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Abstract
The sequencing revolution requires accurate taxonomic classification of DNA se-
quences. The key to making accurate taxonomic assignments is curated, compre-
hensive reference barcode databases. However, the generation and curation of such 
databases has remained challenging given the large and continuously growing vol-
umes of both DNA sequence data and novel reference barcode targets. Monitoring 
and research applications require a greater diversity of specialized gene regions and 
targeted taxa than are currently curated by professional staff. Thus, there is a growing 
need for an easy-to-implement computational tool that can generate comprehensive 
metabarcoding reference libraries for any bespoke locus. We address this need by 
reimagining CRUX from the Anacapa Toolkit and present the rCRUX package in R 
which, like its predecessor, relies on sequence homology and PCR primer compat-
ibility instead of keyword searches to avoid limitations of user-defined metadata. The 
typical workflow involves searching for plausible seed amplicons (get_seeds_local() or 
get_seeds_remote()) by simulating in silico PCR to acquire a set of sequences analo-
gous to PCR products containing a user-defined set of primer sequences. Next, these 
seeds are used to iteratively blast search seed sequences against a local copy of the 
National Center for Biotechnology Information (NCBI)-formatted nt database using 
a taxonomic rank-based stratified random sampling approach (blast_seeds()). This re-
sults in a comprehensive set of sequence matches. This database is dereplicated and 
cleaned (derep_and_clean_db()) by identifying identical reference sequences and col-
lapsing the taxonomic path to the lowest taxonomic agreement across all matching 
reads. This results in a curated, comprehensive database of primer-specific reference 
barcode sequences from NCBI. Databases can then be compared (compare_db()) to 
determine read and taxonomic overlap. We demonstrate that rCRUX provides more 
comprehensive reference databases for the MiFish Universal Teleost 12S, Taberlet 
trnl, fungal ITS, and Leray CO1 loci than CRABS, MetaCurator, RESCRIPt, and ecoPCR 
reference databases. We then further demonstrate the utility of rCRUX by generating 
24 reference databases for 20 metabarcoding loci, many of which lack dedicated ref-
erence database curation efforts. The rCRUX package provides a simple-to-use tool 
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1  |  INTRODUC TION

The fields of freshwater, estuarine, and marine ecology are rapidly 
embracing high-throughput sequencing to detect, monitor, or as-
sess change in biological communities (Deiner et al., 2017; Takahashi 
et al., 2023). Fundamental to the efficacy of these molecular biomon-
itoring efforts, particularly metabarcoding (amplicon sequencing), is 
the taxonomic assignment of the sequences generated (Bik, 2021; 
Edgar, 2018). Taxonomic assignment is a complicated bioinformatic 
process that involves many challenges including the uncertainty 
around the generated sequencing data, the comparison between 
those data and a reference database of sequences of known origin, 
and the bioinformatic decisions that land on a taxonomic identifi-
cation of the generated sequences (Edgar, 2018; Hleap et al., 2021; 
Jeunen et  al.,  2023; Mathon et  al.,  2021; O'Rourke et  al.,  2020). 
Ensuring accurate taxonomic assignment is critical for the adop-
tion of biomolecular monitoring tools including environmental DNA 
(eDNA) metabarcoding, microbiome, bulk metabarcoding, and gut 
and diet studies among other applications (Deiner et al., 2017).

Paramount to the success of taxonomic assignment is the compre-
hensiveness and accuracy of the reference database used to classify 
query DNA sequences (Banchi et al., 2020; Bucklin et al., 2016; Gold 
et al., 2021). Large-scale barcoding of life efforts over the past three 
decades has provided the raw material for such reference databases 
(Costa & Carvalho, 2007; Darwin Tree of Life Project Consortium, 2022; 
Hebert et al., 2003; Stoeckle & Hebert, 2008) generating millions of 
reference barcode sequences publicly available through the National 
Center for Biotechnology Information (NCBI), the Barcode of Life 
Data System (BOLD), the European Nucleotide Archive (ENA), and 
others (Cummins et al., 2022; Ratnasingham & Hebert, 2007; Sayers 
et al., 2022). Despite the incompleteness of current global reference 
databases across all domains of life, these large sequence reposito-
ries are constantly improving and expanding to allow for accurate 
identification of DNA sequences needed for a suite of ecological and 
public health efforts (Beng & Corlett, 2020; Manor et al., 2020; Soon 
et al., 2013; Taberlet et al., 2018; Thompson et al., 2017). Generating a 
high-quality reference database from these enormous sequence repos-
itories requires a full accounting of all orthologous sequences, the de-
tection and removal of mislabeled sequences, and the identification of 
identical sequences across taxa (Curd et al., 2019; Jeunen et al., 2023; 
Richardson et al., 2020). Parsing and refining these large sequence re-
positories into curated databases that are comprehensive for specific 
marker sets remains a significant challenge (Jeunen et al., 2023).

Efforts to address this challenge either rely on the dedicated 
maintenance and curation of reference databases for specific loci 
of interest or force the end user to curate their own database, 
with limited efficacy because they rely on keyword searches, are 

too computationally demanding, or their installation process is too 
complicated, requiring a suite of software dependencies. By far, the 
most successful and widely used reference databases (e.g. Silva, 
PR2, UNITE, and MitoFish) rely on dedicated staff and resources to 
maintain and update such repositories (Guillou et al., 2012; Kõljalg 
et al., 2005; Quast et al., 2012; Zhu et al., 2023). Given the extensive 
resources needed to curate and maintain such repositories, there are 
only a handful of such efforts representing only commonly used loci. 
We cannot expect to have similar dedicated efforts for all metabar-
coding loci. This is especially true as novel sequencing technologies 
allow for longer targets and more immediate in situ sequencing (Zorz 
et al., 2023). Thus, alternative reference database-generating tools 
are needed to alleviate taxonomic assignment restrictions at the da-
tabase level and fill this operational gap in the field.

