
Toward an Adaptive Artificial Neural Network–Based Postprocessor

PAUL J. ROEBBER
a

aAtmospheric Science Program, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

(Manuscript received 15 April 2021, in final form 15 October 2021)

ABSTRACT: We introduce an adaptive form of postprocessor where algorithm structures are neural networks where the

number of hidden nodes and the network training features evolve. Key potential advantages of this system are the flexible,

nonlinear mapping capabilities of neural networks and, through backpropagation, the ability to rapidly establish capable

predictors in an algorithm population. The system can be implemented after one initial training process and future changes

to postprocessor inputs (new observations, new inputs, ormodel upgrades) are incorporated as they become available. As in

prior work, the implementation in the form of a predator–prey ecosystem allows for the ready construction of ensembles.

Computational requirements are minimal, and the use of a moving data window means that data storage requirements are

constrained. The system adds predictive skill to a demonstration dynamical model representing the hemispheric circulation,

with skill competitive with or exceeding that obtainable from multiple linear regression and standard artificial neural

networks constructed under typical operational limitations. The system incorporates new information rapidly and the

dependence of the approach on the training data size is similar to multiple linear regression. A loss of performance occurs

relative to a fixed neural network architecture in which only the weights are adjusted after training, but this loss is com-

pensated for by gains from the ensemble predictions. While the demonstration dynamical model is complex, current nu-

merical weather prediction models are considerably more so, and thus a future step will be to apply this technique to

operational weather forecast data.

KEYWORDS: Neural networks; Statistical forecasting; Adaptive models

1. Introduction

For many applications, statistical postprocessing of numer-

ical weather prediction (NWP) model output is an effective

way to increase forecast quality. These methods involve a

mapping of inputs to outputs, where the inputs are some

combination of model and observational data and the outputs

are the desired forecast, which may be an adjusted version of a

model forecast or a variable not output by the model (e.g.,

snow accumulation). While there are many such statistical

methods, in the U.S. National Weather Service (NWS), the

primary method for accomplishing this mapping is multiple

linear regression [model output statistics (MOS; Glahn and

Lowry 1972]. Many other methods are possible, such as neural

networks (e.g., Rasp and Lerch 2018), random forests (e.g., Hill

et al. 2020), support vector machines (e.g., Felker et al. 2011),

quantile regression (e.g., Bremnes 2019), nearest neighbors

(e.g., Kim et al. 2016), and analogs (e.g., Eckel and Delle

Monache 2016).

Regardless of the method, these approaches require the col-

lection of a dataset of inputs and outputs (usually subdivided into

training, validation and independent test datasets, the first for

model development, the second for hyperparameter tuning, and

the last to evaluate generalization of the results). When the

postprocessor needs to be updated (owing to changes in inputs,

which in the case ofNWPmodel updates, can occur frequently), a

new dataset must be collected and analyzed. In operations, this

retraining requirement is a substantial undertaking and may in-

volve keeping a forecast system running for several years after it

has been operationally displaced in order to maintain the avail-

ability of the postprocessed information to users [see discussions

in Stensrud and Yussouf (2003), Wilson and Vallée (2003), and

references therein].

To create more efficient postprocessing approaches, alter-

native methods have been explored, such as Kalman filters

(e.g., Homleid 1995; Pelosi et al. 2017), updateable MOS (e.g.,

Wilson and Vallée 2002, 2003) and the use of recent observa-

tions (Nipen et al. 2011). Here, we propose a method that has

this adaptive attribute but takes advantage of the nonlinear

generalizability and predictive capabilities of artificial neural

networks (ANNs), where ensembles of solutions are a direct

output of the process.

Roebber (2015a) showed that evolutionary programming

(EP) postprocessors can be made adaptive. However, the ap-

proach explored in that work requires a random search of the

weights attached to the conditional architecture of the EP

system, which is inefficient and may not find the best solutions.

Further research on EP postprocessors led to the development

of a predator–prey system (Roebber and Crockett 2019, hereafter

RC19), which those authors showed improved both probabilistic

and deterministic skill for temperature forecasts, compared to

both the earlier EP system and to raw and postprocessed NWP

model forecasts. This approach was not adaptive, but presumably

could be made so in the same manner as Roebber (2015a), but

would then also be subject to the same limitations.

In this paper, we show using a demonstration dataset that a

predator–prey EP system, similar to RC19, but with an algo-

rithm architecture composed of multilayer perceptron (MLP)

ANNs rather than IF-THEN conditionals, is an effective

adaptive system that in principle can be applied to a wide

variety of forecast problems. The structure of the paper is asCorresponding author: Paul J. Roebber, roebber@uwm.edu

DECEMBER 2021 ROEBBER 4045

DOI: 10.1175/MWR-D-21-0089.1

� 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

mailto:roebber@uwm.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

follows. Section 2 provides a description of the model system used

to demonstrate the adaptive technique. Section 3 details the

adaptive EP system. Section 4 presents the results of the analysis,

and section 5 provides a concluding discussion. Additional details

concerning the predator–prey system are provided in an appendix.

2. Model description

Lorenz (1984, 1990) introduced a three ordinary differential

equation (ODE) system with complex, chaotic dynamics that

he described as what ‘‘may well be the simplest possible model

capable of representing an unmodified or modified Hadley circu-

lation.’’ van Veen (2003) demonstrated that this system can be

derived from a spectral, geostrophic baroclinic model linearized

about the model Hadley state, and that this simplified form qual-

itatively exhibits the same dynamics as the larger system, that is,

the interaction between the jet stream and baroclinic waves. The

three equations for this system are as follows:

dX

dt
52Y2 2Z2 2 aX1 aF , (1)

dY

dt
5XY2bXZ2Y1G , (2)

dZ

dt
5bXY1XZ2Z , (3)

where t represents time; X, Y, and Z represent the amplitudes

of the zonal jet, and the cosine, and sine phases of a chain of

superposed large-scale eddies, respectively; F represents the

meridional gradient of diabatic heating (from radiative dis-

equilibrium); and G is the asymmetric thermal forcing. The

amplification of the eddies occurs at the expense of the west-

erly jet through the coupling terms XY, XZ, and Y2 1 Z2. The

coefficients a and b govern the rates of dissipation and dis-

placement, respectively. A unit of time t is equivalent to 5 days,

with a time step of 0.025 units (i.e., 3 h). Integration is ac-

complished using a fourth-order Runge–Kutta scheme.

