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One-Sentence Summary: New opportunities to enhance our understanding of a complex 
Earth. 

Abstract: Improvements in the number and resolution of Earth and satellite-based sensors 
coupled with finer-resolution models have resulted in an explosion in the volume of Earth 
science data. This data-rich environment is changing the practice of Earth science, 
extending it beyond discovery and applied science to new realms. This review highlights 
recent big data applications in three sub-disciplines; hydrology, oceanography, and 
atmospheric science. We illustrate how big data relates to contemporary challenges in 
science; replicability and reproducibility, and the transition from raw data to information 
products. Big data provides unprecedented opportunities to enhance our understanding of 
the Earth's complex patterns and interactions. The emergence of digital twins enables us to 
learn from the past, understand the current state, and improve the accuracy of future 
predictions. 

Main Text: 

Introduction 

Over the past decade, improvements in the number and resolution of Earth and 
satellite-based sensors and finer-resolution climate and meteorological models have 
resulted in an explosion in the volume of Earth science data. These data have enabled 
scientists to explore complex phenomena and Earth processes at unprecedented scales and 
resolutions and fueled the development of new tools and techniques for data analysis, 
visualization, and interpretation. As a result, some have argued that big data represents a 
fourth leg of scientific research, distinct from theory, experimentation, and computation 
(1). However, despite its transformative impacts on Earth science, a clear and concise 
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definition of big data is elusive (2). Big data are traditionally defined by five V’s -
Volume, Velocity, Veracity, Variety, and Value. These describe data that are large, arrive 
quickly, may be of mixed reliability or accuracy, are in a number of formats, and have 
high value. Used as early as the 1990s, the term big data described how improvements in 
sensors, models, data management, and computing resources made it possible to gather 
and analyze ever larger datasets (3). The term has and will continue to co-evolve with the 
ever-changing advancements in technology and datafication (4) of our natural and human 
systems. Big data can also be thought of as data that are deep - there are simply a large 
number of measurements, wide - to understand a problem data from a wide variety of 
sources or sensors are needed and data may be collected over large spatial or temporal 
domains, and unruly - the data, for example data from social media, are not in a consistent 
format. The definition of these terms will always be relative and will evolve as 
technology changes, especially with improvements in computing power and on board 
processing of data. As an example of deep, starting in the 1970s, the World Ocean 
Circulation Experiment (WOCE) hydrographic surveys took 24 to 36 salinity, temperature, 
and dissolved oxygen samples from the surface to bottom every 30 nautical miles (~55km) 
(http://woceatlas.tamu.edu/printed/SOA_WOCE.html). ARGO floats now collect these 
variables and additional measurements using unmanned floats and collect 400 or more 
profiles a day from 3800 floats across the entire ocean (https://argo.ucsd.edu/about/). 
Wide data include projects such as the regional cabled array on the Juan de Fuca Ridge ( 
https://interactiveoceans.washington.edu/about/regional-cabled-array/} which has 
deployed an array of 150 sensors across much of a 500 km by 150 km tectonic plate. Data 
can be transmitted at up to 240gb/s and two way communication allows real time control 
of instruments. Unruly data include a variety of crowd sourced data, such as weather 
conditions described in social media posts as opposed to data provided by trained weather 
spotters. 

For this review, we define Big Earth Data as massive (relative to commonly available 
datasets) amounts of diverse, complex, and continuously accumulating data generated 
from heterogeneous sources that require advanced (relative to commonly available 
computing resources) and potentially novel computational and analytical tools to extract 
meaningful insights and knowledge about the Earth system. 

Earth science is a vast and complex field that studies the Earth's physical, chemical, and 
biological systems and their interactions. Using big data to make advances in the earth 
sciences is critical. At a basic level, the earth is large and processes of interest can cover 
large areas. Systems are dynamic and it may require a long time series to detect patterns 
of interest. Understanding the earth as an integrated system leads to the need to look at 
all sorts of phenomena - and hence the need for wide data. For example, understanding 
the effects of sea level rise requires understanding a multivariate system of both oceanic 
and terrestrial variables. 

