DECEMBER 2021 ROEBBER 4045

Toward an Adaptive Artificial Neural Network-Based Postprocessor

PAUL J. ROEBBER?

Atmospheric Science Program, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin

(Manuscript received 15 April 2021, in final form 15 October 2021)

ABSTRACT: We introduce an adaptive form of postprocessor where algorithm structures are neural networks where the
number of hidden nodes and the network training features evolve. Key potential advantages of this system are the flexible,
nonlinear mapping capabilities of neural networks and, through backpropagation, the ability to rapidly establish capable
predictors in an algorithm population. The system can be implemented after one initial training process and future changes
to postprocessor inputs (new observations, new inputs, or model upgrades) are incorporated as they become available. As in
prior work, the implementation in the form of a predator—prey ecosystem allows for the ready construction of ensembles.
Computational requirements are minimal, and the use of a moving data window means that data storage requirements are
constrained. The system adds predictive skill to a demonstration dynamical model representing the hemispheric circulation,
with skill competitive with or exceeding that obtainable from multiple linear regression and standard artificial neural
networks constructed under typical operational limitations. The system incorporates new information rapidly and the
dependence of the approach on the training data size is similar to multiple linear regression. A loss of performance occurs
relative to a fixed neural network architecture in which only the weights are adjusted after training, but this loss is com-
pensated for by gains from the ensemble predictions. While the demonstration dynamical model is complex, current nu-
merical weather prediction models are considerably more so, and thus a future step will be to apply this technique to
operational weather forecast data.

KEYWORDS: Neural networks; Statistical forecasting; Adaptive models

1. Introduction has been operationally displaced in order to maintain the avail-
ability of the postprocessed information to users [see discussions
in Stensrud and Yussouf (2003), Wilson and Vallée (2003), and
references therein].

To create more efficient postprocessing approaches, alter-
native methods have been explored, such as Kalman filters
(e.g., Homleid 1995; Pelosi et al. 2017), updateable MOS (e.g.,
Wilson and Vallée 2002, 2003) and the use of recent observa-
tions (Nipen et al. 2011). Here, we propose a method that has
this adaptive attribute but takes advantage of the nonlinear
generalizability and predictive capabilities of artificial neural
networks (ANNSs), where ensembles of solutions are a direct
output of the process.

Roebber (2015a) showed that evolutionary programming
(EP) postprocessors can be made adaptive. However, the ap-
proach explored in that work requires a random search of the
weights attached to the conditional architecture of the EP
system, which is inefficient and may not find the best solutions.
Further research on EP postprocessors led to the development
of a predator—prey system (Roebber and Crockett 2019, hereafter
RC19), which those authors showed improved both probabilistic
and deterministic skill for temperature forecasts, compared to
both the earlier EP system and to raw and postprocessed NWP
model forecasts. This approach was not adaptive, but presumably
could be made so in the same manner as Roebber (2015a), but
would then also be subject to the same limitations.

In this paper, we show using a demonstration dataset that a
predator—-prey EP system, similar to RC19, but with an algo-
rithm architecture composed of multilayer perceptron (MLP)
ANNSs rather than IF-THEN conditionals, is an effective
adaptive system that in principle can be applied to a wide
Corresponding author: Paul J. Roebber, roebber@uwm.edu variety of forecast problems. The structure of the paper is as

For many applications, statistical postprocessing of numer-
ical weather prediction (NWP) model output is an effective
way to increase forecast quality. These methods involve a
mapping of inputs to outputs, where the inputs are some
combination of model and observational data and the outputs
are the desired forecast, which may be an adjusted version of a
model forecast or a variable not output by the model (e.g.,
snow accumulation). While there are many such statistical
methods, in the U.S. National Weather Service (NWS), the
primary method for accomplishing this mapping is multiple
linear regression [model output statistics (MOS; Glahn and
Lowry 1972]. Many other methods are possible, such as neural
networks (e.g., Rasp and Lerch 2018), random forests (e.g., Hill
et al. 2020), support vector machines (e.g., Felker et al. 2011),
quantile regression (e.g., Bremnes 2019), nearest neighbors
(e.g., Kim et al. 2016), and analogs (e.g., Eckel and Delle
Monache 2016).

Regardless of the method, these approaches require the col-
lection of a dataset of inputs and outputs (usually subdivided into
training, validation and independent test datasets, the first for
model development, the second for hyperparameter tuning, and
the last to evaluate generalization of the results). When the
postprocessor needs to be updated (owing to changes in inputs,
which in the case of NWP model updates, can occur frequently), a
new dataset must be collected and analyzed. In operations, this
retraining requirement is a substantial undertaking and may in-
volve keeping a forecast system running for several years after it

DOI: 10.1175/MWR-D-21-0089.1

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).
Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

mailto:roebber@uwm.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

4046

follows. Section 2 provides a description of the model system used
to demonstrate the adaptive technique. Section 3 details the
adaptive EP system. Section 4 presents the results of the analysis,
and section 5 provides a concluding discussion. Additional details
concerning the predator-prey system are provided in an appendix.

2. Model description

Lorenz (1984, 1990) introduced a three ordinary differential
equation (ODE) system with complex, chaotic dynamics that
he described as what ““may well be the simplest possible model
capable of representing an unmodified or modified Hadley circu-
lation.” van Veen (2003) demonstrated that this system can be
derived from a spectral, geostrophic baroclinic model linearized
about the model Hadley state, and that this simplified form qual-
itatively exhibits the same dynamics as the larger system, that is,
the interaction between the jet stream and baroclinic waves. The
three equations for this system are as follows:

dx _

2o
— ==Y ~Z"—aX +

i Y —Z"—aX +aF, D
%:XY—bXZ—Y—FG, @)
%=bXY+XZ—Z, 3)

where ¢ represents time; X, Y, and Z represent the amplitudes
of the zonal jet, and the cosine, and sine phases of a chain of
superposed large-scale eddies, respectively; F represents the
meridional gradient of diabatic heating (from radiative dis-
equilibrium); and G is the asymmetric thermal forcing. The
amplification of the eddies occurs at the expense of the west-
erly jet through the coupling terms XY, XZ, and Y? + Z°. The
coefficients a and b govern the rates of dissipation and dis-
placement, respectively. A unit of time ¢ is equivalent to 5 days,
with a time step of 0.025 units (i.e., 3h). Integration is ac-
complished using a fourth-order Runge—Kutta scheme.