Lorenz (1984, 1990) demonstrated that this simple system

was capable of a range of dynamical behaviors, from steady

state to periodic to chaotic, and that when seasonal cycles are

introduced in the radiative forcing term F, interannual vari-

ability occurs. Lorenz (1990) concluded ‘‘. . . we have found a

rather striking dynamical system . . . (that) is semi-dissipative,

i.e. infinitesimal volumes can either contract or expand, but in

the long run they undergo net contraction, so that the attractors

are sets of zero volume.’’ Wang et al. (2014) and references

therein have provided detailed exploration of the behavior of

the system across many parameter settings—for the purposes

of the present paper, under appropriate parameter settings, the

model is a low-dimensional chaotic system roughly represent-

ing the atmospheric general circulation.

Tsonis and Elsner (1988) suggested that the atmosphere

might be viewed as a loosely coupled set of lower-dimensional

subsystems, and Lorenz (1991) explored that idea in the con-

text of the above model. He showed that by coupling sets of

(1)–(3), each representing an atmospheric subsystem, the di-

mensionality of the system as a whole could be increased

substantially. Such a structure can lead to a considerably more

difficult forecast problem, as suggested by the increased scatter

in the phase space diagrams for one subsystem of a three

subsystem climate model composed of coupled versions of (1)–

(3) (Fig. 1a), compared to an uncoupled version of the model

with the same parameter settings (Fig. 1b). Indeed, the ‘‘day 5’’

autocorrelation for the coupled (uncoupled) system is 0.151

(0.169), a decrease of over 10%.

Following Lorenz (1991), a three-subsystem coupled version

of (1)–(3) can be written as follows:

dX
1

dt
52Q(Y2

1 1Z2
1)2aX

1
1 aF , (4)

dY
1

dt
5QX

1
Y

1
2 bX

1
Z

1
2PY

1
1PG1V , (5)

dZ
1

dt
5 bX

1
Y

1
1QX

1
Z

1
2PZ

1
1W , (6)

dX
2

dt
52Q(Y2

2 1Z2
2)2aX

2
1 aF1U

2
, (7)

dY
2

dt
5QX

2
Y

2
2bX

2
Z

2
2PY

2
1PG , (8)

dZ
2

dt
5 bX

2
Y

2
1QX

2
Z

2
2PZ

2
, (9)

dX
3

dt
52Q(Y2

3 1Z2
3)2aX

3
1 aF1U

3
, (10)

dY
3

dt
5QX

3
Y

3
2 bX

3
Z

3
2PY

3
1PG , (11)

dZ
3

dt
5 bX

3
Y

3
1QX

3
Z

3
2PZ

3
, (12)

where

U
2
52C

1
PY

1
, (13)

U
3
52C

2
PZ

1
, (14)

V5C
1
P(X

2
2H) , (15)

W5C
1
P(Z

2
2H) , (16)

and for this study, the values of the additional model param-

eters used in coupling are set toQ5 1.0,P5 1.0,C15 1.1,C25
0.1, and H 5 1.0. The strength of the coupling between sub-

systems is specified by the values of C1 and C2, where 0.1 (1.1)

as above signifies weak (strong) coupling. For the purposes of

this paper, we consider that the three subsystems each span

1208 of longitude in the Northern Hemisphere, and we refer to

these subsystems as region 1 [Eqs. (4)–(6)], region 2 [Eqs. (7)–

(9)], and region 3 [Eqs. (10)–(12)]. With the above parameters,

region 2 is strongly coupled to region 1, while region 3 is weakly

coupled to region 1, which conceptually could mirror the

downstream influences of North American flows on Eurasia

and the Pacific, respectively.

We run the equivalent of 60 years of the above model as

‘‘truth’’ and retain the last 50 years for analysis to remove

any effects from spinup (hereafter, we will refer only to this

50-yr period). Two ‘‘dynamical models’’ (hereafter, DM1 and

DM2), consisting of different parameter settings F, G, a, and b

4046 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

for Eqs. (4)–(12), are used to provideNWP forecasts during these

50 years (Table 1; Fig. 2). The first 10 years of these data (here-

after, TRAIN) are also used to train two types of postprocessors:

a multiple linear regression model and a standard MLP ANN.

For the next 20 years (hereafter, FIRST), the same dynamical

model that was used to train these postprocessors is continued,

but a new (improved) dynamical model is introduced at year 30

and continued for the final 20 years (hereafter, SECOND). The

‘‘truth’’ data provide the initial conditions for the dynamical

models, which are run every 5 days and produce forecasts for day

5. The adaptive ANN (hereafter, AD-ANN) is fully trained as

with the standard ANN on TRAIN and then allowed to adjust

with a moving window of training data thereafter, as described

next in section 3. Some adjustments to this basic training are

discussed in section 3, in conjunction with an additional experi-

ment designed to differentiate the influences of hyperparameter

training, improved model data, and ensemble construction.

3. The adaptive ANN system

a. Predator–prey

There aremany postprocessing alternatives, and which is the

preferred option will depend on both logistical considerations

and the prediction problem itself (for examples of the latter,

see RC19). TheAD-ANNmethod introduced here is similar to

that of RC19, with some changes designed to facilitate the

adaptive approach. An advantage of the predator–prey evo-

lutionary system is that it can produce a diverse set of skillful

solutions, i.e., a well-performing, reliable ensemble. Extending

this approach to artificial neural networks in an adaptive

framework is potentially an efficient means of establishing the

algorithm structures (including the weights and biases) that

comprise this ensemble, even as the input data changes. Further,

it is straightforward in this framework to add entirely new inputs

to the ecosystem as the evolution continues, thus obviating the

need for retraining. Such a situationmight arise, for example, in a

forecast system where previously unavailable data from satellite

or other remote sensors could be added to base data consisting

primarily of station observations and NWP model outputs.

It is important to note that this method is a gridpoint or

station-based approach, that is, it is not applied to an entire

field as can be done with convolutional neural networks. The

method here begins with the random initialization of a pop-

ulation of algorithms, which are then evaluated based on a

defined performance metric [root-mean-square error (RMSE)

for the continuous variable studied herein]. Better performing

algorithms are then preferred to survive predation and produce

the next generation of algorithms, some of which will also expe-

rience mutations which can introduce useful innovations. Aside

from the random initialization step, this sequence is repeated until

the set number of forecasts, which are each a new generation of

algorithms (hereafter, iterations) are completed (more details

concerning this process are provided in the appendix).