Due to this immense scope, it is impossible to review the impacts of big data on the entire 
discipline in a single article or study. This review will focus on three sub-disciplines: 
hydrography, oceanography, and atmospheric science. We illustrate how big data relates to 
contemporary challenges in science; replicability and reproducibility, the transition from 
raw data to information products, and the emergence of Digital Twins. 
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Fig. 1. Increases in the spatial granularity of climate models and the number of Earth and space-based 
sensors. The right axis shows the increase (green) in the number of active satellites beginning with the 
launch of Oscar 7 in 1974. The left axis shows the rapid increase (blue) in the number of ocean observations 
(casts) archived in the NOAA/IODE World Ocean Database (WOD). WOD data before 1974 are not shown. 
The inset depicts the rapid increase in the granularity of a representative climate model, Coupled Model 
Intercomparison Project (CMIP). 

How did we get here, who actually uses big data, and how? 

The development of new sensors able to gather more data for longer time periods and the 
ability to measure totally new variables has contributed to ever larger earth science 
datasets (Figure 1). Drifting buoys and floats are widely deployed and better 
communications allow buoys to send data to shore in near real time (5). Autonomous 
vehicles go on extended missions gathering data and tagged animals send back streams of 
environmental and behavioral data. Passive acoustic data show how animals use sound 
and the impacts of anthropogenic sounds (6). Models cover larger areas at finer spatial 
scales and can be run for longer durations due to improvements in computing such as 
device scaling, high-performance and cloud computing generally (7, 8). The greater 
acceptance of citizen and crowdsourced data has increased the amount of unruly data that 
can contribute to research on climate change and other phenomena (9). Crowd sourced 
data such as personal weather stations have expanded to include bathymetric data, data 



from watches and body worn sensors, social media posts about weather and oceanic 
phenomena, and sensors on trucks reporting weather and road conditions. New analytical 
methods such as artificial intelligence, neural networks, and machine learning make use of 
these big datasets to study everything from predicting seafloor carbon (10) to seismology 
(11). 

The need for big data was understood as early as Schnase (12) who argued that the big 
questions and projects in climate science, such as the Intergovernmental Panel on Climate 
Change (IPCC), are tackling problems that require big data for solutions. More recently, 
big data are being used to support research towards the UN Sustainable Development 
Goals (SDGs) such as climate action (SDG 13) and life below water (SDG 14) (13). 
Authors have provided a comprehensive review of the applications of big data in 
geophysics (14), biology (15), and for the use of big data and AI (16). The European 
Marine Board’s Future Science Brief on Big Data in Marine Science 
(https://tinyurl.com/2wxv5kvw) identifies continued sensor development, infrastructure 
for data collection, processing, and archiving, near real time data transmission and long 
term funding as core recommendations. 

Determining who is actually using big data can be a challenge. Ideally, papers using big 
data would formally cite data DOIs - both to enable tracking of data usage and as a way to 
associate datasets, and researchers responsible for curating and publishing them, with their 
use and citation in traditional peer-reviewed publications (17) . Another way to extract 
trends is to look at the use of data from large repositories and project archives. The 
creation of world data centers amid the International Geophysical Year gave a real push to 
creating big datasets (18). The TOGA/TAO/TRITON buoy array maintains a list of over 
1000 publications citing their data since the array’s inception in 1986 
[https://www.pmel.noaa.gov/gtmba/tao-journal-publications] . NCAR’s Research Data 
Archive maintains a similar listing for their datasets at 
https://rda.ucar.edu/resources/metrics/ which also includes over 1000 citations for their 
datasets. NOAA’s Open Data Dissemination Program has assembled a list of papers citing 
their data which shows 56 publications using their 14 most popular datasets. [update with 
public link]. The Ocean Observatories Initiative lists 333 papers using data from their 
cabled arrays https://ooipublications.whoi.edu/biblio. While the NASA archives do not 
list citations, the Physical Oceanography Distributed Active Archive (po.daac) does 
provide data on the volume of downloads. In 2022, 11TB/day were downloaded and the 
archive grew by 2TB a day 
https://www.earthdata.nasa.gov/eosdis/system-performance-and-metrics/eosdis-annual-me 
trics-reports . 

