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ABSTRACT

This study explores the benefits of assimilating infrared (IR) brightness temperature (BT) observations
from geostationary satellites jointly with radial velocity (Vr) and reflectivity (Z) observations from Doppler
weather radars within an ensemble Kalman filter (EnKF) data assimilation system to the convection-allowing
ensemble analysis and prediction of a tornadic supercell thunderstorm event on 12 June 2017 across Wyoming
and Nebraska. While radar observations sample the three-dimensional storm structures with high fidelity,
BT observations provide information about clouds prior to the formation of precipitation particles when in-
storm radar observations are not yet available and also provide information on the environment outside the
thunderstorms. To better understand the strengths and limitations of each observation type, the satellite and
Doppler radar observations are assimilated separately and jointly, and the ensemble analyses and forecasts
are compared with available observations. Results show that assimilating BT observations has the potential to
increase the forecast and warning lead times of severe weather events compared with radar observations and
may also potentially complement the sparse surface observations in some regions as revealed by the prob-
abilistic prediction of mesocyclone tracks initialized from EnKF analyses as various times. Additionally, the
assimilation of both BT and Vr observations yields the best ensemble forecasts, providing higher confidence,
improved accuracy, and longer lead times on the probabilistic prediction of midlevel mesocyclones.

1. Introduction The quality of initial conditions (ICs) that are used
to initialize CAM ensembles is crucial for the accuracy
of the predictions, especially for short-term forecasts of
severe weather events. For example, Lawson et al. (2018)
found that the National Severe Storm Laboratory (NSSL)
Experimental WoF System for ensembles (NEWS-e)
outperformed the High-Resolution Rapid Refresh
(HRRR) system for 0-3-h quantitative precipitation
forecasts (QPF) in spite of similar grid spacing, model
settings, and parameterization schemes, largely due to
using an advanced ensemble Kalman filter (EnKF) data
assimilation system that assimilated radar observations
to produce more accurate NEWS-e ICs as compared
with a simple latent-heating adjustment method used by
HRRR to incorporate radar observations. Most current
CAM data assimilation systems have horizontal grid
spacing of less than 4km and rely heavily on Doppler
weather radar observations that can provide accurate
three-dimensional storm structure. However, these radars
are generally unable to provide information outside the
storms or prior to the formation of precipitation particles.
Corresponding author: Yunji Zhang, yuz31@psu.edu With the operational availability of the new-generation

With the recent advances in observation platforms,
numerical weather prediction models, data assimila-
tion techniques, and computational resources, the future
operational warning paradigm for severe convective
weather phenomena, such as tornadoes, hail, and dam-
aging winds, has been evolving from warn-on-detection
(WoD) based upon the detection or observation of cer-
tain phenomena to warn-on-forecast (WoF) based upon
convection-allowing model (CAM) ensemble forecasts
(Stensrud et al. 2009, 2013). Recent studies have dem-
onstrated the capability of CAM ensemble forecasts to
accurately and reliably predict rotational signatures as-
sociated with the severe weather (e.g., Wheatley et al.
2015; Yussouf et al. 2015; Sobash et al. 2016; Jones et al.
2016, 2018; Lawson et al. 2018; Skinner et al. 2018), pro-
viding confidence in the feasibility of such WoF systems
for assisting severe weather preparedness in the future
(Hoekstra et al. 2011; Gallo et al. 2017).
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geostationary satellites GOES-16 as GOES-East on 18
December 2017 and GOES-17 as GOES-West on 12
February 2019, and their capability to image CONUS
every Smin with a resolution of 2km at nadir for in-
frared channels, these satellite observations will cover
the “‘blind spots” and “‘gaps’’ within the national weather
radar network. The high-spatiotemporal-resolution in-
frared (IR) brightness temperature (BT; used inter-
changeably with ‘‘radiance” hereafter) observations
provided by the Advanced Baseline Imager (ABI) on
board the GOES-16 and GOES-17 satellites are ex-
pected to be an important supplement to current da-
tasets used by data assimilation systems.

IR BT observations from geostationary satellites have
been significantly underutilized for the past several de-
cades with only the clear-sky radiances assimilated in
major operational global modeling centers (Geer et al.
2018). However, the assimilation of all-sky IR BT ob-
servations using ensemble-based data assimilation tech-
niques like the ensemble Kalman filter (EnKF) has been
explored under the observing system simulation experi-
ment (OSSE) framework in recent years (Otkin 2010,
2012; Zupanski et al. 2011; Jones et al. 2013, 2014; Cintineo
et al. 2016; Zhang et al. 2016; Minamide and Zhang 2017),
with some of these studies further exploring the combined
assimilation of IR BT and radar observations (Jones et al.
2013, 2014; Cintineo et al. 2016). There are several studies
that assimilate real BT observations from ABI and the
Advanced Himawari Imager (AHI; which has similar
channels and resolutions as ABI) on board Japan’s
Himawari-8 satellite for various weather systems, in-
cluding tropical cyclones (Minamide and Zhang 2018;
Honda et al. 2018a,b), fronts (Okamoto et al. 2019),
and isolate single storms (Sawada et al. 2019), and
Zhang et al. (2018; hereafter Z18) presented the first
successful assimilation of real ABI observations using
a CAM EnKF system to improve the prediction of
severe thunderstorms. Aside from the benefits resulted
from assimilating all-sky compared with clear-sky ob-
servations (Okamoto et al. 2019), the flow-dependent,
time-varying background error covariances and easier
adaptation of complex observation operators without
the requirement of adjoint and tangent linear models
makes EnKF a more promising approach for the as-
similation of all-sky BT observations compared with
variational methods at convection-allowing scales.