A commonly utilized approach to generating reference databases 
relies on keyword searches (Keck & Altermatt, 2023). Such efforts 
are dependent on the accuracy of associated sequence metadata 
submitted by users. However, a lack of controlled vocabulary and 
metadata standards often leads to poor annotations (e.g. CO1, COI, 
and COX1, all describing the same cytochrome oxidase gene) which 
frequently limits the comprehensiveness of such reference data-
bases (Curd et al., 2019; Jeunen et al., 2023; Hemsley et al., 2020; 
Porter & Hajibabaei, 2018). Many tools address these specific lim-
itations in generating comprehensive reference barcode databases 
for key loci like CO1 (e.g. MIDORI2, CO-ARBitrator, MARES, and 
COInr; Arranz et  al., 2020; Heller et  al.,  2018; Leray et  al.,  2022; 
Meglécz, 2023). However, keyword search-based database genera-
tion is particularly susceptible to inadequate capture of orthologous 
sequences as this requires a priori knowledge of sequence similar-
ities and associated metadata (e.g. MiFish 12S and microbial 16S; 
Gold et al., 2021; Siddall et al., 2009). Such keyword search-based 
approaches are useful for a handful of widely used loci (e.g. CO1), 
but are not flexible enough to be applied to any metabarcoding and 
sequencing locus (Ahmed et al., 2019; Keck et al., 2022).

To address these limitations, a suite of reference barcode-gen-
erating tools were designed based on sequence similarity instead 
of associated metadata to build comprehensive, curated reference 
databases (Jeunen et  al.,  2023; Richardson et  al.,  2020). CRUX 
and its counterparts, MetaCurator, Metaxa2, and CRABS, all sim-
ilarly rely on a two-step database-generating process (Bengtsson-
Palme et al., 2015; Curd et al., 2019; Jeunen et al., 2023; Richardson 
et al., 2020). First, these tools conduct an in silico PCR or analogous 
seed acquisition step to generate a set of “seed” sequences con-
taining the primer regions. And since not all sequences are sub-
mitted with the primer sequences intact, these tools implement 
a second step which aligns these seed sequences across the large 
sequence repositories (e.g. GenBank, ENA, and BOLD) to acquire a 

for the generation of curated, comprehensive reference databases for user-defined 
loci, facilitating accurate and effective taxonomic classification of metabarcoding and 
DNA sequence efforts broadly.
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comprehensive set of similar sequences. Inherently, these software 
tools take a brute force approach to generating reference databases 
that acquire all orthologous sequences and thus, unsurprisingly, re-
quire significant computational resources (Jeunen et  al., 2023). In 
addition, these tools often rely on a large number of software de-
pendencies which are difficult to install and maintain on high-perfor-
mance computing clusters (e.g. CRUX and Metaxa2). Furthermore, 
these tools are often written in software languages that are not as 
widely adopted as R and require more advanced command-line com-
putational skills to implement. Together, these limit the adoption and 
utilization of such reference database-generating tools.

Here, we present rCRUX, a reference database-generating 
R package (R Core Team,  2022) that relies on efficient iterative 
BLAST searches to sample all orthologue sequence space (Altschul 
et al., 1990; Ye et al., 2012), utilizing a smaller set of readily avail-
able dependencies. rCRUX provides a simple, easy-to-use reference 
database-generating tool that facilitates the generation of curated, 
comprehensive bespoke reference libraries across a diversity of 
users and platforms including cloud-hosted services.

2  |  METHODS

Here, we build on the rationale behind the generation of locus-
specific databases outlined first in Curd et  al.,  2019, which dem-
onstrates that the most comprehensive databases are obtained by 
way of sequence similarity instead of intended taxonomic identity 
or sequence description (Curd et  al.,  2019, Jeunen et  al.,  2023, 
Richardson et al., 2020). rCRUX produces reference sequence data-
bases in a three-step process (Figure 1): (1) identification of seed se-
quences that match the primers of interest, (2) finding homologous 
and orthologous sequences to those seed sequences via BLAST, and 
(3) dereplication of the resulting database to reduce redundancy and 
detect poorly annotated sequences. This can be followed by (4) da-
tabase comparison tools provided in rCRUX.

2.1  |  Installation

In order to install rCRUX onto a computer or cluster, users must 
first download the rCRUX package and NCBI's BLAST+ toolkit. In 

addition, users need a blast-formatted nucleotide database which 
can be downloaded directly from NCBI as well as NCBI taxonomy 
IDs which can be acquired using taxonomizr's prepareDatabase() 
function (Sherrill-Mix, 2019). We note that these combined data-
bases required over 340 GB of storage as of April 2023.

2.2  |  get_seeds: In silico PCR

The first step of rCRUX is an in silico PCR step which takes a set or 
sets of forward and reverse primer sequences (single or multiple for-
ward and single or multiple reverse primers, which can include de-
generate bases) and returns possible full-length barcode sequences 
containing forward and reverse primer matches along with taxo-
nomic information. This step can be implemented locally through 
get_seeds_local() which uses a modified adaptation of NCBI's primer 
blast or remotely through get_seeds_remote() which submits a web 
form directly to NCBI's primer blast tool. get_seeds_local() avoids 
querying NCBI's primer BLAST tool and thus is not subject to arbi-
trary throttling of remote jobs that require significant memory on 
the NCBI server (Camacho et al., 2009; Ye et al., 2012). Given this 
limitation, get_seeds_local() is the preferred implementation in the 
rCRUX environment. However, get_seeds_remote() provides an alter-
native tool to test taxonomic breadth of primers without download-
ing the large (>340 GB) nt database and can allow users to quickly 
test the taxonomic breadth of a given primer set in R on a personal 
computer through in silico PCR.