Lorenz (1984, 1990) demonstrated that this simple system
was capable of a range of dynamical behaviors, from steady
state to periodic to chaotic, and that when seasonal cycles are
introduced in the radiative forcing term F, interannual vari-
ability occurs. Lorenz (1990) concluded ... we have found a
rather striking dynamical system ... (that) is semi-dissipative,
i.e. infinitesimal volumes can either contract or expand, but in
the long run they undergo net contraction, so that the attractors
are sets of zero volume.” Wang et al. (2014) and references
therein have provided detailed exploration of the behavior of
the system across many parameter settings—for the purposes
of the present paper, under appropriate parameter settings, the
model is a low-dimensional chaotic system roughly represent-
ing the atmospheric general circulation.

Tsonis and Elsner (1988) suggested that the atmosphere
might be viewed as a loosely coupled set of lower-dimensional
subsystems, and Lorenz (1991) explored that idea in the con-
text of the above model. He showed that by coupling sets of
(1)—(3), each representing an atmospheric subsystem, the di-
mensionality of the system as a whole could be increased
substantially. Such a structure can lead to a considerably more

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

MONTHLY WEATHER REVIEW

VOLUME 149

difficult forecast problem, as suggested by the increased scatter
in the phase space diagrams for one subsystem of a three
subsystem climate model composed of coupled versions of (1)-
(3) (Fig. 1a), compared to an uncoupled version of the model
with the same parameter settings (Fig. 1b). Indeed, the “day 5”
autocorrelation for the coupled (uncoupled) system is 0.151
(0.169), a decrease of over 10%.

Following Lorenz (1991), a three-subsystem coupled version
of (1)—(3) can be written as follows:

dX

—t= QYT+ Z]) —aX, +aF, 4)
dy
= OX\Y, —bX,Z —PY, +PG+V, ®)
dz
s pxv,+ 0x,2,~ P2, + W, ©
dx.
d_f:,Q(y§+Zg)—aX2+aF+ U,, (7
dy,
= 0XY, —bX,Z, — PY, + PG, ®)
dz
—E=bX,Y, + 0X,Z, - PZ,, ©)
dx.
=05+ Z) —aX, +aF + U, (10)
dy.
dt3=QX3Y3_bX323_PY3+PG’ an
dz
S =bXY, + OX,Z, - PZ,, (12)
where
U,=-C,PY,, (13)
U,=-CPZ,, (14)
V=C,P(X, - H), s)
W=CP(Z,~ H), (16)

and for this study, the values of the additional model param-
eters used in coupling are setto Q9 =1.0,P=1.0,C, =1.1,C, =
0.1, and H = 1.0. The strength of the coupling between sub-
systems is specified by the values of C; and C,, where 0.1 (1.1)
as above signifies weak (strong) coupling. For the purposes of
this paper, we consider that the three subsystems each span
120° of longitude in the Northern Hemisphere, and we refer to
these subsystems as region 1 [Egs. (4)—(6)], region 2 [Egs. (7)-
(9)], and region 3 [Egs. (10)-(12)]. With the above parameters,
region 2 is strongly coupled to region 1, while region 3 is weakly
coupled to region 1, which conceptually could mirror the
downstream influences of North American flows on Eurasia
and the Pacific, respectively.

We run the equivalent of 60 years of the above model as
“truth” and retain the last 50 years for analysis to remove
any effects from spinup (hereafter, we will refer only to this
50-yr period). Two ‘“‘dynamical models” (hereafter, DM1 and
DM2), consisting of different parameter settings F, G, a, and b

DECEMBER 2021

a

ROEBBER

4047

z1

FIG. 1. Phase space diagram for the region 1 subsystem obtained from (a) Egs. (4)—(6) of the fully coupled system
and (b) Egs. (1)—(3), i.e., the uncoupled system. See text for details.

for Egs. (4)—(12), are used to provide NWP forecasts during these
50 years (Table 1; Fig. 2). The first 10 years of these data (here-
after, TRAIN) are also used to train two types of postprocessors:
a multiple linear regression model and a standard MLP ANN.
For the next 20 years (hereafter, FIRST), the same dynamical
model that was used to train these postprocessors is continued,
but a new (improved) dynamical model is introduced at year 30
and continued for the final 20 years (hereafter, SECOND). The
“truth” data provide the initial conditions for the dynamical
models, which are run every 5 days and produce forecasts for day
5. The adaptive ANN (hereafter, AD-ANN) is fully trained as
with the standard ANN on TRAIN and then allowed to adjust
with a moving window of training data thereafter, as described
next in section 3. Some adjustments to this basic training are
discussed in section 3, in conjunction with an additional experi-
ment designed to differentiate the influences of hyperparameter
training, improved model data, and ensemble construction.

3. The adaptive ANN system
a. Predator-prey

There are many postprocessing alternatives, and which is the
preferred option will depend on both logistical considerations
and the prediction problem itself (for examples of the latter,
see RC19). The AD-ANN method introduced here is similar to

TABLE 1. Lorenz (1984, 1990, 1991) model parameter settings for
the meridional gradient of diabatic heating (F), the asymmetric
thermal forcing (G), and the rates of dissipation (a) and displace-
ment (b).

Model F G a b
Atmospheric truth 7.0 1.0 0.25 4.0
First dynamical model (DM1) 8.0 13 0.30 4.5

Second dynamical model (DM2) 7.6 1.1 0.275 425

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

that of RC19, with some changes designed to facilitate the
adaptive approach. An advantage of the predator—prey evo-
lutionary system is that it can produce a diverse set of skillful
solutions, i.e., a well-performing, reliable ensemble. Extending
this approach to artificial neural networks in an adaptive
framework is potentially an efficient means of establishing the
algorithm structures (including the weights and biases) that
comprise this ensemble, even as the input data changes. Further,
it is straightforward in this framework to add entirely new inputs
to the ecosystem as the evolution continues, thus obviating the
need for retraining. Such a situation might arise, for example, in a
forecast system where previously unavailable data from satellite
or other remote sensors could be added to base data consisting
primarily of station observations and NWP model outputs.

It is important to note that this method is a gridpoint or
station-based approach, that is, it is not applied to an entire
field as can be done with convolutional neural networks. The
method here begins with the random initialization of a pop-
ulation of algorithms, which are then evaluated based on a
defined performance metric [root-mean-square error (RMSE)
for the continuous variable studied herein]. Better performing
algorithms are then preferred to survive predation and produce
the next generation of algorithms, some of which will also expe-
rience mutations which can introduce useful innovations. Aside
from the random initialization step, this sequence is repeated until
the set number of forecasts, which are each a new generation of
algorithms (hereafter, iterations) are completed (more details
concerning this process are provided in the appendix).