Studies combining real-world rather than synthetic
satellite and radar observations so far only use satellite
retrievals (Jones et al. 2015, 2016; Kerr et al. 2015) or
clear-sky observations instead of all-sky BT observa-
tions (Jones et al. 2018) with radar observations. As a
follow up study of Z18, this current study seeks to ex-
plore the simultaneous assimilation of GOES-16 ABI
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all-sky IR BT observations with radial velocity (Vr) and
reflectivity (Z) observations from the Weather Surveil-
lance Radar-1988 Doppler (WSR-88D) radars using
EnKF with the Weather Research and Forecasting
(WRF) Model running at a convection-allowing 1-km
horizontal grid spacing. We explore how their simulta-
neous assimilation impacts the prediction of a severe
thunderstorm event on 12 June 2017 across Wyoming,
Nebraska and Colorado that has previously been pre-
sented in Z18, especially during the initiation and early
development stage of the thunderstorms. Section 2 in-
troduces the observations, data assimilation systems,
numerical model, and experiment design. Results are
presented in section 3, and section 4 is summary and
discussion.

2. Methodology
a. Observations and preprocessing procedures

The observations assimilated in this study include
reflectivity (Z) and radial velocity (Vr) observations from
selected WSR-88D radars and infrared (IR) brightness
temperature (BT) observations from GOES-16 ABI, and
2-m temperature, dewpoint temperature, and 10-m wind
observations from surface weather stations.

Raw level-1T data of the Denver, Colorado (KFTG),
and the Cheyenne, Wyoming (KCYS), WSR-88D radars
are acquired through NOAA'’s National Centers for
Environmental Information (NCEI). The Vr obser-
vations are manually dealiased and superobservations
(SOs) of Z and Vr with a radial and azimuthal spacing
of 2km are generated from the raw observations fol-
lowing procedures similar to those in Zhang et al. (2009).
The procedures include 1) all raw observations (Z and Vr
observations are treated as being linked at each range and
azimuth, such that either both are used or both are dis-
carded at a given location except for nonprecipitating Z
observations) with Vr magnitude smaller than 3ms ™' or
greater than 60ms ™' or within 2km from the radar site
are discarded; 2) after dividing each elevation scan into
bins with radial and azimuthal distance of 2km, all ob-
servations within a bin are discarded if the standard de-
viation of the Vr observations within this bin is greater
than 1.5 times the standard deviation of all Vr observa-
tions within the same elevation angle; 3) for each bin,
observations are discarded if their Vr deviates more than
twice the standard deviation of all surviving Vr observa-
tions (after steps 1 and 2) within the bin from the mean Vr
value of the bin; 4) all raw observations within a bin are
discarded if more than half the observations within the
bin are discarded after previous procedures; and 5) the
median value of all remaining observations within a bin
is chosen as the value for Z and Vr for this SO, which is
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FIG. 1. Observations of (a) composite reflectivity, (b) raw ABI channel 10 brightness temperature, and (c) parallax-corrected brightness
temperature at 2015 UTC 12 Jun 2017. Solid longitude and latitude lines are for easier geographical comparisons.

located at the center of the bin; if all Z observations
within a bin are less than 5 dBZ, a nonprecipitating SO is
assigned with 0dBZ without a corresponding Vr obser-
vations (referred to as “0-dBZ observations”). “Z obser-
vations” only refer to nonzero precipitating Z observations
unless otherwise stated. 0-dBZ observations are further
thinned to a 4-km horizontal grid spacing.

BT observations from the Cloud and Moisture Im-
agery product (CMIP) of channel 10 (7.3 wm; the lower-
tropospheric water vapor channel) of GOES-16 ABI
acquired from NOAA'’s Comprehensive Large Array
Data Stewardship System (CLASS) are used in this
study, same as in Z18. Because ABI sees the clouds
slantwise, the location of the clouds from the imager are
displaced from their actual locations, and this ““parallax
error” should be corrected to provide more accurate
analysis when satellite observations are assimilated si-
multaneously with radar observations at storm scales.
The looking angle (elevation angle of the satellite above
the horizon when observed from Earth’s surface) and the
azimuth angle of the satellite at every grid point of the
raw BT observations are determined based on Soler
and Eisemann (1994), then the magnitude of parallax
error of each grid point is calculated using the looking
angle and the cloud top height (ACHA) product of
GOES-16 (also acquired through CLASS) and further
decomposed into latitudinal and longitudinal errors us-
ing the azimuth angle to compensate the errors. Typical
correction for a cloud top height of ~10km in the tar-
geted region of this study when GOES-16 is situated at
89.5°W above the equator is about ~0.05° eastward and
~0.1° southward. After this correction, colder cloud top
regions in BT (Fig. 1c) have a much better collocation
with the storms seen in composite reflectivity (Fig. 1a)
than raw observations (Fig. 1b), and this improved col-
location is crucial for the simultaneous assimilation of
satellite and radar observations. The parallax correction
is especially important during initiation of the storms
when the magnitude of the parallax error is comparable
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to the scale of the clouds. It should also be pointed out
that after GOES-16 became the operational GOES-E
located at 75.2°W above equator on 30 November 2017,
the parallax errors associated with observations over
CONUS are larger compared with when GOES-16 was
located at its test position of 89.5°W above equator (as
during this event). Finally, the raw observations with
parallax-corrected geographical locations are interpo-
lated to the original geographical grids of ABI observa-
tions to maintain an even distribution of the observations
with a horizontal resolution of about 2.5km in the tar-
geted region. Note that horizontal spacing of ACHA is
5 times the spacing of CMIP and is bilinearly interpolated
when calculating parallax error.

Surface observations are acquired through the Re-
search Data Archive (RDA) of UCAR’s Computational
and Information Systems Laboratory (CISL). No obser-
vations from rawinsondes or profilers are available during
the EnKF cycles (see section 2¢). Observation errors of
surface observations are the default values assigned by
the observation preprocessing program (obsproc) of the
WREF data assimilation (WRFDA) system.

b. Data assimilation system

The Pennsylvania State University (PSU) WRF-
EnKF cycling data assimilation system (Zhang et al.
2009; Weng and Zhang 2012) with same settings as in
Z18 is used and is briefly described here. The numerical
model of this system uses the fully compressible, non-
hydrostatic Advanced Research WRF (ARW) dynam-
ical core (Skamarock et al. 2008) version 3.8.1. A single
model domain of 401 X 301 X 61 grids with a horizon-
tal grid spacing of 1km, highest model level located at
50hPa, and 19 vertical levels in the lowest 1 km above
ground level (AGL) is designed, covering the regions of
northern Colorado, southeastern Wyoming, and south-
west Nebraska. Physical parameterization schemes ap-
plied in the model include the six-species double-moment
Thompson et al. (2008) microphysics scheme, unified
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Noah land surface model (Ek et al. 2003), Monin—
Obukhov-Janji¢ Eta scheme (Janji¢ 1996) for surface
layer parameterization, Mellor-Yamada-Janji¢ TKE
scheme (Janji¢ 1994) for PBL processes, and the Rapid
Radiative Transfer Model for General Circulation Models
(RRTMG) schemes (Iacono et al. 2008) for longwave and
shortwave radiation. Simulated radar reflectivity is cal-
culated using the built-in module of the Thompson et al.
(2008) microphysics scheme.