We employ an ecosystem domain (here, a 50 3 50 grid),

which has no connection to the geography of the forecast

problem, but rather provides a place for the predator–prey

evolution to occur. This grid is smaller than in prior EP studies

(e.g., RC19, which uses 100 3 100), but tests in the present

context (not shown) indicate that this is sufficient spacing for

relevant ecosystem dynamics to occur (e.g., clustering of al-

gorithms) and reduces computational load. As in RC19, the

FIG. 1. Phase space diagram for the region 1 subsystem obtained from (a) Eqs. (4)–(6) of the fully coupled system

and (b) Eqs. (1)–(3), i.e., the uncoupled system. See text for details.

TABLE 1. Lorenz (1984, 1990, 1991)model parameter settings for

the meridional gradient of diabatic heating (F), the asymmetric

thermal forcing (G), and the rates of dissipation (a) and displace-

ment (b).

Model F G a b

Atmospheric truth 7.0 1.0 0.25 4.0

First dynamical model (DM1) 8.0 1.3 0.30 4.5

Second dynamical model (DM2) 7.6 1.1 0.275 4.25

DECEMBER 2021 ROEBBER 4047

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

initial population of algorithms is set to a 3:1 ratio of prey to

predators. Because the system is intended to be adaptive,

however, here we fix the predator population at the initial

number throughout the run and connect every predator algo-

rithm at each iteration to a level of performance slightly su-

perior to that of the best performing prey. This is done

through a randomization factor, which means that each indi-

vidual predator algorithm is set to between 70% and 90% of

the RMSE of the best performing prey. This change provides a

strong predation component that drives prey improvements

but eliminates growth of the predator population, which oth-

erwise (in real as well as simulated ecosystems) can potentially

lead to prey population collapse. For fixed runs of a two-

species system, it is possible to balance the populations so that

oscillatory coexistence rather than full collapse occurs (e.g.,

Lotka 1925; Volterra 1931; RC19), but where an adaptive

system is needed, it may be more difficult to guarantee such an

outcome over long periods. The above change is a preemptive

means of guaranteeing the ongoing evolution of the system

while still maintaining the evolutionary benefits of predation.

As in RC19, we maintain a best-performer list composed of

the best performing algorithms on the validation dataset, but

here we restrict this to 10 algorithms and as the validation

dataset is based on a moving window (of the prior 2 years of

forecast dates), each time step may have a different set of best

performers. The forecast at initial time t is then produced for

time t 1 1 with the 10 best algorithms as determined by per-

formance during the validation data window [t 2 2 years, t],

where these algorithms have been trained on a variable length

training window ending at t2 2 years2 1 (this training window

is limited to no more than 10 years, and in practice, never ex-

ceeded 8.25 years with amedian length of 2.45 years). As noted

above, the performance of every predator is connected to the

average performance (RMSE, using the ‘‘truth’’ data for ver-

ification) of this group at a given iteration. The day 5 forecast of

interest is the amplitude of the eddies in region 1,1 i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2

1 1Z2
1

p
, and the forecast for day 5 of this quantity is pro-

duced by the ensemble of 10 ‘‘best performers’’ as defined by

the validation dataset. Indeed, one of the valuable properties

of the EP approach, as discussed in RC19, is the ability to easily

generate such ensembles and thus is readily applicable to

probabilistic forecasting. Here, however, we will restrict our

verification to RMSE of the ensemble average obtained from

this best 10 performer list at a given time step. Attributes re-

lated to the evolutionary process that are allowed to evolve are

the mutation rate and the fecundity of the prey. Other attri-

butes, related to the algorithm architecture and training, are

also evolved and are described in section 3b.

The survival logic of the prey algorithms is to avoid ecosystem

locations within its 33 3 neighborhood where there are predators.

The logic of the predators is to seek out the ecosystem grid point

within its 3 3 3 neighborhood which contains the most prey al-

gorithms. The ability of an ‘‘individual’’ to accomplish this is gov-

erned by its RMSEon the training data—worse performers have a

higher probability of moving randomly rather than following the

above strategies. If a predator finds a grid location containing prey,

then it consumes one of these and that algorithm is eliminated.

Prey algorithms may also be removed through ageing. Table 2

provides a summary of these ecosystem factors. Conceptually,

then, the predator–prey dynamics are what drive algorithm im-

provements but here it is applied in an adaptive context.

b. Algorithm structure

An important change from RC19 is the algorithm structure,

which here takes the form of fully connected, feedforward

MLPs with one hidden layer (Fig. 3). In this structure, each of

N inputs feeds their data forward to each of M hidden nodes,

and depending on the state of the activation function, can

send a strong or weak signal to theK output nodes. The form of

the hidden nodes is

H
M
5 tanh

�
BH

M 1�
N

i51

WH
MiXi

�
,

where for the Mth hidden node, BH
M is the bias value and the

WH
Mi is the weight for input variableXi. The hyperbolic tangent

function is the activation function which acts similarly to a step

function (thus producing a nonlinear response), but is contin-

uously differentiable, a requirement for the weight assignment

process (backpropagation; see Rumelhart et al. 1986). The

output nodes take the following form:

FIG. 2. Timeline for the model experiments. See text for details.

1 This choice is motivated by several considerations. The AD-

ANN, as shown in Fig. 3, is not restricted to a single output, but we

have chosen to set the number of outputs to one in this exploratory

work. Likewise, the forecast could be of any or all of the three

regions—we have selected region 1 since analysis of the phase

space diagrams (e.g., Fig. 1) indicate that this is the least structured

of the regions, thus making the most challenging forecast problem.

4048 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

O
K
5BO

K 1�
M

j51

WO
Kj ,

where for the Kth output node, BO
K is the bias value andWO

Kj is

the weight for hidden node Hj. For the problem considered

here, N 5 19–the initial conditions for all 9 measures of the

‘‘atmosphere’’ obtained from the ‘‘truth’’ run of Eqs. (4)–

(12), the 5-day forecast values of these same 9 measures as

obtained from the ‘‘dynamical model’’ version of Eqs. (4)–

(12), and the 5-day forecast eddy amplitude. We note that

although the forecast eddy amplitude is derived from the Y and

Z variables, the transformation results in no collinearity. Each

input is normalized in the range [21, 11] to improve training

(LeCun et al. 1998), where this normalization is accomplished

using only the first 10 years (the training data) to set minima and

maxima. In the adaptive framework, it is possible to update

these weights with each iteration through the training data, that

is to renormalize the inputs with new minima and maxima. In

practice, however, as long as the initial training dataset is sufficiently

long (i.e., long enough to establish the effective range of the inputs),

this step is not necessary and was not implemented here. M is

variable and is set by the evolution for each algorithm, and K5 1,

corresponding to the value of the eddy amplitude. For this archi-

tecture, there are thenM1 1bias values and20Mweights thatmust

be set for each algorithm through the backpropagation technique.

