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ABSTRACT

A statistical-dynamical tropical cyclone (TC) intensity model is developed from a large ensemble of
algorithms through evolutionary programming (EP). EP mimics the evolutionary principles of genetic in-
formation, reproduction, and mutation to develop a population of algorithms with skillful predictor combi-
nations. From this evolutionary process the 100 most skillful algorithms as determined by root-mean square
error on validation data are kept and bias corrected. Bayesian model combination is used to assign weights
to a subset of 10 skillful yet diverse algorithms from this list. The resulting algorithm combination produces a
forecast superior in skill to that from any individual algorithm. Using these methods, two models are de-
veloped to give deterministic and probabilistic forecasts for TC intensity every 12 h out to 120 h: one each for
the North Atlantic and eastern and central North Pacific basins. Deterministic performance, as defined by
MAE, exceeds that of a “‘no skill”” forecast in the North Atlantic to 96 h and is competitive with the opera-
tional Statistical Hurricane Intensity Prediction Scheme and Logistic Growth Equation Model at these times.
In the eastern and central North Pacific, deterministic skill is comparable to the blended 5-day climatology
and persistence (CLPS5) track and decay-SHIFOR (DSHF) intensity forecast (OCDS5) only to 24 h, after
which time it is generally less skillful than OCDS and all operational guidance. Probabilistic rapid intensifi-
cation forecasts at the 25-30kt (24h) ! thresholds, particularly in the Atlantic, are skillful relative to cli-
matology and competitive with operational guidance when subjectively calibrated; however, probabilistic
rapid weakening forecasts are not skillful relative to climatology at any threshold in either basin. Case studies
are analyzed to give more insight into model behavior and performance.

1. Introduction forecast difficulty at shorter lead times (Rappaport et al.
2012; Kaplan et al. 2010).

Despite these challenges, some improvement in TC
intensity forecasts have occurred. While improvement
rates of 1%—2% yr~ ' (as has occurred over the 24-72h
lead time from 1989 to 2012) may seem negligible, they
are nonetheless statistically significant (DeMaria et al.
2014). Furthermore, at lead times longer than 72 h, more
substantial improvements have occurred, with rates av-
eraging 2%—4% yr ' (DeMaria et al. 2014). However,
this 2%—4% increase is largely attributed to better track
forecasts, which have had similar improvement rates
over the same time period, as better track predictions
lead to more accurate forecasts of the environmental
conditions within which a TC is embedded (Emanuel
et al. 2004; DeMaria et al. 2014; Emanuel and Zhang
2016). Yet, the view that TC intensity forecasts have not
improved quickly enough (Gopalakrishnan et al. 2011;
Rappaport et al. 2012; DeMaria et al. 2014; Emanuel
Corresponding author: Dr. Clark Evans, evans36@uwm.edu. and Zhang 2016) is still indicative that these increases

Tropical cyclone (TC) intensity forecasting is recog-
nized as being particularly challenging with only slow
improvements over recent years, especially at shorter
lead times (Fig. 1). This lack of improvement is even
more dramatic when the time series is placed alongside
track errors, which are improving at 3 times the rate of
intensity errors over the 24-72h range (DeMaria et al.
2014). At shorter lead times, intensity errors are domi-
nated by the mischaracterization of the TC’s initial in-
tensity, as well as by inner-core and eyewall processes
due to our limited understanding of and ability to re-
solve such processes (Emanuel and Zhang 2016, 2017;
Kieu and Moon 2016). Furthermore, the challenge of
forecasting the magnitude and timing of rapid intensi-
fication (RI) and rapid weakening (RW) significantly
contributes to large absolute forecast errors and overall
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FIG. 1. Annual average of official NHC (top left) Atlantic-basin intensity errors, (top right) Atlantic-basin track errors, (bottom left)
eastern North Pacific-basin intensity errors, and (bottom right) eastern North Pacific-basin track errors for the period 1990-2017, each as a
function of forecast lead time (colored lines) with least squares lines (dashed) for each lead time superimposed (Cangialosi 2019).

may be too small to produce significant practical advan-
tages for emergency management preparation, planning,
and decision-making.

Deterministic TC intensity forecasts are typically di-
vided into three different types of models: dynamical,
statistical-dynamical, and consensus. Whereas dynami-
cal (or numerical weather prediction) models predict TC
intensity by solving the governing equations and ap-
propriately parameterizing other processes (e.g., cloud
microphysics, radiative transfer, turbulence, surface
energy fluxes, etc.), statistical-dynamical models use
statistical methods to assign appropriate weighting to
empirical relationships derived from environmental
and TC structure characteristics obtained from dynam-
ical models and/or observations. Last, consensus models
combine intensity forecasts from multiple models, whether
dynamical and/or statistical-dynamical, and use a variety
of methods to derive the weights (e.g., equal vs variable)
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for the selected models. To date, consensus models have
outperformed the other intensity model types in the
Atlantic and eastern and central North Pacific basins, but
they are followed closely by statistical-dynamical models
and recently by the best-performing dynamical models
(Stewart 2014, 2016; Pasch 2015). Probabilistic TC in-
tensity forecasts are almost exclusively derived from
statistical-dynamical models (e.g., Kaplan and DeMaria
2003; Kaplan et al. 2010, 2015; Rozoff and Kossin 2011;
Cloud et al. 2019), although recent attempts to use
dynamical-model ensembles to predict RI shown promise
(e.g., Alessandrini et al. 2018).

Here, we develop two statistical-dynamical TC in-
tensity models, with one forecasting TC intensity, RI,
and RW for the North Atlantic basin and the other
doing so for the eastern and central North Pacific basins.
The process for developing each model is identical with
the only distinction being that the Atlantic model is
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trained on data from the North Atlantic basin, while the
Pacific model is trained on data from the eastern and
central North Pacific basins.