Tools for discovering, analyzing, and visualizing big data are rapidly developing, with 
both commercial and open-source solutions available. Platforms like Google's GEE 
(Google Earth Engine), a cloud-based geospatial analysis platform, Microsoft's Planetary 
Computer, a dedicated computing platform for Earth science data analysis, and Esri's 
Living Atlas of the World, a comprehensive collection of geospatial datasets and 
applications, reduce the challenges faced by Earth scientists transitioning to data science 
roles (19, 20). Open-source solutions like the Apache Science Data Analytic Platform 
(SDAP) offer an alternative approach. SDAP (21) is an open-source solution that 
harmonizes access and analysis of Earth science data (satellite, model, and in-situ), 
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supporting various domains including sea level rise, gravity, marine science, wildfire, air 
quality, greenhouse gas, flood, land cover, surface topography and vegetation, and ocean 
science. The Pangeo project (https://pangeo.io/) is “a community platform for Big Data 
geoscience” that includes software, documentation, infrastructure and a community of 
practice. It supports open science and focuses on open source tools including xarray for 
working with multidimensional data and Iris for analyzing and visualizing oceanographic 
and meteorological data. These platforms provide access to extensive geospatial data 
and computational capabilities. However, it is important to critically review these 
platforms, considering limitations such as inadequate data curation, guaranteed data 
availability, data quality and vendor lock-in. 

Surface hydrology 

Surface waters in the form of rivers, lakes, reservoirs, streams, and wetlands are critical to 
human survival yet are increasingly scarce due to water quantity and water quality issues 
(22). Surface water presents unique data challenges due to the amount of water on Earth 
and its ephemeral nature. Flowing surface waters can range in width from a few meters to 
many kilometers, and their extent can change across time scales ranging from minutes to 
decades. Big data have enabled more accurate and complete delineations of surface water, 
a more detailed understanding of surface water dynamics, and informed models that more 
accurately quantify terrestrial water budgets. A necessary first step in understanding 
surface waters is delineating their spatial extent and generating a digital hydrographic map 
(23). MERIT Hydro (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/) and 
HydroSHEDs (https://www.hydrosheds.org/) are commonly used digital hydrographic 
products derived from 90 and 30-meter digital elevation models, respectively. Both 
products suffer from unavoidable data gaps and inconsistencies in the underlying data 
sources. 

The HydroSHED product is being re-engineered based on improved DEMs generated 
from data from the TanDEM-X mission. The TanDEM-X dataset, which has a resolution 
of 12 meters at the equator, serves as the foundation for HydroSHEDS v2. This enhanced 
Global DEM incorporates advanced pre-processing techniques to preserve the 
high-resolution details of the DEM. These techniques include “an infill of invalid and 
unreliable elevation values, an automatic coastline delineation refined with manual 
corrections, an AI-based water detection algorithm, and a modification of elevation data in 
urban and vegetated areas for improved evaluation of the flow of water.” Additionally, the 
hydrologically pre-conditioned DEM and the water body mask derived from the 
TanDEM-X dataset undergo further processing with “refined hydrological optimization 
and correction algorithms to derive flow direction and flow accumulation maps” (24). The 
promise is a globally consistent, high-resolution digital hydrographic map for the globe. 

Surface waters are dynamic and generate costly and deadly floods. Combining a spatially 
granular (10-meter resolution) map of the Height Above the Nearest Discharge (HAND) 
for the conterminous United States and streamflow predictions for approximately 2.7 
million river reaches has produced rapid continental scale flood prediction maps. Surface 
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waters are also essential to Earth's natural hydrological system and influence the available 
water supply for domestic, agricultural, and industrial use. Integrating multiple big 
datasets such as soil maps, precipitation, surface and groundwater extent, croplands, 
population density, and GDP. National Geographic Explorer Marc Bierkens has modeled 
and mapped the difference between the supply and demand of water globally 
(https://worldwatermap.nationalgeographic.org/). 