We employ an ecosystem domain (here, a 50 X 50 grid),
which has no connection to the geography of the forecast
problem, but rather provides a place for the predator-prey
evolution to occur. This grid is smaller than in prior EP studies
(e.g., RC19, which uses 100 X 100), but tests in the present
context (not shown) indicate that this is sufficient spacing for
relevant ecosystem dynamics to occur (e.g., clustering of al-
gorithms) and reduces computational load. As in RC19, the

4048

SPIN-UP — TRAIN —»

MONTHLY WEATHER REVIEW

VOLUME 149

4¢——— FIRST —— | ¢——— SECOND ——»

DM1
0 10 20 30

Year
0 730 1460 2190

Case

DM2

40 50 60

2920 3650

FIG. 2. Timeline for the model experiments. See text for details.

initial population of algorithms is set to a 3:1 ratio of prey to
predators. Because the system is intended to be adaptive,
however, here we fix the predator population at the initial
number throughout the run and connect every predator algo-
rithm at each iteration to a level of performance slightly su-
perior to that of the best performing prey. This is done
through a randomization factor, which means that each indi-
vidual predator algorithm is set to between 70% and 90% of
the RMSE of the best performing prey. This change provides a
strong predation component that drives prey improvements
but eliminates growth of the predator population, which oth-
erwise (in real as well as simulated ecosystems) can potentially
lead to prey population collapse. For fixed runs of a two-
species system, it is possible to balance the populations so that
oscillatory coexistence rather than full collapse occurs (e.g.,
Lotka 1925; Volterra 1931; RC19), but where an adaptive
system is needed, it may be more difficult to guarantee such an
outcome over long periods. The above change is a preemptive
means of guaranteeing the ongoing evolution of the system
while still maintaining the evolutionary benefits of predation.

As in RC19, we maintain a best-performer list composed of
the best performing algorithms on the validation dataset, but
here we restrict this to 10 algorithms and as the validation
dataset is based on a moving window (of the prior 2 years of
forecast dates), each time step may have a different set of best
performers. The forecast at initial time ¢ is then produced for
time ¢ + 1 with the 10 best algorithms as determined by per-
formance during the validation data window [t — 2 years, 1],
where these algorithms have been trained on a variable length
training window ending at ¢t — 2 years — 1 (this training window
is limited to no more than 10 years, and in practice, never ex-
ceeded 8.25 years with a median length of 2.45 years). As noted
above, the performance of every predator is connected to the
average performance (RMSE, using the “truth’ data for ver-
ification) of this group at a given iteration. The day 5 forecast of
interest is the amplitude of the eddies in region 1! ie.,

! This choice is motivated by several considerations. The AD-
ANN, as shown in Fig. 3, is not restricted to a single output, but we
have chosen to set the number of outputs to one in this exploratory
work. Likewise, the forecast could be of any or all of the three
regions—we have selected region 1 since analysis of the phase
space diagrams (e.g., Fig. 1) indicate that this is the least structured
of the regions, thus making the most challenging forecast problem.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

Y2+ Z2, and the forecast for day 5 of this quantity is pro-
duced by the ensemble of 10 “‘best performers” as defined by
the validation dataset. Indeed, one of the valuable properties
of the EP approach, as discussed in RC19, is the ability to easily
generate such ensembles and thus is readily applicable to
probabilistic forecasting. Here, however, we will restrict our
verification to RMSE of the ensemble average obtained from
this best 10 performer list at a given time step. Attributes re-
lated to the evolutionary process that are allowed to evolve are
the mutation rate and the fecundity of the prey. Other attri-
butes, related to the algorithm architecture and training, are
also evolved and are described in section 3b.

The survival logic of the prey algorithms is to avoid ecosystem
locations within its 3 X 3 neighborhood where there are predators.
The logic of the predators is to seek out the ecosystem grid point
within its 3 X 3 neighborhood which contains the most prey al-
gorithms. The ability of an “individual” to accomplish this is gov-
erned by its RMSE on the training data—worse performers have a
higher probability of moving randomly rather than following the
above strategies. If a predator finds a grid location containing prey,
then it consumes one of these and that algorithm is eliminated.
Prey algorithms may also be removed through ageing. Table 2
provides a summary of these ecosystem factors. Conceptually,
then, the predator—prey dynamics are what drive algorithm im-
provements but here it is applied in an adaptive context.

b. Algorithm structure

An important change from RC19 is the algorithm structure,
which here takes the form of fully connected, feedforward
MLPs with one hidden layer (Fig. 3). In this structure, each of
N inputs feeds their data forward to each of M hidden nodes,
and depending on the state of the activation function, can
send a strong or weak signal to the K output nodes. The form of
the hidden nodes is

N
H,, = tanh (B;; +, WA’f,[Xi) ,
i=1
where for the Mth hidden node, Bﬁ is the bias value and the
W1 is the weight for input variable X;. The hyperbolic tangent
function is the activation function which acts similarly to a step
function (thus producing a nonlinear response), but is contin-
uously differentiable, a requirement for the weight assignment
process (backpropagation; see Rumelhart et al. 1986). The
output nodes take the following form:

DECEMBER 2021 ROEBBER 4049

TABLE 2. Ecosystem attributes used to model prey and predator behaviors.

Attribute Prey algorithms Predator algorithms

Initially dispersed randomly on grid
Not applicable—do not produce a forecast

Ecosystem location
Algorithm structure

Initially dispersed randomly on grid
Fully connected, feedforward, multilayer perceptron with one hidden
layer and variable hidden nodes

Movement Seek to avoid a predator within 3 X 3 neighborhood with probability Seek prey where maximum number of
p = f(RMSE), else random; cannot move beyond 10-gridpoint prey exist within 3 X 3 neighborhood,
distance in any direction from birth location with probability fixed based on best
performing prey algorithm, else random
Aging Can die from aging if seven or more iterations old—probability is —
inversely proportional to performance and best performers are not
removed
Reproduction Given three or fewer prey at a grid location, will produce a variable —

number of (fixed by the evolution for a given algorithm) clones with

mutations

M
OK=BZ+21W,%,
=

where for the Kth output node, B¢ is the bias value and W,%. is
the weight for hidden node H;. For the problem considered
here, N = 19-the initial conditions for all 9 measures of the
“atmosphere” obtained from the ‘“‘truth” run of Egs. (4)-
(12), the 5-day forecast values of these same 9 measures as
obtained from the ‘“‘dynamical model” version of Egs. (4)-

INPUT LAYER OUTPUT LAYER

FIG. 3. Fully connected, feedforward multilayer perceptron with N
inputs, M hidden nodes in a single hidden layer, and K outputs.

