

065713
0066505
0066367

U S DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Southeast Fisheries Science Center
P O Drawer 1207
Pascagoula, Miss. 39568-1207

NOAA Ship *Oregon II* Cruise 290 (R2-10-01)
6/8-8/3/2010

INTRODUCTION

NOAA Ship *Oregon II* departed Pascagoula, Mississippi on June 24, 2010 for the 30th annual Summer Southeast Area Monitoring and Assessment Program (SEAMAP) Shrimp/Bottom fish Survey in the northern and western U.S. Gulf of Mexico. SEAMAP is a state-federal-university program for the collection, management and dissemination of fishery independent data.

The primary goal of the survey is to study the abundance and distribution of demersal organisms occurring in the northern Gulf of Mexico in 5 to 60 fm and to provide additional biological and catch rate information on demersal organisms occurring in the study area.

There were two amendments to survey dates. The first proposed amended dates were scheduled for Leg I: June 24th – June 29th and Leg II: July 1st – July 17th. The survey was extended to complete stations in the West Delta. The second amended dates of the survey were July 24th – August 3rd, 2010.

One hundred eighty-four hours were lost due to ship yard delays. Seventy-two hours were lost due to weather and mechanical issues aboard NOAA Ship *Oregon II*. There were two scheduled port calls to exchange scientific personnel (Galveston, Texas June 29th to July 2nd and Pascagoula, Mississippi July 17th to July 24th). The ship returned to Pascagoula, Mississippi on August 3rd, 2010.

Summary of Objectives:

1. Sample the northern Gulf of Mexico with Southeast Area Monitoring and Assessment Program (SEAMAP) standard sampling gear to determine the abundance and distribution of benthic fauna. Transmit information weekly, via email, for real time reports of catch rates of penaeid species.
2. Conduct 11 SEAMAP trawling stations in the seafood closure area off the Louisiana coast.
3. Collect size measurements to determine population size structures.
4. Conduct CTD cast to profile temperature, salinity, conductivity, transmissivity, dissolved oxygen concentrations and fluorometry.
5. Collect daily water samples and perform bench top dissolved oxygen tests using the Winkler Titration method on triplicate samples and handheld HACH DO meter. Transmitt data every 3 days to NOAA National Coastal Data Development Center at Stennis Space Center, Mississippi and other researchers to map the hypoxic zone.

6. Collect ichthyoplankton samples with bongo and neuston samplers to map the distribution of fish eggs and larvae.
7. Conduct 13 additional SEAMAP Plankton Stations with one additional bongo tow in the seafood closure area off of the Louisiana coast.
8. Collect additional ichthyoplankton samples with bongo and neuston samplers.
9. Perform additional trawling sampling in closed and surveillance Deepwater Horizon MC252 (DWH) closed fishing area.
10. Collect start and end dates/times, start and end latitude and longitude coordinates at visually encountered observation rafts of sargassum during survey observations.
11. Perform National Resource Damage Assessment (NRDA) Group bird observations from the bow of the *Oregon II*.
12. Collect batfish (*Ogcocephalus* sp.); Atlantic croaker (*Micropogonias undulatus*), grouper (*Epinephelus* sp. and *Mycteroperca* sp.); sharks, dogfish (*Mustelus* sp.), skates and rays (*Elasmobranchii*); red snapper (*Lutjanus campechanus*); vermillion snapper (*Rhomboptilus aurorubens*); spot (*Leiostomus xanthurus*) and tilefish (*Malacanthidae*) for age, growth, abundance and distributional studies.

MATERIALS AND METHODS

The sampling gear consisted of 40-ft shrimp nets with 8-ft by 40-in chain bracketed wooden doors. A standard free tickler chain cut 42 in shorter than the footrope was used to stimulate benthic organisms out of the substrate into the path of the oncoming net. Towing speed was targeted at 2.5 kt. Sample sites were downloaded from NOAA's Environmental Satellite, Data, and Information Service (NESDIS). Geographical strata consisted of Gulf coast shrimp zones 11-21 and bathymetric strata consisted of 5-60 fm. Once the data were downloaded, 325 sites were randomly selected. Towing durations were 30 min at a targeted speed of 2.5 kt with tow direction left to the discretion of the bridge watch.

The sampling design used in this survey was altered from that used in previous years by making 3 major changes. Day/night stratification and depth stratification were eliminated and tow duration was limited to 30 min. These changes resulted in an increased efficiency of the survey and an increase in the number of stations that could be occupied. Additional stations resulted in improvement in precision of catch per unit effort (CPUE) estimates for a number of species.