Backpropagation is an efficient and effective way to set these

biases and weights, and is a prime motivation for altering the

algorithm structure to ANNs. Nonetheless, there are a number

of decisions that must be made during training to determine

their values. According to LeCun et al. (1998), ‘‘Designing and

training a network using backprop requires making many

seemingly arbitrary choices . . . there is no foolproof recipe for

deciding them because they are largely problem and data de-

pendent. However there are heuristics and some underlying

theory that can help guide a practitioner.’’ We follow these

guidelines here and allow the evolution to drive particular

hyperparameter settings within that framework (Table 3;

appendix). As detailed in section 4, we also run additional

experiments where the training hyperparameters are held fixed

after the initial training period rather than being allowed to

evolve through the full period of study. These experiments

allow us to separate the impact of that evolution versus that

derived from the ability to quickly incorporate improved data.

Finally, we also consider performance of the 10-member al-

gorithm ensemble compared to single members of that group,

since one of the advantages of the evolutionary approach is its

intrinsic production of ensembles.

We use the mean squared error as the cost function in

training. Gradient descent, which is a process used in back-

propagation to minimize the cost function, requires that we

TABLE 2. Ecosystem attributes used to model prey and predator behaviors.

Attribute Prey algorithms Predator algorithms

Ecosystem location Initially dispersed randomly on grid Initially dispersed randomly on grid

Algorithm structure Fully connected, feedforward, multilayer perceptron with one hidden

layer and variable hidden nodes

Not applicable—do not produce a forecast

Movement Seek to avoid a predator within 3 3 3 neighborhood with probability

p 5 f (RMSE), else random; cannot move beyond 10-gridpoint

distance in any direction from birth location

Seek prey where maximum number of

prey exist within 3 3 3 neighborhood,

with probability fixed based on best

performing prey algorithm, else random

Aging Can die from aging if seven or more iterations old—probability is

inversely proportional to performance and best performers are not

removed

—

Reproduction Given three or fewer prey at a grid location, will produce a variable

number of (fixed by the evolution for a given algorithm) clones with

mutations

—

FIG. 3. Fully connected, feedforward multilayer perceptron with N

inputs, M hidden nodes in a single hidden layer, and K outputs.

DECEMBER 2021 ROEBBER 4049

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

take the first derivative of the cost function with respect to a

weight. In ‘‘batch gradient descent’’ a complete pass through

the training data (known as an epoch) is used to compute the

average gradient, which is then applied to update the weights.

‘‘Mini batch gradient descent’’ (also commonly known as sto-

chastic gradient descent), in contrast as applied here, re-

samples with selective replacement from the training data and

the gradient is estimated for that subsample, and then the

weights are updated. The training process is faster than in

batch gradient descent and the noise introduced by this process

can prevent the system from being fixed at a particular local

minimum of the cost function when deeper minima may be

found. Additional hyperparameters required to apply this

procedure include the learning rate (which controls the sen-

sitivity of the model weights to estimated error during up-

dates) and the rate at which mini batch sizes are adjusted as

the training progresses (Table 3, Table A1; see appendix).

Additionally, we use an ‘‘emphasizing scheme’’ (LeCun et al.

1998) that notes the worst performing examples within a mini

batch, and includes a subset of these cases in the next mini-

batch. These procedures make it possible to evolve an eco-

system of;2300 algorithms effectively and without excessive

computational requirements (e.g., these simulations were run

on a laptop computer with a 2.2-GHz Intel processor).

4. Results

As noted in section 2, to assess the effectiveness of the AD-

ANN, we also train a multiple linear regression model (MLR)

and a standard MLP ANN (ANN), using the TRAIN data

period. For reference, we also have the first (DM1) and second

(DM2) versions of the dynamical models (as noted in Table 1).

All of the postprocessing methods tested were effective in

adding skill to the dynamical model output (DM1) during

FIRST (Fig. 4), with relative improvements ranging from 39%

(MLR) to 47% (AD-ANN). Of particular interest to this study

is during SECOND, when the improved dynamical model

(DM2) is implemented. As described previously, during this

period, the MLR and ANN are run using the frozen model

outputs (i.e., the output from DM1), while the AD-ANN is

allowed to incorporate the new dynamical model information

over time, as described in section 3. Not surprisingly, even

though there is a substantial improvement in dynamical model

performance with the model upgrade, the MLR and ANN are

able to maintain only roughly comparable levels of perfor-

mance as compared to FIRST, since these systems must op-

erate with inputs from the older model (DM1). Thus, the

improvements seen in SECOND with those systems are the

result of the conditions being forecast during this period, as

can also be seen by comparing the improvement in DM1

between the first and second periods. In fact, relative to the

upgraded dynamical model, the frozen-model based ANN

and MLR add little to no skill. The AD-ANN, however, is

able to take advantage of the model upgrade, with a 38%

improvement in RMSE between FIRST and SECOND, and a

TABLE 3. AD-ANN adaptable hyperparameters. See text and

appendix for details.

Adapted training feature

No. of training epochs

No. of trials

Selective replacement resample size

Learning rate

Size of the training window

FIG. 4. Root-mean-square error (RMSE) for the dynamical models (DM1, green; DM2,

purple), adaptive evolutionary program (AD-ANN, brown), artificial neural network (ANN,

blue), and multiple linear regression (MLR, red). Shown are RMSE in (left) the first 20-yr

period in which DM1 is available (FIRST), (center) the second 20-yr period in which DM2 is

available (SECOND), and (right) the percentage improvement in RMSE from FIRST to

SECOND.

4050 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

35% improvement in RMSE relative to the upgraded dy-

namical model during SECOND. The adjustments to the

structure and performance of the AD-ANN quickly follow

the introduction of DM2—the algorithm population average

number of hidden nodes increases from 3 to 10 nodes while a

reduction in population RMSE on the validation data of 25%

occurs within 47 forecast cycles (Fig. 5).