The models are developed through a statistical—
dynamical approach in which each model is derived
from a large ensemble of algorithms, which are them-
selves generated through the process of evolutionary
programming (EP; Fogel 1999). EP utilizes the evolu-
tionary principles of reproduction and mutation to
develop, through selective pressure, predictor combi-
nations that maximize forecast skill. EP-generated
predictor combinations have shown superior perfor-
mance over dynamical models in 500-hPa height fore-
casts (Roebber 2013) and statistical-dynamical models
like model output statistics in minimum 2-m temperature
forecasts (Roebber 2010, 2015a,b). Furthermore, EP-
generated algorithms provide forecast probability density
functions (PDFs) superior in probabilistic and deter-
ministic skill than many traditional models in 500-hPa
height forecasts, particularly at the tail ends of the
distribution (Roebber 2013). Recently, Roebber and
Crockett (2019) developed a new approach to EP
using a coevolution predator—prey ecosystem and ap-
plied it to both 72-h 2-m temperature forecast as well as
60-min nowcasts of convective occurrence. This new
formulation incorporates competition between algo-
rithms in a simulated ecosystem, wherein algorithms
behave as members of a particular species, and their
ultimate evolutionary success is tied to their ability to
provide skillful forecasts. This new formulation shows
improvements over not only numerical weather pre-
diction forecasts, but also earlier EP approaches ap-
plied to the same data. The performance of the EP
applications described above is due to EP being de-
veloped specifically to produce large-ensemble fore-
casts with a high degree of heterogeneity amongst the
algorithms (Fogel 1999).

What does the EP approach bring to the TC intensity-
change prediction problem relative to existing methods,
particularly deterministic statistical-dynamical models
such as the Statistical Hurricane Intensity Prediction
Scheme (SHIPS; DeMaria and Kaplan 1994, 1999;
DeMaria et al. 2005) and Logistic Growth Equation
Model (LGEM; DeMaria 2009) or probabilistic RI
models such as the SHIPS-Rapid Intensification Index
(SHIPS-RII; Kaplan and DeMaria 2003; Kaplan et al.
2010) and logistic and Bayesian models (Rozoff and
Kossin 2011; Kaplan et al. 2015)? Although the EP
method as formulated here relies on large-scale cy-
clone and environment characteristics as does SHIPS
and LGEM and is composed of primarily linear pre-
dictor combinations as is SHIPS; it has a more flexible
algorithm formulation that allows particular terms to
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execute only if a certain criterion is met and thus is
more responsive to specific cyclone and environmental
attributes. Further, it is straightforward to diagnose the
contributions from each predictor to the EP intensity-
change forecast at each lead time, an advantage that it
shares with SHIPS and that is increasingly desirable in
meteorological applications of statistical and machine-
learning approaches (e.g., McGovern et al. 2019).
Unlike existing deterministic and probabilistic models,
which are independent of each other, the approach
used here results in the development of internally
consistent deterministic and probabilistic forecast models,
including the first RW model to our knowledge, although
we note that this is an attribute of the overall methodology
rather than EP itself. Despite not being applied here, the
EP method can continually and independently (i.e., with-
out human intervention) adapt to new and/or improved
information without redeveloping the predictive model
(Roebber 2015a), an attractive attribute for operational
applications. Perhaps most importantly, the EP method
can provide skillful and independent deterministic and
probabilistic forecasts that, in turn, may contribute to im-
proved skill for the consensus methods that are currently
associated with the highest forecast skill.

The rest of this paper is structured as follows.
Section 2 is broken into five parts describing the data
used to train the model, EP and the training process it-
self, the postprocessing techniques used to generate the
models’ final structures, illustrations of the final models’
interpretability, and the operational implementation
and associated model verification methods. The deter-
ministic and probabilistic performance of the model for
each basin along with illustrative case studies are pre-
sented in section 3. The paper closes in section 4 with a
summary and conclusion.

2. Data and methods
a. Data

TC intensity and predictor data for training both
models are sourced from the SHIPS developmental
database, which contains 0-h analysis data in 6-h inter-
vals for all classified TCs (here including both tropical
and subtropical cyclones, the latter of which make
up <5% of the dataset, at all classified intensities). Only
data from TCs for 2000 to 2016 are used, since 2000
coincides with the start of the period when variables
are derived from the Global Forecast System (GFS;
NCEP 2016) rather than the Climate Forecast System
Reanalysis (CFSR; Saha et al. 2010). Forecast predictor
values for TCs from the 2017 and 2018 seasons are used
for independent testing, as described in more detail at
the end of this subsection. Atlantic and eastern and
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TABLE 1. List of chosen predictor variables used in the EP model.

Azimuthally averaged 850 hPa tangential wind (over a 0-600 km radius from the center of the TC) from the NCEP analysis

Dry-air predictor based on the difference in surface moisture flux between air with the observed (GFS) RH value, and with

DELV Change in TC intensity over the prior 12h

CD26 Climatological depth of 26°C isotherm beneath the TC from 2005-10 NCODA analysis

U20C 200 hPa zonal wind (over a 0-500 km radius from the center of the TC)

D200 200 hPa divergence (over a 0-1000 km radius from the center of the TC)

TWAC

SHDC 850-200 hPa shear magnitude, computed with the TC vortex removed and averaged over a 0-500 km radius relative to
850 hPa vortex center

VMPI Maximum potential intensity at the TC location, as determined from Kerry Emanuel’s MPI equation

CFLX
RH of air mixed from 500 hPa to the surface, at the TC location

CONS Constant value of 10

central Pacific TCs during the 2017-18 seasons are
representative of a wide range of TC origination loca-
tions, tracks, and intensity evolutions, as objectively
assessed using the performance of no-skill climatology
and persistence-based track and intensity models for
each TC relative to their respective long-term means
(Cangialosi 2018, 2019), such that the EP model per-
formance reported on herein is not believed to be
specific to only the 2017-18 testing data. However,
verifying the model’s performance for a lengthier in-
dependent period for which the data do not yet exist is
needed to evaluate this statement.

The SHIPS dataset contains numerous predictors, but
when more predictors are kept, the solution space that
must be explored grows larger. This potentially com-
promises the skill of the algorithms that result from the
training and validation process, as it may be hard to
search the solution space completely due to a lack of
training information (Bellman 1961). While there is no
preferred method to determine when the solution space
is of optimal size, it is generally desirable to reduce the
number of predictors. Here, this reduction of variables is
done through a combination of linear correlation anal-
ysis, where we require that no two variables be corre-
lated above 0.8, and domain expertise, which we use to
remove variables with a presumed lesser influence on
TC intensity. This process initially results in a selection
of 34 variables (not shown). However, based on initial
performance evaluations of the model, and given that
only ~6000 cases are available for training, we con-
cluded that the dimensionality of the problem was still
too large. Therefore, the 34 predictor variables are
separated into groupings of similar properties (e.g.,
thermodynamics, moisture, shear) and domain expertise
is used to subjectively select a single representative
variable from each group. The resulting selection of
eight variables (Table 1) yields improved performance
over that derived from the larger dataset (not shown).
We note, however, that we did not attempt selecting
different combinations of eight predictors from the
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variable groupings [indeed, there are O(10°) potential
combinations, such that assuming equal likelihood to
any given combination being the most skillful, it is
simply untenable to search through this entire combi-
nation space], so we cannot assert that this is the most
optimal model obtainable using this approach.