Trawl catch data were electronically recorded at-sea with the Fishery Scientific Computing System (FSCS), version 1.6, developed by NOAA's System Development Branch of the Office of Marine & Aviation Operations. For FSCS to be operational, the Scientific Computing System (SCS) version 4.2.3 was used to collect metadata, including position, depth, date, time and meteorological data. SCS was also used to collect metadata for ichthyoplankton stations and CTD stations. Catches were either processed in their entirety or subsampled, depending on the total catch weight. If catches exceeded 50 lb, then at least 10% was taken as a subsample. Catches (or subsamples) were sorted by species which were then enumerated and weighed. Additional data taken for specimens identified down to species level, included length measurements, sex, and gonad condition. Specimens that could not be identified to species level were frozen and brought back to the laboratory for identification.

Specimens were collected within closed areas of the DWH Oil Spill Closure area. SEAMAP Stations were randomly selected along with additional stations in the oil spill gridded area. Collected specimens were wrapped in foil, measured and weighed and frozen immediately for sensory and chemical analysis. Specimens were then transferred by chain of custody to the National Seafood Inspection Laboratory in Pascagoula.

Ichthyoplankton samples (conducted with bongo and neuston samplers) were collected at half-degree intervals of latitude and longitude within the defined survey area. Plankton sample sites were occasionally relocated to the nearest trawl sample site to optimize survey time. Bongo tows were made with 2 conical 61-cm nets with 0.335 mm mesh netting. General Oceanic flowmeters were suspended in each side of the frame to measure the amount of water filtered. Single oblique tows were made. Nets were towed at 1.5 to 2.0 kt to maintain a 45° wire angle of towing warp, and were fished to a maximum depth of 200 m or within 2 m of bottom in depths less than 200 m. Neuston sampling gear consisted of a 0.947 mm mesh net mounted on a 1 by 2 m frame. The net was towed for 10 min with the frame half submerged at the surface. Bongo and neuston samples were initially preserved in 10% buffered formalin and then transferred to 95% ethyl alcohol 36 h later.

An additional bongo tow was sampled at selected sites within the SEAMAP sampling area for NRDA analysis. The samples were initially preserved using a chilled 70% ethyl alcohol solution for the right bongo and a chilled 10% paraformalin solution for the left bongo. A 10 gm subsample was taken from the left bongo and frozen before preservation. The left bongo sample was transferred into methanol 6 h later. The right bongo was then transferred into chilled 70% ethyl alcohol 24 h later.

Sargassum rafts were visually observed during survey transits. The bridge collected start and end dates/times, start and end latitude and longitude coordinates. These data will be included as an addition to the ichthyoplankton database

Vertical profiles of temperature, conductivity, dissolved oxygen, percent light transmission and fluorometer values were recorded with a Seabird SBE 911. Forel-ule water color and percent cloud cover observations were also taken during daylight hours. Daily water samples (maximum depth) were taken at the first station after sunrise of each day to perform 3 replicate Winkler titrations to monitor the performance of the DO sensors on the environmental profiler. The values obtained from the Winkler titrations were recorded in the FSCS Access Database. An Orion LDOTM HQ10 portable dissolved oxygen meter was also used at these stations to compare DO readings. Additional water samples were collected for RNA analysis in conjunction with the DWH Oil Spill.

RESULTS AND DISCUSSIONS

One hundred and ninety-six stations were successfully sampled, 11 seafood sampling stations and 3 unsuccessful stations (Figure 1). For summary purposes, data were grouped into 2 geographic areas; West Delta (89°15'-94°00' W Long), and Texas (94°00'-98°00' W Long), and 6 depth intervals; 5-9, 10-19, 20-29, 30-39, 40-49, and 50-60 fm (Table 2). Table 1 lists the 5 most numerous species caught, plus pink and white shrimp and red snapper. The mean total catch rate for the survey was 146.8 kg/h, a 38% increase in relative abundance as compared to 2009 (106.3 kg/h) and a 47.8% increase relative to the 5 year mean for 2004-2009 (99.3 kg/h) (Table 2). Sciaenidae was the most abundant family caught with the Atlantic croaker making the greatest contribution (Table 2). Brown

shrimp, *Farfantepenaeus aztecus*, was the most abundant commercial shrimp species, followed by white shrimp, *Litopenaeus setiferus* and pink shrimp, *Farfantepenaeus duorarum*.