Specifically, get_seeds_local() passes the forward and reverse 
primer sequences for a given PCR product to run_primer_blastn(). In 
the case of a non-degenerate primer set, only two primers will be 
passed to run_primer_blast(). In the case of a degenerate primer set, 
get_seeds_local() will obtain all possible versions of the degenerate 
primer(s) (using primerTree's enumerate_primers() function), randomly 
sample a user-defined number of forward and reverse primers, and 
generate a fasta file of selected primers (Cannon et al., 2016). The 
selected primers are then passed to run_primer_blastn() which que-
ries each primer against a blast-formatted database using the task 
blastn_short. This process continues until all of the selected primers 
are blasted. The result is an output table containing the query sub-
ject id, subject NCBI GenInfo Identifier (gi), subject accession ver-
sion, number of mismatches between the subject and query, subject 

F I G U R E  1 Overview of rCRUX workflow.
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start base pair location, subject end base pair location, and subject 
NCBI taxonomic identification (taxID). These returned BLAST hits 
are then quality controlled to see if they generate plausible ampli-
cons (e.g. amplify the same accession and are in the correct orien-
tation to produce a PCR product). These hits are further filtered for 
user-specified length and number of mismatches. Lastly, taxonomy is 
appended to these filtered hits using get_taxonomy_from_accession() 
(Sherrill-Mix, 2019; Zeileis & Grothendieck, 2005; Zhang et al., 2017 
Alternatively, get_seeds_remote() passes the forward and reverse 
primer sequences along with user-specified taxID(s) of target organ-
ism(s) and databases through iterative_primer_search to NCBI's primer 
blast tool (Ye et  al., 2012). Degenerate primers are converted into 
all possible non-degenerate sets, and a user-defined maximum num-
ber of primer combinations is passed to the API. Multiple taxIDs are 
searched independently, as are multiple databases (e.g. c(“nt,” “ref-
seq_representative_genomes”)). A primer search is then conducted on 
each resultant combination using modifiedPrimerTree_Functions which 
is a modified version of primerTree's primer_search() and primerTree's 
parse_primer to query NCBI's primer BLAST tool, filter the results, 
and aggregate them into a single dataframe (Cannon et  al., 2016). 
These hits are further filtered for user-specified length and number 
of mismatches. Lastly, taxonomy is appended to these filtered hits.

The result of the two get_seeds_* functions is a fasta and tax-
onomy file containing results with the specified primer sequences 
along with summary statistics of accessions, taxonomic ranks, and 
hits returned.

2.3  |  blast_seeds: Building comprehensive 
databases of similar sequences

blast_seeds() takes the output from get_seeds_local() or get_seeds_re-
mote() and iteratively blasts the seed sequences using a stratified ran-
dom sampling of a given taxonomic rank, making sure that at least one 
representative of each rank enters the iterative blast process (default 
rank is genus). The randomly sampled subset of seeds is then format-
ted into a multi-line fasta and run through blastn to recover all similar 
sequences based on user-defined sequence similarity parameters (e.g. 
percent identity, evalue, and query length; Camacho et al., 2009). The 
resulting blast hits are then dereplicated by accession with only the 
longest read per accession retained in the output table. All of the sub-
set seeds and seeds recovered through the blast process are then re-
moved from the seeds dataframe, reducing the number of sequences 
to be blasted. This stratified random sampling process is repeated 
until there are fewer seed sequences remaining than the max_to_blast 
parameter, at which point all remaining seeds are blasted. The final 
aggregated results are cleaned for multiple blast taxIDs, hyphens, and 
wildcards and are then appended with taxonomy.

Importantly, we note that the blast databases downloaded from 
NCBI's FTP site utilize representative accessions where identical se-
quences have been collapsed across multiple accessions even if they 
have different taxIDs. Here, we identify representative accessions 
with multiple taxIDs (Katz et al., 2021) and unpack all of the collapsed 

accessions to allow for the identification of lowest common agreed 
taxonomy for each representative accession. We do not identify or 
unpack representative accessions that report a single taxID.

2.4  |  derep_and_clean_db: Quality control and 
curation of reference database

The final step of rCRUX, derep_and_clean_db(), takes the output 
from blast_seeds() and conducts quality control and dereplicates the 
dataset to identify representative sequences. First, all sequences 
with NA taxonomy for phylum, class, order, family, and genus are 
removed from the dataset because they typically represent envi-
ronmental samples with low value for taxonomic classification and 
are stored separately. Next, all sequences with the same length and 
composition are collapsed to a single database entry, where the ac-
cessions and taxIDs (if there are more than one) are concatenated. 
The sequences with a clean taxonomic path (e.g. no ranks with mul-
tiple entries) are saved. In contrast, sequences with multiple entries 
for a given taxonomic rank are processed further by removing NAs 
from rank instances with more than one entry (e.g. “Chordata, NA” 
will mutate to “Chordata”). Any remaining instances of taxonomic 
ranks with more than one taxID are reduced to NA (e.g. species 
rank “Badis assamensis, Badis badis” will mutate to “NA”, but genus 
rank will remain “Badis”). Finally, the resulting taxonomic paths are 
synonymized to the lowest taxonomic agreement. Lastly, the above 
cleaned and dereplicated sequences are used to generate a fasta 
file and taxonomy file of representative NCBI accessions for each 
sequence.

We note that these dereplicated sequences are analogous to 
Barcode Index Numbers (BINs; Ratnasingham & Hebert,  2007) 
which cluster reference sequences and provide a synonymized tax-
onomy (Fontes et  al., 2021). However, our dereplication approach 
results in unique sequences as opposed to clustered BINs, much like 
amplicon sequence variants represent unique sequences as opposed 
to clustered operational taxonomic units.

2.5  |  compare_ref_db: Exploring overlap and 
mismatches between two reference databases

We provide an additional function to compare the overlap and 
mismatches between any two reference databases. This function 
provides a summary table, generates a Venn diagram of overlap-
ping accessions and species, and creates a Krona plot of unique 
taxa to each reference database (Gao et  al.,  2021; McMurdie & 
Holmes, 2013; Pauvert, 2020).