The ensemble square root filter (EnSRF; Houtekamer
and Mitchell 2001) variation of EnKF with 40 ensemble
members acts as the data assimilation part of the sys-
tem. Following Z18, the Community Radiative Transfer
Model (CRTM; Han et al. 2006), version 2.1.3, is used
as the observation operator to convert model variables
to simulated infrared BT, with the help of the adaptive
observation error inflation (AOEI; Minamide and Zhang
2017) and the adaptive background error inflation (ABEI,
Minamide and Zhang 2019) techniques to better utilize
BT observations (Z18). Following Z18, no additional
quality control, bias correction, data thinning or SO
procedures are performed on the raw BT observations.
It should be pointed out that although the statistics of
innovations throughout the EnKF cycles indicate that
there is no significant bias in our system (figure not
shown), uncertainties in CRTM and/or microphysics
schemes applied in the WRF model may sometime in-
duce considerable biases. This issue deserves continued
attention as we further explore the assimilation of BT
observations. The same observation height specification
as in Z18 is also used, with clear-sky observations as-
signed at 620 hPa and cloudy-sky observations assigned
at 250hPa, respectively. The 0-dBZ observations are
assimilated as 0 gkg ' mixing ratios of total precipitat-
ing hydrometeors (the sum of rain, snow and graupel)
with an ad hoc observational variance equal to the back-
ground variance to avoid the nonlinearities of assimilating
0-dBZ reflectivity values as the observables. To reduce
computational cost, the 0-dBZ observations are only
assimilated if the maximum background value across all
ensemble members at the observation location exceeds
0.1gkg '. SOs of Z are assimilated only if the value of
Z exceeds 15dBZ, while all SOs of Vr are assimilated.
Other specifications on the observational error and ra-
dius of influence (ROI; the cutoff radius of localiza-
tion for EnKF) using the fifth-order compact function of
Gaspari and Cohn (1999) of different observation types
are listed in Table 1. ROI of BT observations are the
same as in Z18. No BT observation is rejected during
EnKF since AOEI is applied; Vr, Z, and surface ob-
servations for which the corresponding innovations ex-
ceed five times the observational errors are rejected.
Finally, the relaxation to prior perturbation (RTPP)
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TABLE 1. Observation error and radius of influence (ROI) settings
of EnKF experiments.

Observation type Error Horizontal ROI  Vertical ROI
Surface WRFDA 300 km 30 levels
BT AOEI 30km 5 X altitude
Vr 3ms”! 20km 20 levels
Z 5dBZ 20km 20 levels
0dBZ Equal to o 40 km 20 levels

method (Zhang et al. 2004) is performed after all ob-
servations are assimilated in each EnKF analysis to
maintain ensemble spread using 80% of prior pertur-
bation and 20% of posterior perturbation.

c. Experiment design

The 40 ensemble perturbations are generated using
two groups of 20-member ensemble forecasts valid at
1800 UTC. One group started from 0600 UTC and the
other started from 1200 UTC using the corresponding
20-member GEFS ensemble analyses as ICs and same
numerical model as in the data assimilation system is
used for the ensemble forecasts. Perturbations are gen-
erated by removing the 40-member mean from each
member at 1800 UTC. These perturbations are then
added to the HRRR analysis at 1800 UTC to generate
40 ensemble ICs. This set of ensemble ICs at 1800 UTC
is exactly the same as that in Z18. A 1-h ensemble
forecast initialized from these 40 ICs is carried out to
1900 UTC, and surface observations are assimilated
every 20min (equal to report interval of METAR sta-
tions) with a time window of *10min till 2040 UTC
(ROI showing in Table 1). The 2-m potential tempera-
ture and dewpoint temperature are used as assimilated
observables for surface temperature and moisture (Fujita
et al. 2007). This EnKF experiment that assimilated
available conventional observations will be served as a
baseline experiment and will be referred to as “CONV.”

Seven data assimilation experiments are designed to
compare strategies when simultaneously assimilating
satellite and radar observations and isolate the influences
from each of the observation types. All EnKF experi-
ments assimilate observations from 1900 to 2040 UTC
and all experiments assimilate surface observations every
20min over this assimilation window. The “CONV”’ ex-
periment only assimilates surface observations. All other
experiments also assimilate either satellite and/or radar
observations every Smin over the assimilation window.
Four of the experiments only assimilate one of the two
remote sensing platforms in addition to surface observa-
tions: “SAT” only assimilates BT observations, “VR”
only assimilates Vr observations, “REF” assimilates Z
and 0-dBZ observations, and “RADAR’’ assimilates Z,
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TABLE 2. Assimilated observations in each experiment, “Y”’
indicates that observations are included for each experiment.

Experiment Surface BT Vr Z and 0dBZ
CONV Y

SAT Y Y

VR Y Y

REF Y Y
RADAR Y Y Y
VRSAT Y Y Y

REFSAT Y Y Y
RADSAT Y Y Y Y

0-dBZ, and Vr observations (i.e., all available radar ob-
servations). Three experiments simultaneously assimilate
radar and satellite observations in addition to the surface
observations: “VRSAT” assimilates BT and Vr obser-
vations, “REFSAT” assimilates BT, Z, and 0-dBZ ob-
servations, and “RADSAT” assimilates BT, Z, 0-dBZ
and Vr observations. The EnKF cycles of all experiments
end at 2040 UTC because ABI changed its scan mode
right after 2040 UTC, leading to a 20 min period without
any observations between 2040 and 2100 UTC. For each
experiment, ensemble forecasts are initialized from 1940,
2000, 2020, and 2040 UTC ensemble analyses and end at
0000 UTC 13 June. These ensemble forecasts are referred
to as “EF1940,” “EF2000,” “EF2020,” and “EF2040,”
respectively.

