PDE values normally range between 0% and 100%, with 
higher values indicating better model performance. Conversely, 
bias and RMSE measure the error associated with a model 
by calculating the difference between the predicted values 
(extracted from the model) and the observed values (extracted 
from the underwater photographs). Here, bias is used to 
describe the direction (+ or −) of the error, and RMSE is used to 
describe the size of the error. Bias closer to 0 and lower RMSE 
denote better model performance. 

ROC curves measure a model’s predictive performance in a 
different way compared to PDE, bias, and RMSE. Specifically, 
ROC curves compare a model’s sensitivity (i.e., true positive 
prediction rate) to its specificity (i.e., false positive prediction 
rate). This rate depends on the choice of a particular probability 
of occurrence threshold above which substrate or cover types 
are classified as “present” and below which they are classified 
as “absent.” AUC does not require selecting a threshold and 
can be used to measure the overall predictive performance of a 
model (compared to a random guess). AUC values ranging from 
0.7 to 0.8 denote “good” model performance, values from 0.8 to 
0.9 denote “excellent” model performance, and values greater 
than 0.9 denote “outstanding” model performance (Hosmer and 
Lemeshow, 2000). AUC values at or below 0.5 indicate that the 
model’s prediction was no better than one created by chance 
alone. Spatial autocorrelation of model residuals was also tested 

using global Moran’s I (R Core Team, 2022; performed using 
the ape package in R). Five different metrics (plus Moran’s I) 
were calculated because they describe model performance in 
different ways and, when viewed together, can provide a more 
thorough understanding of the model’s limitations. 

2.4.3 Step 3 – Create and Validate BCT Classified Habitat Map
In this step, BCTs were used to develop a classified habitat 
map depicting the distribution of the seven habitats identified 
by cluster analysis (Table 2.2). This response variable was 
modeled using a multinomial (many groups) distribution. The 
19 probability of occurrence maps for individual substrate 
and cover types were used as predictors. No predictors 
were eliminated prior to modeling since they were not highly 
correlated (Spearman rank ρ < 0.9 or ρ > −0.9). The 236 
training sites (each of which were assigned one of the seven 
habitat types) were intersected with the 19 probability of 
occurrence predictions to extract their value at each location. 
This spatial intersection combined the training and predictor 
values into a single table. 

Next, BCT models were fit and tuning parameters optimized 
in R (R Core Team, 2022; Kuhn et al., 2008; performed using 
the caret package). One hundred and eighty combinations of 
lr, tc, number of trees (n.trees), and minimum terminal node 
size (n.minobsinnode) were tested (Table 2.4). The lr and 
tc parameters are the same as those used to develop BRTs 
above. Number of trees denotes the number of classification 
trees that are fitted to the response data. The minimum terminal 
node size tells the modeling process when to stop splitting the 
response data and denotes the number of observations (e.g., 
3, 5, or 10) for each end point in a classification. kCV PDE 
was used to identify the combinations of lr, tc, n.trees, and 
n.minobsinnode that created the highest performing model. This
highest performing model was then applied spatially to create
the classified habitat map for the project areas.

Table 2.4. Suite of boosted classification tree (BCT) model parameters and values tested. 
Regularization 
Parameters 

Parameters 
Tested Definition Impact Definition

Learning Rate (lr) 0.01, 0.001, 
0.005 

Determines contribution of each tree to 
the growing model 

Decreasing (slowing) lr increases the number of 
trees required for optimal prediction 

lr = 0.005
will grow more trees than lr = 0.01 

Tree Complexity (tc) 2, 5, 10 Controls how many predictor 
interactions are fitted in a tree 

Decreasing tc will shrink the size (number of
nodes) in a tree 

tc = 20
will grow larger trees (with more nodes)
than tc = 2 

Number of Trees 
(n.trees) 

500, 750, 1000, 
2000, 3000 

Describes the number of classification 
trees that are fitted to the response data 

More classification trees will create more complex 
models (at the risk of overfitting the data) 

n.trees = 500
will grow 500 classification trees

Minimum Terminal 
Node Size 
(n.minobsinnode) 

3, 5, 10 Describes the number of observations 
at each endpoint in a classification tree 

A lower number of observations will increase the 
risk of overfitting the model 

n.minobsinnode = 3
will stop fitting when a classification tree 
has 3 observations 
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2.5 Measuring Thematic Accuracy 
The thematic accuracy of the classified habitat map was 
qualitatively assessed by local experts on Guam (Appendix 
B), and quantitatively assessed using 328 photographs at 241 
validation sites. The validation sites were grouped into the same 
seven habitats identified by the cluster analysis. Sites were 
considered correct if the same habitat was present within 6.1 m 
(approximately 3 pixels) of the validation site due to the ±6.1-
m positional uncertainty of the satellite mosaic. A confusion 
matrix was developed using the validation data describing the 
classified map’s overall accuracy, producer’s accuracy (PA), 
and user’s accuracy (UA; Story and Congalton, 1986). This 
matrix was constructed as an array with seven rows (denoting 
the predicted classification by the BCT) and seven columns 
(denoting the observed classification from validation sites). 
The overall accuracy was calculated as the sum of the major 
diagonal (i.e., matching predicted and observed classifications), 
divided by the total number of validation samples. 

The PA and UA were calculated to describe the thematic 
accuracy of individual map categories. PA describes errors 
due to omission and is a measure of how well the cartographer 
classified a particular habitat (e.g., the percent of times that a 
site recorded as sand in the field was correctly classified as 

sand). UA describes commission errors and is a measure of 
how often certain habitat types were classified correctly (e.g., 
the percentage of times that a pixel classified as sand was 
actually verified as sand in the field). Each diagonal element 
was divided by the column total (ni) to yield a PA, and by the row 
total (nj) to yield a UA. The tau coefficient was also calculated 
to account for the random, chance agreement between the map 
and training data (Ma and Redmond, 1995). The probability of 
random agreement decreases as the number of habitat classes 
increases. 

While stratification helps ensure all habitat classes are 
adequately evaluated, it has the undesired effect of introducing 
bias into the confusion matrix. This bias is due to different sizes 
(km2) of areas occupied by each habitat class (Card, 1982), 
causing rare habitats (e.g., live coral) to be sampled at a greater 
density than common habitats (e.g., sand). This sampling bias 
was removed using the method of Card (1982), which uses the 
proportion (%) of the map occupied by each habitat to correct 
thematic accuracies. These proportions were also used to 
compute confidence intervals for the overall accuracy (Card, 
1982; Congalton and Green, 1999). 

Soft and hard live corals near Spanish Steps. Credit: NOAA NCCOS 

Live Acropora coral near Spanish Steps. Credit: NOAA NCCOS Sponges (Ianthella basta) and Halimeda algae in Apra Harbor. Sea star in Apra Harbor. Credit: NOAA NCCOS 
Credit: NOAA NCCOS 
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Chapter 3  Results and Discussion 

Free diving to explore benthic habitats in Haputo ERA. Credit: NOAA NCCOS 

Over 21 km2 of seafloor was characterized in and around 
Apra Harbor (19 km2) and Haputo ERA (2 km2) from 0- to 
approximately 50-m depths. This section presents the results 
from these models, highlights some of the main features of 
the habitat predictions, reports the performance of the habitat 
predictions and accuracy of the maps, and discusses the 
limitations and potential applications of these products to meet 
particular research and management needs. 