A Three-Dimensional (3D) ocean 

Understanding the ocean as a three-dimensional system has long been a goal of 
researchers. While satellites can provide a synoptic view, they don’t see into the ocean 
depths. Models can represent the full 3D ocean but they rely on observations both as 
inputs and to verify results. Big data can be the result of long term campaigns, such the 
California Cooperative Oceanic Fisheries Investigations (CalCOFI) which has been 
observing the California Current ecosystem since 1949 [https://calcofi.org/]. The desire to 
better understand El Nino and its effects on climate led to the deployment of the 
TOGA/TAO arrays of buoys in the tropical Pacific starting in 1985 (25). This is an early 
example of gathering detailed and extensive observations resulting in big data. While the 
data are carefully formatted and quality controlled, they are wide in time and space and 
deep in that they measure a large number of variables. TAO data have been used to study 
many phenomena in the tropical Pacific, for example to better understand El Nino and its 
effects, look at thermal structures in the ocean, look at variations in wind and rain in the 
tropical Pacific, and conduct basin wide studies of sea surface temperature. 
More recently, new technologies such as ARGO floats, surface and underwater 
autonomous vehicles and the Ocean Observatories Initiative (OOI) gather and transmit 
large amounts of data, often in real time, to provide a three dimensional view of 
previously data poor regions (Figure 2). These data have supported discoveries in 
everything from cross-shelf transport of water (26) to sensing whale calls (27) and ship 
traffic (28) to studying heat flux from hydrothermal vents (19), and seismology (11). 
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Figure 2 – Increase in the volume of ocean temperature measurements. Panel A shows the number of 
temperature observations at all depths collected in 1995. An emphasis on near coast data collection and 
oversampling along ship routes is apparent. Panel B shows the number of temperature observations collected 
in 2022 and demonstrates the rapid expansion of ocean observing systems such as the Argo float network. 
Data source: NOAA/IODE World Ocean Database (WOD). 

Models of the ocean (29)have become more detailed, can cover larger areas and 
increasingly include assimilation of observed data (30) . Models are both the product of 
big data supported boundary conditions including detailed bathymetric grids and forcing 
data from river flows and wind patterns, and the producer of big data outputs. 
Improvements in models have supported more detailed mapping of ocean circulation 
patterns, better understanding of the transport of nutrients, better measurements of the heat 
inputs to hurricanes and improved modeling of oil spills, and the dispersion of larval fish. 
These models have contributed to improved forecasting of hurricanes, the siting of marine 



protected areas, oil spill response and improved understanding of marine ecosystems. As 
model outputs become ever larger, there are questions about exactly what outputs should 
be archived and what can better be recreated for specific needs (31). 

In biology, researchers have been able to better understand the growth and extent of 
harmful algal blooms (HABs) via large datasets of images of plankton. In a modern 
version of the Continuous Plankton Recorder (32), the Imaging Flow Cytobot (IFCB) 
collects large numbers of images of plankton. The images are classified using neural 
network techniques (33) and have led to better understanding of patterns of plankton 
distributions and the health of plankton populations. Environmental DNA or eDNA 
measurements can rapidly gather large amounts of data on the species present in a 
location, the presence of undetected species, genetic relationships between populations 
and the general biodiversity of an area or region (34). 

Atmospheric modeling: global climate models 

Global climate models (GCM) are complex mathematical representations of Earth's 
climate system that incorporate the physical, chemical, and biological processes governing 
the atmosphere, oceans, land surfaces, and ice (35). Since their inception in the early 
1960s, global climate models have evolved significantly in terms of complexity, 
resolution, and the inclusion of additional components such as land surfaces, sea ice, and 
vegetation. The Coupled Model Intercomparison Project (CMIP) generates a widely used 
set of coordinated climate model experiments conducted under the auspices of the World 
Climate Research Programme (WCRP) (36). The project's latest iteration, CMIP6 
(Coupled Model Intercomparison Project Phase 6), represents a global collaborative effort 
to enhance our understanding of Earth's climate system. The improved resolution and 
complexity of modeling the dynamics of Earth's climate have led to several advancements 
in our understanding of our climate. 