Table 2 summarizes assimilated observations of each
experiment. Figure 2 shows the number of assimilated
radar observations of each experiment. Average num-
bers of Vr and Z are plotted since their differences be-
tween different experiments varies only by a magnitude
of O(10), and a constant number of 18166 BT obser-
vations were assimilated for all cycles.

3. Results
a. Comparison of analysis mean

Before a quantitative evaluation of the experiments,
we first qualitatively compare the analysis with the ob-
servations to see how the storms are simulated.

The simulated BT of ABI’s channel 14 (11.2 um,
longwave window channel) of the EnKF analysis of
the six experiments is compared with GOES-16 ABI
channel-14 observations as an independent verifica-
tion in Figs. 3-5, showing EnKF analyses at the first
EnKF cycle, when CI occurs, and the final EnKF cy-
cle, respectively. At the first EnKF cycle at 1900 UTC,
CONYV and VR (Figs. 3b,c) contain extended regions
of clouds and the assimilated observations are unable
to remove these spurious clouds, whereas the BT ob-
servations are almost free of deep clouds (Fig. 3a). REF
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FIG. 2. Quantity of assimilated Vr, Z, 0-dBZ, and cloudy and
clear-sky BT observations in different experiments. Average
numbers of Vr and Z are plotted.

and RADAR (Figs. 3d,e) show a much improved anal-
ysis of clouds compared to CONV and VR due to the
assimilation of 0-dBZ observations, although there re-
mains a significant amount of cloudiness. In contrast,
satellite observations, as already shown in Z18, can
effectively remove almost all the spurious clouds, with
the resulting analyses of SAT, VRSAT, REFSAT, and
RADSAT (Figs. 3f-i) being much closer to the ob-
servations than the other experiments.

With several more cycles, 0-dBZ observations are
eventually capable of eliminating spurious clouds. At
2000 UTC the EnKF analyses of REF and RADAR
(Figs. 4d,e) are quite similar to the observations (Fig. 4a)
as are SAT, VRSAT, REFSAT, and RADSAT that
assimilated BT observations (Figs. 4f—i), while signifi-
cant overestimation of cloud coverage persists in CONV
and VR with additional spurious storms initiated in
northeastern Colorado (Figs. 4b,c). In REF, RADAR,
REFSAT, and RADSAT there are two regions of deeper
clouds that are not consistent with the observations. These
occur near 42°N, 105°W and 40°N, 104°W (Figs. 4d,e,h,i),
with the convection near 42°N, 105°W much deeper in
these four experiments than indicated in observations
(Fig. 4a). The deep cloud near 40°N, 104°W is slightly
weaker in REFSAT and RADSAT (Figs. 4h,i) than
REF and RADAR (Figs. 4d,e), probably due to the as-
similation of BT observations in these two experiments.
The spurious convection near 40°N, 104°W in these four
experiments is associated with an observed thin line of
weak reflectivity (exceeding 20 dBZ) (Fig. 6a) associated
with a dryline. In the final EnKF analyses at 2040 UTC,
more than half the model domain is covered with clouds
in CONV and VR (Figs. 5b,c), while all other exper-
iments (Figs. 5d-i) generated storms that corresponds
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C. VR 1900 UTC
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FIG. 3. ABI channel 14 brightness temperature from (a) observations and simulated from EnKF analysis mean of (b) CONV, (c) VR,
(d), REF, (e) RADAR, (f) SAT, (g) VRSAT, (h) REFSAT, and (i) RADSAT experiments at 1900 UTC.

well with the observations (Fig. 5a), although the de-
tailed extensions and strength of individual clouds are
slightly different in different experiments.
Comparisons of simulated composite reflectivity with
observations provide more insight on the differences in
the structure of the predicted storms in each experiment
(Figs. 6-8). Again, REF and RADAR (Figs. 6d,e) are
not able to remove the spurious clouds as effectively as
the other experiments that assimilated satellite obser-
vations (Figs. 6f-i), primarily due to the fact that even
the lowest radar scan at 0.5° elevation angle can be
1-2km above the surface in regions 100-200 km away
from the radar site and there are no radar observations
available to remove the excessive amount of hydrome-
teors near the surface. At 2000 UTC, REF, RADAR,
REFSAT, and RADSAT (Figs. 7d,e,h,i) generally
produce significantly stronger convection than SAT
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and VRSAT (Figs. 7f,g) as well as a banded stratiform
precipitation region associated with the observed dry-
line, consistent with their simulated BT at this time. In
the final EnKF analyses at 2040 UTC, the strength and
the location of the storms in REF, RADAR, SAT,
VRSAT, REFSAT, and RADSAT (Figs. 8d-i) are all
similar to the observed storms (Fig. 8a). Slight differ-
ences are present among the various experiments; for
example, the structure of the primary storm near 41.5°N,
105°W in SAT (Fig. 8f) is less well-defined due to the
inability of satellite observations to provide detailed
information on storm structure underneath the cloud
tops, whereas RADSAT shows a clear hook echo for
the same storm (Fig. 8i) which might indicate a stron-
ger mesocyclone compared with the observations which
has a less prominent hook echo at this time (Fig. 8a).
In general, comparisons of both BT and composite
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FIG. 4. As in Fig. 3, but at 2000 UTC.

reflectivity show that REF, RADAR, SAT, VRSAT,
REFSAT, and RADSAT experiments are all capable
of generating analyses that are close to the observa-
tions with significant improvements over CONV and
VR experiments.