2.6  |  Benchmarking

We first benchmark the efficacy of rCRUX compared to the origi-
nal implementation of CRUX. Here, the seed acquisition step was 
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benchmarked by comparing the rCRUX get_seeds_local() in silico 
PCR function against the CRUX-implemented ecoPCR function 
(Ficetola et al., 2010) for the MiFish Universal Teleost locus (MiFish; 
Miya et al., 2015). We built a MiFish Universal Teleost rCRUX data-
base and a corresponding CRUX ecoPCR database using the same 
underlying EMBL database (Kanz et al., 2005; r143: fun, inv, mam, 
pln, pro, vrt). We then benchmarked the final databases and com-
pared the results of the blast_seeds() steps for both rCRUX and 
CRUX using the NCBI nt blast database (December 2022 down-
load, see Data  S1 for details) supplemented with the NCBI mito 
(mitochondrial) blast database. The rCRUX reference database was 
generated using the optimized parameters outlined in the Data S1 
(Figures S1–S8) with the exception of using 4 mismatches between 
primers and priming sites for rCRUX get_seeds_local() to exactly 
match the parameters employed in the CRUX seed acquisition step. 
The CRUX reference database was generated using default param-
eters presented in Curd et  al.  (2019). All rCRUX reference data-
base statistics are presented in Table 1 and Table S3. For the seed 
blasting steps, each blast allowed a maximum of 1000 samples at a 
time, align = “10,000,000,” minimum length of 170, and a maximum 
length of 250. In order to compare compatible taxonomic paths be-
tween CRUX and rCRUX, the accessions returned by CRUX were 
assigned taxonomy using taxonomizr (Sherrill-Mix, 2019).

We next benchmark the efficacy of the rCRUX reference da-
tabases against CRABS, RESCRIPt, MetaCurator, and ecoPCR as 
implemented and presented in Jeunen et  al.  (2023). We note that 
we did not remake these reference databases from scratch, instead 
comparisons were made using the previously generated reference 
databases made publicly available by Jeunen et al. (2023). To ensure 
compatible taxonomic assignments, we generated new taxonomic 
paths for all databases by taxID using taxonomizr. We specifi-
cally compare the efficacy of the rCRUX, CRABS, MetaCurator, 
ecoPCR, and RESCRIPt reference database-generating tools for the 
MiFish Universal Teleost (MiFish; Miya et  al., 2015), Taberlet trnl 
(trnl; Taberlet et  al., 1991; Taberlet et  al.,  2007), fungal ITS (FITS; 
Ihrmark et al., 2012; White et al., 1990), and Leray CO1 (CO1; Leray 
et al., 2019) loci. The trnl and FITS rCRUX databases were made using 
the NCBI nt blast database (December 2022 download, see Data S1 
for details). Two rCRUX MiFish databases were made: one using 
the same NCBI nt blast database and an expanded database using 
the same NCBI nt blast database supplemented with an additional 
custom blast database comprised of all Actinopterygii mitogenomes 
from the NCBI mito database (see Data S1 for details). The expanded 
database is used for all comparisons below. The CO1 rCRUX data-
base was generated by combining the final results of three unique 
rCRUX strategies: (1) NCBI mito blast database (Data S1 for details), 
(2) EMBL database to generate seeds as described above, and (3) 
using a keyword search of “cytochrome c oxidase 1” to generate 
seeds (see Data S1 for details).

We benchmarked the reference databases by comparing 
the overlapping NCBI accessions and taxonomic content of the 
rCRUX databases against the CRABS (All Markers), MetaCurator 
(All Markers), ecoPCR (All Markers), and RESCRIPt (MiFish, trnl) 

databases presented in Jeunen et al. (2023) (Richardson et al., 2020; 
Robeson et al., 2021). We also compared the rCRUX in silico PCR 
function to ecoPCR implemented by Jeunen et  al.  (2023) (see 
Data S1).

Lastly, to demonstrate the value of more comprehensive ref-
erence databases for taxonomic assignment we used a taxonomic 
cross-validation and novel taxa classification framework imple-
mented through the python tool TAXonomic ClassifieR Evaluation 
Tool (here in tax credit) (Bokulich et al., 2018). Novel taxa analysis 
can test the performance of a reference database when assigning 
taxonomy to an undocumented species. Both cross-validation and 
novel classification analyses were performed for rCRUX, CRABS, 
ecoPCR, RESCRIPt, and MetaCurator 12S MiFish reference data-
bases. To prepare for cross-validation analyses, we generated 10-
fold randomized cross-validation datasets containing test sets and 
training sets for each reference database. Test set sequences were 
removed from the corresponding training set. If a taxonomy in any 
test set was not present in at least 10 sequences in the correspond-
ing training set, the expected taxonomy label was truncated to the 
nearest common taxonomic rank observed in the training set. To 
prepare for novel taxa classification analysis, 10 test and training 
datasets were made for each database at each of three taxonomic 
levels (L), from species to family. Training sets had all sequences that 
matched the taxonomy of the corresponding test sequences at tax-
onomic level L removed.

Taxonomy was assigned to the test datasets using the scikit-learn 
naïve-bayes classifier implemented through the qiime2 feature-clas-
sifier plugin (v2023.5) with default parameters (Bokulich et al., 2018; 
Pedregosa et al., 2011). We then used tax credit to calculate the total 
number of exact matches and overclassifications (lineage is correct 
but longer than expected; e.g. Species instead of Genus), as well as 
precision, recall, and F-measure (the harmonic mean of precision 
and recall), as described in Bokulich et al.  (2018). We then plot the 
F-measure for taxonomic assignments either at the species level 
(cross-validation) or at the genus level when presented with novel 
species (novel taxa). F-measure scores were compared pairwise be-
tween databases using t-tests with Bonferroni's correction for mul-
tiple comparisons, as implemented in the Python statsmodels and 
SciPy libraries.

We then generated 24 rCRUX reference databases for 20 me-
tabarcoding primer sets (Table 1) and made version-controlled, DOI 
accessions available on the GitHub to provide comprehensive cu-
rated reference databases for a suite of bespoke metabarcoding loci 
that lack dedicated reference databases.

3  |  RESULTS

3.1  |  Benchmarking rCRUX against CRUX

We compared the newly implemented rCRUX get_seeds_local() to 
CRUX ecoPCR to benchmark the efficacy of this in silico PCR step. 
The get_seeds_local() in silico PCR consistently captured a greater 
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6 of 16  |     CURD et al.

number of species than CRUX ecoPCR for the MiFish 12S Universal 
Teleost locus (Figure 2a). get_seeds_local() captured 92.6% of species 
that CRUX ecoPCR captured while also capturing an additional 5796 
species (44.7% of total species). Likewise, the rCRUX blast_seeds() 
step captured a greater number of species than CRUX for the MiFish 
12S Universal Teleost locus (Figure 2b). rCRUX captured 99.2% of 
species that CRUX captured while also capturing an additional 7899 
species (37.4% of total species). Together, these results demonstrate 
the improved user time and database size of rCRUX compared to the 
original CRUX implementation.