Fifty-two bongo and 37 neuston stations were accomplished (Fig. 2). Neuston and right side bongo samples were returned to Pascagoula for subsequent shipment to the Polish Sorting Center for sorting and identification according to standard SEAMAP protocol. Left bongo samples were sent to the SEAMAP Plankton Archiving Center at the Gulf Coast Research Laboratory (GCRL) in Ocean Springs, Mississippi.

Two hundred and eight CTD casts, 87 cloud cover, and 90 water color measurements were collected (Table 3). There were 25 Winkler Titrations conducted (Table 3). There were no secci disc measurements taken on this survey.

Fish and invertebrate samples were frozen and returned to staff members at GCRL, skate samples were collected for Dr. James Sulikowski (University of New England), batfish species were collected for Bronson Nagareda, croaker were collected for Brittany Palm and red snapper samples were shipped to the Texas A&M University, Corpus Christi.

ACKNOWLEDGMENTS

On behalf of Mississippi Laboratory and the scientific party I would like to thank the Commanding Officer and crew of NOAA Ship *Oregon II* for a job well done during the survey.

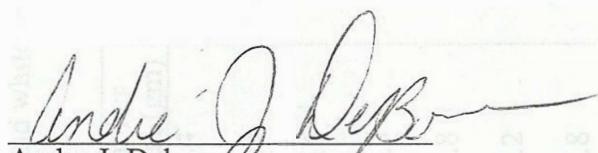
Leg III (July 24 – August 1, 2010)

Name	Title	Sex	Organization	Citizenship
Andre DeRosa	Field Party Chief	M	NMFS, Miss.	USA
Brittany Palm	Watch Chief	F	IAP, Miss.	USA
Alonzo N. Hamilton, Jr.	Watch Chief	M	NMFS, Miss.	USA
Michael Hendon	Res. Fish. Bio.	F	NMFS, Miss.	USA
Darin French	Res. Fish. Bio.	M	IAP, Miss.	USA
Allison Orton	Coop. Stud.	F	IAP, Miss.	USA
Holland McCandless	Volunteer	F	Cooperator	USA
David Berquist	Volunteer	M	Cooperator	USA
Sandra Daigle	Volunteer	F	Cooperator	USA
Stephen Powell	Res. Chem.	F	NRDA	USA
Ute Hop	Res. Observ.	F	NRDA	USA

CRUISE PARTICIPANTS

Leg I (June 24 – June 29, 2010)

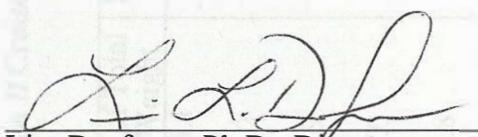
<u>Name</u>	<u>Title</u>	<u>Sex</u>	<u>Organization</u>	<u>Citizenship</u>
Andre Debose	Field Party Chief	F	NMFS, Miss.	USA
Alonzo N. Hamilton, Jr.	Watch Chief	M	NMFS, Miss.	USA
Carrie Horton	Fish. Bio.	F	IAP, Miss.	USA
Brittany Palm	Fish. Bio.	F	IAP, Miss.	USA
Devin Flawd	Intern	M	IAP, Miss.	USA
Misty Cartrett	Volunteer	F	Cooperator	USA
Brody Benoist	Volunteer	M	Cooperator	USA
Alex Fogg	Volunteer	M	Cooperator	USA
Holland McCandless	Volunteer	F	Cooperator	USA
Michelle Shoemake	TAS	F	TAS Program	USA


Leg II (July 1 – July 17, 2010)

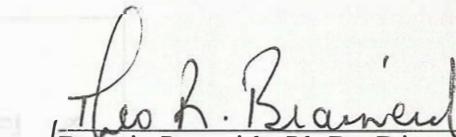
<u>Name</u>	<u>Title</u>	<u>Sex</u>	<u>Organization</u>	<u>Citizenship</u>
Andre Debose	Field Party Chief	F	NMFS, Miss.	USA
Alonzo Hamilton	Watch Chief	M	NMFS, Miss.	USA
Brittany Palm	Watch Chief	F	IAP, Miss.	USA
Michael Hendon	Res. Fish. Bio.	M	NMFS, Miss.	USA
Sean Lucey	Res. Fish. Bio.	M	NMFS, MA	USA
Geoff Shook	Res. Fish. Bio.	M	NMFS, MA	USA
Holland McCandless	Volunteer	F	Cooperator	USA
David Benoist	Volunteer	M	Cooperator	USA
Bruce Taterka	TAS	M	TAS Program	USA
Kimberley Lewis	TAS	F	TAS Program	USA
Abigail Williams	Volunteer	F	Gustavus College	USA