3.1 Model Performance 
Nineteen BRT models and resulting spatial predictions describe 
the probabilities of occurrence for seven substrate and 12 cover 
types. Prevalence (i.e., number of presences divided by the 
total number of samples) of these habitats ranged from common 
(e.g., 74% for turf algae) to rare (e.g., 1% for Halodule uninervis 
seagrass). Despite these differences, model performance was 
considered “good to excellent” based on five evaluation metrics. 
Specifically, kCV PDE ranged from 14.9% to 88.7% (x̄ = 39.3% 
±4.1 SE), and test PDE ranged from 3.8% to 86.7% (x̄ = 27.3% 
±5.0 SE). The Mangrove model had the highest kCV and test 
PDEs (88.7% and 86.7%). The Rubble model had the lowest 
kCV PDE (14.9%), and the Live Coral (Foliose) model had the 
lowest test PDE (3.8%). Test AUC values ranged from 0.70 
(good) to 0.99 (excellent) for all the models (x̄ = 0.86 ±0.02 
SE). The Mangrove model had the highest test AUC (0.99), and 
Rubble and Live Coral (Foliose) models had the lowest test 
AUC (0.70). 

Test bias was small for all models, ranging between −0.1 to 
+0.05 (x̄  = -0.02 ±0.01 SE). Bias indicates whether the model
under predicted (−) or over predicted (+) the probability of
occurrence. The Seagrass (Halodule uninervis), Live Coral
(Porites rus), and Live Coral (Encrusting) models showed
no systematic test bias. The Mud, Sponge, and Mangrove
models had a positive test bias, and consistently over-predicted
probabilities by 0.05, 0.04, and 0.01, respectively. The
remaining models had negative test biases, and under-predicted
probabilities by 0.01 to 0.1. Lastly, test RMSE values ranged
from 0.08 to 0.47 (x̄  = 0.32 ±0.03 SE). The Sponge model had
the largest amount of error (0.47), while the Seagrass (Halodule
uninervis) had the smallest (0.08).

Spatial autocorrelations of model residuals were also quantified 
using Moran’s I. Residuals were autocorrelated if the probability 
value (p value) was ≤ 0.05, indicating the observed value 
of I was significantly different from expected value. Here, 
probabilities ranged from 0 to 0.53 for all models. Residuals for 
four models (Live Coral (Branching), Live Coral (Encrusting), 
Bare and Rock) were not spatially autocorrelated (p ≥ 0.15). 
Residuals for the remaining 15 of the 19 models were spatially 
autocorrelated (p ≤ 0.03). This pattern suggests that there 
are influential environmental predictors missing from the BRT 
modeling process for 15 of the 19 habitat predictions. 
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Results and Discussion 

3.2 Geographic patterns of substrate and cover types 
Substrate: Live Coral (All Species) 
“Live Coral (All Species)” (Figure 3.1a) was common and 
present at 49% (236/480) of the training and validation sites 
(Figure 3.1b). Most observations were documented between 
Point Udall and Apaca Point or clustered along the reef crests 
and patch reefs inside Outer Apra Harbor. Live coral was also 
found through Haputo ERA. The Live Coral (All Species) model 
showed a similar spatial pattern, with the highest likelihood of 
presence along the shoreline from San Luis to Acapa Points, 
from Tristar Dock to the mouth of Outer Apra Harbor and at 
reefs west and east of Dry Dock Island (Figure 3.1c). Probability 
of occurrence values were also high throughout Haputo ERA. 
The maximum probability was 98% for Live coral (All Species). 
CoV values were lowest (<0.25) in these same locations (Figure 
3.1d), indicating higher precision and lower uncertainty for 
places where live coral is more likely to be present. These spatial 
patterns broadly match the distributions of the “Coral” habitat 
class depicted in the 2005 map by NCCOS (NOAA NCCOS, 
2005). The one notable exception is the area from Point Udall to 
Tantapalo Point, where live coral was predicted in 2023 but not 
mapped in 2005. This exception is due to the different scales 
used in the 2005 map (4,047 m2) versus the 2023 map (4 m2). 

Substrate: Upright Dead Coral Reef 
“Upright Dead Coral Reef” (Figure 3.2a) was fairly common and 
was present at 37% (175/480) of the training and validation sites 
(Figure 3.2b). Upright dead coral reef was primarily present 
along the reef crest from San Luis Beach to Orote Island, 
offshore Dadi Beach, along the Glass Breakwater, and at reefs 
west of Dry Dock Island and in Sasa Bay. Upright dead coral 
reef was also found through Haputo ERA. The model showed 
similar spatial patterns, with the highest likelihood of presence 
in these same locations (Figure 3.2c). Probability of occurrence 
values were also moderately high throughout Haputo ERA. The 
maximum probability was 84% for dead reef. CoV values were 
lowest (<0.25) in these same locations (Figure 3.2d), indicating 
higher precision and lower uncertainty for places where dead 
coral reef is more likely to be present. These spatial patterns 
broadly match the distributions of “Aggregate Reef,” “Individual 
Patch Reef,” and “Spur and Groove” in the 2005 NCCOS map 
(NOAA NCCOS, 2005), except in Sasa Bay which was primarily 
mapped as “Pavement.” 

Substrate: Pavement 
“Pavement” was common in the project area and was present at 
51% (246/480) of the training and validation sites (Figure 3.3b). 
“Pavement” was concentrated from San Luis Beach around 
Point Udall to Acapa Point. Pavement was also dispersed on 
reef features throughout Outer Apra Harbor and Haputo ERA. 

The Pavement model showed similar spatial patterns, with 
the highest likelihood of presence on reef crests around Orote 
Peninsula (Figure 3.3c). Probability of occurrence values were 
also moderately high throughout Haputo ERA. The maximum 
probability was 94% for “Pavement.” CoV values were lowest 
(<0.25) in these same locations (Figure 3.3d), indicating higher 
precision and lower uncertainty for places where pavement is 
more likely to be present. These spatial patterns for “Pavement” 
match the 2005 NCCOS map (NOAA NCCOS, 2005) in Haputo 
ERA and around Orote Peninsula, but they differ in Sasa Bay 
and along the north side of Outer Apra Harbor. 

Substrate: Rock 
“Rock” (Figure 3.4a) was present at 9% (43/480) of the training 
sites and was rare except for sites along the coastline from 
Orote Island to just north of Apuntua Point, and along the Glass 
Breakwater, which was built from limestone post World War 
II (Figure 3.4b). Rock was not present in Haputo ERA. The 
Rock model showed similar spatial patterns, with the highest 
likelihood nearshore the Glass Breakwater and southern Orote 
Peninsula (Figure 3.4c). Probabilities were moderate to low in 
Haputo. The maximum probability was 93% for “Rock.” Like the 
other models, CoV values were lowest (<0.5) in these same 
locations (Figure 3.4d), indicating higher precision and lower 
uncertainty. However, CoV was high (>1) everywhere else in the 
project area. “Rock” was not mapped in the 2005 NCCOS map 
(NOAA NCCOS, 2005) in Apra Harbor or Haputo ERA. 