We further compared computational resources utilized by 
rCRUX and CRUX. The in silico PCR step of rCRUX had a shorter sys-
tem and user time than CRUX, but required more memory (Table S8). 
The seed blasting step of rCRUX had a longer system and user time 
than CRUX, but required less memory (Table S8). Overall, the user 
time for rCRUX was shorter than CRUX, but rCRUX had a longer 
system time and required more memory (Table S8).

3.2  |  Benchmarking rCRUX against CRABS, 
MetaCurator, RESCRIPt, and ecoPCR

Benchmarking of rCRUX against previously published reference data-
bases demonstrates that rCRUX outperforms CRABS, MetaCurator, 
RESCRIPt, and ecoPCR by capturing more species for MiFish 
(Figure 3), trnl (Figure 4), FITS (Figure 5), and CO1 (Figure 6) loci.

For the MiFish reference comparison, only 38.7% of all spe-
cies (n = 9089) were shared across the five reference databases. 
Each reference database had unique species that were not shared 
with any other database (range: 12–4376). rCRUX captured 90.9% 
(n = 21,148) of all species observed across the MiFish reference da-
tabases. rCRUX uniquely had 18.64% (n = 4376) of all species ob-
served (Figure 3). The difference in performance also translated into 
a higher number of unique haplotypes captured for each species 
(Figure S14). These results demonstrate rCRUX had higher across- 
and within-species diversity than the other tested databases.

TA B L E  1 Databases generated using rCRUX for this publication.

Primer set Gene Target Accessions Species
Species after 
dereplication Citation

MiFish Universal 12S Teleosts 125,011 21,082 17,990 Miya et al. (2015)

MiFish Universal – 
expanded blast db

12S Teleosts 128,649 21,182 18,039 Miya et al. (2015)

Ford 16S 16S Teleosts 365,827 95,916 79,352 Ford et al. (2016)

MarVer3 16S Vertebrates 362,131 92,250 73,344 Valsecchi et al. (2020)

MiDeca 16S Decapods 221,806 79,195 61,819 Komai et al. (2019)

Taberlet trnl trnl Plants 139,885 63,720 21,274 Taberlet et al. (1991); 
Taberlet et al. (2007)

Fungal ITS ITS Fungi 1,371,297 228,874 138,089 White et al. (1990); Ihrmark 
et al. (2012)

Baker Dlp D loop Marine mammals 254,404 3693 3382 Baker et al. (2018)

Ceph18S 18S Cephalopods 576 206 160 de Jonge et al. (2021)

UCR Plant rbcl rbcl Plants 202,127 69,414 10,995 McFrederick and 
Rehan (2016); Spence 
et al. (2022)

MiSebastes Cyt b Rockfish 45,494 6163 4808 Min et al. (2021)

Gu ITS2 Plants ITS2 Plants 211,113 64,833 54,713 Gu et al. (2013)

teleo 12S Ffish 108,038 12,534 8178 Valentini et al. (2016)

Coissac trnl trnl Plants 162,309 69,505 10,659 Taberlet et al. (2007)

Kelly 16S 16S Metazoans 540,356 146,979 63,769 Kelly et al. (2016)

18 s SSU3/SSU4 18S Eukaryotes 188,294 63,757 16,724 McInnes et al. (2017)

16S V4 16S Prokaryotes 2,015,938 206,944 73,908 Parada et al. (2016)

18S V4 18S Eukaryotes 427,829 84,651 41,137 Stoeckle and Hebert (2008)

18S V9 18S Eukaryotes 952,981 165,349 56,855 Amaral-Zettler et al. (2009)

CO1 embl CO1 Metazoans 5,073,958 940,096 369,488 Leray et al. (2022)

CO1 ncbi mito CO1 Metazoans 3,269,089 742,818 323,094 Leray et al. (2022)

CO1 searchterm CO1 Metazoans 2,969,493 702,128 291,583 Leray et al. (2022)

CO1 combined CO1 Metazoans 5,413,965 990,286 390,508 Leray et al. (2022)

16S V4 phytoplankton 16S Prokaryotes 4,939,099 325,816 63,808 Walters et al. (2016)
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    |  7 of 16CURD et al.

For the trnl reference database, only 2308 species out of 69,705 
species were shared across the five trnl reference databases. Each 
reference database had unique sequences that were not shared 
with any other database (range: 1–15,190). rCRUX captured 91.4% 
(n = 63,719) of all species observed across the trnl reference da-
tabases. rCRUX uniquely had 21.8% (n = 15,190) of all species ob-
served (Figure 4).

For the FITS reference database, only 5.2% of all species 
(n = 12,218) were shared across the 4 reference databases. Each ref-
erence database had unique sequences that were not shared with 
any other database (range: 610–171,358). rCRUX captured 97.2% 
(n = 228,873) of all species observed across the FITS reference da-
tabases. rCRUX uniquely had 72.8% (n = 171,358) of all species ob-
served (Figure 5).

For the CO1 reference database, only 2.8% of all species 
(n = 27,990) were shared across the 4 reference databases. Each ref-
erence database had unique species that were not shared with any 
other database (range: 4–823,363). rCRUX-combined CO1 database 
captured 99.6% (n = 990,286) of all species observed across the CO1 
reference databases. rCRUX-combined CO1 database uniquely had 
82.8% (n = 823,363) species of all species observed (Figure 6). The 
three distinct strategies used to generate the rCRUX-combined CO1 
database had complementary species (see Data S1).

Limiting the seeds and database generation output comparisons to 
only Eukaryotic reads had minimal effect on the results (Figures S15–
S18). We also note that the rCRUX databases were generated after 
the other databases; however, they include the majority of species 
captured by compared methods. Together, these results benchmark 

F I G U R E  2 Comparison of rCRUX to the original implementation of CRUX. Comparison of number of species captured by (a) rCRUX-
implemented get_seeds_local() and CRUX-implemented ecoPCR in silico PCR tools and (b) rCRUX- and CRUX-implemented blast_seeds() for 
the MiFish 12S Universal Teleost locus. rCRUX captures the vast majority of species captured by CRUX while also incorporating thousands 
of additional taxa.