Leg III (July 24 – August 3, 2010)

<u>Name</u>	<u>Title</u>	<u>Sex</u>	<u>Organization</u>	<u>Citizenship</u>
Andre Debose	Field Party Chief	M	NMFS, Miss	USA
Brittany Palm	Watch Chief	F	IAP, Miss.	USA
Alonzo N. Hamilton, Jr.	Watch Chief	M	NMFS, Miss.	USA
Michael Hendon	Res. Fish. Bio.	F	NMFS, Miss.	USA
Devin Flawd	Res. Fish. Bio.	M	IAP, Miss.	USA
Allison Odom	Coop. Stud.	F	IAP, Miss	USA
Holland McCandless	Volunteer	F	Cooperator	USA
David Benoist	Volunteer	M	Cooperator	USA
Sandra Coghlan	Volunteer	F	Cooperator	USA
Stephani Powell	Bird Obser.	F	NRDA	USA
Lisa Hug	Bird Obser.	F	NRDA	USA


Submitted By:

Andre J. DeBose
Field Party Chief


Date 12-8-2010

Approved By:

Lisa Desfosse, Ph.D., Director
Mississippi Laboratory

Date 12/15/10

✓ Bonnie Ponwith, Ph.D., Director
Southeast Fisheries Science Center

Date 12/17/10

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000

Table 1. Five most numerous organisms caught during NOAA Ship *Oregon II* Cruise 290 (R2-10-01), plus pink and white shrimp, and red snapper (n = 178).

	Name	Percent of Total Number Caught	Percent of Total Catch Weight	Percent Frequency Of Capture	Weight Per Individual (gm)
1	Atlantic croaker (<i>Micropogonias undulatus</i>)	42.5	46.1	66.3	28.4
2	Brown shrimp (<i>Farfantepenaeus aztecus</i>)	9.3	5.2	93.3	14.5
3	Gulf butterfish (<i>Peprilus burti</i>)	5.6	6.9	82.0	32.6
4	Lesser blue crab (<i>Callinectes similis</i>)	4.6	2.0	74.7	11.3
5	Rough scad (<i>Trachurus lathami</i>)	4.2	2.8	44.4	17.8
6	Longspine porgy (<i>Stenotomus caprinus</i>)	3.7	4.2	69.1	30.2
7	White shrimp (<i>Litopenaeus setiferus</i>)	0.7	1.1	36.5	45.8
8	Pink shrimp (<i>Farfantepenaeus duorarum</i>)	0.2	0.2	26.4	22.5
9	Red snapper (<i>Lutjanus campechanus</i>)	0.1	0.8	47.8	189.9

Table 2. Mean catch rates (kg/hr) of Atlantic croaker, brown shrimp, Gulf butterfish, lesser blue crab, rough scad, longspine porgy, white and pink shrimp, red snapper, crustacea, finfish and total live catch for NOAA Ship *Oregon II* Cruise 290 (R2-10-01) by area, depth, and diel strata.

Atlantic croaker

Area	Depth												Diurnal Period				Total	
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	89.4	26	122.4	18	157.4	10	26.3	4	10.7	1	29.5	38	125.4	33	80.5	71	104.5
Texas	11	108.5	40	81.3	23	7.6	20	0.2	8	0.1	5	0.1	59	28.9	48	60.8	107	43.2
Areas Combined	23	98.5	66	97.4	41	73.4	30	8.9	12	3.6	6	5.0	97	66.7	81	68.8	178	67.7

Brown shrimp

Area	Depth												Diurnal Period				Total	
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	0.9	26	3.5	18	13.0	10	11.1	4	4.9	1	3.5	38	9.6	33	3.1	71	6.6
Texas	11	2.6	40	6.9	23	14.9	20	9.7	8	4.1	5	1.1	59	8.9	48	7.3	107	8.2
Areas Combined	23	1.7	66	5.5	41	14.1	30	10.2	12	4.4	6	1.5	97	9.2	81	5.6	178	7.6

