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ABSTRACT: Many studies have aimed to identify novel storm characteristics that are indicative of current or future
severe weather potential using a combination of ground-based radar observations and severe reports. However, this is of-
ten done on a small scale using limited case studies on the order of tens to hundreds of storms due to how time-intensive
this process is. Herein, we introduce the GridRad-Severe dataset, a database including ;100 severe weather days per year
and upward of 1.3 million objectively tracked storms from 2010 to 2019. Composite radar volumes spanning objectively de-
termined, report-centered domains are created for each selected day using the GridRad compositing technique, with dates
objectively determined using report thresholds defined to capture the highest-end severe weather days from each year,
evenly distributed across all severe report types (tornadoes, severe hail, and severe wind). Spatiotemporal domain bounds
for each event are objectively determined to encompass both the majority of reports and the time of convection initiation.
Severe weather reports are matched to storms that are objectively tracked using the radar data, so the evolution of the
storm cells and their severe weather production can be evaluated. Herein, we apply storm mode (single-cell, multicell, or
mesoscale convective system storms) and right-moving supercell classification techniques to the dataset, and revisit various
questions about severe storms and their bulk characteristics posed and evaluated in past work. Additional applications of
this dataset are reviewed for possible future studies.
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1. Introduction

Severe weather, including tornadoes, severe hail, and se-
vere wind, has substantial impacts across the United States
each year. NOAA/NCEI (2023) reported that severe weather
accounted for approximately $8.5 billion (U.S. dollars; infla-
tion adjusted) in annual losses and nearly 2000 deaths from 1980
to 2022. Additionally, there have been 163 severe weather events
each totaling $1 billion (inflation adjusted) in losses or more,
including derechos, hail storms, and tornado outbreaks, and
38 events with 10 or more casualties over that same period. It
remains important to analyze these, and other such high-end
severe weather events, to further improve our resilience to
them.

Examining a severe weather event is inherently multiface-
ted, and the data used depend primarily on the type of analy-
sis. These data often include synoptic-scale and mesoscale
data starting in the days to hours preceding an event (e.g.,
Rockwood and Maddox 1988; Coniglio et al. 2011; Hurlbut
and Cohen 2014; Vaughan et al. 2017), radar and satellite
data to examine storm-scale features and evolution during the
event, and storm reports in the aftermath to evaluate impacts.
Radar data can be incredibly useful to understand the physical
and kinematic structure of severe versus non-severe storms.

In particular, such data have provided insight into the inten-
sity of precipitation, horizontal and vertical extents, wind
speeds, flow patterns, rotational velocities, and precipitation
distributions associated with a storm (e.g., Byers and Braham
1949; Browning 1964; Brown et al. 1978; Lemon and Doswell
1979; Wurman et al. 1996; Parker and Johnson 2000). Radars
have been used for several decades to understand tornadic
storms and tornadogenesis (e.g., Lemon and Doswell 1979;
Ryzhkov et al. 2002, 2005; Kumjian and Ryzhkov 2008;
Kurdzo et al. 2017; Homeyer et al. 2020), estimate hail size in
a storm (e.g., Witt et al. 1998; Murillo and Homeyer 2019),
and better understand severe straight-line wind events (e.g.,
Fujita and Byers 1977; Fujita 1990; Wakimoto 2001; Klimowski
et al. 2003). With the advent of dual-polarization radar and inte-
gration of such radars into the operational network of S-band
radars in the United States (NEXRAD network) in 2013, a
wealth of additional information can be inferred from these
data including improved hydrometeor classification, detect-
ing the presence and size of hail, convective updraft and ver-
tical wind shear identification, and detection of tornadic debris
(Kumjian 2013). Radar datasets therefore remain powerful
tools to further understand the structure of severe storms and
any unique identifying characteristics that can be used in real-
time for warning decisions.

One such radar analysis technique that has been performed
both manually and objectively is storm mode classification.
Accurate identification of storm mode allows for further in-
sight into the potential for various types of severe weather.
Common storm classifications include single-cell storms, mul-
ticellular storms, and mesoscale convective systems (MCSs).
For smaller-scale studies, subjective (manual) identification is
often performed, as it is not prohibitively time intensive for so
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few samples. However, for studies using larger databases of
storms, objective methods are a practical and often necessary
solution for classification. Various studies use observed or
simulated column-maximum reflectivity and a 30–40-dBZ thresh-
old (e.g., Trapp et al. 2005; Snively and Gallus 2014; Thielen and
Gallus 2019) to define contours encapsulating convective ele-
ments. Using radar data analyzed on the order of minutes to
hours, these techniques often incorporate constraints for aspect
ratio (i.e., the length to width ratio; e.g., Bluestein and Jain 1985;
Fowle and Roebber 2003; Gallus et al. 2008; Smith et al. 2012;
Snively and Gallus 2014; Thielen and Gallus 2019), maximum
contour dimension (e.g., Bluestein and Jain 1985; Parker and
Johnson 2000; Trapp et al. 2005; Gallus et al. 2008; Smith et al.
2012; Snively and Gallus 2014; Thielen and Gallus 2019), en-
closed area (e.g., Fowle and Roebber 2003), and storm persis-
tence/duration (e.g., Geerts 1998; Pinto et al. 2015; Feng et al.
2018, 2019).

Beyond determining a storm’s mode, one common ap-
proach to analyzing their severe weather potential is through
case studies, especially using radar observations and severe
reports. Case studies of severe weather events and their radar
presentations abound in the literature, providing valuable
fine-scale insight into the inner workings of severe thunder-
storms. For example, a case study examination of a tornadic
supercell in Oklahoma on 3 May 1999 led to the discovery of
the polarimetric radar tornadic debris signature (TDS) by
Ryzhkov et al. (2002), prompting analyses of other supercells
for potential analogous signatures in Ryzhkov et al. (2005)
and the eventual inclusion of the polarimetric TDS in modern
guides on polarimetric radar utility (e.g., Kumjian 2013). Ad-
ditionally, Fujita and Byers (1977) examined the meteorologi-
cal conditions surrounding an airplane crash and detected
thunderstorm winds that were much stronger than anything
previously observed, coining these winds a “downburst.” This
observation prompted numerous field campaigns targeting
downburst-producing storms (e.g., Fujita and Wakimoto 1982;
McCarthy et al. 1982; Wilson et al. 1988), leading to a more
comprehensive understanding of the phenomenon today and
likely saving many lives (Wilson and Wakimoto 2001). Work-
ing with case studies allows for very detailed analyses of se-
vere storms, but the conclusions from such studies are limited
in generalizability given their relatively small sample sizes.