F I G U R E  3 MiFISH rCRUX blast_seeds() database comparison with CRABS, ecoPCR, MetaCurator, and RESCRIPt databases created by 
Jeunen et al. (2023).
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8 of 16  |     CURD et al.

rCRUX favorably against CRABS, MetaCurator, ecoPCR, RESCRIPt, 
and CRUX across a diversity of metabarcoding loci.

3.3  |  Cross-validation and novel taxa classification

Cross-validation comparisons of MiFish 12S databases demonstrate 
that rCRUX had significantly higher average F-measures for spe-
cies-level assignments (0.605 ± 0.008) than RESCRIPt (0.5 ± 0.008), 

ecoPCR (0.517 ± 0.009), CRABS (0.0.535 ± 0.011), and MetaCurator 
(0.515 ± 0.01) reference databases. Similarly, novel classification re-
sults demonstrate that rCRUX had significantly higher F-measure 
for genus-level assignments to species missing from the refer-
ence database (0.283 ± 0.006) than RESCRIPt (0.206 ± 0.007), 
ecoPCR (0.19 ± 0.009), CRABS (0.221 ± 0.007), and MetaCurator 
(0.222 ± 0.008) reference databases. The rCRUX database was 
not significantly different in F-measure from the other databases 
at higher taxonomic levels. Together, these results highlight the 

F I G U R E  4 trnl rCRUX blast_seeds() database comparison with CRABS, ecoPCR, MetaCurator, and RESCRIPt databases created by Jeunen 
et al. (2023).

F I G U R E  5 FITS rCRUX blast_seeds() database comparison with CRABS, ecoPCR, MetaCurator, and RESCRIPt databases created by 
Jeunen et al. (2023).
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    |  9 of 16CURD et al.

improved performance of rCRUX for taxonomic assignment com-
pared to other taxonomic reference databases (Figure 7).

3.4  |  rCRUX databases

We successfully generated a total of 16 reference databases 
(Table 1) for a suite of bespoke metabarcoding primer sets. Sizes of 
these reference databases ranged from 576 to 5,413,965 accessions 
and 206 (160 unique sequences) to 990,286 (390,508 unique se-
quences) species.

4  |  DISCUSSION

We successfully demonstrate that rCRUX generates comprehen-
sive, curated reference databases for user-defined metabarcoding 
loci of interest. We benchmarked rCRUX against similar reference 
database-generating tools, consistently capturing the majority of ac-
cessions and species present in those databases and thousands of 
additional species and accessions not found in CRABS, MetaCurator, 
ecoPCR, RESCRIPt, and the original implementation of CRUX (Curd 
et  al.,  2019; Ficetola et  al., 2010; Jeunen et  al.,  2023; Richardson 

F I G U R E  6 CO1 rCRUX blast_seeds() database comparison with CRABS, ecoPCR, MetaCurator, and RESCRIPt databases created by 
Jeunen et al. (2023).

F I G U R E  7 Cross-validation and novel taxonomy performance evaluations. rCRUX had significantly higher average F-measure for 
cross-validation at the species level than RESCRIPt, CRABS, ecoPCR, and MetaCurator 12S reference databases (a). Likewise, rCRUX 
had significantly higher F-measure for novel species taxonomic assignments at the species level than RESCRIPt, CRABS, ecoPCR, and 
MetaCurator (b). Violins with different lower-case letters have significantly different means (paired t-test, false detection rate-corrected 
p < 0.05).
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10 of 16  |     CURD et al.

et  al.,  2020; Robeson et  al.,  2021). We generated 24 reference 
databases for bespoke metabarcoding loci of interest, including 7 
databases for larger universal markers, providing important bioin-
formatic resources for the broader metabarcoding community. The 
rCRUX R package presented here provides a valuable tool for the 
generation and curation of reference databases, enhancing the ac-
curacy, utility, and reproducibility of taxonomic assignment of DNA 
sequences broadly.

4.1  |  Benchmarking rCRUX reference databases

rCRUX-generated reference databases were consistently more 
comprehensive than other leading databases (Figures  2–6; 
Figures  S15–18). This is partially driven by the efficacy of get_
seeds_local(), which captured more species and accessions than 
ecoPCR, serving as a more efficient in silico PCR simulator (Curd 
et  al.,  2019; Ficetola et  al., 2010) (Figure  1; Figure  S12). At the 
core of get_seeds_local() is the NCBI primer blast tool which is a 
widely used, well-benchmarked, and reproducible tool for the 
testing of primer sets (Cannon et al., 2016; Hleap et al., 2021; Ye 
et al., 2012). In addition, we demonstrate that our iterative blast-
ing approach did not impair the efficacy of the blast_seeds() step 
as originally implemented in CRUX, resulting in faster run times 
and comparably comprehensive reference databases (Figures 2–6; 
Data S1).

Previous research has highlighted the value of more compre-
hensive reference databases for improved taxonomic assignment 
(Curd et  al., 2019; Dziedzic et  al., 2023; Gold et  al., 2021; Jeunen 
et al., 2023; Keck & Altermatt, 2023; Richardson et al., 2020). Here, 
we demonstrate through cross-validation and novel classification 
analysis that the more comprehensive rCRUX databases consis-
tently outperformed the partial RESCIPt, ecoPCR, CRABS, and 
MetaCurator databases. Thus, the greater diversity and breadth 
of species and accessions captured in rCRUX-generated reference 
databases provide an important tool for improving taxonomic 
classification.

Interestingly, we found that no reference database was com-
pletely comprehensive as each generated reference database tested 
had unique accessions and species (Figures  2–6). These patterns 
are consistent with previous reference database comparisons and 
highlight the inherent difficulty of capturing all relevant acces-
sions for a given metabarcoding locus of interest from global public 
DNA sequence repositories (Curd et al., 2019; Jeunen et al., 2023; 
Richardson et al., 2020). Although each of the tools compared here 
shares an underlying strategy for creating comprehensive reference 
databases for loci of interest, their implementation is different, re-
sulting in distinct subsets of captured reference sequences. These 
results highlight the challenge of making reproducible reference da-
tabases. However, despite these differences across reference data-
base generators, rCRUX captured the vast majority of all species and 
accessions captured across the tested reference databases, failing 
to capture at most ~2% of sequences captured by another database. 