Gulf butterfish

Area	Depth												Diurnal Period				Total	
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	4.0	26	19.5	18	18.0	10	8.9	4	1.2	1	0.0	38	15.8	33	11.3	71	13.7
Texas	11	5.1	40	6.5	23	7.0	20	12.5	8	1.4	5	20.2	59	6.2	48	9.9	107	7.8
Areas Combined	23	4.5	66	11.6	41	11.8	30	11.3	12	1.3	6	16.8	97	10.0	81	10.4	178	10.2

Lesser blue crab

Area	Depth												Diurnal Period				Total	
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	0.1	26	0.7	18	1.7	10	0.3	4	0.0	1	0.0	38	1.1	33	0.4	71	0.7
Texas	11	0.7	40	7.1	23	6.1	20	1.8	8	0.0	5	0.0	59	3.7	48	5.1	107	4.4
Areas Combined	23	0.4	66	4.6	41	4.1	30	1.3	12	0.0	6	0.0	97	2.7	81	3.2	178	2.9

Table 2. continued.

Rough scad

Area	Depth												Diurnal Period				Total	
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	0.0	26	0.3	18	6.4	10	2.9	4	9.1	1	0.5	38	2.6	33	2.8	71	2.7
Texas	11	0.0	40	3.6	23	5.6	20	12.6	8	0.7	5	2.9	59	6.6	48	3.3	107	5.1
Areas Combined	23	0.0	66	2.3	41	6.0	30	9.4	12	3.5	6	2.5	97	5.0	81	3.1	178	4.1

Longspine porgy

Area	Depth												Diurnal Period				Total	
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	0.0	26	1.3	18	16.7	10	16.1	4	11.3	1	21.3	38	7.9	33	7.9	71	7.9
Texas	11	0.2	40	1.8	23	8.2	20	12.4	8	2.0	5	2.9	59	3.7	48	6.7	107	5.1
Areas Combined	23	0.1	66	1.6	41	11.9	30	13.7	12	5.1	6	6.0	97	5.3	81	7.2	178	6.2

White shrimp

Area	Depth												Diurnal Period				Total	
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	1.9	26	1.8	18	0.0	10	0.0	4	0.0	1	0.0	38	0.8	33	1.1	71	1.0
Texas	11	5.0	40	4.4	23	0.0	20	0.0	8	0.0	5	0.0	59	1.5	48	2.9	107	2.2
Areas Combined	23	3.4	66	3.3	41	0.0	30	0.0	12	0.0	6	0.0	97	1.2	81	2.2	178	1.7

Pink shrimp

Area	Depth												Diurnal Period				Total	
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	0.0	26	0.4	18	0.0	10	0.0	4	0.0	1	0.0	38	0.1	33	0.3	71	0.2
Texas	11	0.2	40	0.6	23	0.2	20	0.1	8	0.0	5	0.0	59	0.4	48	0.2	107	0.3
Areas Combined	23	0.1	66	0.5	41	0.1	30	0.1	12	0.0	6	0.0	97	0.3	81	0.2	178	0.3

Table 2. continued
Red snapper

Area	Depth										Diurnal Period				Total			
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	0.0	26	0.3	18	2.3	10	0.4	4	0.0	1	11.3	38	0.4	33	1.5	71	0.9
Texas	11	0.2	40	0.6	23	1.1	20	1.6	8	7.1	5	1.5	59	1.8	48	0.9	107	1.4
Areas Combined	23	0.1	66	0.5	41	1.6	30	1.2	12	4.7	6	3.1	97	1.2	81	1.1	178	1.2

Crustacea

Area	Depth										Diurnal Period				Total			
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	6.5	26	9.6	18	18.8	10	17.2	4	8.6	1	5.4	38	16.8	33	7.3	71	12.4
Texas	11	10.7	40	22.6	23	28.6	20	15.3	8	8.1	5	4.1	59	19.0	48	19.8	107	19.4
Areas Combined	23	8.5	66	17.5	41	24.3	30	15.9	12	8.3	6	4.3	97	18.2	81	14.7	178	16.6

Finfish

Area	Depth										Diurnal Period				Total			
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	140.8	26	191.0	18	241.2	10	86.9	4	66.1	1	115.4	38	196.4	33	145.0	71	172.5
Texas	11	160.8	40	133.7	23	59.6	20	59.4	8	45.3	5	49.9	59	80.2	48	115.7	107	96.1
Areas Combined	23	150.3	66	156.3	41	139.3	30	68.6	12	52.2	6	60.8	97	125.7	81	127.6	178	126.6

Total catch

Area	Depth										Diurnal Period				Total			
	5 - 9		10 - 19		20 - 29		30 - 39		40 - 49		50 - 60		Day		Night			
	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean	N	Mean
East Delta																		
West Delta	12	147.5	26	201.26	18	263.1	10	110.2	4	79.9	1	123.4	38	215.0	33	154.9	71	187.1
Texas	11	174.1	40	160.0	23	92.6	20	81.6	8	57.6	5	60.5	59	103.7	48	140.0	107	120.0
Areas Combined	23	160.2	66	176.2	41	167.5	30	91.2	12	65.0	6	71.0	97	147.3	81	146.1	178	146.8

Table 3. Summary of environmental samples and data collected during NOAA Ship *Oregon II* Cruise 290 (R2-10-01).