HIDDEN LAYER

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

(12), and the 5-day forecast eddy amplitude. We note that
although the forecast eddy amplitude is derived from the Y and
Z variables, the transformation results in no collinearity. Each
input is normalized in the range [—1, +1] to improve training
(LeCun et al. 1998), where this normalization is accomplished
using only the first 10 years (the training data) to set minima and
maxima. In the adaptive framework, it is possible to update
these weights with each iteration through the training data, that
is to renormalize the inputs with new minima and maxima. In
practice, however, as long as the initial training dataset is sufficiently
long (i.e., long enough to establish the effective range of the inputs),
this step is not necessary and was not implemented here. M is
variable and is set by the evolution for each algorithm, and K = 1,
corresponding to the value of the eddy amplitude. For this archi-
tecture, there are then M + 1 bias values and 20M weights that must
be set for each algorithm through the backpropagation technique.

Backpropagation is an efficient and effective way to set these
biases and weights, and is a prime motivation for altering the
algorithm structure to ANNs. Nonetheless, there are a number
of decisions that must be made during training to determine
their values. According to LeCun et al. (1998), “Designing and
training a network using backprop requires making many
seemingly arbitrary choices . .. there is no foolproof recipe for
deciding them because they are largely problem and data de-
pendent. However there are heuristics and some underlying
theory that can help guide a practitioner.” We follow these
guidelines here and allow the evolution to drive particular
hyperparameter settings within that framework (Table 3;
appendix). As detailed in section 4, we also run additional
experiments where the training hyperparameters are held fixed
after the initial training period rather than being allowed to
evolve through the full period of study. These experiments
allow us to separate the impact of that evolution versus that
derived from the ability to quickly incorporate improved data.
Finally, we also consider performance of the 10-member al-
gorithm ensemble compared to single members of that group,
since one of the advantages of the evolutionary approach is its
intrinsic production of ensembles.

We use the mean squared error as the cost function in
training. Gradient descent, which is a process used in back-
propagation to minimize the cost function, requires that we

4050

TABLE 3. AD-ANN adaptable hyperparameters. See text and
appendix for details.

Adapted training feature

No. of training epochs

No. of trials

Selective replacement resample size
Learning rate

Size of the training window

take the first derivative of the cost function with respect to a
weight. In “batch gradient descent” a complete pass through
the training data (known as an epoch) is used to compute the
average gradient, which is then applied to update the weights.
“Mini batch gradient descent” (also commonly known as sto-
chastic gradient descent), in contrast as applied here, re-
samples with selective replacement from the training data and
the gradient is estimated for that subsample, and then the
weights are updated. The training process is faster than in
batch gradient descent and the noise introduced by this process
can prevent the system from being fixed at a particular local
minimum of the cost function when deeper minima may be
found. Additional hyperparameters required to apply this
procedure include the learning rate (which controls the sen-
sitivity of the model weights to estimated error during up-
dates) and the rate at which mini batch sizes are adjusted as
the training progresses (Table 3, Table Al; see appendix).
Additionally, we use an “emphasizing scheme” (LeCun et al.
1998) that notes the worst performing examples within a mini
batch, and includes a subset of these cases in the next mini-
batch. These procedures make it possible to evolve an eco-
system of ~2300 algorithms effectively and without excessive

FIRST

MONTHLY WEATHER REVIEW

SECOND

VOLUME 149

computational requirements (e.g., these simulations were run
on a laptop computer with a 2.2-GHz Intel processor).

4. Results

As noted in section 2, to assess the effectiveness of the AD-
ANN, we also train a multiple linear regression model (MLR)
and a standard MLP ANN (ANN), using the TRAIN data
period. For reference, we also have the first (DM1) and second
(DM2) versions of the dynamical models (as noted in Table 1).
All of the postprocessing methods tested were effective in
adding skill to the dynamical model output (DM1) during
FIRST (Fig. 4), with relative improvements ranging from 39%
(MLR) to 47% (AD-ANN). Of particular interest to this study
is during SECOND, when the improved dynamical model
(DM2) is implemented. As described previously, during this
period, the MLR and ANN are run using the frozen model
outputs (i.e., the output from DM1), while the AD-ANN is
allowed to incorporate the new dynamical model information
over time, as described in section 3. Not surprisingly, even
though there is a substantial improvement in dynamical model
performance with the model upgrade, the MLR and ANN are
able to maintain only roughly comparable levels of perfor-
mance as compared to FIRST, since these systems must op-
erate with inputs from the older model (DM1). Thus, the
improvements seen in SECOND with those systems are the
result of the conditions being forecast during this period, as
can also be seen by comparing the improvement in DM1
between the first and second periods. In fact, relative to the
upgraded dynamical model, the frozen-model based ANN
and MLR add little to no skill. The AD-ANN, however, is
able to take advantage of the model upgrade, with a 38%
improvement in RMSE between FIRST and SECOND, and a

B A

Improvement

FIG. 4. Root-mean-square error (RMSE) for the dynamical models (DM1, green; DM2,
purple), adaptive evolutionary program (AD-ANN, brown), artificial neural network (ANN,
blue), and multiple linear regression (MLR, red). Shown are RMSE in (left) the first 20-yr
period in which DM1 is available (FIRST), (center) the second 20-yr period in which DM2 is
available (SECOND), and (right) the percentage improvement in RMSE from FIRST to

SECOND.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

DECEMBER 2021

RMSE

ROEBBER

4051

720

FIG. 5. Algorithm population average RMSE (solid line) and number of hidden nodes
(dotted line) for the AD-ANN through the experiment. The vertical line at 2920 marks the
implementation of DM2. Note that each case represents 5 days in model equivalent time so the
4380 cases is the full 60-yr period, where the first 730 cases (10 years) have been excluded to

remove model spinup (see text for details).

35% improvement in RMSE relative to the upgraded dy-
namical model during SECOND. The adjustments to the
structure and performance of the AD-ANN quickly follow
the introduction of DM2—the algorithm population average
number of hidden nodes increases from 3 to 10 nodes while a
reduction in population RMSE on the validation data of 25%
occurs within 47 forecast cycles (Fig. 5).