Big data-based analyses provide new insights into climate processes in ocean-climate 
interactions, severe weather, and wind potential. Marine biogeochemistry plays a crucial 
role in climate by regulating the exchange of CO2 with the atmosphere. Improved CMIP6 
models more accurately model oxygen levels at ocean depths of 150 m, explicitly showing 
decreased errors in the Southern Ocean compared to CMIP5. This provides an improved 
representation of deep ocean ventilation and a more precise characterization of 
biogeochemical properties in outcropping water masses (37). The enhanced horizontal 
resolution of historical runs of the CMIP6 models more accurately reproduced midlatitude 
storm tracks and reduced the equatorward bias present in previous models (38). Exploring 
the potential impacts of future climates on European wind resources, Carvalho et al. (39) 
showed a substantial decline in wind resources for most of Europe by the end of the 
century under a high emissions/population growth/energy demand/heavily fossil fuels 
reliant scenario. 



Global climate models enable quantification and prediction of the consequences of a 
warming planet on migration patterns and socio-economic stability. In a review of the 
impacts of climate change on migration, Kaczan & Orgill-Meyer, (40) explore the impacts 
of climate shocks such as drought, floods, and extreme temperatures on migration. They 
found that climate-induced migration is (1) not limited to poorer households, (2) 
long-distance domestic moves are more prevalent than local or international moves, (3) 
slow-onset changes like droughts drive increased migration more than rapid-onset changes 
like floods, and (4) the severity of climate shocks impacts migration in a non-linear 
manner, influenced by the dominance of either capability or vulnerability channels. The 
growing frequency and intensity of severe weather events can have significant economic 
impacts on agricultural activities and threaten local and global food security (33). Using 
climate data from the ERA5 (https://www.ecmwf.int/en/research/climate-reanalysis) 
atmospheric re-analysis model (2000 through August 2018) and 82,000 crop yield reports, 
the authors could explain 65% of historical yield anomalies using machine learning (41). 

While climate change is often viewed as a gradual and long-term process, extensive 
collections of observed and modeled climate data point to potential abrupt changes or 
tipping points in climate that may be irreversible. The IPCC defines tipping points as 
"critical thresholds in a system that, when exceeded, can lead to a significant change in the 
state of the system, often with an understanding that the change is irreversible" (42, p. 
262). In addition to the loss of the Amazonian rainforest and melting of the Greenland ice 
sheet, Lenton et al., (43) point to potential changes in the frequency of fires in boreal 
forests, reductions in Arctic sea ice, large-scale die-offs of coral reefs, and that these 
individual consequences of climate tipping points could combine via feedback loops into a 
global cascade of events. 

Replicability and reproducibility 

To increase credibility, improve generalizability, and facilitate the reuse of scientific 
results, the Earth science community has renewed efforts to make geospatial research 
more replicable and reproducible (36). Reproducibility is achieved when the original data 
and computational methods produce the same scientific results, whereas replicability 
occurs when the same scientific conclusions are reached using new data (44). Big Earth 
Data presents unique challenges to promoting replicability and reproducibility. 
Researchers proposed a five-star guide (46) to enhance replicability and reproducibility in 
geospatial research. Successive levels of the five-star guide require increasing metadata 
and data-sharing granularity. The sheer volume of Big Earth Data can make converting 
and storing research data to open scientific data formats time-consuming and financially 
challenging (47). In recognition of these challenges, governmental data providers are 
partnering with commercial infrastructure-as-a-service (IaaS) providers to document and 
host massive collections of satellite, earth-based, maritime-based, and modeled 
analysis-ready data 
(https://www.noaa.gov/information-technology/open-data-dissemination, 
https://www.earthdata.nasa.gov/eosdis/cloud-evolution) These massive data collections 
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proximate to massive compute resources hold great promise for enhancing the sharing, 
reproducibility, replicability and collaborative nature of research. These concepts are 
foundational to operationalizing the larger goal of Open Science – “the principle and 
practice of making research products and processes available to all, while respecting 
diverse cultures, maintaining security and privacy, and fostering collaborations, 
reproducibility and equity” (https://www.nature.com/articles/d41586-023-00019-y) 