Substrate: Rubble 
“Rubble” (Figure 3.5a) was present at 27% (129/480) of the 
training sites (Figure 3.5b). It was more common in Apra 
Harbor and less common in Haputo ERA. Overall, “Rubble” 
distributions were similar to “Pavement” and were primarily 
present offshore from San Luis Beach to Dadi Beach, along the 
Glass Breakwater’s southern shoreline, south of Cabras Island, 
and at reef features in Outer Apra Harbor. This habitat was also 
present in the southern third of Haputo ERA. The Rubble model 
showed similar spatial patterns with higher probabilities offshore 
Dadi Beach, and moderate to low probabilities also being 
predicted in the center of Outer Apra Harbor and in Haputo 
(Figure 3.5c). The maximum probability was 81% for “Rubble.” 
Similar to the Rock model, CoV values were lowest (<0.25) in 
locations with high probabilities (Figure 3.5d) but moderate to 
high (>0.75) in all other locations. In both the CoV and mean 
prediction surfaces, there is also a visual artifact starting near 
San Luis Beach trending north to the Glass Breakwater from 
a seamline in the satellite image mosaic. Compared to the 
2005 NCCOS map, “Rubble” was predicted over a much larger 
geographic area (NOAA NCCOS, 2005). 
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Figure 3.1. Predicted presence of “Live Coral (All Species).” Figure panels depict: a) a photo of live coral reef; b) maps denoting the presences and absences of live 
coral in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The 
insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = 
percent deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Figure 3.2. Predicted presence of “Upright Dead Coral Reef.” Figure panels depict: a) a photo of upright dead coral reef; b) maps denoting the presences and 
absences of upright dead coral reef in the and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient 
of variation. The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right).  kCV = k-fold cross 
validation; PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Figure 3.3. Predicted presence of “Pavement.” Figure panels depict: a) a photo of pavement; b) maps denoting the presences and absences of pavement in the 
training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the 
bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent 
deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Figure 3.4. Predicted presence of “Rock.” Figure panels depict: a) a photo of rock; b) maps denoting the presences and absences of rock in the training and 
validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the bottom 
panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent deviance 
explained; AUC = area under the curve; RMSE = root mean square error. 

21 



Characterizing Submerged Lands Around Naval Base Guam, Mariana Islands

Results and Discussion 
Rubble 

a b 

c d 

b 

c d 

Figure 3.5. Predicted presence of “Rubble.” Figure panels depict: a) a photo of rubble; b) maps denoting the presences and absences of rubble in the training 
and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the bottom 
panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent deviance 
explained; AUC = area under the curve; RMSE = root mean square error. 
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Results and Discussion 

Substrate: Sand 
“Sand” (Figure 3.6a) was present at 57% (272/480) of the 
training sites and was most common in Outer Apra Harbor, 
offshore Dadi Beach and Acapa Point, as well as in deeper 
areas inside Haputo ERA (Figure 3.6b). However, it had notably 
lower abundances inside Inner Apra Harbor, from Point Udall 
to Tipalao Bay and in the northern section of Haputo ERA. The 
Sand model showed similar spatial patterns, with the highest 
likelihood of sand in the center of Outer Apra Harbor, Sasa Bay, 
south of Cabras Island, and in depths greater than 25 m offshore 
Dadi Beach, and greater than 15 m in Haputo ERA (Figure 3.6c). 
The maximum probability was 96% for “Sand.” Like the other 
models, CoV values were lowest (<0.25) in these same locations 
(Figure 3.6d), indicating higher precision and lower uncertainty. 
These spatial patterns broadly match the distributions of “Sand” 
and “Sand with Scattered Coral and Rock” classes in the 2005 
NCCOS map (NOAA NCCOS, 2005). The notable exception is 
Inner Apra Harbor, which was mapped as “Sand” in 2005 but 
predicted to be both “Mud” and “Sand” in 2023. 

Substrate: Mud 
“Mud” (Figure 3.7a) was present at 11% (53/480) of the training 
sites and was most common inside Inner Apra Harbor and near 
the shoreline in Sasa Bay (Figure 3.7b). It was not present in 
Haputo ERA. The Mud model showed similar spatial patterns, 
with the highest likelihood in Inner Apra Harbor and around the 
mangroves in Sasa Bay (Figure 3.7c). The maximum probability 
was 90% for “Mud.” Like the other models, CoV values were 
lowest (<0.5) in these same locations (Figure 3.7d) but high 
(>1) everywhere else. These spatial patterns broadly match the 
distributions of the “Mud” class in the 2005 NCCOS map (NOAA 
NCCOS, 2005). The notable exception is Inner Apra Harbor, 
which was mapped as “Sand” in 2005 but predicted to be both 
“Mud” and “Sand” in 2023. 

Cover: Mangrove 
Mangroves (Figure 3.8a) were very rare in the project areas, 
occurring at only 3% (15/480) of the training and validation 
sites (Figure 3.8b). No mangroves were documented and 
modeled in Haputo ERA. All of the mangrove occurrences 
were inside the Sasa Bay and Inner Apra Harbor, and absent 
everywhere else in the project area. The Mangrove model 
showed similar spatial patterns, with the highest likelihood of 
mangrove presence along the Sasa Bay shoreline and at the 
Abo Cove and Atantano River in Inner Apra Harbor (Figure 
3.8c). The maximum probability was 99% for “Mangrove.” Unlike 
the previous models, the CoV values were low (<0.25) where 
the model predicted high and low probabilities of occurrence 
(Figure 3.8d). CoV was high (>1) in near the shoreline around 
Orote Peninsula and Glass Breakwater, and further inland in 

Sasa Bay and Inner Apra Harbor. This “Mangrove” probability of 
occurrence prediction broadly matches the distributions of the 
“Emergent Vegetation” class in the 2005 NCCOS map (NOAA 
NCCOS, 2005). The notable exception is in Inner Apra Harbor, 
where the 2005 NCCOS map did not depict any “Emergent 
Vegetation.” 

Cover: Live Coral (Branching Corals) 
“Live Coral (Branching Coral)” (Figure 3.9a) occurred at 19% 
(93/480) of the training and validation sites (Figure 3.9b). Inside 
the Harbor, branching corals were present on or near prominent 
dive locations, including Dogleg Reef, Dry Dock Reef, Seabee 
Junkyard, Fingers Reef and Gab Reef. Outside the Harbor, 
they primarily occurred around Orote Island, from Point Udall to 
Acapa Point and in the southern three-quarters of Haputo ERA. 
The branching coral model showed similar spatial patterns, with 
the highest likelihood of these taxa being present around Orote 
Island and in less than two m depths inside Haputo ERA (Figure 
3.9c). The maximum probability was 85% for branching corals. 
Like the other models, CoV values were lowest (<0.25) in these 
same locations (Figure 3.9d), indicating higher precision and 
lower uncertainty for predicted presences. CoV were moderate 
(>0.75) everywhere else. No comparison was made to the 2005 
NCCOS map (NOAA NCCOS, 2005) because this taxonomic 
group was not explicitly mapped in that study. 