Of the retained variables, all but one are converted
into standardized anomalies (Grumm and Hart 2001;
here computed relative to the predictor value means
over the full 2000-16 dataset) to aid direct comparisons
between variables with dissimilar units. However, one
predictor, the 0-600 km-averaged symmetric tangen-
tial wind at 850hPa from the National Centers for
Environmental Prediction (NCEP) analysis (TWAC) is
notably non-Gaussian (not shown) and is instead con-
verted to a linear scaling from —1 to 1, with the extremes
representing the maximum and minimum values of
TWAC in the training dataset (Roebber 2010, 2013,
2015a,b). Last, a constant value of 10 is provided as a
ninth potential predictor, the purpose of which is ex-
plained in section 2b when discussing the algorithm
structure.

Once the desired variables are chosen, the dataset is
processed to remove cases that fall into either of two
categories: the case features missing predictor informa-
tion, or the case initializes or verifies over land. There
are several reasons why it is beneficial to remove the
cases with the missing predictor information. First, cli-
matological values in terms of standard anomalies are
zero, thus using such values to replace missing data may
significantly alter a forecast. Because the algorithms
generally feature nonlinear relationships between vari-
ables, even small changes in inputs can lead to large
changes in the forecast. Last, the model cannot be run
operationally with missing predictor information, and
thus removing these cases ensures consistency with op-
erational practice (and the formal verification described
in section 2e). Meanwhile, cases where the TC forecast
initializes or verifies over land are removed, since an
inland decay model is used in operational practice to
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postprocess the intensity forecast over land and account
for inland wind decay (Kaplan and DeMaria 1995, 2001;
DeMaria et al. 2006).

With the culling of problematic cases from the dataset
complete, the remaining TC cases are assigned to one of
three datasets: training (two-thirds of the data), valida-
tion (one-sixth), or independent testing (one-sixth).
However, the dynamical and empirical relationships
between predictors may vary with intensity. Therefore,
if the training dataset is biased toward TCs of a partic-
ular intensity relative to climatology, the potential exists
for the algorithms to be calibrated toward only a subset
of all TC intensities. Consequently, to mitigate against
such an intensity bias, each TC in the dataset is sepa-
rated into three intensity classes based on its lifetime
maximum-achieved intensity: tropical depressions and
tropical storms, weak hurricanes (lifetime maximum-
achieved sustained 10-m winds of 33-49ms ' or 64-95kt;
1kt ~ 0.5144ms™ '), or major hurricanes (lifetime
maximum-achieved sustained 10-m winds of >49ms ™"
or 95kt). TCs and all their respective forecasts are then
pulled from each of these three intensity classes to form
the training, validation, and independent testing datasets,
with the relative proportions of cases from each intensity
class being identical between datasets. Lifetime maxi-
mum intensity is used instead of the instantaneous best
track intensity to populate the three intensity classes
primarily for ease, with the result being that all forecasts
for a given TC are contained within a single class.
However, successive forecasts for an individual TC are
serially correlated, thus reducing the effective sample
sizes for each of the training, validation, and testing
datasets through this methodology. Future research is
planned to evaluate the potential benefit from using the
instantaneous best track intensity to populate the three
intensity classes.

Last, while the training dataset contains analysis
values of the predictors at all future lead times, in reality
the future values of these variables are unknown and
must be forecast. This produces uncertainty and inac-
curacy in the real-time input variables as compared to
the analysis variables used in training, and consequently
real-time performance can be expected to be to be worse
than training performance. Therefore, to prevent over-
fitting of the idealized relationships between the analysis
variables and to simulate uncertainty in the forecast
values during the training process, noise is added to the
analysis values. The magnitude of this noise is specified
by comparing the differences between analysis values
and archived real-time 12-h forecast values for homog-
enous training and validation cases across the 2010-16
seasons (based on archived data availability). Since
the 12-h forecast error distributions are approximately
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normal about means of zero (not shown), the applied
perturbations are randomly drawn from a Gaussian
distribution centered on zero that has a standard devia-
tion equal to an empirically derived value of one-quarter
of the observed standard deviation in the differences
between the analysis and forecast values across homo-
geneous cases. This noise is dynamic, meaning that each
time the algorithms forecast for a new case during the
training process, the added noise is changed. However,
noise is not added to the validation forecasts to ensure
that the algorithms themselves do not overtfit to the noise.
A comparison of model performance across independent
testing cases when utilizing perturbed analysis variables
as model inputs versus real-time, 12-h GFS-predicted
forecast variables showed similar performance between
the two sets of forecasts, suggesting that adding noise is
having the desired effect (not shown).

b. Evolutionary programming

From this curated dataset, a large ensemble of algo-
rithms is generated via a perfect-prognostic approach
using the evolutionary principles of cloning, mutation,
and selective pressure to determine the empirical rela-
tionships between the selected predictor variables and
TC intensity. These algorithms are trained to forecast a
12-h adjustment to a persistence forecast using predictor
values valid at the end of the specified 12-h interval. The
exception to this is the DELV predictor value, which is
specified as the change in intensity over the 12 h prior to
the forecast interval.

As in previous studies in which EP is applied to
weather forecasts (e.g., Roebber 2010, 2013, 2015a,b),
the basic genetic architecture of a single algorithm is a
summation of if-then equations, which can be written
most generally in the following form:

5
F=e+)IF (V,R,V,) THEN
i=1

(€ Vi) On(CVi)O5(Ci3Vis) 1)

where V;is any of the predictor variables in Table 1, R;;
is a relational operator (= or >), C; are real-valued
constants ranging from [—1, 1], and Oj; are either of the
arithmetic operators + or X; ¢ is the bias-correction
factor, which is zero through the training process and set
during postprocessing (section 2c¢). While conditional
statements and the potential for both linear and non-
linear predictor combinations allow for flexible algo-
rithms, the imposed structure maintains interpretability
since the logic can be connected to dynamical processes
familiar to forecasters (section 2d). While earlier studies
used a summation of 10 if-then statements (Roebber
2010, 2013, 2015a,b), the use of 5 statements here is an
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FIG. 2. Schematic overview of the EP training process. (top left)
An initial population of 10 000 algorithms is randomly generated,
(top) which then forecast on training data. (top right) Their per-
formance is evaluated, at which time the top 2000 are left un-
changed, the bottom 2000 are replaced by cloned and mutated
versions of the top 2000, and (right) the middle 6000 undergo an
information exchange and mutation. (bottom right) The resulting
population of 10000 algorithms then forecasts on the validation
dataset, and (bottom) the 100 best-performing algorithms are re-
tained to generate the initial best-performing algorithms list. The
process then repeats for 300 iterations and five randomly initialized
populations, with the best-performing algorithms list updated
rather than entirely replaced at subsequent stages. Please refer to
section 2b for more details.

empirical choice to balance computational expense and
model skill since many algorithms in the previous stud-
ies featured multiple conditional statements that never
executed.