Large-scale studies of severe weather in the literature date
as far back as the 1940s with the Thunderstorm Project (Byers
and Braham 1949), and climatological studies have driven
many of the scientific community’s advances in severe weather
knowledge. Tornadoes in the United States are most common
in early summer (Brooks et al. 2003) and in the late afternoon
to early evening (Ashley et al. 2008), mostly in the Great Plains
and into the Southeast (Coleman and Dixon 2014; Gensini and
Brooks 2018; Krocak and Brooks 2018). The majority of re-
ported tornadoes are weak (EF0 to EF1; e.g., Brooks and
Doswell 2001; Trapp et al. 2005) although the less frequent
significant tornadoes (EF21) are responsible for nearly 90%
of fatalities (e.g., Anderson-Frey and Brooks 2019). Climatol-
ogies of severe hail like those by Cintineo et al. (2012), Murillo
et al. (2021), and Wendt and Jirak (2021) are also typically
built using reports, despite well-known reporting limitations

(see Allen and Tippett 2015, and references therein). Allen and
Tippett (2015) examined a 60-yr record of over 260 000 hail re-
ports and found that the majority of all hail reports occurred in
the late afternoon to early evening primarily during the late
spring, with a maximum in the Great Plains that is slowly shift-
ing northward. Studies of severe winds often focus attention on
MCSs, which can produce uniquely widespread and damaging
severe winds, including and especially from derechos (Johns
and Hirt 1987; Corfidi et al. 2016). Coniglio and Stensrud (2004)
found that higher-end derecho events in their 16-yr climatology
favor the southern plains and Midwest. Derechos in the
eastern two-thirds of the CONUS tend to occur more in the
summer months (Coniglio and Stensrud 2004) in the late
evening to overnight (Bentley and Mote 1998). Recent work
using machine learning to classify and track MCSs and
quasi-linear convective systems (QLCSs) by Ashley et al. (2019)
showed, using their developed MCS climatology, that nearly a
third of all MCSs in their 22-yr dataset were also QLCSs, and
QLCS storms were linked with 28% of all severe wind reports
in the central and eastern United States. Climatological studies
allow for a large-scale view of severe weather to develop mental
models for how, when, and where severe hazards are likely to
occur.

Several studies have investigated compelling scientific ques-
tions about severe storms beyond just their climatological dis-
tributions using a large record of observations. For example,
studies such as Homeyer et al. (2020), Loeffler et al. (2020),
and Van Den Broeke (2020) used radar data from tens to
hundreds of tornadic and nontornadic supercells to examine
tornadogenesis predictability; Blair et al. (2011) and Gutierrez
and Kumjian (2021) examined radar signatures within tens to
hundreds of giant and gargantuan hail-producing storms; and
Bluestein and Jain (1985) and Schiesser et al. (1995) looked at
mesoscale structures within radar data from dozens of severe
MCSs. Past studies such as these, despite using larger datasets
than the more numerous case study analyses, rarely contain
more than a few hundred storms and are commonly limited in
both their spatiotemporal extent and temporal resolution of
observations. Furthermore, any larger-scale studies done be-
fore 2013 have limited to no access to polarimetric radar data,
which further limits understanding of storm microphysics that
may be relevant to severe events. Therefore, there exists a
need to expand these studies using a longer temporal record
and analyze a much larger population of storms that are more
spatiotemporally diverse, have higher temporal resolution
data, and that occurred within the observational range of one
or more polarimetric radars.

Recognizing the contributions of the aforementioned prior
work to our understanding of severe storms, and with the in-
creasing record of observations and emergence of a national
polarimetric radar network, a clear incentive exists to create a
modern database of radar data and severe weather reports to
evaluate the characteristics of storms that produce severe
weather. This paper aims to fill the knowledge gaps outlined
herein using the newly developed GridRad-Severe database
(hereafter abbreviated GR-S): a database including gridded
multiradar data covering the majority of the CONUS, objec-
tive storm tracks, and storm reports. Herein, we outline the
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creation and utility of GR-S as well as how well it reflects
the spatiotemporal distribution of all storm reports in the
United States. Additionally, we introduce objective storm
mode and supercell classification techniques to aid in data
analysis, and examine initial findings of the GR-S dataset
that complement and expand upon past studies. Finally, we
directly compare GR-S findings with results from select
seminal papers to demonstrate its ability to replicate and ex-
tend prior key findings.

2. The GR-S dataset

a. Radar data

Radar data sourced from the nationwide NEXRAD network
(NOAA/NWS/ROC 1991; Crum and Alberty 1993) were used
to create GridRad data using version 4.2 of the public algorithm
(Homeyer and Bowman 2022). GridRad data are merged vol-
umes of individual radar observations across the CONUS,
binned on a regular longitude–latitude grid. This includes sin-
gle-polarization radar moments such as radar reflectivity at hor-
izontal polarization (ZH) and radial velocity spectrum width
(sV) before 2013, and additional dual-polarization variables
such as differential radar reflectivity (ZDR), copolar correlation
coefficient (rhv), and specific differential phase (KDP) following
the polarimetric upgrade of the radar network. Derived kine-
matic variables were also calculated on the native grid of each
radar and binned into GridRad volumes, including radial diver-
gence and azimuthal shear of the radial velocity. The spatial res-
olution of GridRad data is ;0.028 3 ;0.028 longitude–
latitude (48 grid points per degree), and 0.5-km vertical resolu-
tion up to 7 km above mean sea level (MSL), after which the
vertical resolution coarsens to 1-km up to 22 km MSL. Tempo-
ral resolution of the data is 5 min. More technical details about
the creation of GridRad data can be found in Homeyer and
Bowman (2022). GridRad is one of a few commonly used
merged CONUS radar products [notable alternatives include
NOAA’s Multi-Radar Multi-Sensor (MRMS) and Multi-Year
Reanalysis of Remotely Sensed Storms (MYRORSS)] and is
unique in its breadth of merged radar variables and merging
methods that aim to provide high-fidelity echo-top heights
and internal storm structure. Herein, we only create GridRad
data for severe events within the CONUS (specifically, do-
mains spanning 248–508N, 1258–668W).

The GR-S database includes radar data from 2010 to 2019
inclusive, with future years expected to be added over time.
This dataset starts in 2010 due to both good NEXRAD cover-
age and being after the NEXRAD transition to super resolu-
tion (Torres and Curtis 2007). Since the tornado rating scale
changed from F to EF in 2007 (Doswell et al. 2009; Edwards
et al. 2013) and the severe hail size threshold changed from
0.75′′ to 1.0′′ in early 2010 (before the first date in this dataset;
Allen and Tippett 2015), all reports classified as severe herein are
based on a uniform threshold for hail ($1.0 in.; 1 in. 5 2.54 cm)
and wind (gusts $ 50 kt; 1 kt ’ 0.51 m s21) and a uniform dam-
age rating scale for tornadoes (the enhanced Fujita or EF scale).
Significant severe reports are those meeting or exceeding EF2

for tornadoes, 2.0 in. for hail, and 65-kt gusts for wind (Hales
1988).

b. Storm report data

Storm report data are sourced from NOAA’s Storm Events
Database (SED) hosted at the National Centers for Environ-
mental Information (NOAA/NCEI 2022) from 2010 to 2019
inclusive, including tornado, hail, and wind report data. Each
SED report includes a unique event ID, start and end date
and time, initial and final event coordinates (longitudes and
latitudes), and magnitude (EF rating for tornadoes, maximum
diameter for hail, and maximum wind speed for severe wind).
Tornado reports also include tornado pathlength and width.