Observation	Number
Shrimp trawl	196*
Bongo	52
Neuston	37
CTD	208
Water color	90
Cloud cover	87
Winkler Titrations	25

* Includes 178 standard survey stations, 11 seafood safety sampling stations, 4 stations pursuing live juvenile red snapper, and 3 unsuccessful stations during which nets were torn on bottom obstructions.

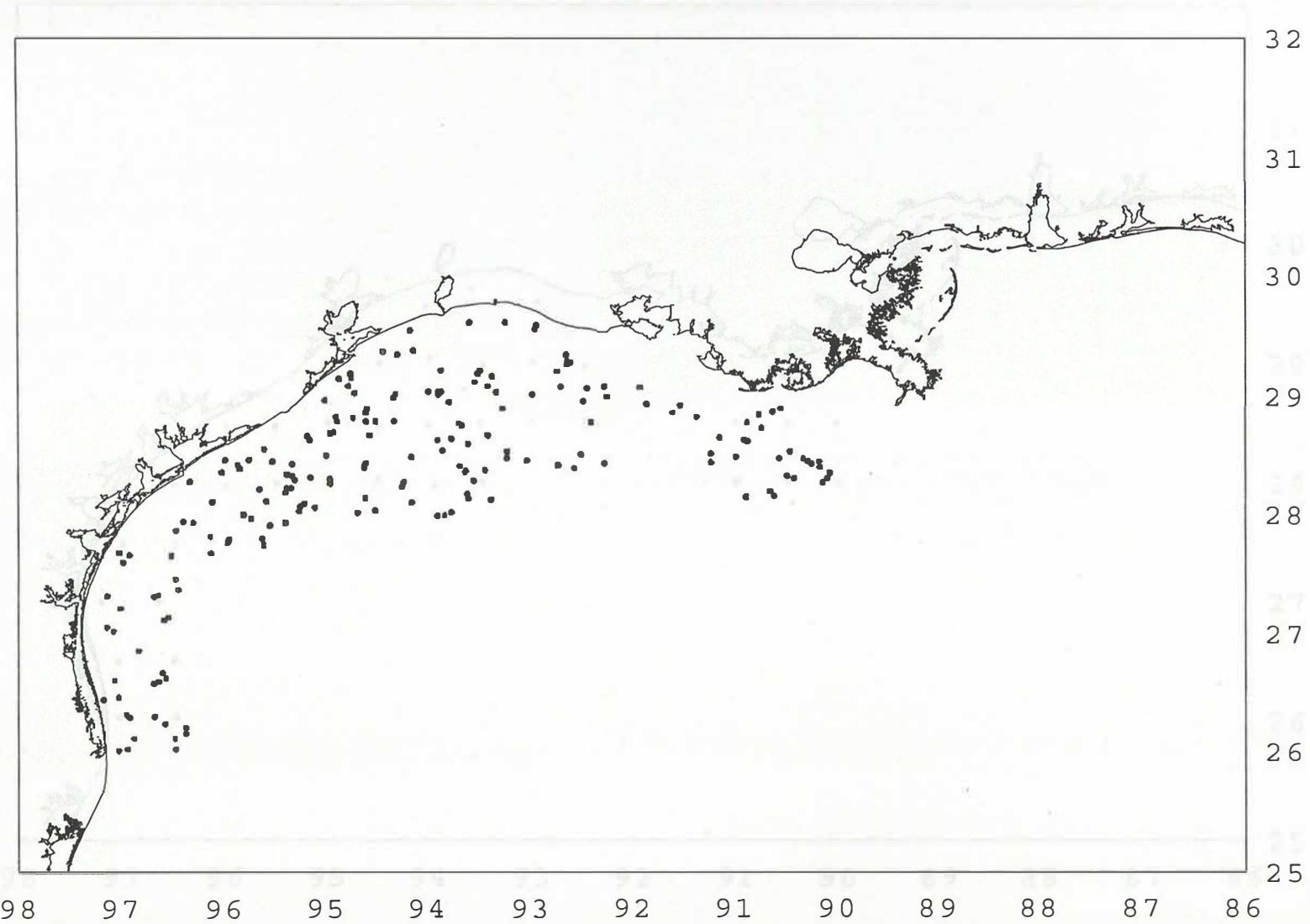


Figure 2. Hydrobathyte sampling stations completed during NOAA Ship *Oregon II* Cruise 290 (R2-10-01).