Previously, it was mentioned that one of the input
variables could be a constant value of 10. This value
allows the EP process to generate lines within the al-
gorithm that always or never execute, as is deemed
necessary by the evolutionary process, since no variable
in the training dataset exceeds and no variable in theory
should exceed *=10 standard deviations from its clima-
tological mean. Additionally, this value of 10 provides
an additive or multiplicative scaling factor, if deemed
necessary by the training process, to use when calculat-
ing the adjustment based on one or more predictors.

The EP training process for both the North Atlantic
and eastern and central North Pacific basins starts with a
randomly initialized population of 10000 algorithms
(top left of Fig. 2). While the population size is some-
what arbitrary and could be increased, prior experi-
mentation has shown that the improved skill from larger
populations is minimal and does not compensate ade-
quately for the increase in computational time (Roebber
2016). The algorithms then perform an initial forecast on
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the training dataset to determine their fitness/skill (top
middle of Fig. 2), and the worst 2000 performing al-
gorithms [as determined by root-mean-square error
(RMSE), which is chosen as the performance criterion
to better address large-error cases in the initial algo-
rithm development process] are eliminated (top right
of Fig. 2).

The next generation of algorithms is then produced in
what is referred to as the “evolutionary step” (right side
of Fig. 2). The process starts by cloning the 2000 best-
performing algorithms (also determined by RMSE),
which returns the population to its full capacity of 10 000
algorithms. The 2000 clones each then undergo a mu-
tation, wherein one of its five lines is randomly selected,
completely erased, and refilled with randomly selected
coefficient, predictor, arithmetic, and relational opera-
tors (all subject to the rules described above). The
6000 middle-performing algorithms undergo a process
of swapping genetic information in which each algorithm
swaps the entirety of one of its five lines with another
randomly selected algorithm. After swapping genetic in-
formation, these middle-performing algorithms also un-
dergo a mutation in the same manner as the cloned
algorithms. The best 2000 performing algorithms are left
untouched in order to provide a source of good genetic
information for future generations. At this point, the
evolutionary step is complete, and the population of
algorithms is in its second generation (bottom right
of Fig. 2).

This new generation of algorithms then forecasts for
the validation dataset. The 100 best-performing algo-
rithms from this generation are used for the initial listing
of the “best algorithms list” (bottom of Fig. 2). The
process described above then repeats for 300 genera-
tions, after each of which the best algorithm list is up-
dated to include any new algorithms with RMSE below
that of the worst performers on the top-100 list (with
those poorer performers being removed). This method
ensures that the best-performing algorithms are kept, no
matter the generation in which they occur, rather than
simply selecting the best-performing algorithms from
the final generation.

Although the performance of the algorithms improves
rapidly in the first few generations, the rate of improve-
ment eventually plateaus with only small improvements
found in the worst-performing algorithms toward the end
of 300 generations (not shown). Therefore, after 300
generations, an altogether new population of 10000 al-
gorithms is randomly initialized, from which the same
training and validation process described above is fol-
lowed. The algorithms from this second population are
considered for inclusion on the same ““best algorithms list”’
from the previous population. Altogether, five different
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populations of 10000 algorithms are run for 300 itera-
tions each to produce a final set of 100 algorithms on the
“best algorithms list.”” Note that it is theoretically pos-
sible for two or more identical algorithms to appear on
the best algorithms list; however, in practice, this is ex-
tremely unlikely (and did not occur in this study) given
the randomness inherent to the initialization and mu-
tation evolutionary stages and the size of the parameter
space considered.

¢. Bayesian model combination

While each individual algorithm on the final 100 best-
algorithms list constitutes a TC intensity model, statis-
tical postprocessing techniques can be used to achieve
improved performance and reliability relative to any
individual algorithm. Here, performance on the training
and validation cases is first used to bias correct the 100
best-performing algorithms, which enables setting of the
value of ¢ in (1) for each algorithm. Since the training
and validation cases are not ordered chronologically
(recall that cases were sorted based on maximum TC
intensity), we use a simple bias correction (average error
of the training and validation cases) rather than weight
decay, as used in other EP studies (e.g., Roebber 2018).
The correction calculated for those cases is then applied
uniformly to all test cases.

Next, Bayesian model combination (BMC) is used to
assign weights to an ensemble of multiple algorithms,
such that their weighted combination results in a fore-
cast that is superior in skill to that from any individual
algorithm (Monteith et al. 2011; Roebber 2018 and ref-
erences therein). However, a limitation of BMC is that
it is computationally expensive (which scales with n",
where n is the number of possible weights and x is
the number of algorithms considered), and therefore
members must be subselected from the overall pop-
ulation (e.g., Hoeting et al. 1999), even as the “best al-
gorithms list” is already a subset of the wider population
of all algorithms. In this study, 10 algorithms from the
bias-corrected 100-best-performing algorithm list, as
chosen to minimize mean absolute error (MAE) and
maximize mean absolute difference (MAD) across
the set of bias-corrected forecasts for training and
validation cases, are selected for processing by BMC.
This gives a subset of algorithms that are both skillful
and diverse.

This subselection is performed as follows. First, the
100 best algorithms are ranked according to MAE.
Then, starting from the best performer by MAE and
moving down the 100-best-performing-algorithm list
toward the worst performer in sequential order, the
MAD of the algorithm under consideration is compared
against that of all other algorithms that have been added
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to what will be the final list of 10 algorithms. If that
algorithm has a MAD with any other algorithm on
that list that is below a certain specified threshold (i.e.,
it is in some sense too similar to another algorithm;
here, this difference is arbitrarily set to 0.9kt), it is
rejected. This process is followed until 10 algorithms
are obtained.