c. Event definition

Defining a GR-S event occurs in a few distinct steps. First,
high-end severe days are identified using the tornado, hail,
and wind reports from the SED. To be consistent with SPC
severe days and most prior work, GR-S events begin at
1200 UTC on the event day and end at 1200 UTC on the fol-
lowing day. We identify days as high-end severe days if the
number of tornado, hail, or wind reports exceeds 8, 45, or
120, respectively. These primary thresholds were chosen be-
cause they result in a nearly balanced dataset of high-end
tornado, hail, and wind days each year, with approximately
100 days yr21 being labeled as high-end severe days (i.e.,
GR-S events). The thresholds also approximately corre-
spond to the 85th percentile of daily report counts for each
hazard. Once a day is included in the GR-S database (via
the aforementioned primary threshold), secondary thresh-
olds are used to determine what severe types will be used
for domain definition on that day, roughly corresponding to
the upper quartile of daily report counts. This is done to
maximize the diversity and breadth of severe weather that is
analyzed on the selected GR-S event days; if a day is already
included in the dataset, it makes sense to analyze not only
the severe hazard that happened enough times to warrant
the day’s inclusion in the dataset, but also any other severe
hazards that, while not prolific enough to pass that high pri-
mary threshold, still frequently occurred on that day. The
secondary thresholds are roughly one-half of the primary
thresholds: greater than 4 tornado reports, 22 hail reports,
or 60 wind reports. Isolating data in these ways results in a
large dataset focused solely on high-end severe weather
events with a high level of spatiotemporal detail.

After high-end severe days are identified, the locations and
times of the SED reports are used to constrain the spatiotem-
poral domains of each day’s GridRad data. Domain bounds
are objectively determined using the latitudes, longitudes, and
times of reports for each day’s selected report types (i.e., tor-
nado, hail, and/or wind). These space and time bounds are in-
dependently created for each report type and the final domain
results from retaining the extrema of each objective report do-
main. First, the mean latitude and longitude to the nearest half
degree of a given report type is found. An initial box encom-
passing this point is created with bounds 658 longitude and
latitude from the mean report location. This 108 3 108 box
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then recursively expands by 0.58 in all directions until $90%
of reports for that report type are encompassed. Using only
those reports enclosed in the objectively identified box, time
boundaries are created in a similar manner, starting with 62 h
centered on the mean report time rounded to the nearest half-
hour. The time boundaries expand recursively by half-hour in-
crements in each direction until $90% of the reports within
the spatial boundaries are captured (i.e., $81% of the total
number of reports). Note that the time bounds of a GR-S
event (1200–1200 UTC) differ slightly from the SPC definition
of a single day (1200–1159 UTC). Once these time boundaries
are determined, they are trimmed such that the start time is no
more than 30 min before the first report and the end time is no
more than 30 min after the last report. This ensures that the
GridRad data created are focused on the times when severe
weather was occurring. Figure 1 shows how often a location was
encompassed within a GR-S domain. Overall, the GR-S domains
were generally focused on the region 308–458N, 1008–808W, offset
slightly southeast of the center of the CONUS. As the year cycles
from spring through winter, the GR-S domains on average shift
in a clockwise manner, consistent with seasonality in the SED re-
port data (not shown).

As stated previously, this creation of space and time bounds
is done independently and objectively for each report type
that exceeds its secondary threshold. For days where more
than one report type exceeds its secondary threshold, both a
composite spatial domain and a composite temporal domain
are created using the individual spatial and temporal domains
for each report type, retaining the overall maximum and mini-
mum latitudes, longitudes, and times to create a composite
domain that encompasses all individual domains. Once these
spatiotemporal bounds are determined, the time bounds are
limited to begin no earlier than 1500 UTC on the event day
and end no later than 1200 UTC the following day, to limit
analyses to the 1200–1200 UTC period used for SED reports.
We use 1500 UTC instead of 1200 UTC as the start time limit
because all GR-S day temporal domains are then extended
backward by 3 h to attempt to capture convection initiation (CI).
This is motivated by prior work such as Bluestein and Parker
(1993), which found in their dryline study in Oklahoma that the
time between CI and the first tornado report for a storm was ap-
proximately 2–3 h (see their Table 2). A flowchart describing
these methods is shown in Fig. 2, and an additional schematic
showing an example GR-S case and spatiotemporal domain se-
lection is available in the online supplemental material.

d. GR-S storm tracks

Each GR-S event includes the 5-min GridRad volumes out-
lined in section 2a and a comma-delimited storm track file
that includes official storm reports matched with each storm.
The storm tracks for each event are identified using an echo-
top altitude-based tracking method from Homeyer et al. (2017),
with modification to resolve premature termination of tracks
during storm splits and mergers as outlined in Lagerquist et al.
(2020). In summary, the GridRad storm tracking algorithm
identifies point locations of ZH 5 30-dBZ echo-top altitude
maxima and links them in time (5-min intervals for GR-S).

Echo-top maxima are required to reach at least 4 km MSL and
be embedded within echoes classified as convection by the
Storm Labeling in 3 Dimensions algorithm (SL3D; Starzec et al.
2017) to be tracked. Cells in subsequent time steps are linked in
time if they are located within 15 km of each other (for neigh-
boring 5-min volumes only). In cases where more than one
echo-top maximum is located within 15 km of a previously
defined storm, the closest one is matched during tracking.
Finally, the tracking algorithm only retains tracks that are at
least 15 min in duration–or, equivalently, are identified in at
least three consecutive 5-min GridRad volumes. To resolve
storm splits and storm mergers, colinear storm tracks with
closely located or overlapping initial and final locations and
times are combined into one track. This combination ensures
that cyclic updraft cycles, as seen commonly in supercells, are
not split into multiple short-duration storm tracks. Two passes
are made in this attempt to combine broken storm tracks:
(i) joining tracks with end and start times separated by one
5-min GridRad analysis (gap storms) so long as their end and
start locations differ by #15 km, and (ii) joining storms with
start and end times that fall within one 5-min GridRad analysis
of each other, so long as the minimum distance between track
locations during the overlapping period is #15 km. In the
former, the location during the gap is determined using linear
interpolation between the end and start locations of the com-
bined tracks. In the latter, tracks are combined at the closest
point of coincidence during overlap such that the point of the
second (later) track through its remaining path is appended to
the first (earlier) track. An illustration of the various track com-
bination cases is included as supplemental material.

After the initial storm tracking and track combination algo-
rithms are applied to each GR-S event, the resulting 5-min
storm tracks are linearly interpolated to 1-min resolution for
spatiotemporal collocation with SED reports. To match the
SED reports to the storm tracks, the closest tracked storm to
a report at the report time is matched, so long as it lies within
30 km of the report location. While a maximal 30-km radius
for report matching may be considered generous, it is noted
that nearly all matched reports fall within 10–15 km of the ob-
jectively tracked storm centers and manual validation efforts
in the past have demonstrated broad reliability of this ap-
proach (e.g., Homeyer et al. 2020). Figure 3 shows how storm
reports are matched to storm tracks for the 14 April 2011
GR-S event. Matching reports with storm tracks in this way
allows for individual storms to be classified as sub-severe or
severe, and their individual characteristics examined in a bulk
sense. An important limitation to accurate report matching is
the spatiotemporal accuracy of the reports themselves; many
studies (e.g., Trapp et al. 2006; Allen and Tippett 2015, for se-
vere wind and hail reports, respectively) have reported on the
imperfect nature of human-reported severe weather. These
limitations are an important consideration in any work using
storm reports as a method of validation.