Cover: Live Coral (Encrusting) 
“Live Coral (Encrusting)” (Figure 3.10a) were present at 36% 
(173/480) of the training and validation sites (Figure 3.10b), 
and was most common near the mouth of Apra Harbor, from 
Point Udall to Acapa Point and throughout Haputo ERA. The 
remaining presences were sparsely west of Dry Dock Island 
and in Sasa Bay. The Live Coral (Encrusting) model showed 
similar spatial patterns, with moderate probabilities from the 
mouth of Apra Harbor to Acapa Point (Figure 3.10c). A few other 
areas also had moderate to high probabilities of occurrence, 
including the reefs in the northern section of Haputo ERA. The 
maximum probability was 74% for encrusting corals. Like other 
habitat models, the CoV values were lowest (<0.5) where the 
model predicted the highest probabilities of occurrence and 
highest (>0.75) where the model predicted low probability of 
occurrence values (Figure 3.10d). Like with branching corals, 
no comparison was made to the 2005 NCCOS map (NOAA 
NCCOS, 2005) because this taxonomic group was not explicitly 
mapped in that study. 
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Figure 3.6. Predicted presence of “Sand.” Figure panels depict: a) a photo of sand; b) maps denoting the presences and absences of sand in the training and 
validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the bottom 
panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent deviance 
explained; AUC = area under the curve; RMSE = root mean square error. 
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Figure 3.7. Predicted presence of “Mud.” Figure panels depict: a) a photo of mud; b) maps denoting the presences and absences of mud in the training and validation 
data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the bottom panels show the 
input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent deviance explained; AUC = 
area under the curve; RMSE = root mean square error. 
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Figure 3.8. Predicted presence of “Mangrove.” Figure panels depict: a) a photo of mangrove; b) maps denoting the presences and absences of mangrove in the 
training and validation data; c) a map denoting the predicted average probability of occurrence; and d) a map denoting the coefficient of variation. The insets at the 
bottom show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent deviance 
explained; AUC = area under the curve; RMSE = root mean square error.. 
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Figure 3.9. Predicted presence of “Live Coral, Branching Coral.” Figure panels depict: a) a photo of branching coral species; b) maps denoting the presences 
and absences of branching corals in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the 
coefficient of variation. The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right).  kCV = 
k-fold cross validation; PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.10. Predicted presence of “Live Coral (Encrusting).” Figure panels depict: a) a photo of encrusting corals; b) maps denoting their presences and absences 
of encrusting corals in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of 
variation. The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross 
validation; PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Results and Discussion 
Cover: Live Coral (Foliose) 
“Live Coral (Foliose)” (Figure 3.11a) were rare and present 
at 5% (25/480) of the training sites (Figure 3.11b). This 
taxonomic group was most common in depths greater than 30 
m inside Outer Apra Harbor. Only two sites had foliose corals 
inside Haputo ERA. The Live Coral (Foliose) model showed 
similar spatial patterns, with the relatively higher likelihood 
of presences on the sides of reefs west of Dry Dock Island, 
and the fore reef from San Luis Beach to Orote Island (Figure 
3.11c). Higher probabilities of occurrence were also found on 
fore reefs offshore Haputo Beach and in the northern half of 
Haputo ERA. However, the maximum probability was 33% for 
foliose corals, and these higher probabilities were still very 
low compared to other taxonomic groups. The CoV values 
were lowest (<0.5) where the model predicted the lowest 
probabilities of occurrence in both Apra Harbor and Haputo 
ERA (Figure 3.11d). Like with branching and encrusting corals, 
no comparison was made to the 2005 NCCOS map (NOAA 
NCCOS, 2005) because this taxonomic group was not explicitly 
mapped in that study. 

Cover: Live Coral (Porites rus) 
“Live Coral (Porites rus)” (Figure 3.12a) was present at 19% 
(90/480) of the training sites (Figure 3.12b). This species 
was most common along fore reefs in Outer Apra Harbor 
and throughout Haputo ERA. The remaining presences were 
concentrated offshore Dadi Beach and Acapa Point. The Live 
Coral (Porites rus) model showed similar spatial patterns, with 
the highest likelihood of presence along fore reefs in Outer 
Apra Harbor, at reefs west Dry Dock Island, inside Sasa Bay 
and along the fore reef offshore Dadi Beach (Figure 3.12c). 
An expert reviewer commented that Porites rus probabilities 
should have been higher on deeper reefs (>15 m) offshore Gab 
Gab Beach (Appendix B). Higher probabilities of occurrence 
were also predicted on the shelf and fore reefs in Haputo ERA. 
CoV values were lowest (<0.25) where the model predicted the 
highest probabilities of occurrence. Pockets of high CoV values 
(>1) coincided with low probabilities, and were dispersed in 
Outer Apra Harbor and on bank shelf locations in Haputo ERA 
(Figure 3.12d). Like with other corals taxa, no comparison was 
made to the 2005 NCCOS map (NOAA NCCOS, 2005) because 
this taxonomic group was not explicitly mapped in that study. 

Cover: Seagrass (Halodule uninervis) 
“Seagrass (Halodule uninervis)” (Figure 3.13a) was only present 
at 1% (3/480) of the training sites (Figure 3.13b). These two 
sites were located approximately 500 m north of Acapa Point. 
The Seagrass (Halodule uninervis) model showed similar 
spatial patterns, with the highest likelihood of presence between 
Dadi Beach and Acapa Point (Figure 3.13c). Probabilities were 
at or near zero in Haputo ERA. The maximum probability was 
55% for H. uninervis. CoV values were lowest (<0.5) in areas 
with low probabilities (Figure 3.13d). Areas of high CoV (>1) 
were present on reef features in Haputo ERA, in Inner Apra 
Harbor, and offshore Dadi Beach. Horizontal artifacts are also 
visible offshore Dadi Beach in the probability and in the CoV 
surfaces, which is likely an artifact from the latitude predictor. 
The predicted patterns in Haputo ERA matched the “Seagrass” 
class mapped in the 2005 NCCOS map (NOAA NCCOS, 2005). 
However, these mapped and predicted seagrass distributions 
differed offshore Dadi Beach. Specifically, the 2005 map 
showed “Seagrass” nearshore Dadi Beach, whereas the 2023 
map predicted “Halodule uninervis” mainly offshore Acapa Point. 

Cover: Algae (Crustose Coralline) 
Crustose coralline algae (Figure 3.14a) was present at 23% 
(112/480) of the training sites (Figure 3.14b). This taxonomic 
group was most common in Haputo ERA and from Gab Beach 
around Point Udall to Acapa Point. The remaining presences 
were distributed in the middle of Outer Apra Harbor. No 
presences were documented in Sasa Bay or Inner Apra Harbor. 
The Algae (Crustose Coralline) model showed similar spatial 
patterns, with the highest likelihood of presence on bank shelf 
locations in Haputo ERA and around Orote Peninsula (Figure 
3.14d). Probability of occurrence was lowest or zero south of 
Cabras Island, in Sasa Bay, and in Inner Apra Harbor. The 
maximum probability was 99% for crustose coralline algae 
overall. CoV values were lowest (<0.25) in places with high 
probabilities of occurrence (Figure 3.14e), indicating lower 
uncertainty for places where it is very likely to be present. 
The spatial patterns differed from than the distributions of the 
“Coralline Algae” classes in the 2005 NCCOS map (NOAA 
NCCOS, 2005). Specifically, the Algae (Crustose Coralline) 
model predicted these habitats are likely to be present more 
widely in the project areas than in the 2005 maps. 

Live foliose corals inside Apra Harbor. Credit: NOAA NCCOS 
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Figure 3.11. Predicted presence of “Live Coral (Foliose).” Figure panels depict: a) a photo of foliose corals; b) maps denoting their presences and absences of foliose 
corals in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The 
insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = 
percent deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Figure 3.12. Predicted presence of “Live Coral (Porites rus).” Figure panels depict: a) a photo of Porites rus; b) maps denoting their presences and absences of 
Porites rus in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. 
The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; 
PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Figure 3.13. Predicted presence of “Seagrass, Halodule uninervis.” Figure panels depict: a) a photo of Halodule uninervis; b) maps denoting the presences and 
absences of Halodule uninervis in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the 
coefficient of variation. The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = 
k-fold cross validation; PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error.
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Figure 3.14. Predicted presence of “Algae (Crustose Coralline)” (CCA). Figure panels depict: a) a photo of CCA habitat; b) maps denoting the presences and 
absences of CCA in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of 
variation. The insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross 
validation; PDE = percent deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Results and Discussion 

Cover: Algae (Halimeda spp.) 
Halimeda algae (Figure 3.15a) was present at 32% (155/480) of 
the training sites (Figure 3.15b). This taxonomic group was most 
common in Haputo ERA and from Gab Beach around Point Udall 
to Acapa Point. The remaining presences were distributed along 
the Glass Breakwater and in the middle of Outer Apra Harbor. 
Fewer Halimeda presences were documented in Sasa Bay or 
Inner Apra Harbor. The Algae (Halimeda spp.) model showed 
similar spatial patterns, with the with the highest likelihood of 
presence in Haputo ERA and from Tipalao Bay to Acapa Point 
(Figure 3.15c). Probabilities of occurrence were lower in Sasa 
Bay and in Inner Apra Harbor. The maximum probability was 
85% for Halimeda overall. CoV values were lowest (<0.25) in 
places with high probabilities of occurrence (Figure 3.15d), 
indicating lower uncertainty for places where it is likely to be 
present. No comparison was made to the 2005 NCCOS map 
(NOAA NCCOS, 2005) because Halimeda was not explicitly 
mapped in 2005. 

