Integrative and Comparative Biology

Integrative and Comparative Biology, volume 0, pp. 1-15
https://doi.org/10.1093/icb/icae002

Society for Integrative and Comparative Biology

INVITED PAPER

The Effects of Rearing Environment on Organization of the
Olfactory System and Brain of Juvenile Sockeye Salmon,

Oncorh)/nchus nerka

Russell H. Ward @', Thomas P. Quinn ©®, Andrew H. Dittman ®* and Kara E. Yopak ®f

*Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403, USA; TSchool of Aquatic
and Fishery Sciences, University of Washington, Seattle WA 98195, USA; *Environmental and Fisheries Sciences Division,
Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration,
2725 Montlake Blvd. East, Seattle, WA 98112, USA

'E-mail: rhw6057@uncw.edu

Synopsis  Pacific salmon (Oncorhynchus spp.) hatch and feed in freshwater habitats, migrate to sea to mature, and return to
spawn at natal sites. The final, riverine stages of the return migrations are mediated by chemical properties of the natal stream
that they learned as juveniles. Like some other fish, salmon growth is asymptotic; they grow continuously throughout life toward
a maximum size. The continued growth of the nervous system may be plastic in response to environmental variables. Due to
the ecological, cultural, and economic importance of Pacific salmon, individuals are often reared in hatcheries and released
into the wild as juveniles to supplement natural populations. However, hatchery-reared individuals display lower survivorship
and may also stray (i.e., spawn in a non-natal stream) at higher rates than their wild counterparts. Hatchery environments may
lack stimuli needed to promote normal development of the nervous system, thus leading to behavioral deficits and a higher
incidence of straying. This study compared the peripheral olfactory system and brain organization of hatchery-reared and
wild-origin sockeye salmon fry (Oncorhynchus nerka). Surface area of the olfactory rosette, diameter of the olfactory nerve, total
brain size, and size of major brain regions were measured from histological sections and compared between wild and hatchery-
origin individuals. Hatchery-origin fish had significantly larger optic tecta, and marginally insignificant, yet noteworthy trends,
existed in the valvula cerebelli (hatchery > wild) and olfactory bulbs (hatchery < wild). We also found a putative difference in
olfactory nerve diameter (dyin) (hatchery > wild), but the validity of this finding needs further analyses with higher resolution
methods. Overall, these results provide insight into the potential effects of hatchery rearing on nervous system development in
salmonids, and may explain behavioral deficits displayed by hatchery-origin individuals post-release.

Introduction feed and grow at sea, and maturing adults return to

Pacific salmon (Oncorhynchus spp.) are anadromous,
semelparous teleost fish (Osteichthyes) native to the
North Pacific Rim (Quinn 2018). Their ontogeny varies
among species, but is characterized by several discrete
morphological, physiological, and ecological stages: im-
mediately after fertilization, females bury their em-
bryos in the gravel of their natal streams or lakes and
alevins (post-hatch embryos) complete yolk absorption
in the gravel. Free-swimming fry then emerge from the
gravel to feed, parr continue to feed in streams and
lakes, until they migrate to sea as smolts, sub-adults

Advance Access publication February 19, 2024

their natal freshwater habitats, where they spawn and
die. Homing to natal sites for reproduction depends on
the ability to recognize and respond to olfactory stim-
uli learned (“imprinted”) as juveniles, prior to seaward
migration (Dittman and Quinn 1996). Sensitive peri-
ods for olfactory imprinting have been demonstrated
at the alevin stage and during parr-smolt transforma-
tion in many salmonids (Yamamoto et al. 2010; Bett
et al. 2016; Havey et al. 2017; Armstrong et al. 2022).
Indeed, the imprinting and homing processes are com-
mon to all salmonids; Pacific salmon differ in being
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semelparous, whereas the others are interoparous, and
non-anadromous salmonids also imprint and home to
natal streams within freshwater basins.

Pacific salmon represent one of the most economi-
cally valuable fisheries in North America (PACOFOC
2020). Sustaining healthy salmon populations is a pri-
mary concern from ecological, economic, and cultural
standpoints. To supplement natural populations, juve-
niles are often reared in hatcheries and released into
streams before seaward migration (Naish et al. 2007),
although this practice has been met with some contro-
versy (e.g., Hilborn 1992; Meffe 1992; Stewart 2015).
Hatcheries greatly increase the survival of embryos,
alevins, and juveniles prior to release, and thus typ-
ically produce more returning adults than would re-
sult from natural reproduction. However, hatcheries
often house individuals at high density in physically
barren environments (e.g., concrete raceways, as op-
posed to the complex habitat of streams and lakes occu-
pied by wild fish), with constant, minimal current flow
(Burrows and Combs 1968). These environmental dif-
ferences, combined with genetic changes, cause wild-
and hatchery-origin salmon to differ in such behavioral
traits as aggression and competition (Berejikian et al.
1996; Tatara and Berejikian 2012), predator avoidance
(Berejikian 1995), and migratory behavior (Goetz et al.
2015). There are also some indications that hatchery
salmon have higher rates of straying (migration to non-
natal spawning locations) than their wild counterparts
(Mclsaac 1990; Jonsson et al. 2003; Brenner et al. 2012),
though many factors seem to affect straying (Labelle
1992; Unwin 1997; Pascual et al. 1995) and strict com-
parisons of straying between wild- and hatchery-origin
conspecifics are difficult to conduct. Straying has natu-
ral advantages for salmonids, such as the colonization
of new habitats (Milner and Bailey 1989) or avoidance
of unfavorable environmental conditions (Leider 1989);
however, individuals that stray may not supplement in-
tended populations and can dilute the gene pools of na-
tive recipient populations (Quinn 1993). Consequently,
interest in the development of the sensory systems as-
sociated with homing has great importance for salmon
conservation, in addition to insights into neurobiology.