After the 10 algorithms have been identified, the
BMC process loops through all possible combinations of
the 10 members using four raw weights (0, 1, 2, 3), with
the sum of the weights normalized to equal one, un-
der the requirement that at least one algorithm receives
a nonzero raw weight. Thus, the minimum nonzero
normalized weight that can be obtainedis 1/(1 +3 + 3 +
3+3+3+3+3+ 3+ 3)or1/28. In that instance, the
other nine algorithms would have normalized weights of
3/28. Similarly, the maximum weight that is not unity
(which occurs when nine algorithms have raw weights of
0 and the tenth is given any nonzero weight) is 3/4. A
wide range of algorithm weights are thus obtainable
through this procedure. A discussion of the Bayesian
attributes of the weight-determination process is
given by Monteith et al. (2011). Their procedure is
followed in this study, but under the condition that a
model combination is estimated to be correct provided
the forecast provided is better than or equal to a per-
sistence forecast.

The final weighting used for the model is the one that
minimizes MAE across the validation dataset, with
MAE chosen over RMSE to mirror National Hurricane
Center (NHC) operational performance evaluation
metrics for TC intensity forecasts (Cangialosi 2019).
Although we acknowledge the discrepancy that this
causes with respect to the deterministic EP model
training and validation process, wherein RMSE is
used as the performance criterion, the deterministic
forecast skill of a version of the EP model in which
RMSE is used as the BMC performance criterion is
less than that of the MAE-based version (not shown).
As the goal at this stage is to produce a deterministic
model that minimizes the operational forecast skill
metric of MAE over large forecast samples, many of
which are dominated by small-error cases (especially
atshortlead times), we believe that using MAE as the
performance criterion is warranted. The selection of
only 10 algorithms is deemed sufficient as, in practice,
multiple algorithms typically receive a weighting of
zero, indicating that the BMC process identifies that
more algorithms are present than are necessary. In
fact, this is the case for both the North Atlantic and
eastern and central North Pacific models herein: only
seven algorithms are retained with nonzero weights
for the Atlantic, whereas only two algorithms are
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retained with nonzero weights for the eastern and
central North Pacific basins (see the appendix).
With the weightings of each algorithm obtained, the
final deterministic forecast is comprised of a simple
weighted sum of the retained bias-corrected algo-
rithms’ individual forecasts. A discussion of the
Bayesian attributes of the BMC process is given by
Monteith et al. (2011).

BMC can also be used to generate a PDF from which
probabilistic forecasts of RI and RW can be obtained.
To do so, Gaussian distributions with mean equal to the
forecast intensity change from each unweighted algo-
rithm and standard deviations determined from the PDF
of observed 0-12h intensity change across the training
and validation cases are generated and normalized to
obtain PDFs for each algorithm’s forecast. These indi-
vidual PDFs are then weighted by the BMC-derived
weightings and summed to give the total normalized
forecast intensity-change PDF. The fraction of the PDF
that exceeds any of the standard RI/RW intensity-
change thresholds provides the uncalibrated forecast
RI/RW probability (section 2e). This formulation leads
to the probabilistic model’s performance characteristics
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being directly reliant on those of the deterministic
model, which is likely a useful yet suboptimal approach
for predicting intensity changes on the tails (RI and
RW) of the intensity-change distribution depicted in
Fig. 3. Alternative approaches that use a probabi-
listic performance criterion such as Brier skill score
(BSS; Brier 1950; Murphy 1973) or the continuous
ranked probability score (an extension of the Brier
score to multiple thresholds of a continuous predictand;
Hersbach 2000) are likely to produce superior proba-
bilistic skill (e.g., Raftery et al. 2005), and future re-
search is planned to explore their viability for R/RW
forecasts.

d. Algorithm interpretability

Predictive models generated using evolutionary
programming have the desirable characteristic of
interpretability: unlike other machine-learning tech-
niques such as neural networks, it is straightforward to
diagnose what predictors form the model and what
weights are given to each and thus to quantify the rela-
tive contributions of each predictor and algorithm. This
subsection demonstrates these attributes, first through
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an analysis of the final model for each basin followed by
how the relative contributions from each predictor are
diagnosed.

In the Atlantic basin, seven algorithms received a
nonzero weighting from the BMC process (see the
appendix). Of the seven algorithms, six of them include
two if-then statements that are always true, such that the
equation that follows will always be calculated.
Meanwhile, algorithm 53, which has the largest weight-
ing of any of the algorithms, has three if-then statements
(algorithm lines 1, 4, and 5) that are always true and a
fourth (algorithm line 2) that, so long as D200 is not
more than 10 standard deviations above climatology, is
also always true. Otherwise, the outcomes of the re-
maining if-then statements in the Atlantic model are
conditioned on the values of the respective predictors.
No if-then statements in this model are always false. In
the Pacific basin, only two algorithms received a nonzero
weighting from the BMC process (see the appendix). As
for the Atlantic basin, two if-then statements in both
algorithms are always true, and there are no if-then
statements that are always false.

The physical interpretability of each algorithm is best
illustrated through an example. Consider the scenario of
an intensifying east Pacific TC and focus on the first line
in algorithm 69 of the Pacific model (see the appendix).
The if-then statement contains DELV and U20C. For an
intensifying TC, DELV is large and positive, whereas
U20C is likely slightly negative (e.g., easterly shear) to
near zero. Thus, this line is likely to execute. The intensity
adjustment itself depends on the product of maximum po-
tential intensity (VMPI, which is typically positive, or above
the basinwide climatology, for intensifying TCs) and the
negative of U20C, which is positive. This positive value
is then added to the product of a negative coefficient
with the 850-200-hPa vertical wind shear magnitude
(SHDC), which is typically negative (i.e., below the ba-
sinwide climatology) for an intensifying TC. Consequently,
the net contribution from this line to the intensity forecast
from this algorithm is positive, indicating a forecast of
continued intensification (albeit potentially offset by the
remaining lines of this algorithm and contributions from
the other algorithm). The magnitude of this positive fore-
cast intensity increment depends on the extent to which
DELV and VMPI are above climatology and U20C and
SHDC are below climatology. This increment is subse-
quently added to those from the other lines within this
algorithm, the result of which is then bias corrected and
weighted using the BMC-determined weight applicable to
that algorithm.