One consequence of the often frequent changes to forecast

models in meteorological operations is a delay in post-

processor implementation. Depending upon the demon-

strated or perceived impacts of the new model, this delay

can range anywhere from 6 months to 5 years (M. Antolik,

NOAA/Meteorological Development Laboratory, 2021,

personal communication). Further, with frequent model

changes, postprocessors are sometimes necessarily developed

using some combination of operational and experimental

data (J. Ghirardelli, NOAA/Meteorological Development

Laboratory, 2021, personal communication) and it is gener-

ally not known whether these mixed datasets lead to subop-

timal postprocessor performance.

The amount of data available for training and validation is

another important practical consideration for any postprocess-

ing method, but it is well known that data requirements can be

especially large with machine learning techniques, owing to the

number of weights that must be learned. Thus, in an evaluation

of an adaptive machine learning method, some assessment of

how these practical considerations affect performance is needed.

To that end, we consider variable time periods t of 6 months,

1, 2, and 5 years immediately following the introduction of the

improved dynamical model (DM2) at time T0. For each of these

periods following the first introduction of DM2, we train aMLR

model using data of the above length and then evaluate it over

the following period t. The performance of the MLR and of the

AD-ANN over these same periods are then compared to DM2

(Fig. 6). Thus, for t 5 6 months, the MLR and the AD-ANN

train over the period from T0 to T0 1 6 months, and then each

are evaluated over the period T0 1 6 to T0 1 12months (of

course, the moving window of the AD-ANN means that it

continues to train on past data during the evaluation period).

Sample size effects are evident for the MLR as well as the

AD-ANN, with a general increase in performance for both

methods as the training dataset lengthens. Notably, for all

periods studied, the adaptive system is comparable to or sub-

stantially outperforms the MLR. These tests reflect what

might be expected from an AD-ANN following a major

model improvement (as simulated by the change from DM1 to

DM2), and it is possible that more incremental improvements

would have less of a performance differential. However, a

test in which the dynamical model is upgraded to DM2

from a prior version considerably better thanDM1 (yielding an

FIG. 5. Algorithm population average RMSE (solid line) and number of hidden nodes

(dotted line) for the AD-ANN through the experiment. The vertical line at 2920 marks the

implementation of DM2. Note that each case represents 5 days in model equivalent time so the

4380 cases is the full 60-yr period, where the first 730 cases (10 years) have been excluded to

remove model spinup (see text for details).

FIG. 6. Performance of the AD-ANN (orange) and multiple

linear regression (red) relative to DM2 for training and evaluation

periods of 6 months and 1, 2, and 5 years.

DECEMBER 2021 ROEBBER 4051

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

improvement inDMRMSEof only 16% following the upgrade

compared to the 49% shown in Fig. 4) and where both the AD-

ANN andMLR are trained as above with t5 1, 2, and 5 years

yields similar results. Specifically, as the time period (sample

size) increases, both methods show larger performance gains

relative to DM2, but each shows lower RMSE than DM2 for

all time periods. In this experiment, however, the AD-ANN

performs considerably better relative to the DM2 with

smaller samples than the MLR (e.g., 26.7% vs 5.7% im-

provements for t5 1 year, 33.8% vs 24.8% improvements for

t 5 2 years).

These results suggest that the adaptive technique is poten-

tially valuable given its ability to incorporate improved data

quickly into postprocessor performance, where the post-

processors must be developed under significant operational

constraints. The adaptive technique explored here involves the

evolution of neural network training hyperparameters, the al-

gorithm structures themselves, and the biases andweights within

each neural network in response to those changes in structure

and the input data. It is therefore of interest to understand how

each of these aspects affects postprocessor performance. To

explore this issue, we run an additional experiment where the

network training hyperparameters are evolved as usual but then

‘‘frozen’’ at the end of the training period, while the algorithm

structures and population continue to otherwise evolve through

FIRST. Once the new model information is introduced in

SECOND, however, we only adjust the algorithm hidden layer

weights and biases through the moving windowmechanism (i.e.,

the ANN structures themselves no longer evolve).

Table 4 presents the RMSE for all experiments, as well as

that from a singlemember of those experiments rather than the

10 best-member ensemble. This single member is selected at

random from the 10 best-member ensemble. Two conclusions

are evident. First, in these experiments, allowing continued

evolution of training hyperparameters past the training period

is somewhat counterproductive (see results for AD-ANN

versus AD-ANNz in FIRST). We speculate that the initial

training period is sufficient to establish the necessary training

hyperparameters for a given forecast problem, and modifying

them thereafter based on the relatively short moving window

may simply introduce noise. Second, an important conse-

quence of the algorithm population evolution, the ready gen-

eration of ensemble solutions, does provide forecast skill

beyond that obtainable from the direct incorporation of im-

proved model information alone through weight adjustment

(see AD-ANN versus AD-ANN1 and AD-ANNz versus AD-

ANN1z), with RMSE improvements of 5%–11%. The results

from SECOND suggest that one could evolve the initial pop-

ulation during training and then retain only the best-member

ensemble, where the algorithms composing the latter do not

evolve but simply adjust their weights through the moving

window process. However, continued algorithm population

evolution allows the incorporation of new datasets (rather than

only improved existing ones, such as the transition from DM1

to DM2 studied here), while readily providing the benefits of

ensemble solutions.

Thus, we suggest that an optimal technique would be as

follows. First, for an entirely new postprocessing system, begin

as described in this paper with a training dataset to develop a

skillful algorithm population. Second, once that population is

trained, proceed with themoving window structure and algorithm

evolution but hold the neural network training hyperparameters

fixed, and extract best-member ensembles for each forecast time

step. When a new dataset becomes available to the forecast sys-

tem, rather than undertaking costly and time-consuming retrain-

ing, the existence of an evolving algorithm population will allow

that new data stream to be introduced immediately.

5. Summary

The experiments reported here demonstrate the effectiveness

of the gridpoint/station-basedAD-ANNpostprocessing approach

on a complex forecast dataset. Exploration of known limitations

of machine learning methods suggests that the method is appli-

cable to operational environments, since the adaptations respond

to changes in input data (as through model upgrades) and

provides the ability to incorporate new information without

establishing a new training-and-implementation effort, as is

necessitated by current practices in the U.S. National Weather

Service.