b. Quantitative verification of assimilated
observations

Since a thorough examination on the performance of
the assimilation of BT observations including RMSE,
bias, and rank histogram analyses is already shown in
718, here we only focus on observation-space root-
mean-square innovation (RMSI) verifications of the
experiments with different observation platforms using
assimilated observations (Fig. 9). RMSI is defined as
RMSI =/ ((d — (d))*), where d =y, — H(x), and rep-
resents the departure of EnKF background mean from
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observations. All channel 10 BT and 0-dBZ observations
are used for verification, whereas Vr and Z SOs are used
for verification only if observed Z > 15dBZ (including
those SOs rejected by the EnKF) to focus on convec-
tive regions. To be consistent with the observation pre-
processing, values of simulated Z lower than 5dBZ are
set to 0dBZ in all EnKF experiments. An additional
three-point averaging is applied to the RMSI curve of
each experiment to smooth out rapid changes between
cycles due to large changes of observation counts in
several cycles (Fig. 2); this additional averaging does
not change the relative relationships between the exper-
iments. By comparing RMSI against different observa-
tions from the different experiments depicted in Fig. 9, we
can easily assess the impact of each type of observation
when other observations are also assimilated, similar to
the observing system experiment (OSE) framework.
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F1G. 5. As in Fig. 3, but at 2040 UTC.
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The impact of assimilating BT can be inferred by com-
paring VRSAT and VR (purple vs yellow), REFSAT and
REF (cyan vs red) and RADSAT and RADAR (green vs
orange) in Fig. 9. When verified against BT observations
(Fig. 9a), the assimilation of BT shows positive impact as
expected. RMSI against Vr show generally neutral impact
for the assimilation of BT (Fig. 9b), although some im-
provements occurred in VRSAT and RADSAT com-
pared with VR and RADAR after 2000 UTC. There are
also slight improvements of up to 3dBZ RMSI reduc-
tion resulting from assimilating BT observations when
verified against Z observations throughout the entire
EnKEF cycles (Fig. 9¢), and slight improvements when
verified against 0-dBZ observations (Fig. 9d). This re-
sult is reasonable since BT and Z observations both
influence thermodynamic and hydrometeor fields.

The impact of assimilating Vr can be inferred by com-
paring RADAR and REF (orange vs red), or VRSAT
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and SAT (purple vs blue), and RADSAT and REFSAT
(green vs cyan). Again, assimilating Vr reduces RMSI of
Vr consistently throughout the entire EnKF cycles by as
much as 1ms ™' (Fig. 9b). Although RMSI of BT and Z
show a neutral impact of Vr for most of the three above
experiment pairs (Figs. 9a,c), a slightly reduced RMSI
of Z between VRSAT and SAT of about 2dBZ after
2000 UTC occurs (Fig. 9c). This result indicates that
even in situations where BT and/or Z observations are
assimilated, Vr observations may still have the potential
to improve the analysis of hydrometeors through cross
correlations.

Last, the impact of assimilating Z can be inferred
by comparing RADAR and VR (orange vs yellow),
REFSAT and SAT (cyan vs blue), and RADSAT and
VRSAT (green vs purple). Although assimilating Z
significantly reduces RMSI against Z (Fig. 9c) and there
is a neutral impact on BT (Fig. 9a), it degrades analysis
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accuracy when verifying using Vr observations consis-
tently by about 1 ms ™! throughout the entire EnKF cycles
(Fig. 9b). This might be associated with the overprediction
of the storm near 42°N, 105°W and the spurious stratiform
precipitation region associated with the observed dryline
near 40°N, 104°W that we found previously when com-
paring BT and composite reflectivity with the observa-
tions (Figs. 4 and 7) and might have contributed to the
larger RMSI of Vr when Z observations are assimilated.

c¢. Evolution of surface conditions

In previous subsection, the verification of BT and
0-dBZ observations included regions outside of the con-
vective storms, with the results showing the benefits
from assimilating BT on the depiction of the environ-
ment. In this subsection, simulated surface conditions
from the EnKF experiments are compared with CONV
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and HRRR analysis as well as surface observations at
2000 UTC. Root-mean-square error (RMSE) and bias
of EnKF background mean compared with surface ob-
servations and ensemble RMSE (“ERMSE” hereafter;
root-mean-square averages of errors of predicted value
of all background members) and standard deviations of
the background ensemble also are calculated.

At 2000 UTC, all experiments are several K warmer
than CONYV at the surface over the northwestern por-
tion of the model domain (Figs. 10d-i) except for VR
(Fig. 10c). This is due to the removal of spurious clouds
in all these EnKF experiments leading to larger amounts
of solar radiation reaching the surface and correspondingly
less evaporative cooling associated with precipitation.
SAT, VRSAT, REFSAT, and RADSAT (Figs. 10f-i) are
further warmer than REF and RADAR (Figs. 10c,d),
because the removal of spurious precipitation in REF and
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FIG. 7. As in Fig. 6, but at 2000 UTC.

RADAR at the beginning of the EnKF cycles is slower
than the other four experiments as revealed in their
comparison of composite reflectivity (Fig. 6). Consistent
with comparisons of composite reflectivity at the same
time (Fig. 3), the stronger storms at this early initiation
stage in REF, RADAR, REFSAT, and RADSAT pro-
duce several localized cold pools at the surface from the
evaporation of precipitation. Although the cold pool near
42°N, 105°W cannot be verified due to insufficient ob-
servation coverage, it appears that the analysis of REF,
RADAR, REFSAT, and RADSAT are too cold near the
southern border of the model domain between 104° and
105°W, while the analysis of SAT and VRSAT are more
accurate for this location. Although on average VR has
the smallest RMSE of 2-m temperature, its standard de-
viation is more than twice the values in the other exper-
iments except for CONV. On the other hand, REF and
RADAR have the largest RMSE and ERMSE, while
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assimilating satellite observations can reduce the errors
both in the ensemble mean and in the ensemble mem-
bers, and VRSAT has the smallest ERMSE and the
second smallest RMSE among all radar and satellite
assimilation experiments.