The final archived 1-min, comma-delimited storm track files
contain information on storm location, motion, radar charac-
teristics, and storm-matched severe reports (summarized in
Table 1). In the case of severe hail or wind reports, the event
information is linked to the midpoint time of the report so
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FIG. 1. Contour plots of the number of times a point was encompassed within a GR-S domain, gridded to an approx-
imate 80 km 3 80 km grid. Plots include (a) all GR-S days, (b) days in March–May (spring), (c) days in June–August
(summer), (d) days in September–November (fall), and (e) days in December–February (winter). Color bar limits are
individual to each panel, and listed below the color bar at the bottom. State borders are highlighted in orange.
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that no report gets counted more than once. For tornado re-
ports, most of the report information is linked to the initial re-
port time (i.e., tornadogenesis).

While enabling unique analyses of the GR-S data, limitations
to the objective storm tracking methods do exist. Common draw-
backs include unresolved storm splits and mergers and poorly
tracked initiation phases of some storms (before ZH 5 30 dBZ
exists and/or before the 30-dBZ echo top exceeds 4 km MSL,
which is typically,15 min in severe storms).

3. Analysis methods

a. Storm mode classification

Given that many past studies have classified storm mode
subjectively, such efforts have often focused on small spatio-
temporal domains. An objective method for storm mode clas-
sification is presented herein for use with the GR-S dataset.
This storm mode classification relies on closed radar echo
contours above a given ZH threshold encompassing objec-
tively tracked storms to be able to classify each track within a
contour as a part of a single-cell storm, multicell storm, or an
MCS. By classifying the mode of each objectively tracked
storm, characteristics of each storm can be analyzed in concert
with storm-matched SED reports to potentially link storm
mode and storm-scale characteristics with the presence of (or
lack thereof) severe weather.

To classify storm mode, 30-dBZ contours are identified us-
ing column-maximum reflectivity (ZHmax) from each 5-min
GridRad data file. For each closed contour, the area and max-
imum dimension are calculated, and the number of tracked
storms within each contour is counted. Tracked storms are
then identified as single cell (i.e., discrete) if either 1) only a

single tracked storm exists within a contour, or 2) a relatively
small contour (,3000 km2) encompasses no more than two
tracked storms. Two tracked storms within a small contour are
both classified as single-cell storms to account for storms with
cyclic updraft generation (e.g., supercells) that can have more
than one updraft at a single time, but do not persist as such.
Homeyer et al. (2020) found in their composite analyses of
supercells that the average supercell size for ZHmax 5 30 dBZ
is approximately 3000 km2 (their Fig. 3). The 3000 km2 con-
tour area threshold is therefore chosen to encompass the size
of some of the largest single-cell storms expected. For larger
contours ($3000 km2) containing two tracked storms or any
contour containing 3 or more tracked storms, those storms are
classified as either multicell or MCS. The delineation between
the two is made using the contour maximum dimension; if the
maximum dimension is $100 km, it is classified as an MCS
(Houze 2004).

Since the storm mode classification algorithm is indepen-
dently run on each time step, a tracked storm may have a
complex, time-varying storm mode classification. We do not
employ a minimum time that a tracked storm has to be identi-
fied as a consistent storm mode to retain such a classification.
This is done because, instead of classifying a storm based on
its mean storm mode, we want to enable investigation into
how each storm evolves in time and, if possible, how changes
in its severity accompany changes in storm mode. Figure 4
shows select times during the evolution of the 14 April
2011 GR-S event in the southern plains. Over time, many
single-cell storms that initiated early in the event merge
into what eventually becomes a large MCS. In concert with
matched storm reports (e.g., Fig. 3), storm mode can be
linked with a storm’s severity for bulk analyses of the two
characteristics.
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FIG. 2. Flowchart explaining the creation of GR-S data for a given year.
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b. Mesocyclonic updraft classification

Another important severe storm characteristic is whether
or not a storm’s updraft was rotating when the storm pro-
duced a severe report. Updrafts that have sufficient persistent
rotation are defined herein as mesocyclonic, and otherwise
as non-mesocyclonic. Mesocyclonic updrafts are classified us-
ing the methods for right-moving supercell identification out-
lined in Homeyer et al. (2020), originally based on work
by Sandmæl (2017). Namely, five criteria are used to objec-
tively identify updrafts as mesocyclonic: 1) maximummidlevel
(4–7 km MSL) azimuthal shear exceeds 4 3 1023 s21 for at
least 40 min; 2) maximum midlevel azimuthal shear meets or
exceeds 5 3 1023 s21; 3) maximum column-max azimuthal
shear meets or exceeds 7 3 1023 s21; 4) maximum column-
max radial divergence meets or exceeds 1 3 1022 s21; and
5) maximum column-max velocity spectrum width meets or
exceeds 13 m s21. The sixth criterion used in Homeyer et al.
(2020)}max 40-dBZ echo-top altitude meets or exceeds

11 km}was not applied in this study. This was done to enable
reliable classification of wintertime convection, which often
has lower echo tops.

It is important to note that the mesocyclonic updraft classi-
fication criteria were based on right-moving supercell identifi-
cation criteria, so left-moving (meso-anticyclonic) storms are
not independently examined herein. Both anecdotal evidence
and prior research show a dearth of left-moving supercells
compared to right-movers. Bunkers et al. (2006) examined
long-lived supercells and found that, of 184 long-lived super-
cells in their dataset, only 4 were left-movers. An approximate
ratio of left- to right-moving supercells is, to our knowledge,
unknown. Future work may focus on classification of left-
moving supercells using GR-S or an alternative dataset and
further investigation of their characteristics compared to
right-movers.

The result of these classification techniques is that each in-
dividual tracked storm has a time-varying storm mode classifi-
cation and a binary mesocyclonic updraft classification. This

FIG. 3. GR-S storm tracks for the 14 Apr 2011 event, with severe reports superimposed as dark circles and storm
tracks matched with reports in a lighter shade of the same color for (a) tornadoes, (b) hail, and (c) wind. Storm tracks
not matched with a report are shown in gray.
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can, and does, result in classifications such as multicell or
MCS storms with mesocyclonic updrafts. Examples of these
types of storms may include supercells that share the same
30-dBZ precipitation shield, mergers of a discrete supercell
with a QLCS, supercells present in the early organizing stages
of a QLCS (e.g., Weisman and Trapp 2003) or generation of
vortices that meet mesocyclonic rotation criteria (e.g., DeWald
and Funk 2002). The identification of multicells and storms
within MCSs that meet mesocyclonic updraft criteria in GR-S
data allow for filtering of these storms if desired. Herein, these
storms and their attendant severe weather are retained and ex-
amined in section 4, but are removed in section 5 where GR-S
MCS storms that produced severe weather are compared to
objectively identified severe MCSs and QLCSs.