Figure 1. Shrimp trawl stations accomplished during NOAA Ship *Oregon II* Cruise 290 (R2-10-01).

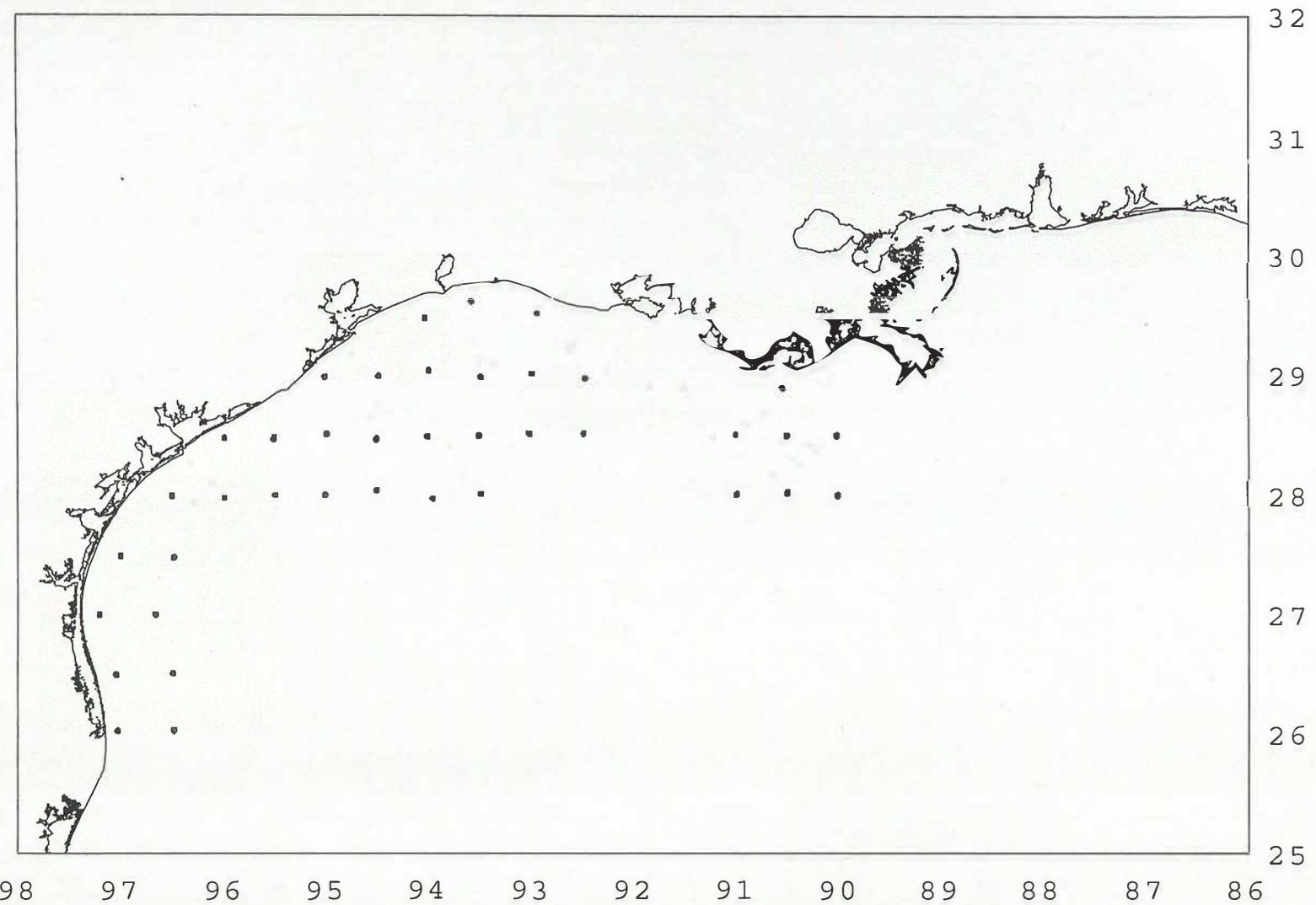


Figure 2. Ichthyoplankton sampling stations completed during NOAA Ship *Oregon II* Cruise 290 (R2-10-01).