The better analysis along the southern domain bound-
ary for SAT and VRSAT can also be seen in surface Td
(Fig. 11) which has a very large horizontal gradient in Td
indicative of a surface dryline in the HRRR analysis
(Fig. 11a). REF and RADAR are more than 10K higher
than the observed Td at this boundary, also leading to
significantly larger RMSE and ERMSE compared with
other experiments (Figs. 11d,e), while the much drier
analysis of SAT and VRSAT are much closer to the
observed Td with some of the smallest RMSE and
ERMSE among all experiments (Figs. 11f,g). These
differences result from the different locations of this
dryline in SAT and VRSAT versus the other experiments
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FIG. 8. As in Fig. 6, but at 2040 UTC.

(figure not shown). The northwestern portion of the model
domain in SAT, VRSAT, REFSAT, and RADSAT are
also drier than CONV, REF, and RADAR, consistent
their warmer environment indicative of less spurious
precipitation in Fig. 10.

Station-by-station time series of surface variables
provide further insights, and two stations in Colorado
(locations indicated in Fig. 10a) are presented here be-
cause they are the stations that are closest to the primary
storms: Fort Collins (FNL) and Greeley (GXY). Time
series of the ensemble background for 2-m T and Td
at these two stations during EnKF are shown in Fig. 12
(omitting CONV and VR because their environmental
conditions are different from the other six experiments)
with median, two quartiles and two extrema, and the
box-and-whisker distribution of deviations of EnKF
background ensemble from surface station observations
using all available times of the two stations are shown in
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Figs. 13a and 13b. All experiments have a warm bias
(Fig. 13a) and a dry bias (Fig. 13b) at both stations. All
experiments also analyze a drop of temperature at FNL
after 2000 UTC, with this drop occurring abruptly in
REF and RADAR at 2015 UTC (Fig. 12a). In contrast,
the drop appears gradually in SAT and VRSAT (Fig. 12b)
as well as in REFSAT and RADSAT (Fig. 12¢) with
enhanced cooling in VRSAT compared with SAT
(Fig. 12b), resulting in the smallest root-mean-square
error of 2-m temperature of VRSAT at these two sta-
tions during EnKF (Fig. 13a). Furthermore, SAT and
VRSAT correctly analyzed the slight increase of dewpoint
(Fig. 12b) while REF, RADAR, REFSAT, and RADSAT
show a flat or slight decrease trend (Figs. 12a,c), leading to
larger discrepancies of these four experiments especially
for the observations just before 2030 UTC compared
with SAT and VRSAT. The differences among the
experiments are smaller at GXY, although there is a
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noticeable reduction of both 2-m temperature and
dewpoint toward the end of the EnKF cycles in SAT,
VRSAT, REFSAT, and RADSAT (Figs. 12e,f) com-
pared with REF and RADAR (Fig. 12d). The apparent
benefit on the estimation of near-surface moisture from
assimilating BT observations is clearly shown in Fig. 13b
in which SAT and VRSAT have the smallest biases,
smallest RMSEs and smallest spreads across ensemble
members. VRSAT also has the smallest biases, RMSE
and spread of 2-m temperature (Fig. 13a).

In summary, verifications with surface observations
indicate that assimilating satellite BT observations has
the potential to improve the accuracy of the near-surface
pre-CI environment, especially for moisture which is one
of the necessary ingredients of CI (Doswell et al. 1996),
complementing conventional surface observations in re-
gions where surface stations are sparse.

d. Ensemble forecasts

Ensemble forecasts out to 0000 UTC 13 June are
initialized from the 1940, 2000, 2020, and 2040 UTC
EnKF analyses of each experiment. Values of 2-5-km
AGL updraft helicity (UH; Kain et al. 2008) exceeding
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200m?s 2 is used to determine the presence of a me-
socyclone, a key feature of supercell thunderstorms, in
the model output. Ensemble probabilities of mesocy-
clone tracks over the period from 2100 UTC 12 June to
0000 UTC 13 June are used to identify the most haz-
ardous regions of the predicted storms and the most
likely locations of tornado occurrence. A neighborhood
approach (Roberts and Lean 2008; Ebert 2009; Schwartz
and Sobash 2017) with a neighborhood radius of 3 km is
also applied (i.e., the probability value at each grid point
indicates the probability of UH exceeding 200 m?*s >
within 3km from the grid point). The observed meso-
cyclone tracks are manually identified in the radar ob-
servations when dipole structures (rotations) occur in Vr
of KFTG and KCYS radars at the lowest scanning angle
(typically 0.5°), and the azimuthal difference (‘‘gate-to-
gate” difference) of Vr for the dipole exceeds 10ms '
for at least three consecutive scans (about 9 min in pre-
cipitation scan mode) during the same time span.

For the EF1940 and EF2000 forecasts it is clear that
radar data assimilation alone is not able to capture the
initiation and evolution of the storms when starting from
the preinitiation and initiation stages in the storm life
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cycle from all of the radar-only experiments (VR, REF,
and RADAR). These experiments fail to predict any
identifiable mesocyclone tracks near the observed me-
socyclone tracks in the regions of Wyoming, Nebraska
and Colorado in their EF1940 forecast (Figs. 14al,bl,cl),
and in their EF2000 forecast emphasize another storm that
is several tens of kilometers to the north and in between
the two observed mesocyclone tracks (Figs. 14a2,b2,c2). In
contrast, all four satellite-assimilated experiments are
able to produce probabilistic UH tracks that align very
well with the observed tracks in their EF1940 forecasts
that are initialized 20 min before the initiation of the
storms (Figs. 14d1,e1,f1,g1), and their predicted tracks
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became more concentrated with higher probabilities
and match the observed tracks even better in their
EF2000 forecasts (Figs. 14d2,e2,f2,g2) when the radar-
assimilation experiments are still not able to predict the
observed mesocyclone tracks. The probabilistic meso-
cyclone forecasts of EF1940 highlight the potential of
extending forecast lead time of mesocyclones (as well
as associated hazards) by as much as twenty to forty
minutes with the assimilation of BT observations during
preinitiation, initiation, and early development stages of
severe storms when BT observations are able to provide
more information about the storm and the environment
than radar observations.
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FIG. 11. As in Fig. 10, but for 2-m dewpoint temperatures.