4. Results

In order for conclusions in this study to be representative of
the total climatology of severe weather and therefore broadly
applicable, the distribution of GR-S storm matched reports
must be representative of the complete SED database. Repre-
sentativeness herein includes capturing not only the majority
of SED reports, but also the correct spatiotemporal distribu-
tion. Looking at only the number of total SED reports versus
GR-S storm-matched reports, Table 2 summarizes the per-
centage of severe and significant severe reports captured by
GR-S for 2010–19. Of all SED reports during those 10 years,
the GR-S data retains ;63%–77% of total reports and
;68%–91% of significant severe reports, with percentage
matched highest for tornado reports and lowest for wind re-
ports. Focusing only on SED reports that existed within the
spatiotemporal bounds of the GR-S domains, the range of re-
tained reports increases to ;88%–94% for all reports and
;91%–98% for significant severe reports, again with percent-
age matched highest for tornado reports and lowest for wind

reports. This means that for all SED reports within the spatio-
temporal bounds of the GR-S domains, the GR-S storm
tracking and report matching procedure matches approxi-
mately 9 out of every 10 reports to a storm. Examining the to-
tal number of reports captured, the GR-S database retains
164 748 out of the total 249 600 SED reports during the 10-yr
period (;66%). This is expected since the GR-S database
only includes ;100 days yr21, with data only within limited
spatiotemporal domains. However, it is encouraging that, if a
report exists within a GR-S domain, it is highly likely that it
will be matched with a GR-S tracked storm. Therefore, the
domain selection criteria coupled with the matching algorithm
are both capturing a majority of SED reports and effectively
matching reports within GR-S bounds to objectively tracked
storms.

Capturing the majority of severe reports is only one facet of
examining the representativeness of the GR-S data. Equally
important is the distribution of the reports–spatial and tempo-
ral, for both severe and significantly severe events – and
whether those distributions match the full SED report clima-
tology. Figure 5 shows the breakdown of total reports by
month for both GR-S matched reports and SED reports, with
lines showing the percentage contribution of tornado, hail,
and wind reports to the total reports in each month. Tornado
data in this figure and for all future analyses are focused on
the time of tornado initiation. The difference in total data
points represented on each plot is captured by the y axes,
which show the mean 34% decrease in reports when compar-
ing SED to GR-S data. The monthly distribution of reports is
similar between the GR-S and SED data, although month-
to-month variations in percentage of SED reports captured
within GR-S are visible. Percentage differences between GR-S
and SED reports per month range from 11% to 56%, with
some of the lowest percentage differences in the late spring and
early summer (below 19% from April to June, inclusive). This
is potentially due to a preference for higher-end severe days to
occur in the spring to early summer, so a higher percentage of
all severe weather days in that period would be captured by the
GR-S domain selection criteria. Notably, April through June
alone make up 51.8% of all GR-S days in this dataset. If only
SED reports within the GR-S bounds are considered (not
shown), those percentage differences range from 8% to 28%,
and are lowest in the spring and summer (8%–11%) and high-
est in fall and winter (11%–28%). Therefore, the storm tracking
technique is most effective at tracking severe convection and
matching reports to those storms during the maximum of the
annual cycle in severe weather (the early–mid warm season)
and least effective during the cool season. Despite these differ-
ences, the GR-S bar graph still closely resembles the SED bar
graph, showing that GR-S is capturing the overall distribution
of severe reports quite well. The percentage contribution of tor-
nadoes, hail, and wind to each month’s overall report count also
show very similar values between the GR-S and SED data,
demonstrating a monthly GR-S report type balance that is rep-
resentative of the underlying SED report data. Overall, this
analysis shows that the GR-S database captures the annual cy-
cle of all SED reports well.

TABLE 1. Storm attributes included in GR-S event track files,
separated for radar-based storm information (left column) and
matched SED report information (right column).

Storm information Report informationa

Storm number Binary report flag
Storm date and time Report number
Storm longitude Report longitude
Storm latitude Report latitude
Eastward storm motion Report magnitude
Northward storm motion Instantaneous tornado count
Echo-top altitudes Max instantaneous tornado rating
Column-maximum ZH Tornado end date and time

Tornado width
Tornado length

a Report flag (0 or 1), number, longitude, latitude, and magnitude
are given for all report types (tornado, hail, and wind), where
for tornadoes the report information is listed only at the time of
tornadogenesis. The additional SED report information for tornado
end time, width, and length are also only given at the time of
tornadogenesis, while the instantaneous tornado count andmaximum
rating are based on all reports valid at each 1-min storm-track time.
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In addition to the annual cycle of reports, capturing the spa-
tial distribution of reports is also very important. Figure 6
shows the gridded number of all SED reports from 2010 to
2019 for each severe report type juxtaposed with the gridded
number of reports retained in the GR-S storm tracks. More

reports are expected on the SED maps, again since GR-S
events only include ;100 days yr21 of severe weather. Quali-
tatively, maps of GR-S matched reports and SED reports
have similar spatial distributions, confirming that the distribu-
tion of reported severe weather is well captured in the GR-S

FIG. 4. Select images of (left) column-max reflectivity and (right) storm mode classification from a limited spatial
domain within the 14 and 15 Apr 2011 GR-S case. For storm mode classification images, the interior of identified
30-dBZ contours are shaded in green, pink, or purple to denote single-cell, multicell, or MCS classification, respec-
tively. Tracked storms within such contours are indicated by black asterisks. Identified 30-dBZ contours that do not
encompass any storm tracks are shaded in light gray.
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database. In combination with Table 2, Fig. 6 gives confidence
that GR-S is capturing the majority of reports in a consistent
way across most of the CONUS. This can be more directly ex-
amined in Fig. 7, which shows both the total report difference
between the GR-S database and the SED record and the

percentage difference between the two. These plots further
demonstrate that reports are well matched across the eastern
two-thirds of the country where reports are more frequent
(Fig. 6). The areas with high percentage differences are com-
monly found in locations with low report counts for both GR-S
and SED (e.g., compare total number of reports in Fig. 6f to
percentage difference in Fig. 7f for severe wind in the western
CONUS), meaning that while the percentage of reports missed
in these regions may be quite high, the total number of reports
missed is quite low. Therefore, based on the results shown in
Figs. 5–7, we can confidently say that the storm-matched reports
within the GR-S database are a representative sample of the to-
tal climatology within the SED dataset.