Studies on brain development among and within fish
species may provide insights into differences between
wild and hatchery-origin salmon. Brain size and organi-
zation (or the relative size of major brain regions) varies
greatly among fish, and is associated with a range of eco-
logical and behavioral parameters (e.g., Bauchot et al.
1988; Kotrschal and Palzenberger 1992; Yopak et al.
2007, 2009; Eifert et al. 2015; Salas et al. 2017; Axelrod
et al. 2021). Similar interspecific variation is also docu-
mented in the peripheral nervous system, including the
eye (Van Der Meer and Bowmaker 1995; Hasegawa et al.
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2002; White et al. 2004) and olfactory rosette (Theiss
et al. 2009; Atta 2013; Sarkar et al. 2014). According
to the “Principle of Proper Mass,” the size of major
brain regions should reflect the relative importance of
the functions that brain regions serves (Jerison 1973).
Similarly, surface area (SA) of the olfactory rosette rel-
ative to body size may confer variation in olfactory ca-
pability (Theiss et al. 2009; Atta et al. 2013), although
studies have yet to identify a direct link (Meredith and
Kajiura 2010). Therefore, metrics including sensory SA,
brain size, and size of brain regions are widely used as
neuroanatomical proxies for sensory and/or behavioral
specialization in fish (Triki et al. 2020, 2021).

It has been recognized that the rearing environment
(RE), including varied sensory stimuli, can affect fish
behavior and neural development in diverse and pro-
found ways (Blaxter 1970; Ebbesson and Braithwaite
2012; Johnsson et al. 2014). In addition to interspe-
cific variability in the brain, fish also exhibit indeter-
minate or asymptotic growth (Weatherley 1972; Sebens
1987) and lifelong neurogenesis (Zupanc 2006; Hinsch
and Zupanc 2007; Ganz and Brand 2016), whereby
brain and body grow continually throughout life, lead-
ing to a high degree of neural plasticity. Accordingly,
ecological and life-history shifts (e.g., Bauchot et al.
1988; Salas et al. 2015; Edmunds et al. 2016; Laforest
et al. 2020; Sauer et al. 2022) and varying environ-
mental rearing conditions (e.g., Kihslinger et al. 2006;
Na“slund et al. 2019), often correlate with patterns
of central nervous system organization. In particu-
lar, hatchery-reared fish often differ in nervous system
growth and development compared to natural-origin
conspecifics (Ebbesson and Braithwaite 2012). For ex-
ample, hatchery-reared salmonids have smaller brains
than wild counterparts (Marchetti and Nevitt 2003),
even after controlling for artificial selection (Kihslinger
and Nevitt 2005). Furthermore, alterations to the hatch-
ery environment that more closely mimic natural con-
ditions, including physical complexity (Kihslinger and
Nevitt 2005; Kihslinger et al. 2006; Na"slund et al. 2012)
and fish density (Na“slund et al. 2017; Na"slund et al.
2019), positively correlate with brain size and cerebel-
lum mass. These structural changes are also often ac-
companied by behavioral shifts, including alterations in
locomotory behavior (Kihslinger and Nevitt 2005), fur-
ther supporting the idea that changes in nervous sys-
tem growth can affect function. The addition of struc-
tural enrichment in captive environments can also af-
fect rates of brain cell proliferation in the forebrain
in fish, including salmonids (Salvanes et al. 2013), al-
though the drivers for this area unclear and results
are inconsistent across species, enrichment type, and/or
life stages (e.g., Lema et al. 2005; Kihslinger et al.
2006).
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Hatchery and natural environments differ in many
respects, but among them may be the nature and vari-
ability of chemical stimuli. Most studies of altered neu-
ral development have emphasized the effects of reduced
or enhanced social and visual stimuli, but olfactory
stimuli, such as alarm substances from injured con-
specifics, can also affect development (Joyce and Brown
2020; Mokdad 2023). Many hatcheries incubate em-
bryos partially or entirely on well or ground water be-
cause it is warmer and less variable in temperature in the
winter than local river water, and often much lower in
pathogens. The water may also be much lower in some
chemical constituents that are abundant in streams,
such as dissolved free amino acids, bile acids, and other
organic compounds (Shen et al. 2015). However, no
study to date had examined variation in the olfactory
system between hatchery- and wild-origin salmonids to
make inferences about differences in olfactory function
between conspecifics.

This study compared morphological differences in
the olfactory rosette SA, olfactory nerve diameter,
brain size, and patterns of brain organization between
hatchery-reared and wild sockeye salmon, O. nerka,
fry. We test the hypothesis that wild-origin individu-
als would have larger brains than hatchery-reared con-
specifics, especially in brain regions involved in olfac-
tory processing.