In this paper, we have not studied the effect of evolutionary

program ensemble generation on providing reliable probabi-

listic forecasts. This issue was studied in the context of a real-

world temperature forecast problem in RC19. In that paper,

the predator–prey method improved reliability through the

production of reasonably diverse forecasts from the best-

forecast ensemble. Since the evolutionary program process

generates ensembles as a product of algorithm population

evolution, there is no additional computational cost beyond

that required here to apply the technique to probabilistic

forecasting. Notably, while the initial population training is

somewhat computationally expensive, depending on the size of

TABLE 4. Root-mean-square error (RMSE) for each model ex-

periment during FIRST and SECOND. AD-ANN denotes the

base approach to producing adaptive ensembles, including evolu-

tion of training hyperparameters and ANN structures, as well as

ANN weights and biases. AD-ANN1 is a single member from the

10-member ensembleAD-ANN.AD-ANNz is as inAD-ANN, but

with no evolution of the training hyperparameters after TRAIN,

and no evolution of the algorithm population after FIRST (but

weights and biases are adjusted with the moving window). AD-

ANN1z is a singlemember selected at random from the 10-member

ensemble AD-ANNz. The lowest RMSE for each of the two pe-

riods is in boldface.

Expt

RMSE

FIRST SECOND

First dynamical model (DM1) 0.390 0.372

Second dynamical model (DM2) — 0.199

ANN 0.219 0.195

MLR 0.238 0.237

AD-ANN (ensemble) 0.203 0.130

AD-ANN1 (single) 0.215 0.146

AD-ANNz (ensemble) 0.190 0.113
AD-ANN1z (single) 0.212 0.119

4052 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

the population, once the training is complete, the moving

window process produces each new forecast ensemble in a

matter of seconds on a laptop computer.

An important next step is to determine whether the results

here translate to a real world forecast problem. We note that

application of EP methods to other forecast problems, such as

2 m temperature (Roebber 2015b; RC19), convection occur-

rence (RC19), and tropical cyclone intensity (Schaffer et al.

2020), have shown positive results, so there is reason to believe

these findings will hold in these contexts. Accordingly, tests of

the AD-ANN system on a challenging real world forecast

problem (week 3 temperature forecasts for the North American

continent) are currently underway. A future work will also ex-

plore system performance when a new dataset is introduced,

following the recommended process outlined at the end of

section 4.

Acknowledgments. This work was supported in part by the

Cooperative Institute for Research in the Atmosphere (CIRA).

Comments from Professor Clark Evans, Austin Harris, the ed-

itor, and the anonymous reviewers during the production of this

work are gratefully acknowledged.

Data availability statement. The data used to perform this

study were generated locally based on numerical integration of

Eqs. (4)–(16), and the evolutionary programming forecasts

were also generated locally with specialized FORTRAN code.

Datasets can be provided on request.

APPENDIX

Model Details

The predator–prey postprocessor method used in this paper

closely follows RC19, with the exception that the algorithm

structures are composed of single hidden layer multilayer

perceptrons (MLP), a particular kind of artificial neural net-

work. Specific details of the evolutionary process are provided

here for completeness, but it is highly recommended that in-

terested readers also consult RC19.

The evolutionary programming (EP) approach was sum-

marized by RC19:

EP is a computational method in which the principles of

evolution are used to devise solutions to a well-defined forecast

problem. The conceptual series of steps required to produce

these solutions are as follows:

1) Randomly initialize a population of forecast algorithms.

2) For both the training data and the validation data, evaluate

each algorithm from that population based on a defined

performance metric.

3) Remove the poorest performing algorithms, thus creating

‘‘ecosystem space’’ for new algorithms.

4) Based on the remaining algorithms’ performance, produce

new algorithms, and introduce reproductive mutations to

allow for potentially useful innovations.

Steps 2–4 are repeated through some number of iterations

(hereafter, generations) until a stopping criterion is satisfied.

This basic process is followed here, but as in RC19, a

predator–prey ecosystem dynamic is added, where predation

drives the removal of poorer performing algorithms as in step

3. Unlike in RC19, here the algorithm structures are multilayer

perceptrons formed as indicated in Fig. 3, with inputs N 5 19

(the 9 analysis values, the 9 model forecast values, and the

forecast amplitude),M hidden nodes in the single hidden layer

ranging from 1 to 19, and outputsK5 1, the value for the eddy

amplitude in region 1 at day 5. The inputs to the neural net-

works are normalized to 21 to 11 based on the minimum and

maximum values of these data in the training dataset. In the

present work, only the prey evolve—here, the predators are

held fixed in number and their performance is linked to that of

the prey population as detailed in section 3a. Their function is

then not to generate algorithms but to drive the evolution

without risk of ecosystem collapse as can sometimes occur in

two species predator–prey ecosystems.

At each iteration, every existing prey algorithm is first

checked for a new mutation. In populations in nature, muta-

tions perform the role of introducing innovation – many such

mutations are maladaptive, but as described below, since the

ability to survive and reproduce is tied to performance, such

algorithms are preferentially removed from the population.

This mutation, if it occurs, can remove a link between an input

and one of the hidden nodes (note that in this case, the input

still retains the link to other nodes). All prey are then checked

for performance on the current moving window sample and the

top 10 prey performer list is updated.

The ecosystem grid is a 50 3 50 square with wraparound

boundaries such that algorithms can move from one side of the

grid to the other without being trapped against a boundary. All

prey are fully fed at each iteration from an inexhaustible

source, whereas predators feed on the prey. The probability of

the prey making a strategic (i.e., nonrandom) decision about

where to go in the next time step is governed by its perfor-

mance. The nonrandom prey decision rule is to move in the

next iteration to the grid with the fewest predators in the 33 3

neighborhood centered on its present location, and the prob-

ability of selecting this decision is

p
move

5 e20:2683RMSE, (A1)

where RMSE is the root-mean-square error of the given al-

gorithm on the moving window sample. For the Lorenz model

dataset, this rule results in the best performers nearly always

making the best possible decision, while poor performers may

select the best decision only 70% of the time.

Predators also follow a decision rule (move to the grid point

with the most prey in the 3 3 3 neighborhood centered on its

current location) whose probability of selection is governed by

(A1), but in this case theRMSEof a predator is randomly set to

70%–90%of the RMSE of the best performing prey. Predators

feed at an ecosystem grid point if there is at least one prey

algorithm at that point, and consume only one prey algorithm

regardless of the number of prey at that location (there may be

more than one, since prey can stack at a grid point). As de-

scribed in RC19, in the case of more than one prey algorithm

at a grid point, the predator feeds on the first in the stack list.