The probabilistic forecasts of mesocyclone tracks for
VR, REF, and RADAR become progressively better
with more EnKF cycles, although VR failed to match
the observed mesocyclone track even for the 2040 UTC
ensemble forecasts from its final analyses of EnKF
(Fig. 14a4). On the other hand, 2020 UTC forecasts of
REF and RADAR as well as 2040 UTC forecast of
RADAR all provide accurate predictions of the me-
socyclone (Figs. 14b3,c3,c4). However, EF2040 fore-
cast of REF shows a northward bias of the primary
mesocyclone track toward a secondary mesocyclone
track slightly to the north of the primary one (Fig. 14b4).
This UH track can also be seen in some of the other
ensemble forecasts and is associated with a weaker
storm that occasionally develops rotation but does
not consistently meet the shear criteria throughout
the forecast period in observed Vr for a mesocyclone.
For SAT and VRSAT, the predicted probabilistic
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mesocyclone tracks consistently match the observed
ones across ensembles initialized from analyses at dif-
ferent times (Figs. 14d,e), except for EF2040 of SAT that
show a similar northward bias of the primary track to-
ward the secondary track (Fig. 14d4) similar to EF2040
of REF (Fig. 14b4). This might be resulted from the fact
that BT of infrared channels only provide information
above cloud top and is unable to penetrate into the
thunderstorms. Assimilating Vr observations in addition
to BT observations brings improvements: the probabil-
ity of the mesocyclone track at the center of the model
domain in VRSAT progressively increases when more
Vr observations are assimilated, such that its EF2040
forecast produces the most confident and best-defined
probabilistic mesocyclone track among all forecasts of
all experiments (Fig. 14e4). For REFSAT, its EF2040
forecast emphasizes the northern weaker storm, such
that the observed mesocyclone track is largely missed
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(Fig. 14f4). RADSAT provides good forecasts from 2000
to 2020 UTC (Figs. 14g2, g3), but deviates toward the
secondary track again in its EF2040 forecast (Fig. 14g4).
The northward moving bias and displacement of meso-
cyclones seen in several ensemble forecasts here might be
produced by interactions between adjacent storms that
has been reported in several storm-scale data assimilation
and modeling studies (e.g., Xue et al. 2014; Wheatley et al.
2015; Carlin et al. 2017), indicating uncertainties in cur-
rent storm-scale data assimilation and simulation systems.

Some variations among the ensemble forecasts also
occurred for the storm that appeared near the northern
boundary of the model domain and is already well or-
ganized at 2000 UTC (Fig. 7a). Most ensemble forecasts
have shown either a displacement or a moving bias of
their predicted mesocyclone tracks compared with the
observed one and only a few can provide accurate pre-
dictions. The influence of the boundary conditions might
have contributed to the overall degraded performance
on the prediction of this storm compared with the pri-
mary one in the center of the model domain.

The continuously ranked probability score (CRPS;
Wilks 2011) and equitable threat score (ETS; Wilks
2011) of composite reflectivity and accumulated pre-
cipitation verified against corresponding Multi-Radar
Multi-Sensor (MRMS) system products and 2-m 7" and
Td verified against surface station observations over the
entire model domain reveal no significant differences
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among the experiments across different ensemble fore-
casts, except for a worse performance of VR for some
times (figure not shown). However, the time evolution
of 2-m T and Td at FNL and GXY from the EF2040
ensembles of the experiments, which are initialized from
the final analysis of EnKF, provide for further assess-
ment (Fig. 15). At the FNL station, REF and RADAR
predict a 2-m T increase immediately after initialization
(Fig. 15a), while the observed temperature gradually
decreases till about 2100 UTC. On the other hand, SAT
and VRSAT follow the trend of observed temperature
more closely and VRSAT shows the smallest warm bias
among all experiments (Fig. 15b), while REFSAT and
RADSAT predicted more complex evolutions of temper-
ature before 2200 UTC (Fig. 15c). Many of the ensemble
members of all these experiments predict a drying at FNL
after about 2200 UTC (Figs. 15a—c), which is not seen in the
observations, with VRSAT being one of the ensembles to
have incorrectly predicted this drying (Fig. 15b).

Station GXY, although not directly influenced by
the cold pools of the storms, is crossed by the dryline at
2200 UTC with a dewpoint drop of at least 8 K between
2156 and 2203 UTC. Both SAT and VRSAT capture this
sharp drop of dewpoint (Fig. 15¢) with all ensemble
members predicting a change of at least 10K, although
there are considerable timing differences among en-
semble members. The other four experiments tend to
predict a more gradual decrease of dewpoint rather than
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a sharp drop (Figs. 15d.f), resulting from their different
analysis of the dryline compared with SAT and VRSAT
(Fig. 11), although there are a few members in these four
experiments that predict a sharp decrease.

Box-and-whisker distributions of deviations of EF2040
for each experiment combining all available observations
from these two stations during ensemble forecasts are
presented in Figs. 13c and 13d. Consistent with pre-
vious trends seen in Fig. 15, VRSAT has the smallest
magnitudes of RMSE, bias, and median for both 2-m T
(Fig. 13c) and Td (Fig. 13d) and REFSAT and RADSAT
have slightly larger values for these metrics. Generally,
the verification results indicate that VRSAT has the
overall best prediction of the surface conditions and
cold pools associated with the storms, which may also
have contributed to its overall best prediction of the
mesocyclone tracks (Fig. 14e).

4. Conclusions and discussion

Following onto our previous study (Z18) that assimi-
lated all-sky infrared BT observations from the ABI on
board the GOES-16 satellite using EnKF with a numerical
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model running at 1-km horizontal grid spacing with results
showing promising improvements in the prediction of
a severe tornadic thunderstorm event on 12 June 2017
across Wyoming, Nebraska, and Colorado, the current
work seeks to explore the simultaneous assimilation of
both satellite and radar observations with the same data
assimilation system for the same event. Aside from as-
similating surface observations every 20 min, each of the
experiments assimilate a different combination of radial
velocity (Vr) and reflectivity (Z) observations from two
WSR-88D radars and BT observations from GOES-16
ABI every 5min for a time span of up to 100 min. This
setup allows us to isolate the influence of each obser-
vation type when assimilated together with other ob-
servations in a manner similar to the observing system
experiment (OSE) approach.