Methods

Specimens were collected from the Cedar River and
Cedar River Sockeye Salmon Hatchery, Washington,
USA. As part of an integrated hatchery program, the
hatchery and wild populations freely interbreed. Al-
though the wild and hatchery fish sampled had differ-
ent parents, the hatchery was founded by fish from the
wild population, so differences related to genetic back-
ground were minimized. This hatchery incubates the
embryos on groundwater piped from a nearby spring,
whereas the river water drains a basin of mixed land
use, including upper elevations protected from develop-
ment to safeguard the city of Seattle’s water supply, and
residential areas, as it flows into Lake Washington. The
Washington Department of Fish and Wildlife provided
the wild-origin fish (n = 8) from their trap that rou-
tinely samples downstream migrating fry, directly after
they emerged from the gravel. The average water tem-
perature during incubation was 7.29°C £ 1.57°C. They
also provided hatchery-origin fry (n = 8), where water
temperature in the hatchery during incubation averaged
8.1°C =£ 1.2°C. All specimens (wild- and hatchery ori-
gin) were collected on September 3, 2020. For all speci-
mens, fresh body weight (mg) and fork length (FL; mm)
were recorded. Upon collection, individuals were euth-

anized and immersion fixed in 10% neutral buffered for-
malin, and postfixed for up to 24 months.

For all wild and hatchery specimens, heads were dis-
sected from the body just rostral to the pectoral fins and
decalcified in 0.5 M ethylenediaminetetraacetic acid for
a minimum of 2 days. Samples were then cryopro-
tected in 30% sucrose, embedded in Tissue-Tek optimal
cutting temperature compound, and rapidly frozen in
isopentane submerged in liquid nitrogen. Heads were
subsequently cryosectioned coronally on a Leica CM
1860 from the anterior nares, including the olfactory
rosette, to the caudal end of the medulla at a thick-
ness of 30 um, and every third section mounted onto
gelatinized slides. After air drying, slide-mounted sec-
tions were then stained with 0.5% cresyl violet acetate
solution, dehydrated through a graded ethanol series
(95%, 95%, 100%, 100%), cleared (100% xylene, x3)
and cover-slipped with Permount mounting medium.

For the portions of the sample that included the ol-
factory nerve (n = 7 W, 8 H), tissue was sectioned se-
rially at 20 pm and every section mounted onto gela-
tinized slides. The olfactory nerve for sample 3W was
damaged during tissue processing and excluded from
analyses. After air drying, olfactory nerve sections were
dehydrated in a graded ethanol series (25%, 50%, 70%,
95%) and stained with 0.1% Luxol fast blue solution
overnight at 60°C. Slides were then rinsed and differ-
entiated in 0.05% lithium carbonate solution, cleared
(100% xylene, x3), and cover-slipped with Permount.
All sections were photographed on a Leica DM 1000 mi-
croscope equipped with an ICC50 HD camera (Fig. 1).

Olfactory nerve diameter was measured using
QuPath image analysis software (Bankhead et al. 2017).
Because sectioning could not be performed perfectly
perpendicular to the nerve, the minimum diameter
(dmin) of each section was measured. D, for the
left and right olfactory nerves were averaged for each
section, and resultant values were averaged across all
sections for each specimen. Olfactory rosette SA was
also measured using Adobe Illustrator . For each sam-
ple, the length of the epithelial surface was multiplied
by the sum of section thickness and distance between
successive sections (90 pm) for all sections of both
the left and right rosette. These values were summed
to get total SA values, which were averaged between
both rosettes to get a final average rosette SA for each
sample.

Brain subregions were identified using the crite-
ria of Wullimann et al. (1996). These areas included
the olfactory bulbs (OBs), telencephalon [divided
into the area dorsalis, or dorsal telencephalon (DTe),
and area ventralis, or ventral telencephalon (VTe)],
diencephalon, optic tectum, valvula cerebelli, cerebel-
lum (which includes all cerebellar tissue, excluding
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Fig. | Representativecoronal histological sections through the brain, olfactory nerve,and olfactory rosette of an O. nerka fry. (A) Dorsal
schematic of the origin of sections B—H, with posterior (P) to anterior (A) orientation indicated. (B) Posterior medulla oblongata. (C)
Posterior cerebellum (outlined arrow) and anterior medulla oblongata (solid arrow). (D) Optic tectum (outlined arrow), valvula cerebelli
(solid arrow), and posterior diencephalon. (E) Telencephalon; area dorsalis (outlined arrow) and area ventralis (solid arrow). (F) Olfactory
bulbs. (G) Olfactory nerve. Black arrow indicates left olfactory nerve. (H) Rosette with primary lamella (solid arrow).

the valvula, including corpus and vestibulocerebellum),
and the medulla oblongata. The cross-sectional area of
each brain structure was digitally traced using Adobe
Photoshop. Total volume of each structure was calcu-
lated by multiplying the cross-sectional area of each sec-
tion by the sum of section thickness and thickness of
skipped sections (90 pm) and summing the results for
each sample (Rosen and Harry 1990). Total brain vol-
ume was calculated as the sum of the volume of all
brain structures. Because the brain was sectioned within
the head, fresh brain volume could not be obtained
and used to correct for the volumes of brain regions
after ethanol dehydration. Therefore, a uniform tissue
shrinkage was assumed across all samples and brain vol-
ume was not corrected for fixation.

Statistical analysis

Both body mass (one-tailed Welch’s t-test, t = 4.95,
P = 0.001) and FL (one-tailed t-test, t = 4.35,
P < 0.001) differed significantly between groups (see
Supplementary Fig. Sla and b). Body mass and FL

were correlated (OLS regression, Fyo5(1,14) = 68.9, P
= < 0.001; Supplementary Fig. S1c), and this relation-
ship did not differ between REs (two-way ANCOVA,
Foos(1,14) = 1.37, P = 0.264).