DECEMBER 2021 ROEBBER 4053

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

However, no member of the top 10 prey performers are al-

lowed to be consumed (but when such algorithms are super-

seded by better performers, they then can be consumed). All

predators and prey can only move to a location within their

respective 3 3 3 neighborhoods in a given iteration. While

predators are maintained throughout the simulation, prey al-

gorithms can be removed either through predation (as de-

scribed above) or from age. In the latter case, a prey algorithm

can die with probability:

p
die

5
ffiffiffiffiffiffiffiffiffiffiffi
p
move

p
(A2)

if it has existed for at least seven iterations and is not contained

in the best performer list at that iteration. Again, this rule re-

sults in the best performers living longer but is designed to

create ecosystem space for new algorithms by removing less

successful algorithms.

New prey algorithms are created through a spawning pro-

cess, up to an upper limit of a total prey population of 2500

algorithms (in ecosystem parlance, this is the carrying capacity

for prey in this ecosystem). Spawning occurs through cloning of

the parent algorithm with mutations. The spawn are placed

randomly within the 33 3 ecosystem grid area centered on the

parent’s current position. Mutations can occur with a proba-

bility ranging from 0 to 1, however parental mutation rates are

passed to the spawn with random adjustment to within 610%

of the parental rate. If a spawning mutation occurs, the number

of hidden nodesM of the spawn is randomly reset to anywhere

from 1 to 19 and the biases and weights are retrained for the 19

inputs. When spawning, every prey algorithm has an intrinsic

fecundity which is randomly set from 1 to 10 when they are first

created. Thus, a spawning prey with fecundity of 3 will produce

up to 3 new algorithms provided there is sufficient ecosystem

space to do so.

The sequence in which these events take place is: 1) check

for prey mutations; 2) check performance of all prey; 3) update

prey best performer list; 4) move prey; 5) move predators and

consume prey where possible; 6) check for prey aging deaths;

7) reproduce prey; 8) return to step 1.

As discussed in sections 3 and 4, the evolutionary process

involves modification of certain training hyperparameters as

well as the neural network structure itself (TableA1). The base

algorithm structure is that of a fully connected multilayer

perceptron (MLP) with one hidden layer. However, the num-

ber of hidden layer nodes can be varied and is controlled by the

variable M, which can range in a given algorithm from 1 to 19.

Mutations can occur either in existing algorithms or in newly

spawned algorithms, in the manner described above. The rate

at which such mutations occur is given by the variable MUT.

The remaining variables listed in Table A1 control the training

process used to set the biases and weights in each MLP, as

described below.

In this work, we employ mini batch gradient descent, in

which we resample with selective replacement a subsample

from the training data of size NTRLNG and update the biases

and weights based on those data. The variables F1, F2, and

NTRLNG are used for this purpose.We set the size of the mini

batch data to a minimum, increasing to one-half the training

data as the number of training loops increases (see below),

according to the following:

SIZE5
NTRLNG

21ROUND[F13 e2F23(NL21)]
, (A3)

where NL is the number of the training loop which runs from 1

to NLP. Accordingly, the size of the mini batch begins as

NTRLNG/(2 1 F1) which can be as small as 1/22 and as large

as 1/7 of NTRLNG. This means that the smallest possible

starting mini batch is 6 cases, and the largest is 104 cases.

LeCun et al. (1998) discuss this process but note that deciding

mini batch sizes and the rate of size increase is problematic and

is one motivation here for allowing an evolutionary process to

determine these hyperparameters within certain bounds.

The learning rate controls the sensitivity of theMLPweights

to estimated error during weight updates. The principle

employed here is to adjust the learning rate to smaller values as

training progresses, as follows:

Learning Rate5
F3

11F43 (NL2 1)
. (A4)

Additionally, the learning rate is proportional to but smaller

than (A4) in the output layer. The RMSE obtained in the cur-

rent mini batch loop is compared to the prior loop, and another

loop is begun unless the RMSE change is less than 5% or the

loopmaximum is reached.Anewmini batch is constructed using

an ‘‘emphasizing scheme’’ (LeCun et al. 1998) in which theworst

performing examples in the prior mini batch are included in the

next mini batch, making up 10% of the new sample. The above

mini batch trial process is repeated NTRL times.

REFERENCES

Bremnes, J. B., 2019: Constrained quantile regression splines for

ensemble postprocessing. Mon. Wea. Rev., 147, 1769–1780,

https://doi.org/10.1175/MWR-D-18-0420.1.

Eckel, F. A., and L.DelleMonache, 2016: A hybrid NWP—Analog

ensemble. Mon. Wea. Rev., 144, 897–911, https://doi.org/

10.1175/MWR-D-15-0096.1.

Felker, S. R., B. LaCasse, J. S. Tyo, and E. A. Ritchie, 2011:

Forecasting post-extratropical transition outcomes for tropi-

cal cyclones using support vector machine classifiers.

J. Atmos. Oceanic Technol., 28, 709–719, https://doi.org/

10.1175/2010JTECHA1449.1.

TABLE A1. Neural network structural and training hyper-

parameters allowed to evolve (see text for details).

Hyperparameter Description Bounds

M Number of hidden nodes 1–19

MUT Prey mutation rate 0–1

NLP Maximum number of training loops 50–300

NTRL Maximum number of training trials 1–6

F1 Training data size factor 5–20

F2 Training data size factor 0.00–0.01

F3 Learning rate factor 2–8

F4 Learning rate factor 0.00–0.10

NTRLNG Training data length 146–730

FECUN Prey fecundity 1–10

4054 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

https://doi.org/10.1175/MWR-D-18-0420.1
https://doi.org/10.1175/MWR-D-15-0096.1
https://doi.org/10.1175/MWR-D-15-0096.1
https://doi.org/10.1175/2010JTECHA1449.1
https://doi.org/10.1175/2010JTECHA1449.1

Glahn, H. R., and D. A. Lowry, 1972: The use of Model Output

Statistics (MOS) in objective weather forecasting. J. Appl.

Meteor. Climatol., 11, 1203–1211, https://doi.org/10.1175/1520-

0450(1972)011,1203:TUOMOS.2.0.CO;2.

Hill, A. J., G. R. Herman, and R. S. Schumacher, 2020: Forecasting

severe weather with random forests. Mon. Wea. Rev., 148,

2135–2161, https://doi.org/10.1175/MWR-D-19-0344.1.

Homleid, M., 1995: Diurnal corrections of short-term tempera-

ture forecasts using the Kalman filter. Wea. Forecasting, 10,

689–707, https://doi.org/10.1175/1520-0434(1995)010,0689:

DCOSTS.2.0.CO;2.