One consequence of the often frequent changes to forecast
models in meteorological operations is a delay in post-
processor implementation. Depending upon the demon-
strated or perceived impacts of the new model, this delay
can range anywhere from 6 months to 5 years (M. Antolik,
NOAA/Meteorological Development Laboratory, 2021,
personal communication). Further, with frequent model
changes, postprocessors are sometimes necessarily developed
using some combination of operational and experimental
data (J. Ghirardelli, NOAA/Meteorological Development
Laboratory, 2021, personal communication) and it is gener-
ally not known whether these mixed datasets lead to subop-
timal postprocessor performance.

The amount of data available for training and validation is
another important practical consideration for any postprocess-
ing method, but it is well known that data requirements can be
especially large with machine learning techniques, owing to the
number of weights that must be learned. Thus, in an evaluation
of an adaptive machine learning method, some assessment of
how these practical considerations affect performance is needed.

To that end, we consider variable time periods 7 of 6 months,
1,2, and 5 years immediately following the introduction of the
improved dynamical model (DM2) at time 7. For each of these
periods following the first introduction of DM2, we train a MLR
model using data of the above length and then evaluate it over
the following period 7. The performance of the MLR and of the
AD-ANN over these same periods are then compared to DM2
(Fig. 6). Thus, for 7 = 6 months, the MLR and the AD-ANN
train over the period from 7} to 7T + 6 months, and then each

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

are evaluated over the period Ty + 6 to Ty, + 12months (of
course, the moving window of the AD-ANN means that it
continues to train on past data during the evaluation period).
Sample size effects are evident for the MLR as well as the
AD-ANN, with a general increase in performance for both
methods as the training dataset lengthens. Notably, for all
periods studied, the adaptive system is comparable to or sub-
stantially outperforms the MLR. These tests reflect what
might be expected from an AD-ANN following a major
model improvement (as simulated by the change from DM1 to
DM2), and it is possible that more incremental improvements
would have less of a performance differential. However, a
test in which the dynamical model is upgraded to DM2
from a prior version considerably better than DM1 (yielding an

0.45
0.40
0.35-

a

= 030

a

=
Z o0z
=z

= o020

S]
&
= 015
<
£
g o010
E]
=3
E 005

=

0,005
-0.05-
0.10-

05yr syr

1yr A A 2yr
Averaging Period

FIG. 6. Performance of the AD-ANN (orange) and multiple
linear regression (red) relative to DM2 for training and evaluation
periods of 6 months and 1, 2, and 5 years.

4052

improvement in DM RMSE of only 16 % following the upgrade
compared to the 49% shown in Fig. 4) and where both the AD-
ANN and MLR are trained as above with 7 = 1,2, and 5 years
yields similar results. Specifically, as the time period (sample
size) increases, both methods show larger performance gains
relative to DM2, but each shows lower RMSE than DM2 for
all time periods. In this experiment, however, the AD-ANN
performs considerably better relative to the DM2 with
smaller samples than the MLR (e.g., 26.7% vs 5.7% im-
provements for 7 = 1 year, 33.8% vs 24.8% improvements for
T = 2 years).

These results suggest that the adaptive technique is poten-
tially valuable given its ability to incorporate improved data
quickly into postprocessor performance, where the post-
processors must be developed under significant operational
constraints. The adaptive technique explored here involves the
evolution of neural network training hyperparameters, the al-
gorithm structures themselves, and the biases and weights within
each neural network in response to those changes in structure
and the input data. It is therefore of interest to understand how
each of these aspects affects postprocessor performance. To
explore this issue, we run an additional experiment where the
network training hyperparameters are evolved as usual but then
“frozen” at the end of the training period, while the algorithm
structures and population continue to otherwise evolve through
FIRST. Once the new model information is introduced in
SECOND, however, we only adjust the algorithm hidden layer
weights and biases through the moving window mechanism (i.e.,
the ANN structures themselves no longer evolve).

Table 4 presents the RMSE for all experiments, as well as
that from a single member of those experiments rather than the
10 best-member ensemble. This single member is selected at
random from the 10 best-member ensemble. Two conclusions
are evident. First, in these experiments, allowing continued
evolution of training hyperparameters past the training period
is somewhat counterproductive (see results for AD-ANN
versus AD-ANNz in FIRST). We speculate that the initial
training period is sufficient to establish the necessary training
hyperparameters for a given forecast problem, and modifying
them thereafter based on the relatively short moving window
may simply introduce noise. Second, an important conse-
quence of the algorithm population evolution, the ready gen-
eration of ensemble solutions, does provide forecast skill
beyond that obtainable from the direct incorporation of im-
proved model information alone through weight adjustment
(see AD-ANN versus AD-ANN1 and AD-ANNz versus AD-
ANN1z), with RMSE improvements of 5%-11%. The results
from SECOND suggest that one could evolve the initial pop-
ulation during training and then retain only the best-member
ensemble, where the algorithms composing the latter do not
evolve but simply adjust their weights through the moving
window process. However, continued algorithm population
evolution allows the incorporation of new datasets (rather than
only improved existing ones, such as the transition from DM1
to DM2 studied here), while readily providing the benefits of
ensemble solutions.

Thus, we suggest that an optimal technique would be as
follows. First, for an entirely new postprocessing system, begin

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

MONTHLY WEATHER REVIEW

VOLUME 149

TABLE 4. Root-mean-square error (RMSE) for each model ex-
periment during FIRST and SECOND. AD-ANN denotes the
base approach to producing adaptive ensembles, including evolu-
tion of training hyperparameters and ANN structures, as well as
ANN weights and biases. AD-ANNT1 is a single member from the
10-member ensemble AD-ANN. AD-ANNzis as in AD-ANN, but
with no evolution of the training hyperparameters after TRAIN,
and no evolution of the algorithm population after FIRST (but
weights and biases are adjusted with the moving window). AD-
ANNIzis asingle member selected at random from the 10-member
ensemble AD-ANNz. The lowest RMSE for each of the two pe-
riods is in boldface.

RMSE
Expt FIRST SECOND
First dynamical model (DM1) 0.390 0.372
Second dynamical model (DM?2) — 0.199
ANN 0.219 0.195
MLR 0.238 0.237
AD-ANN (ensemble) 0.203 0.130
AD-ANNI (single) 0215 0.146
AD-ANNz (ensemble) 0.190 0.113
AD-ANNIz (single) 0212 0.119

as described in this paper with a training dataset to develop a
skillful algorithm population. Second, once that population is
trained, proceed with the moving window structure and algorithm
evolution but hold the neural network training hyperparameters
fixed, and extract best-member ensembles for each forecast time
step. When a new dataset becomes available to the forecast sys-
tem, rather than undertaking costly and time-consuming retrain-
ing, the existence of an evolving algorithm population will allow
that new data stream to be introduced immediately.