The best linear model (linear or log-transformed)
was determined using Akaike Information Criterion
(AICc) scores, which are best for small sample sizes to
correct for bias (Cavanaugh 1997). The AICc was de-
signed to minimize Kullback-Leibler information be-
tween the model generating the data and a fitted can-
didate model (Kullback and Leibler 1951). The model
yielding the lowest AICc is considered to be the best
fit (Lavin et al. 2008) and differences in AICc values
(AAICc, or the difference between the best-fit model
and the alternative) within 1-2 units can also be con-
sidered as having substantial support (Burnham and
Anderson 1998). For all metrics, log-transformation
was the best fit.

All data were then logo-transformed and OLS re-
gressions were used to assess scaling relationships be-
tween olfactory structure metrics (rosette SA and din)
and brain volume with body mass. OLS regressions were
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Table | OLS regression output for combined, wild-only, and hatchery-only linear models for log|g(olfactory structure) ~ log;o(dependent
variable) for rosette SA and dn, predicted from body mass, brain mass, and rosette SA, where appropriate

Model Rosette SA ~ Body size dmin ~ Body size

Dataset Slope Int. Adj. R? P Slope Int. Adj. R? P
Combined 0912 3.807 0.807 <0.001 0.308 .44 0.414 0.00574
Wild 0.479 4.72 —0.148 0.765 0818 0.338 —0.0399 0.420
Hatchery 0.595 4.55 0.777 0.00227 0.109 1.91 —0.0960 0.557
Model dmin ~ Brain volume dmin ~ Rosette SA

Dataset Slope Int. Adj. R? P Slope Int. Adj. R? P
Combined 0.360 —1.43 0.199 0.0540 0.343 0.127 0.572 <0.001
Wild —0.00226 2.12 —0.200 0.995 0.574 —-1.20 0.470 0.0534
Hatchery 0.129 0.877 —0.103 0.579 0.178 1.10 —0.0842 0.524

Combined models included rearing environment (RE) as a categorical factor. Slope, intercept, adjusted RZ, and P-values are shown for each model.

Bold indicates significant results.

also used to assess the relationship between brain re-
gion volume and the brain volume remainder (BVR),
which equals the total brain volume minus the vol-
ume of the dependent variable. This mitigated the bias
that can exist when a specific brain region of inter-
est is scaled against total brain volume (which includes
the volume of the region of interest) (Deacon 1990).
Across the full dataset, there was a significant relation-
ship between rosette SA and body mass [Fy5(1,14) =
63.54, P < 0.001], olfactory nerve dp;, and body mass
[Fo.05(1,13) = 10.9, P < 0.01], total brain volume and
body mass [F5(1,14), P < 0.001], and for all brain re-
gions and BVR except for the OBs (see Tables 1 and 2).
Therefore, allometric relationships were used to deter-
mine the effects of RE on all dependent variables.

For each component of the olfactory system (rosette
SA and olfactory nerve dp,), two separate models
were constructed across the combined dataset, assum-
ing slopes were equal between wild- and hatchery-
origin individuals. First, olfactory parameters were
scaled against brain volume or body mass alone (model
1: rosette SA ~ body mass, dpin ~ body mass, din ~
total brain volume, and d,,,;, ~ rosette SA). Then, from
model 1, standardized residuals, or vertical deviations
from the predicted slope, were calculated using the car
package in R (Fox and Weisberg 2019). After confirm-
ing that residuals were not correlated with the relevant
independent variable, residuals were then compared be-
tween groups (hatchery vs. wild origin) using one-tailed
t-tests. Then, to assess effects of RE, a second model
was run, which included RE as an explanatory variable
(model 2: rosette SA ~ body mass + RE, dyn ~ body
mass + RE, d,i, ~ total brain volume + RE, and d,y;i,
~ rosette SA + RE). From model 2, any significant ef-
fects of RE were analyzed using Tukey’s honest signifi-
cant difference (HSD) test. The dataset was then divided
into wild and hatchery-origin individuals to determine

scaling relationships between olfactory metrics within
each group.

A similar approach was employed to examine vari-
ation in scaling relationships in the brain. Total brain
volume was scaled against body mass (model 1: brain
volume ~ body mass) and each brain region was scaled
against BVR (model 1: brain region volume ~ BVR).
Then, from model 1, standardized residuals were cal-
culated. After confirming that residuals were not cor-
related with the relevant independent variable, they
were compared between groups using one-tailed ¢-tests.
Then, models with the inclusion of RE for brain vol-
ume (model 2: brain volume ~ body mass + RE)
and brain region volume (model 2: brain region vol-
ume ~ BVR + RE) were analyzed. From model 2, any
significant effects of RE were analyzed using Tukey’s
HSD test. The dataset was then divided into wild and
hatchery-origin individuals to determine brain-body
and brain region-BVR scaling relationships within each

group.