Kim, S., J. Kwak, H. S. Kim, Y. Jung, and G. Kim, 2016: Nearest

neighbor–genetic algorithm for downscaling of climate change

data from GCMs. J. Appl. Meteor. Climatol., 55, 773–789,

https://doi.org/10.1175/JAMC-D-15-0100.1.

LeCun, Y., L. Bottou, G. B. Orr, and K.-R. Müller, 1998: Efficient
backprop.Neural Networks: Tricks of the Trade, G. B. Orr and

K.-R. Müller, Eds., Springer, 9–48.
Lorenz, E. N., 1984: Irregularity: A fundamental property of the

atmosphere. Tellus, 36A, 98–110, https://doi.org/10.1111/

j.1600-0870.1984.tb00230.x.

——, 1990: Can chaos and intransitivity lead to interannual variability?

Tellus, 42A, 378–389, https://doi.org/10.3402/tellusa.v42i3.11884.

——, 1991: Dimension of weather and climate attractors. Nature,

353, 241–244, https://doi.org/10.1038/353241a0.

Lotka, A. J., 1925: Elements of Physical Biology. Williams and

Wilkins, 495 pp.

Nipen, T. N., G. West, and R. B. Stull, 2011: Updating short-term

probabilistic weather forecasts of continuous variables using

recent observations. Wea. Forecasting, 26, 564–571, https://
doi.org/10.1175/WAF-D-11-00022.1.

Pelosi, A., H. Medina, J. Van den Bergh, S. Vannitsem, and G. B.

Chirico, 2017: Adaptive Kalman filtering for postprocessing

ensemble numerical weather predictions. Mon. Wea. Rev.,

145, 4837–4854, https://doi.org/10.1175/MWR-D-17-0084.1.

Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing

ensemble weather forecasts.Mon. Wea. Rev., 146, 3885–3900,
https://doi.org/10.1175/MWR-D-18-0187.1.

Roebber, P. J., 2015a:Adaptive evolutionary programming.Mon.Wea.

Rev., 143, 1497–1505, https://doi.org/10.1175/MWR-D-14-00095.1.

——, 2015b: Using evolutionary programs to maximize minimum

temperature forecast skill. Mon. Wea. Rev., 143, 1506–1516,

https://doi.org/10.1175/MWR-D-14-00096.1.

——, and J. Crockett, 2019: Using a coevolutionary post-

processor to improve skill for both forecasts of surface

temperature and nowcasts of convection occurrence. Mon.

Wea. Rev., 147, 4241–4259, https://doi.org/10.1175/MWR-

D-19-0063.1.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986: Learning

representations by back-propagating errors.Nature, 323, 533–

536, https://doi.org/10.1038/323533a0.

Schaffer, J. D., P. J. Roebber, and C. Evans, 2020: Development

and evaluation of an evolutionary programming-based tropi-

cal cyclone intensity model. Mon. Wea. Rev., 148, 1951–1970,

https://doi.org/10.1175/MWR-D-19-0346.1.

Stensrud, D. J., and N. Yussouf, 2003: Short-range ensemble pre-

dictions of 2-m temperature and dewpoint temperature over

New England. Mon. Wea. Rev., 131, 2510–2524, https://doi.org/

10.1175/1520-0493(2003)131,2510:SEPOMT.2.0.CO;2.

Tsonis, A. A., and J. B. Elsner, 1988: The weather attractor over

very short timescales. Nature, 333, 545–547, https://doi.org/

10.1038/333545a0.

van Veen, L., 2003: Baroclinic flow and the Lorenz-84 model. Int.

J. Bifurcation Chaos, 13, 2117–2139, https://doi.org/10.1142/

S0218127403007904.

Volterra, V., 1931: Variations and fluctuations of the number of

individuals in animal species living together. Animal Ecology,

R. N. Chapman, Ed., McGraw-Hill, 9–21.

Wang, H., Y. Yu, and G. Wen, 2014: Dynamical analysis of the

Lorenz-84 atmospheric circulation model. J. Appl. Math.,

2014, 296279, https://doi.org/10.1155/2014/296279.

Wilson, L. J., and M. Vallée, 2002: The Canadian Updateable

Model Output Statistics (UMOS) system: Design and de-

velopment tests. Wea. Forecasting, 17, 206–222, https://

doi.org/10.1175/1520-0434(2002)017,0206:TCUMOS.
2.0.CO;2.

——, and ——, 2003: The Canadian Updateable Model Output

Statistics (UMOS) system: Validation against perfect prog.

Wea. Forecasting, 18, 288–302, https://doi.org/10.1175/1520-

0434(2003)018,0288:TCUMOS.2.0.CO;2.

DECEMBER 2021 ROEBBER 4055

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
https://doi.org/10.1175/MWR-D-19-0344.1
https://doi.org/10.1175/1520-0434(1995)010<0689:DCOSTS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1995)010<0689:DCOSTS>2.0.CO;2
https://doi.org/10.1175/JAMC-D-15-0100.1
https://doi.org/10.1111/j.1600-0870.1984.tb00230.x
https://doi.org/10.1111/j.1600-0870.1984.tb00230.x
https://doi.org/10.3402/tellusa.v42i3.11884
https://doi.org/10.1038/353241a0
https://doi.org/10.1175/WAF-D-11-00022.1
https://doi.org/10.1175/WAF-D-11-00022.1
https://doi.org/10.1175/MWR-D-17-0084.1
https://doi.org/10.1175/MWR-D-18-0187.1
https://doi.org/10.1175/MWR-D-14-00095.1
https://doi.org/10.1175/MWR-D-14-00096.1
https://doi.org/10.1175/MWR-D-19-0063.1
https://doi.org/10.1175/MWR-D-19-0063.1
https://doi.org/10.1038/323533a0
https://doi.org/10.1175/MWR-D-19-0346.1
https://doi.org/10.1175/1520-0493(2003)131<2510:SEPOMT>2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131<2510:SEPOMT>2.0.CO;2
https://doi.org/10.1038/333545a0
https://doi.org/10.1038/333545a0
https://doi.org/10.1142/S0218127403007904
https://doi.org/10.1142/S0218127403007904
https://doi.org/10.1155/2014/296279
https://doi.org/10.1175/1520-0434(2002)017<0206:TCUMOS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<0206:TCUMOS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<0206:TCUMOS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<0288:TCUMOS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<0288:TCUMOS>2.0.CO;2