Confident that the GR-S database is representative of the
seasonality and geographic distribution of SED reports, we
can use GR-S data to examine other bulk aspects of storm
severity. Identifying both the storm mode and updraft type
(mesocyclonic or non-mesocyclonic) associated with each
tracked storm and its matched reports can provide valuable
insight into the types of storms that produce various severe
phenomena. Figure 8 shows the average annual number of
tornado, hail, and wind reports per month for 2010–19, bro-
ken into sub-significant and significant severe reports. Over-
laid are lines showing the percentage of reports per month
that were matched with storms classified as single-cell, multi-
cell, or MCS storms, and whether or not the storm had a mes-
ocyclonic updraft. Perhaps the most surprising result from
this analysis is how often tornadoes are associated with MCS-
classified cells throughout the year (Fig. 8a). However, the
mesocyclonic classification reveals that many of the cells clas-
sified as MCS-type are dynamically consistent with supercell
storms rather than the typical non-mesocyclonic cells often
found in an MCS. We speculate that this may be driven by the
reliance on a relatively low ZH threshold to define storm con-
tours during storm mode classification (ZH 5 30 dBZ), which
may encompass the precipitation shield of neighboring–and
otherwise mostly discrete–storms (supercell or otherwise) and
classify those storms as part of an MCS. The contribution of
non-mesocyclonic (i.e., more traditional) MCS cells to tor-
nado reports reaches a minimum in the spring and summer,
when both the number of tornadoes peaks and the classical
U.S. tornado season occurs. In contrast, the contribution of

TABLE 2. Comparison of SED and GR-S matched reports from 2010 to 2019. For each tornado, hail, and wind report, data include
1) percentage of GR-S matched reports compared to all SED reports of that type and over that period; 2) percentage of GR-S
matched reports compared to SED reports of that type and over that period, confined within the corresponding day’s GR-S
spatiotemporal bounds; and 3) the total GR-S matched reports in the dataset. Data are also shown isolating significant severe
reports.

Report type Percentage of SED total
Percentage of SED within

GR-S Bounds Total GR-S reports

Tornado initiations 76.83% 94.16% 10 542
Hail reports 70.60% 94.33% 56 025
Wind reports 62.72% 87.81% 98 181
Significant tornado initiations 90.85% 97.69% 1608
Significant hail reports 79.85% 94.68% 5842
Significant wind reports 67.80% 90.56% 7179

FIG. 5. Comparison of (a) GR-S and (b) SED average annual
storm reports, broken down by month for 2010–19. Lines indicate
the percentage contribution of various severe report types (tor-
nado, hail, and wind) to the total number of reports in a given
month. Pearson correlation coefficients comparing GR-S and SED
lines for each severe hazard exceed 0.95.
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mesocyclonic storms to tornado reports, regardless of storm
mode classification, peaks during this time.

Examining hail events (Fig. 8b), for much of the spring
through fall, single-cell storms account for the largest fraction
of reports by storm mode. However, while tornado and wind
reports are fairly dominated by one storm mode (MCSs are
associated with a majority of reports in 11 of 12 months for
each tornado and wind), no one storm mode stands out as a
consistent majority contributor to all hail reports. Single-cell
storms account for slightly more than 50% of reports in July
and August; multicellular storms are never associated with
the majority (or even a relative majority) of reports per
month; and MCS storms make up a majority (50%–64%) of
reports only in the winter months, where total matched re-
ports are lowest. However, examining mesocyclonic versus
non-mesocyclonic storms, mesocyclonic storms account for a
majority of hail reports year-round. MCS storms contribute
the most to wind reports year-round when compared to other
storm modes (Fig. 8c), with a peak in single-cell and multicell

contribution in the late summer. This is when “severe weakly
forced thunderstorms” (Miller and Mote 2017) are most com-
mon in the CONUS, which can cause downdraft-driven se-
vere wind gusts (e.g., microbursts).

Similar to the annual cycle analysis, Fig. 9 reveals the aver-
age diurnal cycle of each hazard, relative to the reports’ local
solar noon. Solar noon is the time the sun aligns with a loca-
tion’s meridian, and using time relative to solar noon (as
opposed to UTC time) eliminates the effect of time zones,
providing a uniform representation of local time. Each severe
report type has a pronounced diurnal cycle, with a peak in re-
port frequency between approximately 2 and 8 h after solar
noon. During local nighttime, severe weather is associated
most with MCS storm cells. As tornado reports increase in
frequency after solar noon, the overall fraction of reports as-
sociated with MCSs drops (Fig. 9a). From 2 to 12 h after solar
noon, the majority of tornado reports for each of the three
storm modes are produced from mesocyclonic storms. The
hail data (Fig. 9b) show a more pronounced diurnal cycle
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when compared to tornadic and wind reports, with hail re-
ports highly concentrated around their daily peak at 4–5 h
after solar noon. Single-cell storms are the main contributor
to hail reports in the first 7 h after solar noon, with the contri-
butions of multicellular and MCS storms nearly equal during
those hours (;25%). Overall, mesocyclonic storms account
for the majority of hail reports during 23 of the 24 total hours.
As was true for the annual cycle, diurnal data show wind re-
ports overwhelmingly associated with MCS storms through-
out the majority of the day (Fig. 9c). MCSs are known to be
prolific producers of damaging straight-line winds, so it is no
surprise that these storms produce the most wind reports (a
minimum of 48% of all wind reports each hour). Non-
mesocyclonic single-cell and multicell severe wind-producing
storms have a pronounced peak in the hours after solar noon,
which, as previously mentioned, is likely attributable to down-
draft-driven wind gusts from severe weakly forced thunderstorms
that are common in the late summer and early afternoon. Notably,
mesocyclonic storms never account for a majority of severe wind
reports throughout the day (,39% of reports per hour), in con-
trast to how often they contribute to severe hail and tornado re-
ports during the peak tornado- and hail-producing hours. For all

analyses of the diurnal cycle of reports, note that the total number
of reports may be lower during the overnight hours given that
most people are asleep (e.g., Wendt and Jirak 2021).

Finally, we can examine how storms of various modes and
mesocyclonic/non-mesocyclonic classifications contribute to
reports of varying magnitude. Figure 10 shows histograms of
the magnitude of each report type and the fractional contri-
bution of storms of a given storm mode and mesocyclonic/
non-mesocyclonic classification. The data show that the vast
majority of reports (.90%) are sub-significant severe (i.e., be-
low EF2, 2 in., or 65 kt for tornado, hail, and wind reports, re-
spectively). As EF rating increases, the relative contribution
of mesocyclonic storms also increases, to the point where they
are responsible for 90.5% and 100% of all EF4 (84 total) and
EF5 (12 total) tornado reports in the database, respectively.
In fact, for any EF rating, mesocyclonic storms account for
the majority of tornadoes. GR-S data also show that EF0,
EF1, and EF2 tornadoes all predominantly come from cells
embedded within MCSs (53.7, 73.4, and 65.6% of tornadoes,
respectively). Focusing on significant tornadoes, the percent-
age of tornadoes linked to MCS-classified storms decreases
from 65.6% to 33.3% as the percentage linked to single-cell
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storms increases to a maximum of 58.3% for EF5 tornadoes.
Mesocyclonic storms are also the main contributor to hail re-
ports, and hailstones are more likely to be associated with
mesocyclonic storms as hail size increases. As was evident in
Figs. 8 and 9, no one storm mode clearly dominates hail pro-
duction. Interestingly, single-cell storms account for a major-
ity of hailstones in the lowest three bins, but contributions to
4-in.1 hailstones are relatively equal across storm modes.
This comes with the caveat that the largest hailstone bin con-
tains 0.7% of the total reports in the smallest hailstone bin.
Wind reports become increasingly associated with mesocy-
clonic storms as wind speed increases, with the exception of
the strongest winds in the dataset. These winds (951 kt) are
predominately from non-mesocyclonic storms (52.7%), in
stark contrast with the strongest tornadoes and largest hail,
which are overwhelmingly associated with mesocyclonic
storms. Wind reports are largely dominated by storms em-
bedded within MCSs, with 62.9%–81.3% of reports in each
bin attributed to MCSs. As touched on in the discussion of
hail-producing storms, it is important to recognize that as
EF rating, hail size, and wind speed increase, the sample
size of reports decreases. Therefore, interpretation of mode

and mesocyclonic–non-mesocyclonic breakdown must be
done carefully, especially where sample sizes drop below a
few hundred reports.