Results
Olfactory nerve and rosette

Olfactory rosette SA scaled significantly with
body mass across the full dataset (OLS regres-
sion, y = 0912x + 3.807, n = 16; * = 0.807,
P = 1.43e—08), but there were no significant dif-
ferences in residuals between wild- and hatchery-
origin fry (one-tailed t-test, t = —0.970, P = 0.168)

(Fig. 2a and c). Similarly, there was no significant effect
of RE when it was added to the model (P = 0.0622),
though it was marginally insignificant (P < 0.1). Ol-
factory nerve dpi, also scaled significantly with body
mass (OLS regression, y = 0.308x + 1.44, n = 15;
r* = 0.414, P = 0.006) (Fig. 2b and d), and rosette SA
(y = 0.343x + 0.127, n = 15; 2 = 0.572, P < 0.001),
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Table 2 OLS regression output for combined, wild-only, and hatchery-only regression models for log|o(subregion volume) ~ log;o(BVR)
across all eight brain regions examined in this study (olfactory bulbs, dorsal telencephalon, ventral telencephalon, diencephalon, optic

tectum, valvula cerebelli, cerebellum, and medulla oblongata)

Model Brain ~ Body Olfactory bulbs ~ BVR

Dataset Slope Int. Adj. R? P Slope Int. Adj. R? P
Combined 0.470 8.84 0.525 <0.001 .11 —2.98 0.181 0.0568
Wild —1.45 13.0 0.122 0.210 0.350 4.52 —0.150 0.778
Hatchery 0.573 8.60 0.435 0.0449 233 —15.1 0.619 0.0126
Model Dorsal telencephalon ~ BVR Ventral telencephalon ~ BVR

Dataset Slope Int. Adj. R? P Slope Int. Adj. R? P
Combined 0.814 0.618 0.474 0.00192 0.880 —0.355 0.242 0.0306
Wild 1.22 —3.33 0.325 0.0816 0.334 5.00 —0.148 0.765
Hatchery 0.965 —0.881 0.606 0.0139 0.843 0.0274 0.267 0.109
Model Diencephalon ~ BVR Optic tectum ~ BVR

Dataset Slope Int. Adj. R? P Slope Int. Adj. R? P
Combined 1.27 —3.35 0.604 <0.001 0.709 2.46 0.580 <0.001
Wild 0.552 3.69 —0.0403 0.426 1.03 —0.639 0.756 0.00311
Hatchery 1.63 —6.82 0.778 0.00233 0.381 5.69 0.373 0.0634
Model Valvula cerebelli ~ BVR Cerebellum ~ BVR

Dataset Slope Int. Adj. R? P Slope Int. Adj. R? P
Combined 1.21 —3.69 0.202 0.0461 0.978 —0.688 0.465 0.00362
Wild 0.584 243 —0.129 0.669 0.613 —2.89 —0.0722 0.495
Hatchery 0.441 4.000 —0.0920 0.546 1.12 —2.08 0.594 0.0154
Model Medulla oblongata ~ BVR

Dataset Slope Int. Adj. R? P

Combined 0.796 1.60 0.576 <0.001

Wild 0.648 3.04 0.384 0.0598

Hatchery I.10 —1.40 0.582 0.0169

Slope, intercept (int.), adjusted R, and P-values are shown for each model. Bold indicates significant results.

but not total brain volume (y = 0.360x — 1.43, n = 15;
r* = 0.199, P = 0.054). No significant differences ex-
isted in residuals from any of these models between
wild- and hatchery-origin individuals, except for dmin
residuals corrected for total brain volume (W < H,
one-tailed t-test, t = —2.10, P = 0.035), but, as the
linear model had a marginally insignificant correlation,
this must be met with caution. Similarly, only the
model predicting dp, from total brain size showed a
significant effect of RE (P = 0.026), but this effect was
minimized during the multiple comparisons correction
in the Tukey’s HSD test (W < H, P = 0.064).

Brain size and organization

Total brain size varied significantly with body mass
across the dataset (OLS regression, y = 0.470x + 8.84,
n = 16; r* = 0.525, P < 0.001). In addition, residuals
did not significantly differ between hatchery- and wild-
origin fry (Fig. 3). RE also did not have a significant ef-
fect when added to the model (P = 0.786).

For all brain regions except the OBs (y = 1.11x
— 298, n = 16; r* = 0.181, P = 0.057), volume
scaled with BVR across the full dataset (see Table
2). DTe (y = 0.814x + 0.618, n = 16; r* = 0.474,
P =10.002), VTe (y = 0.880x — 0.355, n = 16; > = 0.242,
P = 0.031), diencephalon (y = 1.27x — 3.35, n = 16;
r? =0.604, P < 0.001), optic tectum (y = 0.709x + 2.46,
n = 16; r* = 0.580, P = XX), valvula (y = s1.21x
— 3.69, n = 16; r* = 0.202, P = 0.046), cerebellum
(y = 0.978x — 0.688, n = 16; r* = 0.465, P = 0.004),
and medulla (y = 0.796x + 1.60, n = 16; r* = 0.576,
P < 0.001) all increase significantly with BVR (Fig.
4). Although allometric relationships could not always
be recovered within groups, particularly in wild-origin
fry (see Table 2), this is likely due to small sample
sizes.

There was a significant difference in residuals be-
tween hatchery- and wild-origin individuals for the op-
tic tectum (wild < hatchery, one-tailed ¢-test, t = —2.63,
P = 0.014), and marginally insignificant differences
(0.05 < P < 0.1) existed for the valvula (wild < hatch-
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ery, t = —1.79, P = 0.052) and OBs (wild < hatchery,
t = 1.46, P = 0.082) (Fig. 4). Correspondingly, when
added to the linear models, RE had a significant ef-
fect for the optic tectum (Tukey HSD, wild < hatch-

ery, P = 0.021), and marginally insignificant effects for
the valvula (wild < hatchery, P = 0.0546; Tukey HSD,
P =0.107) and OBs (wild > hatchery, P = 0.0942; Tukey
HSD, P = 0.173).
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(W < H, one-tailed t-test,t = —2.63,P = 0.0136), and marginally insignificant differences (0.05 < P < 0.1) existed for the valvula (W < H,t
= —1.79,P = 0.0523) and olfactory bulbs (W < H,t = 1.46, P = 0.0823)."*P < 0.05;*0.05 < P < 0.01.