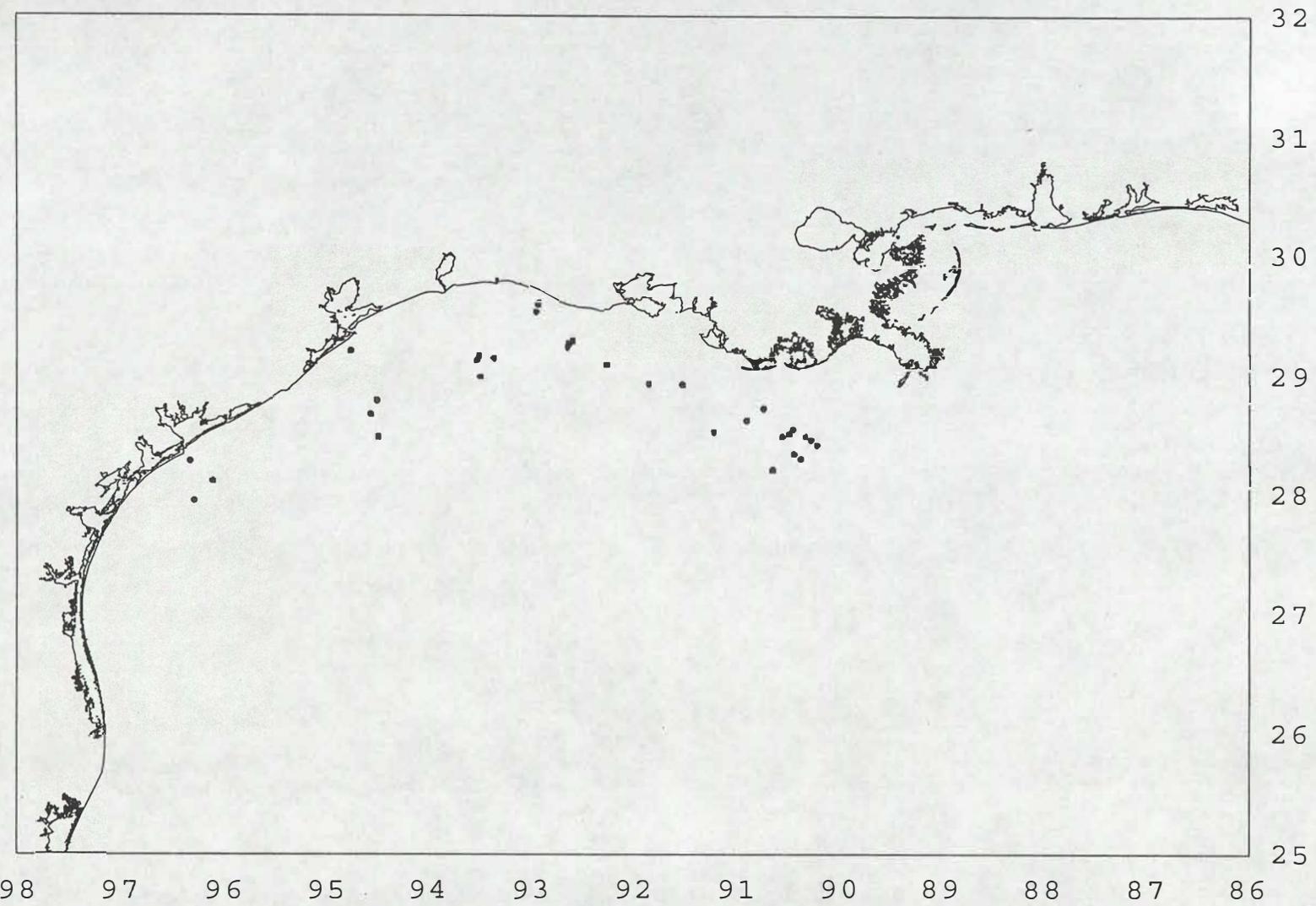


Figure 3. Locations where hypoxic conditions (bottom dissolved oxygen measurement ≤ 2.0 milligrams per liter) were encountered during NOAA Ship *Oregon II* Cruise 290 (R2-10-01).