5. Comparison to past studies

Given that GR-S storm-matched reports were demon-
strated to be a representative sample of SED reports from
2010 to 2019, we can also use GR-S data to revisit analyses
and conclusions from prior papers to assess reproducibility.
Herein, we focus on two studies, Trapp et al. (2005) and
Ashley et al. (2019), which examined the prevalence of vari-
ous storm modes and their propensity to produce severe
weather. Table 3 lists basic information about data sources
and methods employed in the papers, as well as a summary of
those used in the present study.

For comparisons between GR-S data and prior results fo-
cusing on MCS or QLCS storms, we will compare the papers’
findings to only our non-mesocyclonic MCS cells. Comparing
strictly our non-mesocyclonic MCS data to other studies’ full
MCS datasets resulted in greater consistency, potentially
pointing to mesocyclonic MCS cells being more dynamically
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consistent with single-cell mesocyclonic storms than with non-
mesocyclonic MCS storms. This result is relevant to any future
work using GR-S MCS data with the storm mode classification
employed here. Also important to note is the delineation be-
tween an MCS and a QLCS. As discussed in Schumacher and
Rasmussen (2020), a QLCS is a subset of the MCS archetype.
While MCSs are typically defined as convective complexes
with a maximum dimension$ 100 km, a QLCS is an MCS fur-
ther characterized by an aspect ratio around 3:1, meaning that the
system has one long and one short dimension. Given that the terms
MCS and QLCS are often conflated, it is important to keep in
mind the true nature of MCS-classified cells herein and how they
may or may not be a part of a QLCS-type convective complex.

GR-S data are first compared to select conclusions from
Trapp et al. (2005). The study’s main goal was to “estimate
the percentage of U.S. tornadoes that are spawned annually
by squall lines and bow echoes, or quasi-linear convective sys-
tems (QLCSs)” using subjectively classified radar echoes over
a 3-yr period (1998–2000, inclusive). Classification was done
for QLCS and individual cells near the time of tornadogenesis
per Table 3. They delineated between QLCS and cell type
echoes based on “dynamics unique to these phenomena” and

mentioned that, while tornadoes can form by mesocyclonic and
non-mesocyclonic means, any distinction between cells produc-
ing tornadoes via these two different mechanisms was not inves-
tigated therein. Their final dataset included 3828 tornadoes.

Figure 11 shows reproductions of Trapp et al. (2005) Fig. 3b
(Fig. 11a), Fig. 6 (Fig. 11b), and Fig. 8a (Fig. 11c) using GR-S
data. Figure 11a shows the breakdown of the number of tor-
nado reports by EF rating on a logarithmic scale for both
single-cell and MCS storms. Crucially, both MCS mesocyclonic
and non-mesocyclonic lines are shifted such that they have an
equal number of EF2 reports per storm type; Fig. 11a therefore
emphasizes the relative distributions of tornado intensity by
storm type rather than absolute values. Trapp et al. (2005)
found that there “appear to be disproportionately more F1 tor-
nadoes from QLCSs, and more F3–F4 tornadoes from cells.”
Figure 11a shows this as well, where the non-mesocyclonic MCS
cell line is above the single-cell line for EF1 tornadoes and below
the cell line for EF3–4 tornadoes. Here the mesocyclonic MCS
curve more closely matches the single-cell curve, pointing again
to their dynamical similarities. On the other end of the spectrum,
data from Trapp et al. (2005) (GR-S) show no F5 QLCS (EF5
non-mesocyclonic MCS) tornadoes given they are quite rare, and
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also note that F5 (EF5) tornadoes only comprise 0.2% (0.11%)
of the total dataset. Trapp et al. (2005) also noted that their
QLCS curve was fairly log-linear except for F0 tornadoes, poten-
tially attributable to underreporting of the weakest tornadoes.
This same linear shape, along with relatively low EF0 tornado
counts, is visible in the GR-S non-mesocyclonic MCS curve.

Figure 11b shows the cumulative distribution of all tornado
reports broken down by month and storm type. Trapp et al.
(2005) found that 32% of all QLCS tornado reports occurred
within the first three months of the year, compared to just
14% of single-cell reports. The lower relative fraction of cell
reports compared to QLCS reports is mirrored with the GR-S
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data, with tornadoes in January–March making up 20% of
non-mesocyclonic MCS tornadoes and just 8% of single-cell
tornadoes. Therefore, with both datasets, a higher proportion
of annual MCS tornadoes occurred in the first 3 months of the

year compared to the proportion of annual single-cell torna-
does. Finally, Fig. 11c shows the diurnal cycle of tornado re-
ports, using time relative to local solar noon. Trapp et al.
(2005) found that cell reports peaked close to 18 local

TABLE 3. Comparison of techniques used to classify storm mode in past literature.

Field Trapp et al. (2005) Ashley et al. (2019) This study

Years of data 1998–2000 1996–2017 2010–19
Classification technique Hand analysis Machine learning Objective analysis
ZH data Composite column-maximum

images from NCDC (NCEI),
other sources

NOWrad composite reflectivity
data (Grassotti et al. 2003)

GR-S column-maximum data

Cell classification Relatively isolated, circular, or
elliptical in shape, with
ZHmax $ ;50 dBZ

} One track in 30-dBZ ZHmax

contour or two tracks
within 30-dBZ ZHmax

contour , 3000 km2

MCS classification } Region of ZHmax $ 40 dBZ
persisting for at least 3 h, with
contiguous to semicontiguous
40 dBZ contour maximum
dimension $ 100 km

Two tracks within 30-dBZ ZHmax

contour $ 3000 km2 or three
or more tracks within 30-dBZ
ZHmax contour; maximum
dimension $ 100 km

QLCS classification Quasi-linear, ZHmax $ 40 dBZ
region with maximum
dimension . 100 km

MCS with convective region
aspect ratio $ 3

}
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standard time (LST), with a similar albeit smaller peak in
QLCS data near 18 LST. GR-S data show similar trends, with
peaks in single-cell and non-mesocyclonic MCS data between
3 and 5 h after solar noon, and a higher peak for single-cell
than non-mesocyclonic MCS data (i.e., a more amplified diur-
nal cycle). Mesocyclonic MCS cells are again more consistent
with single-cell storms, with a ;2-h offset in their diurnal cy-
cle compared to the single-cell data.