Discussion

Numerous studies have sought to understand the im-
pacts of RE on brain growth, particularly in salmonids,
which may confer changes in cognitive and/or sensory
capabilities (e.g., Marchetti and Nevitt 2003; Kihslinger
and Nevitt 2005; Kihslinger et al. 2006; Na“slund et
al. 2019). However, to date, none have collectively ex-
amined morphometric differences in the peripheral ol-
factory system and across all brain areas between wild
and hatchery-origin salmonids. Using OLS regressions,
we found that hatchery-reared sockeye salmon fry had
larger optic tecta. Further, statistically insignificant yet
compelling trends (0.05 < P < 0.1) suggest that RE

also affects OB (wild > hatchery) and valvula size
(wild < hatchery). We discuss effects with P < 0.1 with
caution, but recognize that the low sample size of this
study may mask significant trends, which warrant fu-
ture study. Although this study was not a functional
analysis, the results may provide insight into the sen-
sory and cognitive differences between individuals from
different REs, which may influence behavior, includ-
ing olfaction-mediated imprinting and homing. Rear-
ing conditions in the hatchery have been implicated
in behavioral deficits, as they lack many of the natu-
ral stimuli that fish would experience in streams, from
physical structure to sensory inputs.
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Olfactory system

The teleost nervous system is plastic, especially the ol-
factory system, including changes in lamellae number,
epithelial morphology, olfactory sensory neuron (OSN)
density, and patterning of synaptic connections in the
OB that have been related to discrete imprinting and
homing in salmonids (e.g., Kalinina et al. 2005; Kudo
et al. 2009; Ochs et al. 2017; Rheinsmith et al. 2023).
However, no study to date has examined differences in
the peripheral olfactory system in hatchery-reared vs.
wild salmonids. Previous studies have used epithelial SA
as proxy for olfactory capability in fish (e.g., Schluessel
et al. 2008; Theiss et al. 2009; Atta 2013; Ferrando et al.
2019). Theoretically, a larger SA in sockeye salmon fry
may house more OSNs, which bind water-borne odor-
ants, as their olfactory rosette is almost exclusively cov-
ered in sensory epithelium (Rheinsmith et al. 2023).
In the current study, rosette SA did not differ between
hatchery-origin and wild individuals (Fig. 2) However,
our data suggest that RE may affect dy;,, with hatch-
ery individuals having larger residuals predicted from
total brain volume. As there was no difference in brain
size between hatchery and wild-origin individuals (Fig.
3), this may represent an interesting difference between
these two groups. The olfactory nerve is comprised of
axons of the OSNs, which synapse with mitral cells in
the OB of the brain (reviewed by Kermen et al. 2013).
A larger nerve diameter suggests a higher number of
OSNs in the olfactory epithelium, which may affect ol-
factory capacity (Hamdani and Doving 2007; Camilieri-
Asch et al. 2020). These data suggest that hatchery in-
dividuals may possess a higher number of OSNs; how-
ever, given dpi, was not significantly larger in hatchery-
origin fry when scaled against body size (Fig. 2b and d)
or rosette SA, and rosette SA did not significantly dif-
fer between the two groups (Fig. 2), as one would ex-
pect whether hatchery-origin sockeye salmon truly had
a higher number of OSNs in the epithelium, the biolog-
ical relevance of this difference is unclear.

Differences in OSN number between hatchery- and
wild-origin sockeye salmon fry would suggest differ-
ences in olfactory detection and/or processing capabil-
ities between the two groups, whereby environmental
cues during early life stages may modulate cell fates
in the olfactory epithelium. The lifespan of vertebrate
OSNs is only months (Mackay-Sim and Kittel 1991), as
OSNs are exposed and vulnerable to the surrounding
environment (Moulton 1974). In salmonids, olfactory
receptor gene expression is sensitive to changes in de-
velopmental and environmental cues (Johnstone et al.
2011; Bett et al. 2018; Madsen et al. 2019). Patterns of
OSN plasticity may, therefore, be partially influenced by
olfactory experience (Wilson et al. 2004). In hatcheries,

it is a common practice to incubate embryos in well wa-
ter, and at least some part of the water used for sub-
sequent rearing is often from spring or wells, as it is
pathogen-free and thus requires less rigorous steriliza-
tion than normal stream water (Burrows and Combs
1968). However, well water can have lower levels of
amino acids (potential odorants) present in associated
streams (Dittman, unpublished data; Shen et al. 2015).
Such a lack of chemical complexity in groundwater-
based hatchery water may affect growth of the salmon
olfactory system, and could hinder subsequent hom-
ing, a logic that contradicts what our data may suggest.
However, as dp;y is a rough metric, future work should
examine OSN subtype distribution in the epithelium
via immunohistochemistry (e.g., Gayoso et al. 2011;
Braubach et al. 2012) or stereologically estimate of OSN
number from transmission electron microscopy im-
ages of the olfactory nerve (Camilieri-Asch et al. 2020).
These can then be coupled with olfactory tracking tri-
als (e.g., Yamamoto et al. 2010), to confirm whether RE
truly impacts olfactory detection and processing.