5. Summary

The experiments reported here demonstrate the effectiveness
of the gridpoint/station-based AD-ANN postprocessing approach
on a complex forecast dataset. Exploration of known limitations
of machine learning methods suggests that the method is appli-
cable to operational environments, since the adaptations respond
to changes in input data (as through model upgrades) and
provides the ability to incorporate new information without
establishing a new training-and-implementation effort, as is
necessitated by current practices in the U.S. National Weather
Service.

In this paper, we have not studied the effect of evolutionary
program ensemble generation on providing reliable probabi-
listic forecasts. This issue was studied in the context of a real-
world temperature forecast problem in RC19. In that paper,
the predator—prey method improved reliability through the
production of reasonably diverse forecasts from the best-
forecast ensemble. Since the evolutionary program process
generates ensembles as a product of algorithm population
evolution, there is no additional computational cost beyond
that required here to apply the technique to probabilistic
forecasting. Notably, while the initial population training is
somewhat computationally expensive, depending on the size of

DECEMBER 2021

the population, once the training is complete, the moving
window process produces each new forecast ensemble in a
matter of seconds on a laptop computer.

An important next step is to determine whether the results
here translate to a real world forecast problem. We note that
application of EP methods to other forecast problems, such as
2 m temperature (Roebber 2015b; RC19), convection occur-
rence (RC19), and tropical cyclone intensity (Schaffer et al.
2020), have shown positive results, so there is reason to believe
these findings will hold in these contexts. Accordingly, tests of
the AD-ANN system on a challenging real world forecast
problem (week 3 temperature forecasts for the North American
continent) are currently underway. A future work will also ex-
plore system performance when a new dataset is introduced,
following the recommended process outlined at the end of
section 4.

Acknowledgments. This work was supported in part by the
Cooperative Institute for Research in the Atmosphere (CIRA).
Comments from Professor Clark Evans, Austin Harris, the ed-
itor, and the anonymous reviewers during the production of this
work are gratefully acknowledged.

Data availability statement. The data used to perform this
study were generated locally based on numerical integration of
Egs. (4)-(16), and the evolutionary programming forecasts
were also generated locally with specialized FORTRAN code.
Datasets can be provided on request.

APPENDIX

Model Details

The predator—prey postprocessor method used in this paper
closely follows RC19, with the exception that the algorithm
structures are composed of single hidden layer multilayer
perceptrons (MLP), a particular kind of artificial neural net-
work. Specific details of the evolutionary process are provided
here for completeness, but it is highly recommended that in-
terested readers also consult RC19.

The evolutionary programming (EP) approach was sum-
marized by RC19:

EP is a computational method in which the principles of
evolution are used to devise solutions to a well-defined forecast
problem. The conceptual series of steps required to produce
these solutions are as follows:

1) Randomly initialize a population of forecast algorithms.

2) For both the training data and the validation data, evaluate
each algorithm from that population based on a defined
performance metric.

3) Remove the poorest performing algorithms, thus creating
“ecosystem space’’ for new algorithms.

4) Based on the remaining algorithms’ performance, produce
new algorithms, and introduce reproductive mutations to
allow for potentially useful innovations.

Steps 2-4 are repeated through some number of iterations
(hereafter, generations) until a stopping criterion is satisfied.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

ROEBBER

4053

This basic process is followed here, but as in RC19, a
predator—prey ecosystem dynamic is added, where predation
drives the removal of poorer performing algorithms as in step
3. Unlike in RC19, here the algorithm structures are multilayer
perceptrons formed as indicated in Fig. 3, with inputs N = 19
(the 9 analysis values, the 9 model forecast values, and the
forecast amplitude), M hidden nodes in the single hidden layer
ranging from 1 to 19, and outputs K = 1, the value for the eddy
amplitude in region 1 at day 5. The inputs to the neural net-
works are normalized to —1 to +1 based on the minimum and
maximum values of these data in the training dataset. In the
present work, only the prey evolve—here, the predators are
held fixed in number and their performance is linked to that of
the prey population as detailed in section 3a. Their function is
then not to generate algorithms but to drive the evolution
without risk of ecosystem collapse as can sometimes occur in
two species predator—prey ecosystems.

At each iteration, every existing prey algorithm is first
checked for a new mutation. In populations in nature, muta-
tions perform the role of introducing innovation — many such
mutations are maladaptive, but as described below, since the
ability to survive and reproduce is tied to performance, such
algorithms are preferentially removed from the population.
This mutation, if it occurs, can remove a link between an input
and one of the hidden nodes (note that in this case, the input
still retains the link to other nodes). All prey are then checked
for performance on the current moving window sample and the
top 10 prey performer list is updated.

The ecosystem grid is a 50 X 50 square with wraparound
boundaries such that algorithms can move from one side of the
grid to the other without being trapped against a boundary. All
prey are fully fed at each iteration from an inexhaustible
source, whereas predators feed on the prey. The probability of
the prey making a strategic (i.e., nonrandom) decision about
where to go in the next time step is governed by its perfor-
mance. The nonrandom prey decision rule is to move in the
next iteration to the grid with the fewest predators in the 3 X 3
neighborhood centered on its present location, and the prob-
ability of selecting this decision is

— ,—0.268XRMSE
=e R

Pimove (A1)
where RMSE is the root-mean-square error of the given al-
gorithm on the moving window sample. For the Lorenz model
dataset, this rule results in the best performers nearly always
making the best possible decision, while poor performers may
select the best decision only 70% of the time.

Predators also follow a decision rule (move to the grid point
with the most prey in the 3 X 3 neighborhood centered on its
current location) whose probability of selection is governed by
(A1), butin this case the RMSE of a predator is randomly set to
70%-90% of the RMSE of the best performing prey. Predators
feed at an ecosystem grid point if there is at least one prey
algorithm at that point, and consume only one prey algorithm
regardless of the number of prey at that location (there may be
more than one, since prey can stack at a grid point). As de-
scribed in RC19, in the case of more than one prey algorithm
at a grid point, the predator feeds on the first in the stack list.