When considering individual forecasts from the
complete model, and not just a single line within a single
algorithm as described above, it is useful to know the
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extent to which certain predictors contributed to the
overall intensity-change forecast. Here, the relative
contribution from each predictor to the overall forecast
is obtained by rerunning the forecast with the variable
of interest set to an input value of zero (i.e., a climato-
logical value). The direction and magnitude of the
change in the intensity forecast as compared to the
original forecast, each as bias-corrected and BMC-
weighted as described above, provides a measure of
the impact that predictor has on the forecast. For ex-
ample, if a predictor is set to zero and the resulting
intensity forecast decreases by 5kt, that predictor is
said to have had a +5kt contribution to the original
forecast. Conversely, if zeroing out a predictor results
in an increased intensity forecast, that predictor is said
to have a negative contribution to the original fore-
cast. Since the algorithms forecast for a 12-h intensity
change, these relative contributions are calculated
only over a 12-h interval. An estimation of the relative
contribution at for example, 36 h (as in the operational
model application; section 2e), still presumes an ac-
curate 24-h forecast with no zeroing of the variable at
the earlier lead times. Thus, the relative contribution
of that variable at later lead times is estimated by
summing up its individual relative contributions over
each 12-h interval.

e. Operational implementation and verification

While the training process produces algorithms that
forecast a 12-h intensity change, multiple successive
forecasts are required to obtain intensity forecasts beyond
12h in duration (e.g., every 12 h out to 120 h, currently the
longest lead time in NHC operational forecasts). Although
the same model is used in each successive 12-h intensity-
change forecast, the input values change. Each 12-h ad-
justment is calculated using predictor values derived from
the most-recent GFS forecast fields at the end of each
specified 12-h interval, when the intensity forecast verifies.
The exception to this again is the DELV predictor; the
DELV predictor is an observed value from the NHC
working best track analysis for the first 0-12h intensity-
change forecast, whereas the DELYV predictor is calculated
from EP model outputs at subsequent lead times (e.g., for
12-24h, DELV is defined as the EP model’s predicted
intensity change from 0 to 12 h).

To obtain the probabilistic forecasts at each lead time,
a new PDF is generated around each of the successive
intensity-change forecasts and the probability of RI/RW as
compared to the O-h intensity is calculated at the standard
thresholds of +20kt (12h)~!, =25kt (24h)™!, =30kt
(24h) !, +35kt (24h) !, =40kt (24h) !, +45kt (36h) ",
+55kt (48h) !, and =65kt (72h) ! (Kaplan and DeMaria
2003; Kaplan et al. 2015; Wood and Ritchie 2015).
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B) Uncalibrated RW Model
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FIG. 4. Reliability of the EP model for the North Atlantic (blue) and east and central North Pacific basins (red) at
the 30kt (24 h) ! threshold for the (a) uncalibrated RI model, (b) uncalibrated RW model, (c) RI model with a
—5 kt calibration applied, and (d) RW model with a —5kt calibration applied.

The probabilities obtained this way form the uncali-
brated model; however, the EP models’ intensity-change
PDFs are insufficiently wide (i.e., underdispersive;
Fig. 3), with aggregate forecast RI probabilities that
are lower than the verifying observations. Therefore,
RI probabilities are subjectively calibrated using
probability matching, which is akin to the quantile
mapping approach described by Alessandrini et al.
(2018). This is best illustrated by an example. Consider
the 30kt (24h) ' RI threshold for which the EP model
underpredicts RI probabilities in both basins (Fig. 4a).
Probability matching involves subjectively determining
what model-predicted 24-h intensity-change threshold
results in a perfectly reliable (i.e., identical forecast and
observed probabilities) forecast at the 30kt (24h) ' RI
threshold. In this instance, a model-predicted 24-h in-
tensity change of 25 kt results in much improved forecast
reliability relative to the 30kt (24h)~' observed RI
threshold (Fig. 4c). This process is then repeated for all
RI thresholds. For the RI models in both basins, reli-
ability at each threshold improves when the EP model
probabilities are calibrated using a model threshold 5 kt
lower than the observed threshold (as in the example
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described above). The same calibration, however, was
not applied to the RW model as the model is generally
reliable when uncalibrated (Fig. 4b) and the same —5kt
calibration causes forecast probabilities to be higher
than observed (Fig. 4d).

Performance of the deterministic EP models for the
Atlantic and eastern and central North Pacific basins is
evaluated across forecast fields from the independent
2017-18 seasons. Following standard NHC practice
(e.g., Cangialosi 2019), performance is evaluated in
terms of MAE and skill normalized relative to that of
the no-skill Statistical Hurricane Intensity Forecast
model accounting for overland decay [Decay SHIFOR
Model Intensity Forecast (DSHF); here referred to as
blended-intensity Operational CLIPER 5 (CLP5) and
120-h DSHF (OCDS5) since DSHF forms the intensity
component of the combined-track-intensity OCD5 fore-
cast, which is based on TC time, position, movement, and
intensity and its 12-h change; Knaff et al. 2003]. To place
the results into an appropriate context, model perfor-
mance is compared to that of several of the most-skillful
operational intensity models: the 6-h interpolated version
of the Hurricane Weather Research and Forecasting
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TABLE 2. Climatologies of RI and RW occurrences, and their rates relative to their respective samples of all TCs, across the 2000-16
training cases used to calculate the BSS.

ATL

PAC

No. of RI/RW Total No. of Climatological RI/RW No. of RI/RW Total No. of Climatological RI/RW

RI/RW threshold (kt h™1) cases cases rates cases cases rates
20/12 70/25 3029 2.31%/0.83% 105/74 3318 3.16%/2.23%
25/24 177157 2624 6.74%/2.17% 291/240 2928 9.93%/8.20%
30/24 100/31 2624 3.81%/1.18% 187/146 2928 6.38%/4.99%
35/24 66/16 2624 2.51%/0.61% 128/84 2928 4.37%12.87%
40/24 44/7 2624 1.67%1/0.27% 94/52 2928 3.21%/1.78%
45/36 78/14 2305 3.38%/0.61% 146/91 2565 5.69%/3.60%
55/48 73/9 2028 3.59%/0.44% 134/74 2241 5.97%/3.30%
65/72 86/3 1583 5.43%1/0.19% 98/68 1624 6.03%/4.19%

Model (HWFT; Tallapragada et al. 2014), LGEM, SHIPS,
and official (OFCL) and 6-h interpolated (OFCI) NHC
official forecasts. Note that the samples for all models
are homogenized (i.e., only synoptic times at which all
models provided a forecast are retained) and the evalu-
ation considers only overwater cases.