Earth information products 

Earth science is well rooted in the foundational scientific method and, albeit with potential 
augmentation of the process through data science (48), will remain so for the foreseeable 
future. This process's primary form of scientific output has historically been peer-reviewed 
publications. However, big data can provide additional opportunities for scholarly 
communication, the "system through which research and other scholarly writings are 
created, evaluated for quality, disseminated to the scholarly community, and preserved for 
future use" (49). Data collection, generation, organization, and management, particularly 
of big data, are increasingly recognized as scientific output. Peer-reviewed data papers or 
publications that review and document the collection methods, data cleaning, and quality 
assurance are now common (50). While data availability is essential for replicability and 
reproducibility, big data's volume, variety, and veracity can make its use intractable. As a 
result, a pattern of producing Earth Information Products is emerging. These are 
synthesized, structured, and organized presentations of scientific data, findings, and 
research outcomes, in a format that is accessible, informative, and useful inside and 
outside of the scientific community. Earth information products seek to "turn data into 
information, and information into insight" (attributed to C. Fiorina) with the ultimate goal 
of making science actionable (51). Earth information products can be data-centric, 
focusing primarily on providing the analytical results of big data workflows and have been 
used to share ecological modeling results for the land (52), ocean (53), and coasts (54). 
Alternatively, earth information products can be more narrative in form and integrate 
interactive maps with text and multimedia content to facilitate scientific communication 
by summarizing the research context, workflows, and primary results1. 

Digital Twins 

A rapidly increasing area of research and discovery based upon big data is Digital Twins 
(DT). Digital Twins of the Earth System are intended to establish highly accurate digital 
representations of the Earth system so that they can improve our understanding of the 
impacts of climate change and extreme weather events, and potentially help us better 
assess potential socio-economic and health impacts. The DT concept has proven to be 
effective in various commercial sectors (55, 56). Figure 3 provides the high-level 

1 See UNISECO 
[https://uniseco-project.eu/assets/content/resources/02-deliverables/UNISECO-D3.3.pdf] 
for an extensive list of examples in the context of social-ecological systems. 
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representation of a DT for the Earth System as an integrated information system where 
each oval contributes to the overall DT goals. The NASA Advanced Information Systems 
Technology (AIST) program’s website (https://esto.nasa.gov/aist) summarizes the primary 
goals of DT of the Earth. 

● To provide a continuous and accurate representation of the systems as they change 
over time. 

● To mirror the Earth science system through advanced analysis, Artificial 
Intelligence, and state-of-the-art models to help predict the Earth’s response to 
various phenomena. 

● To provide tools for scenario-based predictions to recommend possible actions the 
researchers and/or decision-maker might take, which could involve possible 
mitigation options as well as acquiring additional data and analysis. 

DT presents multidisciplinary, multivariate data challenges, that is, the five Vs of big data. 
The expectation for DT of the Earth is to mirror the Earth Science System to not only 
understand the current condition of our environment or climate, but also to automatically 
analyze changes in our environment and autonomously acquire new data in order to 
improve its prediction and forecast (57). For a DT of the Earth System to be useful, it must 
accurately represent the interactions or forcing between the subsystems. The accuracy of a 
DT is highly reliant on the quality of the data and the analysis it incorporates. Artificial 
intelligence (AI) plays a vital role in the overall DT architecture. Our rapidly growing 
collections of observations and model data require a DT to be smarter about when and 
what data and analysis to include. For a DT solution to be sustainable, its architecture 
needs to be able to address multiple big data challenges. 

● Multivariate analysis. Almost all Earth science research requires working with 
multiple measurements in order to understand their interactions and causes and 
effects. It could involve various remote sensing and in-situ measurements. 
Depending on the type of analysis (i.e., global and regional), it would also require 
different resolutions of data. Working with large collections of data requires new 
methods in managing data to promote parallel computing of the data. 

● Assimilation and numerical models. The GCM section presented the complexity of 
developing and running large-scale numerical model simulations. DT requires 
ongoing updates of the model runs with the latest state of Earth system to generate 
the most accurate forecast. 