Future reference database-generating efforts may seek to employ 
multiple distinct generating strategies and combine results to obtain 
the most comprehensive reference database possible.

Importantly, we demonstrate that rCRUX is nearly perfectly 
reproducible across subsequent runs of MiFish Teleost rCRUX da-
tabases (n = 10 runs, coefficient in variation of returned accessions 
<0.01%, see Data  S1 and Table  S3), providing high confidence in 
rCRUX reference databases.

4.2  |  FAIR reference database generation

Access to reliable, reproducible, comprehensive, and curated refer-
ence databases is critical for improving taxonomic assignment of 
DNA sequences (Keck & Altermatt,  2023). However, to date, cu-
rated, metabarcode-specific reference database-generating tools 
have not fully adhered to the Findable, Accessible, Interoperable, and 
Reproducible data management principles (Wilkinson et al., 2016). 
The generation and curation of reference barcode databases is 
time- and labor-intensive and requires substantial computational re-
sources and bioinformatic expertise which often limits interoperabil-
ity and reproducibility across users. Together, this severely limits our 
ability to generate reference databases quickly and efficiently and 
limits the number of researchers and scientists who can build the 
repositories needed to assign taxonomy to DNA sequences (Curd 
et al., 2019; Shea et al., 2023).

However, recent advances in reference database-generating 
tools open the door to a broader community of practice in generat-
ing reference databases (Jeunen et al., 2023). Given the ubiquity of 
R users in the molecular biology and ecology fields, rCRUX provides 
a powerful tool that is straightforward and relatively easy to imple-
ment on any computing environment. By providing researchers with 
an accessible reference database-generating tool, we hope to alle-
viate the difficulties of building and updating reference databases. 
Thus, the ability to generate user-specific barcode reference data-
bases will enhance metabarcoding, eDNA, microbiome, and DNA 
classification research efforts broadly.

One of the motivations for making simple and easy to install, 
update, and maintain reference database-generating tools was to 
increase access to these resources across the molecular biology 
and ecology fields. However, limitations in the utility of reference 
database-generating software still remain, particularly the scale of 
computational resources needed. Although the iterative blast im-
plementation of rCRUX reduces computational needs compared to 
the previous iterations of CRUX, the rCRUX databases presented 
here still relied on high-performance computing (each run was given 
a maximum allotment of 250GB of RAM, 40 cores, and 1 week of run 
time on the University of Vermont – Vermont Advanced Computing 
Core, RRID:SCR_017762, and 16 of the 24 databases used a fraction 
of those resources). However, efforts to generate larger reference 
databases with greater number of available reference barcodes (e.g. 
CO1, microbial 16S V4, phytoplankton 16S V4, 18S V4, and 18S V9) 
were challenging, requiring a distinct implementation strategy for 
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    |  11 of 16CURD et al.

get_seeds_local() (see Data S1) because of a lack of available com-
putational resources to meet the scale of available sequences. 
Researchers often lack access to computational resources, partic-
ularly in developing nations where biodiversity is often the highest 
and the need for DNA-based taxonomic classification is the great-
est (Asase et  al., 2022; Barber et  al.,  2014; Johnson et  al.,  2022). 
As cloud computing and high-performance computing resources 
continue to become increasingly cost-effective, we hope rCRUX 
and similar reference database-generating tools will become more 
accessible (Thompson & Thielen, 2023). We note that rCRUX can 
be successfully implemented on a personal laptop with a 1 TB hard 
drive, 16 GB of RAM, and 8 cores, given parameters and markers that 
require fewer computational resources. Importantly, we designed 
rCRUX to be highly scalable and easy to install through R in any com-
pute environment, allowing for adoption in future cloud computing 
efforts in which rCRUX could be served to a wide audience like NCBI 
primerTools or BLAST.

However, to specifically help address issues of access to compre-
hensive reference databases, we provided 16 reference databases 
for commonly used or emerging metabarcoding loci and 8 for larger 
universal loci. These databases will be updated and curated at least 
annually with a unique DOI, providing important genetic resources 
to the broader DNA sequencing community including those that 
lack access to such computational infrastructure. Future efforts will 
be made to grow the list of available databases as future loci be-
come available and widely adopted (Version Controlled Reference 
Databases available at https://​github.​com/​CalCO​FI/​rCRUX​).

Lastly, we demonstrate the reproducibility of rCRUX, allowing 
for users to make identical databases from the same starting pa-
rameters and sequence repositories (Table  S1). Providing a repro-
ducible and stable tool for the generation of barcode reference 
databases ensures high-quality genetic resources that adhere to 
FAIR principles.

4.3  |  Broader applications of rCRUX

The most immediate application of rCRUX is the generation of refer-
ence databases to support taxonomic assignment of metabarcoding 
from high-throughput sequencing. However, the utility of rCRUX al-
lows for reference databases to be generated on any blast-format-
ted database, directly supporting improved taxonomic assignment 
of a broad range of DNA sequence applications. For example, this 
allows for the curation of reference barcodes from full- or partial-
length mitogenomes (see Data S1), supporting long-read sequencing 
taxonomic assignment applications (Johri et al., 2019; Ramon-Laca 
et  al.  2022). In addition, rCRUX can be used for building nuclear 
DNA-based reference databases from whole-genome and transcrip-
tome sequences. Such efforts could be used to develop population-
genetic and eRNA-specific reference databases for a diversity of 
biomonitoring applications (Adams et al., 2019; Greco et al., 2022; 
McKinney et al., 2022; Sigsgaard et al., 2020; Simon et al., 2019).