The performance of the probabilistic EP RI and
RW models is determined using BSS, which is cal-
culated as a percent improvement over a climato-
logical forecast, defined here as the climatological
probabilities of R and RW at each threshold over the
training dataset. These climatological probabilities
are given in Table 2. Likewise, performance of the
probabilistic models is compared to the SHIPS-RII,
logistic model, Bayesian model, and a consensus of
the three models’ forecasts using a homogeneous
forecast set featuring only overwater forecasts across
the 2017-18 season.

3. Results
a. Deterministic model performance

Across the 2017-18 seasons, the EP model skill is
5%-19% higher than that of OCDS5 through 96 h in the
Atlantic basin (Fig. 5a). However, the model fails to
exhibit the characteristic plateau in intensity errors be-
yond 96h (Fig. 5¢), and consequently, EP model skill
becomes 11% worse than OCDS5 at 120h. Although
model performance lags the best-performing HWFI
model and the NHC official forecast, performance
through 96 h is statistically indistinguishable from that
of both SHIPS and LGEM (Fig. 5c). Although EP
model skill closely mirrors that of SHIPS, with which it
shares some predictors and conceptual underpinnings,
only 25%-50% of the variance (most at shorter lead
times, least at longer lead times) in the EP model
forecasts can be explained by the corresponding SHIPS
model forecasts (not shown), suggesting that the EP
model provides independent predictions to those from
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SHIPS. Meanwhile, the EP model’s bias over the 2017-18
Atlantic seasons is comparable to that of the other models
considered, with a small negative bias at all forecast lead
times (not shown).

In the eastern and central North Pacific basin, the
EP model is less skillful than the no-skill OCDS5
model prior to 72h (Figs. 5b,d). At later forecast
times, the EP model’s MAE is statistically indistin-
guishable from those of OCDS5 and LGEM, albeit
over small forecast samples (Fig. 5d). Further, al-
though all models considered are negatively biased at
all forecast lead times, the EP model is slightly more
negatively biased than other models (not shown). The
largest negative bias of —10kt at the 48-h lead time
coincides with the largest MAE and, in general, the
bias and MAE of the model mirror each other at all
lead times. Insight into model performance for fore-
casts with particularly large MAE is provided in
section 3c.

b. Probabilistic model performance

For RI, the skill (as measured by BSS) of the uncali-
brated EP model in the Atlantic is approximately equal
to that of a climatological forecast at all except the
25-30kt (24h)~! thresholds, at which it is marginally
more skillful than climatology (Fig. 6, top). Calibration
adds 10%-50% skill to the uncalibrated model skill
at all thresholds except the 20kt (12h) ' threshold,
at which a significant skill reduction (for unknown
reasons) is noted. Atlantic calibrated RI model skill
is competitive (here characterized by overlapping
5th-95th percentile forecast ranges determined us-
ing bootstrapping) with that of most operational RI
models at the 25-40kt (24h)~! thresholds. In the
eastern and central North Pacific, uncalibrated EP
model skill is approximately equal to that of a cli-
matological forecast at all thresholds (Fig. 6, bot-
tom). Calibration again adds 10%-50% skill to the
uncalibrated model at all thresholds except the 20 kt
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confidence.

(12h)~! threshold, at which a significant skill reduc-
tion is again noted. Pacific calibrated RI model skill
is competitive (characterized in the same fashion as
for the Atlantic model) only with the operational
Bayesian RI model at all thresholds.

While the calibrated EP RI model is generally more
skillful than a climatological forecast, the same is not
true for the RW model. In the North Atlantic basin,
model performance is slightly worse than that of a cli-
matological forecast at all thresholds (Fig. 7, top). In the
eastern and central North Pacific basins, the EP RW
model’s skill is worse than that of a climatological
forecast at all thresholds (Fig. 7, bottom).
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While most RI/RW models are specifically developed
to forecast a percent chance of RI/RW, the EP RI/RW
models are developed from the deterministic model and
seek to transform the forecast intensity change into
a percent chance for RI/RW. Although forming an
RI/RW model around this transformation from intensity
change to probability of RI/RW is logical, it may not be
the best way to form a probabilistic model. With many
more non-RI/RW cases than RI/RW cases, we speculate
the relationship between forecast intensity change and
the probability of RI/RW is nonlinear and thus cannot
be accounted for in the current model formulation.
Consequently, independent RI/RW probabilistic models,
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replacement.

such as the SHIPS-RII, logistic, and Bayesian models
described above, can be expected to be more skillful than
the deterministic-based probability forecasts described
herein. Thus, the competitive performance of the EP
RI models relative to these operational RI models,
particularly in the Atlantic basin at the 25-40kt (24h) "
RI thresholds, suggests that applying the EP method-
ology specifically to RI has great promise to provide
forecasts with skill superior to existing operational RI
guidance.

c. Case studies

As is true for TC intensity forecasts in general
(Rappaport et al. 2012; Kaplan et al. 2010), RI/RW
cases provide a major contribution to model errors
in both the North Atlantic and eastern and central
North Pacific basins. For example, RI/RW cases [here
defined by a change in intensity of 30kt (24h)™']
comprise just 8.2% of cases across the North Atlantic
basin for the 2017-18 seasons but contribute 16.5% to
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the total sum of forecast intensity errors for the EP
model over the same period. Likewise, in the eastern
and central North Pacific basins, RI/RW cases com-
prise 14.1% of forecasts but are responsible for 23.9%
of the total sum of forecast intensity errors for the
EP model over the same period. Below, two repre-
sentative case studies are discussed to provide fur-
ther insight into deterministic model performance
for these cases.

1) MARIA—0000 UTC 18 SEPTEMBER 2017

Maria began as a tropical depression around 1200 UTC
16 September 2017 over the tropical Atlantic, but it
rapidly intensified as it moved toward the Lesser Antilles,
reaching hurricane intensity by 1800 UTC 17 September
2017. Aided by warm waters and weak vertical wind
shear, Maria continued to rapidly intensify, reach-
ing an intensity of 145kt just prior to landfall on
Dominica at 0115 UTC 19 September 2017 (Pasch
et al. 2019).
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While the deterministic EP model accurately forecast
that Maria would intensify (Fig. 8, top), it failed to
predict the extreme intensification rate, resulting in one
of the largest 24-h forecast errors by the EP model over
the 2017-18 seasons. For example, the forecast initial-
ized 0000 UTC 18 September 2017 verified at the con-
clusion of the RI event on 0000 UTC 19 September 2017,
just before Maria struck Dominica. While the EP model
forecast Maria to intensify from 75 to 94 kt, Maria in-
tensified to 145 kt. This 70kt (24 h) ! intensification rate
more than doubled the 30kt (24 h) ! intensification rate
seen over the previous 24 h.