Cover: Algae (Turf) 
Turf algae (Figure 3.16a) was the most common habitat, and was 
present at 68% (328/480) of the training sites (Figure 3.16b). This 
taxonomic group was distributed throughout the project area, 
with fewer occurrences in Inner Apra Harbor. The Algae (Turf) 
model showed similar spatial patterns, with the highest likelihood 
of presence on reefs in Haputo ERA, Outer Apra Harbor, and 
from Point Udall south to Acapa Point (Figure 3.16c). Probability 
of occurrence was lowest in places predicted to have majority 
unconsolidated sediments, including Inner Apra Harbor and 
non-reef areas in eastern Outer Apra Harbor. The maximum 
probability of occurrence was 98% for turf algae. CoV values 
were lowest (<0.25) in places with high probabilities of occurrence 
(Figure 3.16d) and highest (>0.75) in places with low probabilities 
of occurrence. This turf algae probability of occurrence prediction 
partially matched the distributions of the “Turf” biological cover 
class in the 2005 NCCOS map (NOAA NCCOS, 2005). The 
notable exceptions are deeper (>25 m) areas in Apra Harbor 
and from Apuntua Point to Acapa Point, where turf algae was 
predicted by the 2023 map but not in the 2005 map. 

Cover: Algae (Other) 
Other types of algae (not listed above) (Figure 3.17a) were 
present at 63% (303/480) of the training sites (Figure 3.17b). 
This taxonomic group was common throughout Haputo ERA 
and throughout Outer Apra Harbor and in Sasa Bay. Fewer 
presences were documented near the shoreline in Sasa Bay 
and in Inner Apra Harbor. The Algae (Other) model showed 
similar spatial patterns, with the with the moderate likelihood 
of presence in Haputo ERA and in Outer Apra Harbor (Figure 
3.17c). Probabilities of occurrence were lowest in places 

predicted to have soft substrates, including Inner Apra Harbor 
and non-reef areas in eastern Outer Apra Harbor and Sasa Bay. 
The maximum probability of occurrence was 83% for other types 
of algae. CoV values were generally moderate (>0.5) throughout 
the project areas, with the highest values (>0.75) in Inner Apra 
Harbor (Figure 3.17d). This probability of occurrence prediction 
did not match the distributions of the “Macroalgae” biological 
cover class in the 2005 NCCOS map (NOAA NCCOS, 2005). 
The notable exceptions where the maps did match are areas 
around Dry Dock Island and Port Authority Beach. 

Cover: Sponge 
Sponges (Figure 3.18a) were present at 25% (119/480) of the 
training sites (Figure 3.18b). This taxonomic group was most 
common from Point Udall to Acapa Point. Elephant ear sponges 
(Ianthella basta) were also found frequently in Outer Apra Harbor. 
The remaining presences were distributed throughout Haputo 
ERA. Few presences were documented in Sasa Bay or inside 
Inner Apra Harbor. The Sponge model showed similar spatial 
patterns, with the highest likelihood of presence in Outer Apra 
Harbor from Dry Dock Island to the Harbor mouth (Figure 3.18c). 
Probability of occurrence was lowest east of Dry Dock Island 
south of Cabras Island, Sasa Bay, and Inner Apra Harbor, and 
in soft sediments in Haputo ERA. The maximum probability was 
79% for “Sponge.” CoV values were lowest (<0.25) in places 
with high probabilities of occurrence (Figure 3.18d), and highest 
(>0.25) in locations with moderate to low probabilities. No 
comparison was made to the 2005 NCCOS map (NOAA NCCOS, 
2005) because sponges were not explicitly mapped in 2005. 

Cover: Bare 
Locations without biological cover (i.e., “Bare”) (Figure 3.19a) 
were common and widely distributed in the project areas. “Bare” 
cover was present at 71% (341/480) of the training sites (Figure 
3.19b). The Bare model showed similar spatial patterns, with the 
lowest likelihood of this habitat being present on hard bottom 
in Apra Harbor and Haputo ERA (Figure 3.19c). Probability of 
occurrence for “Bare” cover was highest in most other soft bottom 
substrates inside the project areas. The maximum probability 
was 97% for bare substrate. CoV values were lowest (<0.25) 
in locations with high probabilities of occurrence (Figure 3.19d) 
throughout the project areas. The highest (>0.25) CoV values 
were located along the fore reef in Haputo ERA, and in Apra 
Harbor from Kilo Wharf around Point Udall to Tipalao Bay. This 
“Bare” probability of occurrence prediction broadly matched the 
distributions of the “Uncolonized” class in the 2005 NCCOS map 
(NOAA NCCOS, 2005). The notable exceptions are from Point 
Udall to Dadi Beach and in southern Haputo ERA, where the 
2005 NCCOS map did not depict any uncolonized substrates. 
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Algae (Halimeda spp.) 

Figure 3.15. Predicted presence of “Algae (Halimeda spp.).” Figure panels depict: a) a photo of Halimeda habitat; b) maps denoting the presences and absences of 
Halimeda in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The 
insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = 
percent deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Figure 3.16. Predicted presence of “Algae (Turf).” Figure panels depict: a) a photo of turf algae habitat; b) maps denoting the presences and absences of turf algae 
in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in 
the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent 
deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Figure 3.17. Predicted presence of “Algae (Other).” Figure panels depict: a) a photo of other algae habitat; b) maps denoting the presences and absences of other 
algae in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The 
insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = 
percent deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Figure 3.18. Predicted presence of “Sponge.” Figure panels depict: a) a photo of sponge habitat; b) maps denoting the presences and absences of sponges in the 
training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The insets in the 
bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = percent 
deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Figure 3.19. Predicted presence of “Bare” cover. Figure panels depict: a) a photo of mixed bare cover habitat; b) maps denoting the presences and absences of bare 
cover in the training and validation data; c) maps denoting the predicted average probability of occurrence; and d) maps denoting the coefficient of variation. The 
insets in the bottom panels show the input parameters used to create the model (left), and the performance of the model (right). kCV = k-fold cross validation; PDE = 
percent deviance explained; AUC = area under the curve; RMSE = root mean square error. 
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Other Habitats Not Predicted 
In addition to the cover types above, other biological organisms 
were identified and observations made using the underwater 
photographs. These organisms and observations were not 
modeled because: (1) their prevalence was too low (<1%) to 
develop reasonable predictions or (2) their model predictions 
did not meet the minimum performance thresholds (i.e., AUC 
>0.7 and PDE >0). These rare or absent organisms specifically
included species listed under the ESA (i.e., Acropora globiceps,
Isopora palifera, Acropora retusa, Seriatopora aculeata),
seagrass (Halophila), and nuisance species (angel hair algae
[Chaetomorpha vieillardii] and crown-of-thorns sea stars
[Acanthaster planci]). One crown-of-thorns was photographed
at a 13-m depth in Haputo ERA (Figure 3.20). No ESA corals
or angel hair algae were documented in the project areas. The
presences of coral bleaching or paling, crown-of-thorns scarring,
and marine debris were also recorded, but their prevalences
were also very low (<1%, 0%, and <4%, respectively)
throughout the project areas.