Encephalization and brain organization

Brain/body relationships have been established for
nearly all vertebrate groups (e.g., Crile and Quiring
1940; Jerison 1973; Tsuboi et al. 2018), though we know
far less about intraspecific variability in the brain and
the drivers of plasticity within species. Although con-
tentious, encephalization (or a larger than expected
brain for a given body size) may predict cognitive abil-
ity and/or behavioral flexibility within species (Jerison
1973). Indeed, in the guppy (Poecilia reticulata), indi-
viduals artificially selected for a 5-10% increase in brain
size relative to body size displayed higher proficiency in
associative learning (Kotrschal et al. 2013) and spatial
search learning tasks (Kotrschal et al. 2015). However,
artificial selection likely creates a more dramatic differ-
ence in brain size than what may be created environ-
mental differences alone. In the present study, there was
no difference in relative brain size between hatchery-
and wild-origin sockeye salmon fry. This differs from
what previous work has shown when comparing brain
organization in between wild and hatchery salmonids,
where wild O. mykiss had larger brains than hatchery-
reared conspecifics (Marchetti and Nevitt 2003). Simi-
lar differences have also been documented in other cap-
tive teleosts, including Atlantic cod (Gadus morhua)
(Mayer et al. 2011) and mahseer (Tor putitora) (Ullah
et al. 2021), although the causes for brain size reduc-
tions are unclear. Despite the phenotypic plasticity as-
sociated with RE, changes in the teleost brain are of-
ten impermanent, suggesting that plasticity may occur
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without dependence on a developmental critical period.
For example, increasing structural complexity of the RE
resulted in larger brains in S. salar alevins, but this ef-
fect disappeared upon sampling of parr of the same
group several months later that had been moved to bar-
ren tanks (Ndslund et al. 2012). Impermanence of envi-
ronmentally induced plastic changes in the brain may
reduce their functional consequences over time. The
wild-origin fish in our study were collected soon af-
ter emergence from the gravel, meaning that they ex-
perienced many of the external factors of their envi-
ronments for a short time. If RE affects brain size, as
previous studies suggest, changes in brain growth may
require a critical period of exposure that was not cap-
tured in our narrow time window post-emergence. Fu-
ture work should also examine sockeye salmon at later
stages of development (parr and smolt), to determine
whether brain size variation might be additive ontoge-
netically.

Previous work has shown that rearing salmonids in
an enriched environment, including structural com-
plexity and conspecific density, is associated with larger
relative volume of the OBs, telencephalon, optic tectum,
and/or cerebellum (Nislund et al. 2012; 2017; 2019),
even when controlling for artificial selection and ge-
netic variation (Kihslinger and Nevitt 2005; Kihslinger
et al. 2006), which may have significant functional im-
plications. However, many existing studies have focused
on a small number of brain regions and/or have ap-
proximated brain region size from photographs (e.g.,
Marchetti and Nevitt 2003; Kihslinger and Nevitt 2005;
Kihslinger et al. 2006). To date, no study has histo-
logically examined how most major brain regions vary
between wild vs. hatchery-origin salmonids; thus, im-
portant differences may have gone undetected. Estima-
tion of brain volume from linear measurements can be
highly problematic, and fail to take into account varia-
tion in the ventricles, leading to an over- or underesti-
mation of the size of major brain regions (see Ullmann
et al. 2010). In particular, over-estimation of optic tec-
tum volume may be of particular concern; Pollen et al.
(2007) showed the ellipsoid method, (which is based on
linear measurements of major brain regions; Wagner
2001), can overestimate whole brain, telencephalon,
and cerebellum by 24-33%, but can overestimate op-
tic tectum volume by as much as 107% when com-
pared to histological sections, which excludes the tec-
tal ventricles. While some of this variation is likely due
to dehydration during the staining process, this sug-
gests that the comparison of brain volumes using these
methods should be approached with caution, as it is un-
clear whether differences documented in previous stud-
ies have erroneously reported variation in ventricular
volume rather than true tectal variation.

R.H.Ward et al.

The present study excluded the ventricles from our
measurements of the optic tectum and found a signifi-
cant effect of RE on scaling of the optic tectum with the
rest of the brain, with a significantly larger optic tectum
in hatchery-origin individuals (Fig. 4I-]). This contra-
dicts previous studies, where hatchery-reared O. mykiss
and T. putitora have smaller body size-corrected optic
tecta than wild conspecifics (Marchetti and Nevitt 2003;
Ullah et al. 2022). The optic tectum receives the major-
ity of retinal ganglion cell afferents, and is commonly
associated with vision, visual processing, and sensory
integration (reviewed by Northmore 2011). While wild
environments are presumably richer in visual stimuli,
diel light levels and visual complexity of the hatchery
where our sockeye salmon were reared were not di-
rectly measured. However, point sources of light and/or
abnormal light/dark cycles in hatchery environments
may be driving tectal development. Alternatively, vi-
sual input is limited for wild salmonids at the alevin
stage, as individuals are submerged in stream gravel, un-
til emerging as fry (Quinn 2018). Thus, the optic tectum
up to the fry stage in wild-origin salmon may not be
fully developed and warrants further investigation.