4054

However, no member of the top 10 prey performers are al-
lowed to be consumed (but when such algorithms are super-
seded by better performers, they then can be consumed). All
predators and prey can only move to a location within their
respective 3 X 3 neighborhoods in a given iteration. While
predators are maintained throughout the simulation, prey al-
gorithms can be removed either through predation (as de-
scribed above) or from age. In the latter case, a prey algorithm
can die with probability:

pdie = \/pmove (AZ)
if it has existed for at least seven iterations and is not contained
in the best performer list at that iteration. Again, this rule re-
sults in the best performers living longer but is designed to
create ecosystem space for new algorithms by removing less
successful algorithms.

New prey algorithms are created through a spawning pro-
cess, up to an upper limit of a total prey population of 2500
algorithms (in ecosystem parlance, this is the carrying capacity
for prey in this ecosystem). Spawning occurs through cloning of
the parent algorithm with mutations. The spawn are placed
randomly within the 3 X 3 ecosystem grid area centered on the
parent’s current position. Mutations can occur with a proba-
bility ranging from 0 to 1, however parental mutation rates are
passed to the spawn with random adjustment to within =10%
of the parental rate. If a spawning mutation occurs, the number
of hidden nodes M of the spawn is randomly reset to anywhere
from 1 to 19 and the biases and weights are retrained for the 19
inputs. When spawning, every prey algorithm has an intrinsic
fecundity which is randomly set from 1 to 10 when they are first
created. Thus, a spawning prey with fecundity of 3 will produce
up to 3 new algorithms provided there is sufficient ecosystem
space to do so.

The sequence in which these events take place is: 1) check
for prey mutations; 2) check performance of all prey; 3) update
prey best performer list; 4) move prey; 5) move predators and
consume prey where possible; 6) check for prey aging deaths;
7) reproduce prey; 8) return to step 1.

As discussed in sections 3 and 4, the evolutionary process
involves modification of certain training hyperparameters as
well as the neural network structure itself (Table A1). The base
algorithm structure is that of a fully connected multilayer
perceptron (MLP) with one hidden layer. However, the num-
ber of hidden layer nodes can be varied and is controlled by the
variable M, which can range in a given algorithm from 1 to 19.
Mutations can occur either in existing algorithms or in newly
spawned algorithms, in the manner described above. The rate
at which such mutations occur is given by the variable MUT.
The remaining variables listed in Table A1 control the training
process used to set the biases and weights in each MLP, as
described below.

In this work, we employ mini batch gradient descent, in
which we resample with selective replacement a subsample
from the training data of size NTRLNG and update the biases
and weights based on those data. The variables F1, F2, and
NTRLNG are used for this purpose. We set the size of the mini
batch data to a minimum, increasing to one-half the training

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

MONTHLY WEATHER REVIEW

VOLUME 149

TABLE Al. Neural network structural and training hyper-
parameters allowed to evolve (see text for details).

Hyperparameter Description Bounds
M Number of hidden nodes 1-19
MUT Prey mutation rate 0-1
NLP Maximum number of training loops 50-300
NTRL Maximum number of training trials 1-6
F1 Training data size factor 5-20
F2 Training data size factor 0.00-0.01
F3 Learning rate factor 2-8
F4 Learning rate factor 0.00-0.10
NTRLNG Training data length 146-730
FECUN Prey fecundity 1-10

data as the number of training loops increases (see below),
according to the following:

NTRLNG
2+ ROUNDIFI X ¢ FX(NL=T)’

SIZE = (A3)
where NL is the number of the training loop which runs from 1
to NLP. Accordingly, the size of the mini batch begins as
NTRLNG/(2 + F1) which can be as small as 1/22 and as large
as 1/7 of NTRLNG. This means that the smallest possible
starting mini batch is 6 cases, and the largest is 104 cases.
LeCun et al. (1998) discuss this process but note that deciding
mini batch sizes and the rate of size increase is problematic and
is one motivation here for allowing an evolutionary process to
determine these hyperparameters within certain bounds.

The learning rate controls the sensitivity of the MLP weights
to estimated error during weight updates. The principle
employed here is to adjust the learning rate to smaller values as
training progresses, as follows:

F3

L ing Rate=—————————.
earning Rate T+ F4x (NL—1)

(A4)
Additionally, the learning rate is proportional to but smaller
than (A4) in the output layer. The RMSE obtained in the cur-
rent mini batch loop is compared to the prior loop, and another
loop is begun unless the RMSE change is less than 5% or the
loop maximum is reached. A new mini batch is constructed using
an “‘emphasizing scheme” (LeCun et al. 1998) in which the worst
performing examples in the prior mini batch are included in the
next mini batch, making up 10% of the new sample. The above
mini batch trial process is repeated NTRL times.

REFERENCES

Bremnes, J. B., 2019: Constrained quantile regression splines for
ensemble postprocessing. Mon. Wea. Rev., 147, 1769-1780,
https://doi.org/10.1175/MWR-D-18-0420.1.

Eckel, F. A.,and L. Delle Monache, 2016: A hybrid NWP—Analog
ensemble. Mon. Wea. Rev., 144, 897-911, https://doi.org/
10.1175/MWR-D-15-0096.1.

Felker, S. R., B. LaCasse, J. S. Tyo, and E. A. Ritchie, 2011:
Forecasting post-extratropical transition outcomes for tropi-
cal cyclones using support vector machine classifiers.
J. Atmos. Oceanic Technol., 28, 709-719, https://doi.org/
10.1175/2010JTECHA1449.1.

https://doi.org/10.1175/MWR-D-18-0420.1
https://doi.org/10.1175/MWR-D-15-0096.1
https://doi.org/10.1175/MWR-D-15-0096.1
https://doi.org/10.1175/2010JTECHA1449.1
https://doi.org/10.1175/2010JTECHA1449.1

DECEMBER 2021

Glahn, H. R., and D. A. Lowry, 1972: The use of Model Output
Statistics (MOS) in objective weather forecasting. J. Appl.
Meteor. Climatol., 11, 1203-1211, https://doi.org/10.1175/1520-
0450(1972)011<1203: TUOMOS>2.0.CO;2.

Hill, A.J., G. R. Herman, and R. S. Schumacher, 2020: Forecasting
severe weather with random forests. Mon. Wea. Rev., 148,
2135-2161, https://doi.org/10.1175/MWR-D-19-0344.1.

Homleid, M., 1995: Diurnal corrections of short-term tempera-
ture forecasts using the Kalman filter. Wea. Forecasting, 10,
689-707, https://doi.org/10.1175/1520-0434(1995)010<0689:
DCOSTS>2.0.CO;2.