3.3 Classified Habitat Map
Approximately 21 km2 of seafloor was characterized around 
Naval Base Guam and inside Haputo ERA from 0- to 
approximately 50-m depths. This classified habitat map displays 
the predicted distribution of seven common combinations 
of substrate and cover types (Figure 3.21). In Haputo ERA, 
“Pavement, Mixed Algae” was the most abundant habitat type 
mapped, comprising 54.5% (1.1 km2) of the area. The largest 
continuous patches were located on the fore reef along the 
coastline. “Sand, Bare” was the next most abundant habitat 
mapped, comprising 24.8% (0.5 km2) of the area. Large, 
continuous patches of bare sand were mainly offshore in the 
northern area of the reserve. Smaller patches of pavement were 
also located along the reef tract, along with patches of “Upright 
Dead Coral Reef, Mixed Algae” (15.1% or 0.3 km2) and “Live 
Coral Reef, Live Coral” (5% or 0.1 km2). These habitat types 
were the third and fourth most abundant habitats, respectively, 
mapped in the Haputo ERA. “Sand, Mixed Algae” was the least 
abundant (0.6% or 0.01 km2) habitat overall. 

In Apra Harbor and from Point Udall to Acapa Point, “Sand, 
Bare” was the most abundant habitat type mapped, comprising 
42.3% (8.2 km2) of the area. The largest continuous patches 
were in the eastern portion of Outer Apra Harbor, including Sasa 
Bay and south of Cabras Island. “Pavement, Mixed Algae” was 
the next most abundant habitat mapped, comprising 35.9% 
(6.9 km2) of the area. Large, continuous patches of pavement 
covered by algae were concentrated nearshore from San Luis 
Beach around Point Udall to Acapa Point. Smaller patches of 
pavement were also located in the western half of Outer Apra 

Figure 3.20. Crown-of-thorns (Acanthaster planci) documented in Haputo 
Ecological Reserve Area in May 2022. 

Harbor. “Mud, Bare” was the third most abundant habitat (8% 
or 1.5 km2), which was concentrated nearshore Sasa Bay and 
mixed with bare sand in Inner Apra Harbor. “Sand, Mixed Algae” 
was the fourth most abundant habitat (5.2% or 1 km2) and 
was often located where bare mud transitioned to bare sand. 
“Upright Dead Coral Reef, Mixed Algae” and “Live Coral Reef, 
Live Coral” were the fifth (4.2% or 0.8 km2) and sixth (3.0% or 
0.6 km2) most abundant habitats (respectively). These habitats 
were often co-located on the fore reef along the inside perimeter 
of Outer Apra Harbor, and from Tipalao Bay to Acapa Point. 
“Mud, Mangrove” was the least abundant habitat (1.3% or 0.3 
km2), found only in nearshore areas in Sasa Bay and Inner Apra 
Harbor. 

3.3.1 Map Accuracy
The relative prevalence and proportions of the seven habitat 
types were very similar (±5%) in both the training data and the 
classified habitat map. Agreement between the training data and 
classified habitat map suggests the BCTs were able to describe 
the relationships among the habitats and environmental 
predictors reasonably well. The notable exceptions were the 
“Upright Dead Coral Reef, Mixed Algae” and “Sand, Bare” 
habitats. “Sand, Bare” was more prevalent in the classified 
habitat map (40.7%) than in the training data (19.4%). Upright 
dead reef was conversely less prevalent in the classified map 
(5.2%) than in the training data (13.9%). 
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Haputo ERA (values in km2)

2.0   Total km2

Apra Harbor (values in km2)

19.3   Total km2

Figure 3.21. This figure depicts the 7 benthic habitats mapped throughout Apra Harbor (left) and Haputo Ecological Reserve Area (ERA; right). The numbers inside 
the legend denote the amount of area (km2) occupied by each habitat class. 

The overall accuracy and tau value for the classified habitat 
map (quantified using the validation points) was high at 
86.6% and 0.84 ±0.04, respectively (Table 3.1). The overall 
accuracy was very similar after correcting for proportional 
biases (86.1% ± 4.0% at the 95% confidence level; Table 3.2). 
The UAs were also high, ranging from 80% to 100% for the 
individual habitat classes. Most habitat misclassifications were 
evenly distributed in the confusion table, suggesting that the 
habitat characterization process did not consistently confuse 
the majority of substrate and cover type pairs. The notable 
exceptions were the three hard substrate categories (“Live 
Coral Reef,” “Upright Dead Reef,” and “Pavement”), which were 
confused with each other (n = 8 and 9) more than with the soft 
bottom habitat categories. Similarly, “Sand, Bare” and “Sand, 
Mixed Algae” were more often confused with each other (n = 
7) than with any other categories. Despite these class-specific
biases, the above overall map accuracies are similar to the
other benthic habitat maps created by NOAA NCCOS in the
Pacific Region (NOAA NCCOS, 2005; Battista et al., 2007;
Kendall et al., 2017). As a result, this habitat map can be used
with high levels of confidence for a variety of research and
management applications.

3.4 Map Applications 
3.4.1 Using the Map Products
Spatial and spectral resolution of satellite sensors, computing 
power, and model-based mapping techniques have advanced 
considerably in the last decade, and the map products created 
here take maximum advantage of those improvements to 
preserve the fine-scale heterogeneity, habitat gradients, and 
smaller features present in the real landscape. 

These new maps were also designed to be flexible, scalable, 
and customizable to suit specific applications and user needs. 
Users may apply spatial filters to change the map scale 
(Kendall and Miller, 2008), enhance dominant or important 
habitat types, or smooth out variability in heterogeneous areas. 
Habitat classes can also be aggregated into broader categories 
(e.g., hard bottom instead of multiple types of reef substrates) 
or translated into other classification systems (e.g., NOAA 
NCCOS [2005] or CMECS [2023]) for qualitative comparisons. 
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Table 3.1. The confusion matrix for the classified habitat map. Observed habitats at validation sites are listed as columns, and corresponding predicted habitats, as 
rows. Cell values are the number of matches (along the gray diagonal) or mismatches (off diagonal) between the two. nj = row total; ni = column total; OA = overall 
accuracy; CI = confidence interval; UA = user’s accuracy; PA = producer’s accuracy. 

Observed (i) 
Live Coral 
Reef, Live 

Coral 
Pavement, 

Mixed Algae 
Sand, Mixed 

Algae 

Upright Dead 
Coral Reef, 
Mixed Algae Sand, Bare Mud, Bare Mud, Mangrove nj 

User's 
Accuracy 

(%) 

) j
Pr

ed
ict

ed
 (

Live Coral Reef, 
Live Coral 16 0 0 0 1 0 0 17 94% 

Pavement, Mixed 
Algae 9 106 6 8 2 1 0 132 80% 

Sand, Mixed Algae 0 0 17 1 1 0 0 19 89% 

Upright Dead Coral 
Reef, Mixed Algae 1 0 2 32 0 0 0 35 91% 

Sand, Bare 3 2 7 0 80 0 0 92 87% 

Mud, Bare 0 0 0 0 0 20 0 20 100% 

Mud, Mangrove 0 0 0 0 0 0 13 13 100% 

ni 29 108 32 41 84 21 13 328 

PA (%) 55% 98% 53% 78% 95% 95% 

 

100% OA = 86.6% 
Tau = 0.84 

CI (±) = 0.04 

Table 3.2. The confusion matrix for the classified habitat map corrected for proportional biases. Observed habitats at validation sites are listed as columns, and 
corresponding predicted habitats, as rows. Cell values are the number of matches (along the gray diagonal) or mismatches (off diagonal) corrected for proportional bias; 
OA = overall accuracy; CI = confidence interval; UA = user’s accuracy; PA = producer’s accuracy; πj = observed habitat proportion, pi = predicted habitat proportion. 