The EnKF analysis of simulated BT and reflectivity
indicate that all experiments (except for VR that con-
tains no observations to remove spurious convection)
are able to reproduce the initiation and early develop-
ment of the storms properly. Quantitative verification
using Vr, Z, and BT observations show that each of these
observation types can reduce the magnitude of their own
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innovations as expected when EnKF is working properly.
The assimilation of Vr or BT observations also have a
neutral or positive impact on the reduction of innovations
of other types of observations. However, assimilating Z
observations might lead to larger errors when verified
against Vr observations, which might be associated with
the overprediction of storm intensity and the spuri-
ously simulated stratiform precipitation associated with
an observed dryline (without precipitation) when Z ob-
servations are assimilated.

Ensemble forecasts from the 1940, 2000, 2020, and
2040 UTC EnKEF analyses of each experiment also are
performed, and the probabilistic midlevel mesocyclone
forecasts are verified against observed mesocyclone tracks
identified from radar observations. The benefits of satel-
lite observations at the initiation and early development
stages of the storms are apparent in the 1940 and 2000 UTC
ensemble forecasts: experiments that assimilate BT
observations are able to predict the observed mesocyclone
track with high accuracy and confidence from their 1940
and 2000 UTC EnKEF analysis. This occurs even before
the first 5-dBZ reflectivity echo of the primary tornadic
thunderstorm appears. Neither of the three experiments
that solely assimilated radar observations (VR, REF,
and RADAR) at this time are able to accurately predict
the mesocyclone track. These two radar-assimilation
experiments are able to predict the track from their 2020
and 2040 UTC EnKF analysis after more radar obser-
vations are assimilated, although predicted mesocyclone
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track of EF2040 of REF show a northward moving bias
that has been reported in other storm-scale simulations
of severe thunderstorms. The experiment that assimilate
both Vr and BT observations (VRSAT) show consistent
and reliable predictions of the mesocyclone track in
different ensemble forecasts and produces the most ac-
curate predictions with the highest confidence among all
experiments. On the other hand, REFSAT and RADSAT
tends to emphasize an adjacent storm that has a much
weaker observed rotation than the tornadic storm seen
from observations with more EnKF cycles, missing the
primary storm.

From the results of these data assimilation experi-
ments, it is apparent that the availability of BT observa-
tions before storm initiation is one of its key advantages
over radar observations. Satellite can not only “‘see’’ the
occurrence of convective clouds several tens of minutes
earlier than radar observations, but also provide valuable
information on the surrounding environment that is not
available from operational Doppler weather radars. The
assimilation of BT observations before and during initi-
ation as well as during the early development of the
storms provide valuable information when the amount
of radar observations is limited. As a consequence, up to
40min of additional forecast lead time for the mesocy-
clone tracks can be gained for this event when BT ob-
servations are assimilated instead of radar observations.
This conclusion is supported by the observed mesocy-
clone track being accurately predicted from the 1940 UTC
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analysis that assimilates BT observations when the storms
are barely formed, while for the experiments that assim-
ilate radar observations this track is predicted only from
analyses later than 2020 UTC. An extension of 40 min
onto the forecast lead time for mesocyclone is a signifi-
cant improvement and comparable to the current aver-
age warning lead times of tornadoes (Stensrud et al.
2009). This result is very promising for the future of
warning operations for severe weather events, since these
valuable cloud-affected IR BT observations have not
been assimilated in any operational or quasi-operational
weather prediction systems for any scales. On the other
hand, the impact of assimilating all-sky IR BT obser-
vations from geostationary satellites when the thun-
derstorms are matured might be limited compared with
radar observations, since cloud-affected IR BT obser-
vations mostly contain two-dimensional information at
the cloud top of the thunderstorms, while the detailed
three-dimensional structures of the thunderstorms that
can be nicely observed by the radars are completely in-
visible to geostationary satellites at infrared wavelengths.

The further improvement resulting from the additional
assimilation of Vr observations compared with results
when only BT observations are assimilated is not sur-
prising. IR BT of ABI channel 10 are mostly sensitive to
temperature and water vapor in the lower troposphere in
clear sky and to the top of clouds (in other words, char-
acteristics of hydrometeors) in cloudy regions, and Vr
observed wind fields within the storms, thus they provide
complementary information on the thermodynamic and
dynamic features of the storms, respectively. The benefit
obtained from simultaneous assimilation of BT and Vr
observations also persists into the ensemble forecasts and
may extend for several hours, indicating that the envi-
ronmental information provided by BT observations
might help to extend the practical predictability of severe
storms (e.g., Aksoy et al. 2010; Gasperoni et al. 2013).
This also implies a potential benefit from assimilating BT
observations in improving the analysis of environmental
conditions, especially moisture and therefore instability,
in regions where surface stations are sparse.

Opverall, assimilating Vr and BT observations simul-
taneously is the best approach considering both the
quality of EnKF analysis and the accuracy of ensemble
forecasts for the prediction of severe storms in this event.
However, this study is based on one case, and whether or
not this combination can lead to a consistent improve-
ment in the prediction of severe weather needs to be
extensively evaluated using more events in the future.
The benefit of the additional forecast lead times for se-
vere thunderstorms when satellite observations are as-
similated compared with radar observation assimilation
only should also be evaluated with more events. Besides,
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in this study BT observations are assimilated in raw
spatial and temporal resolution. Although Honda et al.
(2018a) indicate that assimilate BT observations over a
shorter temporal interval are beneficial for the ensemble-
based analysis and prediction, the optimal combination of
satellite and radar observations, their respective spatial
and temporal resolution, the best strategies to constrain
and utilize both observations considering the balance
between available computational resources, scheduling
of warning processes, and efficiency and accuracy of the
resulting predictions are still unclear and deserve further
exploration in the future.
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