Kim, S., J. Kwak, H. S. Kim, Y. Jung, and G. Kim, 2016: Nearest
neighbor—genetic algorithm for downscaling of climate change
data from GCMs. J. Appl. Meteor. Climatol., 55, 773-789,
https://doi.org/10.1175/JAMC-D-15-0100.1.

LeCun, Y., L. Bottou, G. B. Orr, and K.-R. Miiller, 1998: Efficient
backprop. Neural Networks: Tricks of the Trade, G. B. Orr and
K.-R. Miiller, Eds., Springer, 9-48.

Lorenz, E. N., 1984: Irregularity: A fundamental property of the
atmosphere. Tellus, 36A, 98-110, https://doi.org/10.1111/
j.1600-0870.1984.tb00230.x.

——,1990: Can chaos and intransitivity lead to interannual variability?
Tellus, 42A,, 378-389, https://doi.org/10.3402/tellusa.v42i3.11884.

——, 1991: Dimension of weather and climate attractors. Nature,
353, 241-244, https://doi.org/10.1038/353241a0.

Lotka, A. J., 1925: Elements of Physical Biology. Williams and
Wilkins, 495 pp.

Nipen, T. N., G. West, and R. B. Stull, 2011: Updating short-term
probabilistic weather forecasts of continuous variables using
recent observations. Wea. Forecasting, 26, 564-571, https:/
doi.org/10.1175/WAF-D-11-00022.1.

Pelosi, A., H. Medina, J. Van den Bergh, S. Vannitsem, and G. B.
Chirico, 2017: Adaptive Kalman filtering for postprocessing
ensemble numerical weather predictions. Mon. Wea. Rev.,
145, 4837-4854, https://doi.org/10.1175/MWR-D-17-0084.1.

Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing
ensemble weather forecasts. Mon. Wea. Rev., 146, 3885-3900,
https://doi.org/10.1175/MWR-D-18-0187.1.

Roebber, P. J., 2015a: Adaptive evolutionary programming. Mon. Wea.
Rev., 143, 14971505, https:/doi.org/10.1175/MWR-D-14-00095.1.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 03:19 PM UTC

ROEBBER

4055

——, 2015b: Using evolutionary programs to maximize minimum
temperature forecast skill. Mon. Wea. Rev., 143, 1506-1516,
https://doi.org/10.1175/MWR-D-14-00096.1.

——, and J. Crockett, 2019: Using a coevolutionary post-
processor to improve skill for both forecasts of surface
temperature and nowcasts of convection occurrence. Mon.
Wea. Rev., 147, 4241-4259, https://doi.org/10.1175/MWR-
D-19-0063.1.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986: Learning
representations by back-propagating errors. Nature, 323, 533—
536, https://doi.org/10.1038/323533a0.

Schaffer, J. D., P. J. Roebber, and C. Evans, 2020: Development
and evaluation of an evolutionary programming-based tropi-
cal cyclone intensity model. Mon. Wea. Rev., 148, 1951-1970,
https://doi.org/10.1175/MWR-D-19-0346.1.

Stensrud, D. J., and N. Yussouf, 2003: Short-range ensemble pre-
dictions of 2-m temperature and dewpoint temperature over
New England. Mon. Wea. Rev., 131, 2510-2524, https://doi.org/
10.1175/1520-0493(2003)131<2510:SEPOMT>2.0.CO:2.

Tsonis, A. A., and J. B. Elsner, 1988: The weather attractor over
very short timescales. Nature, 333, 545-547, https://doi.org/
10.1038/333545a0.

van Veen, L., 2003: Baroclinic flow and the Lorenz-84 model. Int.
J. Bifurcation Chaos, 13, 2117-2139, https://doi.org/10.1142/
S0218127403007904.

Volterra, V., 1931: Variations and fluctuations of the number of
individuals in animal species living together. Animal Ecology,
R. N. Chapman, Ed., McGraw-Hill, 9-21.

Wang, H., Y. Yu, and G. Wen, 2014: Dynamical analysis of the
Lorenz-84 atmospheric circulation model. J. Appl. Math.,
2014, 296279, https://doi.org/10.1155/2014/296279.

Wilson, L. J., and M. Vallée, 2002: The Canadian Updateable
Model Output Statistics (UMOS) system: Design and de-
velopment tests. Wea. Forecasting, 17, 206-222, https://
doi.org/10.1175/1520-0434(2002)017<0206:TCUMOS>
2.0.CO;2.

——, and , 2003: The Canadian Updateable Model Output
Statistics (UMOS) system: Validation against perfect prog.
Wea. Forecasting, 18, 288-302, https://doi.org/10.1175/1520-
0434(2003)018<0288: TCUMOS>2.0.CO;2.

https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2
https://doi.org/10.1175/MWR-D-19-0344.1
https://doi.org/10.1175/1520-0434(1995)010<0689:DCOSTS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1995)010<0689:DCOSTS>2.0.CO;2
https://doi.org/10.1175/JAMC-D-15-0100.1
https://doi.org/10.1111/j.1600-0870.1984.tb00230.x
https://doi.org/10.1111/j.1600-0870.1984.tb00230.x
https://doi.org/10.3402/tellusa.v42i3.11884
https://doi.org/10.1038/353241a0
https://doi.org/10.1175/WAF-D-11-00022.1
https://doi.org/10.1175/WAF-D-11-00022.1
https://doi.org/10.1175/MWR-D-17-0084.1
https://doi.org/10.1175/MWR-D-18-0187.1
https://doi.org/10.1175/MWR-D-14-00095.1
https://doi.org/10.1175/MWR-D-14-00096.1
https://doi.org/10.1175/MWR-D-19-0063.1
https://doi.org/10.1175/MWR-D-19-0063.1
https://doi.org/10.1038/323533a0
https://doi.org/10.1175/MWR-D-19-0346.1
https://doi.org/10.1175/1520-0493(2003)131<2510:SEPOMT>2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131<2510:SEPOMT>2.0.CO;2
https://doi.org/10.1038/333545a0
https://doi.org/10.1038/333545a0
https://doi.org/10.1142/S0218127403007904
https://doi.org/10.1142/S0218127403007904
https://doi.org/10.1155/2014/296279
https://doi.org/10.1175/1520-0434(2002)017<0206:TCUMOS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<0206:TCUMOS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<0206:TCUMOS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<0288:TCUMOS>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<0288:TCUMOS>2.0.CO;2