Observed (i) 

Pr
ed

ict
ed

 (j
) 

Live Coral 
Reef, Live 

Coral 
Pavement, 

Mixed Algae 
Sand, Mixed 

Algae 

Upright Dead 
Coral Reef, 
Mixed Algae Sand, Bare Mud, Bare 

Mud, 
Mangrove πj UA 

UA CI 
(±) 

Live Coral Reef, 
Live Coral 0.030 0.000 0.000 0.000 0.002 0.000 0.000 0.032 94.1% 0.86% 

Pavement, Mixed 
Algae 0.026 0.302 0.017 0.023 0.006 0.003 0.000 0.377 80.3% 3.33% 

Sand, Mixed Algae 0.000 0.000 0.043 0.003 0.003 0.000 0.000 0.048 89.5% 1.43% 

Upright Dead Coral 
Reef, Mixed Algae 0.001 0.000 0.003 0.048 0.000 0.000 0.000 0.052 91.4% 1.04% 

Sand, Bare 0.013 0.009 0.031 0.000 0.354 0.000 0.000 0.407 87.0% 3.58% 

Mud, Bare 0.000 0.000 0.000 0.000 0.000 0.072 0.000 0.072 100.0% 0.00% 

Mud, Mangrove 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.012 100.0% 0.00% 

ρi 0.071 0.311 0.094 0.073 0.364 0.075 0.012 

OA = 86.1% 
CI (±) = 4.0% 

PA (%) 42.7% 97.2% 45.5% 65.4% 97.2% 96.2% 100.0% 

PA CI (±) 14.14% 9.01% 13.89% 15.47% 8.10% 7.29% 0.00% 
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Results and Discussion 
Predictions for individual substrate and cover types may also 
be converted from the continuous probability values ideal 
for examining gradients into classified categories to better 
characterize subtle or more dramatic shifts in presence. Users 
can explore these shifts by customizing and applying their own 
probability thresholds. 

In addition to probability thresholds, users can also explore the 
impacts of map uncertainty on potential management scenarios 
and on their decisions (Costa et al., 2019). Here, uncertainty 
was quantified as CoV. Smaller CoVs indicate that the prediction 
has higher precision and less uncertainty (and vice versa). CoV 
can be multiplied by mean probability of occurrence to derive 
the standard deviation and thereby quantiles and confidence 
intervals associated with the estimated probabilities in a pixel. 
For example, if the mean probability is 0.5 and the CoV is 0.1 in 
a pixel, then 0.5 × 0.1 = ±0.05 or ±1 standard deviation (SD). 
Assuming normally distributed errors, 68.3% of the data will fall 
between ±0.05 (or 1 SD), 95.5% of the data will fall between 
±0.1 (or 2 SD), and 99.7% of the data will fall between ±0.15 (or 
3 SD). 

Testing and changing maps based on their CoV may lead 
users to different conclusions and courses of action. Defining 
acceptable levels of uncertainty upfront is critical for users 
to ensure that they will meet their marine resource goals. It 
can also help users more confidently identify priority sites, 
adequately protect habitats, convey the range of potential 
outcomes, and ensure that limited resources are used as 
efficiently as possible (Margules and Pressey, 2000; Nicholson 
and Possingham, 2007; Tulloch et al., 2013). That said, it 
is important to note that high CoVs may occur in areas of 
predicted absence where mean probabilities are extremely 
small (values are close to 0). Users should be aware that 
high CoVs in those locations do not necessarily indicate high 
uncertainty, and these areas should be reviewed alongside the 
mean predictions to avoid misinterpretation. 

3.4.2 Informing Management Decisions
Submerged lands in and around Apra Harbor are used by 
the Navy for a variety of training exercises and activities, 
which have the potential to impact coral reef ecosystems. 
Naval activities and actions that potentially affect coral reef 
ecosystems must be mitigated under Executive Order 13089. 
These map products will be used by NAVFAC Marianas to 
comply with this executive order and to guide how best to 
minimize impacts to important habitats in Apra Harbor and 
Haputo ERA. 

In addition to supporting NAVFAC Marianas, the map products 
described here were designed with these and other potential 
management uses in mind. Notably, these products may inform 
other local marine monitoring and management decisions, 
such as identifying and monitoring nuisance species (e.g., 
Chaetomorpha vieillardii and Acanthaster planci) (Guam BSP, 
2018), quantifying the economic value of coral reefs (van 
Beukering, 2007), calculating damage and costs following ship 
grounding or other impacts (Brown, 2015), monitoring habitat 
changes through time (Pendleton et al., 2005), minimizing 
development impacts to important habitats (Nelson et al., 2016), 
designing sampling plans for monitoring or scientific studies 
(Guam and NOAA CRCP, 2010), and conducting education and 
outreach. 

Regardless of the application, the best way to access and use 
these highly resolved maps is through GIS or other software 
that allows users to zoom in and out as needed. The GIS-ready 
products from this project are listed below: 

1. Map of classified benthic habitats in and around Apra
Harbor and in Haputo ERA from 0- to 50-m depths;

2. Maps of the predicted occurrence of 19 substrate and
biological cover types;

3. Orthorectified, atmospheric- and water column–corrected
satellite images;

4. Maps depicting the depth, roughness, hardness, and
topography of the seafloor. These data for Inner Apra
Harbor are restricted and are not publicly available.

5. Underwater photographs and annotations used to train
model development and validate their performance and
accuracy;

6. A technical report (this document) describing the
methods, results, and limitations for scientific and
management applications of these products.

These GIS products are freely available for download here: 
https://coastalscience.noaa.gov/project/characterizing-
submerged-lands-around-navy-base-guam-cnmi/ 
https://coastalscience.noaa.gov/project/characterizing-benthic-
habitats-in-haputo-ecological-reserve-area-guam/ 

If users do not have GIS software, tiled versions of the satellite 
imagery (Appendix C) and classified habitat maps (Appendix 
D) are available for printing, and a data viewer is available
online for viewing and querying these habitat products without
any specialized software: https://experience.arcgis.com/
experience/7b6c0e7164234182985a89d5b5703475
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Glossary 

Note: many of these definitions are specific to the context of this 
project. 

Bag fraction (bf) – In a boosting context, a parameter that defines 
the fraction of the data drawn at random, without replacement, from 
the full training dataset at each iteration. 
Boosted classification tree (BCT) model – A modeling approach 
that combines a machine learning technique, boosting, with 
traditional tree-based statistical modeling. In this approach, a large 
number of classification trees are fit stage-wise (i.e., after each tree 
is fit, the remaining variation in the data is used to fit the next tree) 
and then combined to generate a final ensemble model. 
Boosted regression tree (BRT) model – A modeling approach 
that combines a machine learning technique, boosting, with 
traditional tree-based statistical modeling. In this approach, a large 
number of regression trees are fit stage-wise (i.e., after each tree 
is fit, the remaining variation in the data is used to fit the next tree) 
and then combined to generate a final ensemble model. 
Boosting – A technique for fitting models that employs an iterative 
approach. Models are built in a stage-wise fashion, where existing 
trees are left unchanged and the variance remaining from the last 
tree is used to fit the next one. 
Bootstrapping – A data resampling technique for estimating the 
statistical uncertainty (precision) in model predictions. 
Coefficient of variation (CoV) – Measure of dispersion for a 
distribution, representing the standard deviation as a proportion 
of the mean. In the context of a model prediction, a larger CV 
indicates more variation (uncertainty) in the prediction relative to 
the mean prediction. 
Environmental predictor – An independent variable in a model 
that is used to explain variation in the response. 
k-fold cross-validation (kCV) – A technique for evaluating the
predictive ability of a fitted model. The data are divided into k = 10
data subsets (i.e., folds). Nine of these folds are used to create
models, while the one remaining is used to evaluate the model’s
performance.
Learning rate (lr) – In a boosting context, the degree to which 
each base learner contributes to the final model. The optimal 
learning rate is one that minimizes prediction error in the fewest 
number of boosting iterations. 
Percent deviance explained (PDE) – A measure of the variation 
in the data explained by a model (beyond that explained by a 
model without predictor variables). Values normally range between 
0% and 100%. Higher values indicate better model performance. 
kCV PDE is calculated using the training data and k-fold cross 
validation. Test PDE is calculated using the validation data only. 