● Advanced AI. DT requires capabilities to identify the relevant data, analysis, and 
model results to incorporate according to the user-scenario and the science the 
scenario requires. DT requires advanced orchestration support from both cost and 
operation optimization points of view. 

There are various funded DT for Earth development efforts. AIST’s Integrated Digital 
Earth Analysis System (IDEAS) [https://ideas-digitaltwin.jpl.nasa.gov/] led by NASA JPL 
(58)is designing a reusable Earth System Digital Twins (ESDT) framework using flood 
[https://ideas-digitaltwin.jpl.nasa.gov/hydrology/] and air quality 
[https://ideas-digitaltwin.jpl.nasa.gov/airquality/] as its use cases (59). The Space for 
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Climate Observatory (SCO)’s FloodDAM 
[https://www.spaceclimateobservatory.org/flooddam-garonne] led by CNES is establishing 
a solution to help predict and analyze flood events in France (60) . NASA’s IDEAS-based 
hydrology ESDT and SCO’s FloodDAM are working jointly to establish a federated DT 
solution for both US and the French regions. The European Space Agency’s (ESA) 
Destination Earth (DestinE) 
[https://digital-strategy.ec.europa.eu/en/policies/destination-earth] (61) is being developed 
by three entities, the European Center for Medium-Range Weather Forecasts (ECMWF), 
the European Organisation for the Exploitation of Meteorological Satellites 
(EUMETSAT), and ESA. The EU’s Iliad Digital Twins of the Ocean 
[https://www.ocean-twin.eu/digital-twins] is a consortium chartered to develop a portfolio 
of ocean-released DT. 

Figure 3: High-level representation of the elements of a Digital Twin for the Earth system. The cyclic 
framework signifies the continuous flow of information within the digital twins that bridge the physical and 
the digital representations. The arrows illustrate the general information flow between the elements. 1) The 
harmonized, analysis-optimized data management solution for fast access and analysis. 2a) AI plays an 
essential role in digital twins, including identifying the relevant data, analysis, and numerical models, as well 
as resource management. AI formalizes the process to learn from the past to improve the accuracy of future 
predictions. AI-based models require ongoing training and continuous validation. 2b) Advanced, 
physics-based models are essential to forecast the environment's reactions. Like AI-based models, numerical 
models require continuous assimilation and validation. 3) One of the promises of digital twins of the Earth is 
to deliver actionable predictions. Actions could include mitigation recommendations, new observations, and 
analysis to improve our understanding. 4) New observations could include re-tasking Earth-observing 
instruments, deploying unmanned vehicles, acquiring data from in-situ sensors, and on-demand value-added 
product generations, etc. 5) The acquired or processed data is made available to the digital twin to be 
incorporated for improving analysis and predictions. 
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Conclusions 

This review focused on three sub-disciplines of Earth science: hydrography, 
oceanography, and climate science, to illustrate the profound and ongoing impacts of big 
data on the broader discipline. Big data have facilitated advancements in understanding 
surface water, such as more accurate delineations of riparian networks, improved flood 
predictions, and comprehensive water supply and demand assessments. In oceanography, 
big data has enabled researchers to achieve a deeper understanding of the 
three-dimensional nature of the ocean, leading to discoveries in areas ranging from 
cross-shelf water transport to whale behavior. Global climate models’ improved spatial 
and temporal granularity has resulted in insights into climate processes and interactions. 
The new insights enabled through big data come at a cost. The size of big data presents 
challenges to scientific replicability and reproducibility and data sharing and management. 
Ensuring these datasets meet the requirements of the FAIR/CARE2 principles and bridge 
the gap between data and information is a continuing effort. Traditional incentives for 
researchers to publish papers need to be supplemented by investing time in properly 
curating datasets. These challenges are outweighed by the promise big data brings for a 
deeper, more comprehensive understanding of our Earth through environmental 
information products and digital twins. As sensors and modeling continue to advance, 
coupled with parallel progress in computing resources, the concept of big data will 
constantly evolve. Nevertheless, the potential of big data to enrich our comprehension of 
Earth as a complex, interrelated, and dynamic system while supporting Open Science 
remains steadfastly promising. 
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