GR-S data are additionally compared to the findings of
Ashley et al. (2019), who used machine learning methods to
classify storm mode using a 22-yr radar dataset. For training
the model, QLCS storms were labeled by hand, and the
model was trained on labeled QLCS and non-QLCS events.
They defined an MCS per Table 3, with that definition moti-
vated primarily by the work of Parker and Johnson (2000). A
QLCS is defined as “an MCS that has instantaneous convec-
tive ($40 dBZ) regions that are longer than 100 km and must
be at least 3 times as long as they are wide.” The major differ-
ences between their definition of an MCS and the definition
used herein is the 30- versus 40-dBZ threshold for defining ra-
dar echoes for classification, and no temporal threshold versus
a 3-h temporal threshold for GR-S and Ashley et al. (2019),
respectively. Their paper focuses on the spatiotemporal distri-
bution of both QLCSs and QLCS-matched tornado reports,
and only the latter will be analyzed herein.

Table 4 shows the percentage contribution of severe reports
attributable to QLCSs in Ashley et al. (2019) juxtaposed with
storm-matched GR-S reports attributable to non-mesocyclonic
MCS cells. In each category, the percentage of reports attrib-
uted to MCSs is fairly similar when comparing GR-S data to
the results in Ashley et al. (2019). The greatest difference is
with attribution of severe wind reports [28% of storms in
Ashley et al. (2019) versus ;42% in GR-S]. Although trends
in these data are similar, differences are no doubt the
result of myriad differences in methods throughout the data
analysis process. Both datasets show a high percentage of wind
reports and a low percentage of hail reports attributed to
QLCS/non-mesocyclonic MCS storms. Beyond examining total
reports attributed to QLCSs, their Fig. 11 shows a breakdown
of all severe reports by month and hour, with percentage attrib-
uted to QLCSs overlaid. Similar to Fig. 8 herein, they found tor-
nado and hail reports peak in the late spring and wind reports
peak in the early summer. They also found that QLCS contribu-
tion to total reports was maximized during the winter months

and minimized in late summer/early fall, which was similar to
the summer/early fall minima and wintertime maxima seen in
the non-mesocyclonic MCS GR-S data. Examining their hourly
data, they found a minimum in QLCS contribution during times
of peak reporting (;1800–0300 UTC), which, when examining
GR-S data binned by local time (in UTC, not shown), non-
mesocyclonic MCS contributions are minimized from 2000 to
0400 UTC for tornadoes and from 1700 to 0300 UTC for hail
and wind reports. The average percentage contribution of
QLCSs to hail reports in their study was lower than that for
wind and tornado reports, which is also reflected in the GR-S
data. Overall, the similarities between GR-S conclusions and
those of Trapp et al. (2005) and Ashley et al. (2019) point to the
efficacy of the GR-S techniques as a whole and the storm mode
classification algorithms used herein.

6. Conclusions

In this study, the GR-S dataset was introduced, a dataset
centered on CONUS-wide radar data for ;100 of the most
severe days per year from 2010 to 2019, inclusive. After
determining which days to include in the database, spatio-
temporal domains for radar data are selected objectively,
and all storms within the domain are tracked throughout
their lifetimes. Storms are matched with severe reports
and both storm mode classification (single-cell, multicell,
and MCS storms) and supercell classification (mesocyclonic
or non-mesocyclonic, for all three storm modes) are per-
formed. Based on the analysis presented, the following con-
clusions can be drawn:

1) The GR-S dataset captures a majority of SED reports
from 2010 to 2019 inclusive and captures ;90% of reports
that exist within the spatiotemporal bounds of GR-S
(Table 2). The reports captured are analogous in spatial
and temporal distribution to the SED reports, and the rel-
ative contribution of tornado, hail, and wind reports to all
reports per month also mirror that of the SED database
quite well (Figs. 5–7). Therefore, the storm-matched re-
ports within the GR-S database are a representative sam-
ple of the complete SED dataset.

2) Pronounced annual and diurnal variability was evident for
tornado, hail, and wind reports: (i) MCS-classified cells
produced the most tornadoes throughout the entire year
when compared to other storm modes, and mesocyclonic
storms were found to be the primary tornado contributors
during peak tornado frequency in spring and summer
(Fig. 8a). During the overnight and early morning when
total number of reports is low, MCS contribution is maxi-
mized, and during the time of peak reports, mesocyclonic
storms produce the majority of tornado reports (Fig. 9a).
(ii) Single-cell storms account for the largest fraction of
hail reports by storm mode for spring through fall, and
mesocyclonic storms account for a majority of all hail re-
ports both year-round (Fig. 8b) and throughout the day
(Fig. 9b). Hail reports have the most pronounced diurnal
cycle of the three report types, meaning that reports are
highly concentrated around their time of peak occurrence

TABLE 4. Comparison of percentage of reports attributable to
MCSs for different report types and severity. Data shown are
from Ashley et al. (2019) and GR-S data.

Report type and severity
GridRad-

Severe MCS
Ashley et al.
(2019) QLCS

Tornado, severe 27.54% 21%
Tornado, significant severe 18.72% 26%
Hail, severe 11.43% 10%
Hail, significant severe 4.74% 7%
Wind, severe 42.31% 28%
Wind, significant severe 36.61% 34%
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(;4–5 h after local solar noon). Unlike tornadoes and
wind reports, there is no one storm mode that stands out
as the primary producer of severe hail reports over the
whole year or whole day. (iii) MCS-classified cells pro-
duce the most severe wind reports throughout the entire
year (Fig. 8c) and day (Fig. 9c) when compared to other
storm modes. There is a peak in non-mesocyclonic single-
cell and multicell contribution to wind reports in the late
summer and early afternoon, likely due to decay of severe
weakly forced thunderstorms.

3) For both tornado and hail reports, as EF rating and hail
size increase, so does the relative contribution of mesocy-
clonic storms to total reports (Fig. 10). Wind reports show
a similar trend, but the contribution of mesocyclonic storms
does not monotonically increase with increasing wind speed.
However, due to small sample sizes at the highest intensities,
such breakdowns should be interpreted carefully.

4) GR-S was found to broadly reproduce the findings of Trapp
et al. (2005) (Fig. 11) and Ashley et al. (2019) (Table 4),
lending credence to the usefulness of the GR-S dataset and
quality of storm mode classification applied herein.

The GR-S database was created to facilitate robust stud-
ies of severe weather using radar data from a large sample
of storms. Namely, the objective methods used to build the
now-public dataset (School of Meteorology/University of
Oklahoma 2021) provide an opportunity to easily investi-
gate thousands of severe storms and over 1.3 million total
storms with great detail. We believe these data can be used
to examine several challenging and important science ques-
tions regarding severe weather and we encourage others to
use GR-S to explore their own scientific questions as the da-
taset continues to grow.
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