Curation of reference databases is important to ensure accurate 
taxonomic assignment (Bourret et al., 2023; Fontes et al., 2021). 
rCRUX performs curation of reference sequences by selecting 
specific marker genes, filtering sequences to relevant lengths, and 
collapsing accessions with identical sequences to lowest common 
ancestor analogous to generating BINs (Fontes et al., 2021). Here, 
we applied a unique sequence dereplication approach to retain 
as much informative information as possible for taxonomic clas-
sification. For example, most salmonids in the NE Pacific have a 
single base pair difference across the MiFish 12S Teleost locus 
(Gold et al., 2021; Shelton et al., 2023). Applying a BIN approach, 
even at 99% clustering, would collapse all of these sequences to 
genus level (1 base pair/186 bp fragment length, 99.46% sequence 
similarity). However, the location of these base pair differences 
is consistent across dozens to hundreds of salmonid sequences, 
strongly suggesting that these alleles are fixed across each species 
within this locus and thus can be used for species identification 
(Gold et al., 2021; Shelton et al., 2023). However, removing dupli-
cate sequences from reference databases can improve the accu-
racy of taxonomic assignments, particularly when using Bayesian 
approaches that are biased by the number of reference sequences 
for a given species (Curd et al., 2019). Thus, the inclusion of this 
dereplication step provides a valuable curation tool for reference 
databases.

However, the curation efforts implemented within rCRUX are 
limited, and future efforts could implement additional quality as-
surance and quality control measures. For example, recent efforts 
have demonstrated that local reference databases often perform 
better than global ones, thus developing tools to subset reference 
databases to specific geographic regions of interest would provide 
a valuable curation step (Blackman et al., 2023; Bourret et al., 2023; 
Gold et al., 2021). However, implementing such an approach would 
require accurate global repositories of species distributions and de-
tailed inventories of regional biodiversity which are often not readily 
available (Beck et al., 2014; Costello & Berghe, 2006). In addition, 
an important curation step that would greatly benefit rCRUX refer-
ence databases is the removal of incorrect reference sequences in 
global sequence repositories (Cheng et al. 2023; Keck et al., 2022). 
The development and application of automated and efficient tools 
to remove erroneous sequences in global public DNA sequence 
repositories would greatly benefit reference database curation ef-
forts broadly. This is particularly an issue for tools like rCRUX which, 
unlike manually curated databases, rely solely on the accuracy of 
such global sequence repositories (Leray et  al.,  2019; Meiklejohn 
et al., 2019). Specifically, there is a need for the development and 
application of phylogenetic approaches to readily identify prob-
lematic reference databases from public repositories for species 
assignments (see Jeunen et al., 2023). Although the curation tools 
presented here provide an important advancement for reference 
databases, future efforts to enhance reference database curation 
will greatly improve trust and reliability in taxonomic assignments 
broadly (Fontes et al., 2021; Keck et al., 2022).
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Importantly, we demonstrate that reference database-generat-
ing tools like rCRUX paired with taxonomic classification evaluation 
tools like tax credit provide a valuable resource for designing, val-
idating, and comparing potential metabarcoding targets for a spe-
cific research question (Bokulich et  al., 2018; Edgar, 2018; Hleap 
et  al.,  2021; Mathon et  al.,  2021). For example, if researchers are 
deciding which fish metabarcoding loci to use for a given project and 
have a known target species list (Jerde et al., 2021), rCRUX can be 
used to conduct an in silico comparison of primer set efficacy. This 
can be accomplished by first generating rCRUX reference databases 
for each potential locus, then performing cross-validation of each 
reference database with tax credit, and then simply cross-referenc-
ing the taxonomic resolution of each database against the target taxa 
list (Gold et al., 2021). The comparison and curation tools provided 
here allow for the direct comparison of multiple reference data-
bases, serving as a resource for evaluating the relative performance 
of reference databases on taxonomic assignment. Previous research 
has demonstrated the value of these kinds of in silico validation and 
benchmarking approaches for improved taxonomic classification of 
DNA sequences (Curd et al., 2019; Edgar, 2018; Gold et al., 2021; 
Jeunen et al., 2023). Thus, rCRUX provides a simple, cost-effective 
tool for informing scientists and resource managers on the efficacy 
of taxonomic assignment during the design and development of bio-
molecular monitoring efforts.

4.4  |  Complimentary packages to rCRUX

The rCRUX package provides important novel utility to the wide 
suite of reference database-managing packages available. We note 
that such packages can be used in concert to achieve improved ref-
erence database management and efficacy. For example, the refdb 
R package provides a suite of complementary tools that can be used 
to merge BOLD and GenBank databases which could provide im-
proved blast-formatted nucleotide databases (Keck et al., 2022). In 
addition, refdb provides a suite of tools to visualize and summarize 
output reference databases (Keck et  al., 2022). Similar utilities to 
merge GenBank, EMBL, and BOLD databases are available through 
CRABS, MARES, RESCRIPt, and BAGS and can be used to generate a 
more comprehensive starting blastDB database, particularly for CO1 
genes (Arranz et al., 2020; Fontes et al., 2021; Jeunen et al., 2023; 
Robeson et al., 2021). In addition, CRABS and MARES also provide 
tools to output datasets in a greater diversity of formats for use in 
additional taxonomic classifiers beyond Anacapa and Qiime2 (Bolyen 
et al., 2019; Curd et al., 2019). The comprehensiveness of rCRUX da-
tabases can also be leveraged and used as input into GAPeDNA to 
better conduct gap analysis for a given locus and target taxa in a spe-
cific study region (Marques et al., 2021). Similarly, researchers sub-
mitting Omics data to Ocean Biogeographic Information System and 
complying with Darwin Core standards can use the World Register of 
Marine Species taxonomy and can readily convert rCRUX taxonomy 
using the worrms R package (Berry et al., 2021; Chamberlain, 2019; 
Costello et  al.,  2013; Grassle & Stocks,  1999; Meyer et  al.,  2023). 

Thus, rCRUX provides an important complementary tool to the suite 
of available reference database management software.

5  |  CONCLUSION

Ultimately, rCRUX provides a powerful, reproducible, and reliable 
tool for the generation of comprehensive and curated reference 
databases for any genetic loci of interest. By providing users with 
a simple and accessible reference database-generating R package, 
rCRUX will ease taxonomic classification as well as validation and 
benchmarking for bespoke and novel primer sets. Improved ease of 
implementation over previous iterations of CRUX and a suite of 24 
publicly available version-controlled reference databases provide 
important genetic resources without the need for significant com-
putational resources, facilitating access and adoption of high-quality 
reference databases and database-generating tools to a broad range 
of users.
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