Another interesting trend was seen in the valvula,
where hatchery individuals had marginally larger
valvula volumes than wild-origin fry (Fig. 4k and 1).
Although the function of this structure is not fully
resolved, the valvula is involved in behavior patterns
such as reflex conditioning, avoidance conditioning,
and dorsal light response (Aronson and Herberman
1960; Kaplan et al. 1969; Yanagihara et al. 1993), and
may also serve to process and integrate non-motor in-
formation (Chang et al. 2021). Its involvement in the
dorsal light response is particularly interesting, as the
same wild < hatchery trend was shown for the op-
tic tectum, suggesting that the optical environment of
hatcheries may differ significantly enough from that of
natural streams, whereby related neural processing cen-
ters may be affected. Detection of visual cues is impor-
tant in natal homing (Yano and Nakamura 1992), but it
is unclear how variation in optic tectum and valvula vol-
ume may affect visual processing tasks between rearing
habitats. As straying and post-release mortality is higher
in hatchery-origin individuals, a putative increase in vi-
sual system development in hatchery fish may not be
sufficient to counteract the other drawbacks of hatch-
ery rearing.

The OBs receive primary projections from the ol-
factory epithelium, whereby OSN axons synapse with
large mitral cells in topographically arranged glomeruli
in fish (Laberge and Hara 2001; Hamdani and Deving
2007), and are associated with processing odors. In
many vertebrates, the size of the OBs correlates with
olfactory capability (Zelenitsky et al. 2011; Yopak et al.
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2015), which suggests variation in OB size, to some ex-
tent, confers olfactory capacity (e.g., Gonzalez-Voyer et
al. 2009; Yopak et al. 2010, 2015). Changes in OB size
intraspecifically have been proposed to reflect changes
in the relative importance of olfaction throughout life
(e.g., Salas et al. 2017; Laforest et al. 2020). In the
present study, a marginally insignificant, but notewor-
thy, difference in OB size (wild > hatchery) existed be-
tween hatchery- and wild-origin sockeye salmon fry,
suggesting that hatchery rearing may have a negative
impact on OB development. Although the effect was
not significant (P = 0.094), low sample size in our
study could have masked genuine, underlying effects.
Similar trends in the OBs have been documented in
Chinook salmon (O. tshawytscha) and rainbow trout
(O. mykiss) (Marchetti and Nevitt 2003; Kihslinger et
al. 2006), although differences were less localized and
seen across most major brain regions examined. As
OBs have been shown to scale hyperallometrically with
the rest of the brain in some fish throughout life (e.g.,
Wagner 2003; Laforest et al. 2020), these differences
may be more dramatic at other life stages. Larger OBs
in wild-origin sockeye salmon suggest some degree of
enhanced olfactory processing, which may be related to
the increased chemical complexity of the rearing habi-
tat. However, the DTe, which receives secondary and
tertiary olfactory projections (Folgueira et al. 2004a, b),
did not vary between groups. This brain region serves
important roles in spatial learning and memory tasks
in fish (Savage 1980; Rodriguez et al. 2002; Emmanuvel
Rajan et al. 2011) and has been implicated in recogni-
tion of imprinted natal stream water in sockeye salmon
(Bandoh et al. 2011). While trends might emerge with a
larger sample size (see Fig. 4d), a lack of significant vari-
ation in the DTe makes it difficult to draw conclusions
between brain organization and olfactory imprinting.
While differences in the nervous system between REs
were identified in sockeye salmon, it is important to
consider the limitations of this study. Although the his-
tological approach to calculating brain volume is more
accurate, excluded ventricular spaces, and allows for
the assessment of a higher number of brain subregions,
it is more time consuming and therefore resulted in
smaller sample sizes. In particular, wild-origin individ-
uals were very close in body size, which may not al-
low for an appropriate demonstration of true allomet-
ric relationships. Larger sample sizes (over a greater
range of overlapping body mass between groups) would
have improved our ability to detect differences between
these groups and assess broader patterns of brain/body
and brain region/brain scaling. Future work should
consider comparing rates of growth of the brain and
its subregions between REs over a longer period of
time and across life stages, as the olfactory system and

brain change throughout ontogeny in sockeye salmon
(Rheinsmith et al. 2023) and other salmonids (Kudo et
al. 2009). This would provide greater insight into the ex-
istence of an environment-associated critical period for
brain development in salmonids (Naslund et al. 2012),
and whether the impacts of hatchery-rearing are com-
pounded over time.

Conclusions

This study provides key insights into the potential links
between RE and brain and olfactory system organiza-
tion in O. nerka. This species is subject to diverse be-
havioral and sensory demands throughout its life cy-
cle, which involves long-distance migrations and dra-
matic habitat shifts. Previous work has shown low sur-
vivorship and high rates of straying in post-release,
hatchery-origin O. nerka, and our results suggest this
may be due, in part, to differences in brain develop-
ment. Hatchery-origin fish had significantly larger op-
tic tecta, and marginally larger valvula cerebelli (hatch-
ery > wild), with larger d, relative to brain size. In
contrast, wild-origin sockeye salmon had marginally
larger OBs (hatchery < wild), perhaps reflecting differ-
ences in sensory and/or functional capacity between the
two groups. These findings contradict previous stud-
ies, which note enlargement of several key brain re-
gions in wild-origin salmonids, which may be related
to sample size or methodology used to assess the brain,
where finer resolution techniques might help to detect
more nuanced differences in brain morphology in rela-
tion to RE. As the Pacific salmon fishery represents one
of the most valuable fisheries in North America, opti-
mal post-release performance of hatchery-reared indi-
viduals is paramount from both an economic and eco-
logical standpoint. Optimizing and enriching hatchery
environments to more closely mimic wild habitats may
support neural development and is a promising strategy
to ensure O. nerka populations, as well as other Pacific
salmon, will find their way home.
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