Receiver operating characteristic (ROC) area under the curve 
(AUC) – An ROC curve is a graphical representation of how well 
a model can discriminate between (or predict) two categories of 
data (e.g., presence/absence). The AUC is the integral of an ROC 
curve. AUC values range between 0 and 1 where a value >0.5 
indicates performance better than a random guess. Higher AUC 
values indicate better model performance. Test AUC is calculated 
using the validation data only. 
Resampling – A method of using randomly drawn subsets of 
data to estimate statistical precision (e.g., variation in model 
predictions), perform a significance test (e.g., permutation test 
of predictor importance), or perform model validation (e.g., 
cross-validation). The term “resampling” can also be used in a 
geographic information system (GIS) to describe the interpolation 
methods used to change the resolution of a raster dataset. 
Root mean square error (RMSE) – RMSE measures the error 
associated with a model by calculating the difference between 
the predicted values (extracted from the model) and the observed 
values (extracted from the field data). Test RMSE is calculated 
using the validation data only. 
Spatial autocorrelation – A measure of similarity (correlation) 
between nearby observations. 
Spatial predictive modeling – A modeling technique whereby 
relationships between environmental predictors and a response 
variable are estimated for locations with survey data (e.g., 
underwater photographs). These relationships are then used to 
predict the response in locations without survey data. 
Sensitivity – Also known as the true positive rate, a measure of 
model performance for binary classification models (e.g., presence 
versus absence) that measures the proportion of positives that are 
correctly identified as positives. 
Specificity – Also known as the true negative rate, a measure of 
model performance for binary classification models (e.g., presence 
versus absence) that measures the proportion of negatives that are 
correctly identified as negatives. 
Validation data – Data that are excluded during model fitting and 
later used to independently validate the predictive performance of 
the fitted model and/or accuracy of the classified map. 
Training data – Data to which a model is fitted (using kCV) in 
order to test and optimize model parameter values. 
Tree complexity (tc) – In boosted regression and classification 
tree models, a parameter that controls the number of allowable 
nodes in a tree. This limits the number of possible interactions 
between predictor variables. In general, greater tree complexity 
results in fewer iterations needed for model convergence. 
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Appendix A Apra Harbor 

Figure A1. Maps 
depicting the 
orthorectified, 
atmospheric- and water 
column–corrected WV2 
and WV3 band pairs 
used to create the 
habitat predictions for 
Apra Harbor. 
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Haputo Ecological Reserve Area 

Figure A2. Maps depicting 
the orthorectified, 
atmospheric- and water 
column–corrected WV2 
and WV3 band pairs 
used to create the habitat 
predictions for Haputo 
ERA. 
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Apra Harbor 

Figure A3. Maps depicting 
the topographic predictors 
used to create the habitat 
predictions for Apra 
Harbor. 
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Haputo Ecological Reserve Area 

Figure A4. Maps depicting 
the topographic predictors 
used to create the habitat 
predictions for Haputo 
ERA. 
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Figure A5. Map 
depicting the sidescan 
(left) and multibeam 
(right) backscatter used 
to create the habitat 
predictions for Apra 
Harbor. 

Figure A6. Maps 
depicting the geographic 
predictors used to create 
the habitat predictions 
for Apra Harbor. 

Apra Harbor 

Haputo Ecological Reserve Area 

Figure A7. Maps 
depicting the geographic 
predictors used to create 
the habitat predictions 
for Haputo ERA. 
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Figure B1. Map showing location of feedback provided during expert review of habitat predictions and map in Apra Harbor. No comments were made about habitat 
predictions or maps in Haputo ERA. The numbers in the map correspond to the numbers in Table B1. 

Table B1. Feedback from and responses to expert review of habitat predictions and map in Apra Harbor. No comments were made about habitat predictions or maps 
in Haputo ERA. 
# Comment Response 
1 I'm surprised that this doesn't have a higher probability for Porites rus; as 

I recall, that's what makes up most of this reef. This area shows a high 
probability of Live Coral Reef (All Species), but not for Porites rus. This 
makes me wonder if there is some factor that reduces the model's ability 
to predict this species? 

2 From the areas I am familiar with, the maps look fairly accurate within 
the harbor. Outside of the harbor, along Orote point, I am surprised by 
the high probability of occurrence for branching (but not surprised by 
encrusting) corals probability of occurrence. Overall I think the map looks 
great, and I look forward to using this map to inform our reef restoration 
activities! 

You’re correct. The main driver of the Porites rus model (slide 2) is total curvature (slide 3). 
In that location, total curvature is low compared with surrounding reef (slides 4 & 5), which 
may explain why probabilities are lower than expected. This is a limitation of the bathy data 
resolution and, therefore, a limitation of the prediction. We’ll plan to discuss/highlight this 
area in the report in the use/limitations section. 

That’s great to hear the maps look reasonably accurate! About branching corals along 
Orote point, we found multiple locations with low % cover of branching corals (slide 6), 
which is why the model predicts higher probabilities. For this exercise, branching corals 
included Acropora, Pocillopora, and Porites, and were marked present if they had ≥1% 
cover. At the end of this project, we plan to make the georeferenced DLSR underwater 
photos available publicly so that folks can see for themselves what’s on the seafloor at 
each location. The goal is to make all the data publicly available by March/April. 
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Figure C1. Map showing the location of tiles 1 to 7 for Apra Harbor. AOI = area of interest. 
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Figure C2. Tile 1 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest. 

55 



Characterizing Submerged Lands Around Naval Base Guam, Mariana Islands

Appendix C 

Figure C3. Tile 2 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest. 
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Figure C4. Tile 3 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest. 
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Figure C5. Tile 4 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest. 
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Figure C6. Tile 5 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest. 
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Figure C7. Tile 6 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest. 
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Figure C8. Tile 7 showing the satellite image mosaic used to create benthic habitat maps for Apra Harbor. AOI = area of interest. 

61 



Characterizing Submerged Lands Around Naval Base Guam, Mariana Islands

Appendix C 

Figure C9. Map showing the location of tiles 1 and 2 for Haputo Ecological Reserve Area. AOI = area of interest. 
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Figure C10. Tile 1 showing the satellite image mosaic used to create benthic habitat maps for Haputo Ecological Reserve Area. AOI = area of interest. 
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Figure C11. Tile 2 showing the satellite image mosaic used to create benthic habitat maps for Haputo Ecological Reserve Area. AOI = area of interest. 
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Figure D1. Map showing the location of tiles 1 to 7 for Apra Harbor. AOI = area of interest. 
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Figure D2. Tile 1 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest. 
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Figure D3. Tile 2 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest. 
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Figure D4. Tile 3 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest. 
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Figure D5. Tile 4 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest. 
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Figure D6. Tile 5 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest. 
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Figure D7. Tile 6 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest. 
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Figure D8. Tile 7 showing the classified benthic habitat map for Apra Harbor. AOI = area of interest. 
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Figure D9. Map showing the location of tiles 1 to 2 for Haputo Ecological Reserve Area. AOI = area of interest. 
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Figure D10. Tile 1 showing the classified benthic habitat map for Haputo Ecological Reserve Area. AOI = area of interest. 
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Figure D11. Tile 2 showing the classified benthic habitat map for Haputo Ecological Reserve Area. AOI = area of interest. 
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