The predictors for the 12 and 24 h lead times indicate a
favorable environment for RI, with input values for
CD26, VMPI, and SHDC suggesting climatologi-
cally warm waters to depth and weak vertical wind
shear (Table 3). Additionally, U20C and D200 show
anomalous easterly 200-hPa zonal wind and above-
normal upper-level divergence, the latter of which
has been shown to aid TC intensification (DeMaria
and Kaplan 1999). Despite their large input values,
however, CD26 had little to no impact on the intensity-
change forecast, while U20C and D200 had minor
contributions to the forecast. This is largely because
CD26 is often given little weight and features spar-
ingly in determining which lines get executed, with
the same being generally true for U20C and D200
as well (see the appendix). VMPI, while having a
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lesser contribution, contributed positively to the
forecast. Meanwhile, SHDC was one of two primary
positive forecast contributors to the forecast, con-
tributing 5.6kt to the total 19-kt (24h)~! forecast
over the two lead times. The other predictor with a
positive forecast contribution is the DELV predic-
tor. The large contribution from DELV is primarily
a function of its frequent appearance in the model
algorithms, while the contribution from SHDC is a
mixture of its weighting in the model algorithms
and in determining which lines get executed (see
the appendix). Consequently, the model responds
to Maria’s ongoing intensification in a low-shear
environment.

The observed intensity change of 70kt (24h) ™! for
this example is 5.6 standard deviations above the
average 24-h intensity-change forecast by the EP
model and similarly lies within the upper 1% of all
24-h observed intensity changes within the Atlantic
basin. Although the forecast intensity change of
+19kt (24h) ! is well below what occurred, it is in
the 98th percentile of all 24-h intensity-change fore-
casts by the deterministic EP model (not shown). The
forecast then fits within what the model considers RI,
following how RI was initially defined (from the 95th
percentile of the intensity-change distributions In
other words, the forecast under consideration is un-
representative of the larger set of forecasts to which
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Retrospective Forecasts for Maria (AL152017)
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FIG. 8. Retrospective intensity forecasts (colored lines; blues and purples denote earlier-
issued forecasts, whereas yellows and greens denote later-issued forecasts) and observed in-

tensity (black line) for (top) TC Maria (AL152017) and (bottom) TC Otis (EP152017). The

1965

forecasts discussed in section 3c are shown in dashed red lines.

the model is trained to forecast. The deterministic EP
model correctly indicates that this forecast scenario is
atypical—albeit within the context of its training data
rather than observations. Similarly, the calibrated EP
RI model forecast a 41% chance of RI at the 25kt
(24h) ! threshold, and a 23% chance of RI at the 30kt
(24h)"! threshold. While both percentages are low,
they both are in the 98th percentile of all probabilistic
forecasts by the EP model for the given thresholds.
Thus, while the probabilistic EP model also discerns
the correct forecast scenario, forecasting the exact
intensification magnitude is difficult due to the in-
tensity change being on the far tail of the model’s
training data.

2) OT1Is—0000 UTC 18 SEPTEMBER 2017

Although Otis (Blake 2018) was hindered by strong
wind shear and associated dry-air intrusion for much
of its lifespan, the TC turned northward and moved
into a weaker vertical wind shear environment on
17 September 2017. This helped mitigate the intru-
sion of dry air into its center and, consequently, Otis
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underwent RI, intensifying by 60kt in 24 h to reach a
peak intensity of 100kt. As Otis continued north-
ward, however, it again encountered stronger vertical
wind shear, reestablishing the intrusion of dry air into
the storm center. This brought about RW, with Otis’
intensity decreasing 60 kt over the subsequent 24 h to
return to an intensity of 40 kt.

TABLE 3. List of predictor values, in standard anomaly form, and
their relative contribution to the 12- and 24-h intensity forecasts of
TC Maria for the forecast initialized at 0000 UTC 18 Sep 2017.

12-h predictor 24-h predictor
variable value variable value
Predictor (std dev)/contribution (kt) (std dev)/contribution (kt)

DELV 1.3/3.5 0.8/2.1
CD26 1.2/0.0 1.3/0.0
u20C -1.0/0.1 —1.0/0.0
D200 1.4/0.4 0.9/0.1
TWAC 0.0/0.0 —0.1/0.0
SHDC -1.5/2.8 -1.5/2.8
VMPI 0.7/1.4 0.8/1.3
CFLX 0.2/-0.4 0.1/-0.3
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TABLE 4. List of predictor values, in standard anomaly form,
and their relative contribution to the 12- and 24-h intensity
forecasts of TC Otis for the forecast initialized at 0000 UTC 18
Sep 2017.

12-h predictor 24-h predictor
variable value variable value
Predictor (std dev)/contribution (kt) (std dev)/contribution (kt)

DELV 3.6/15.4 0.8/6.8
CD26 —0.4/-0.1 —0.2/0.0
U20C 1.0/0.7 0.6/0.6
D200 0.4/0.0 0.7/0.0
TWAC 0.3/1.1 0.1/0.2
SHDC —0.8/2.2 —0.8/2.5
VMPI —0.6/-0.9 —0.9/-1.6
CFLX 3.2/-3.6 2.9/-32

The EP model generally forecast Otis to strengthen
slightly through its lifespan (Fig. 8, bottom), but it failed
to forecast RI in any forecast verifying on 17 September
2017. Of notable concern is the forecast initializing at the
transition from RI to RW on 0000 UTC 18 September
2017 (red dotted line in Fig. 8, bottom), as this fore-
cast is associated with the largest 24-h forecast error
by both the North Atlantic and eastern and central
North Pacific EP models over the 2017-18 seasons.
Whereas Otis weakened by 60kt over the follow-
ing 24 h, the EP model forecast Otis to strengthen
to 110kt by 12h and to 111kt by 24 h before pla-
teauing in intensity and rapidly weakening over the
subsequent three days. However, the forecast RW
probability is zero at all thresholds because RW is
defined as a magnitude change from the initial in-
tensity and not over a moving window (i.e., 0-48h
not 24-48h).

When looking at the relative contributions from
each input variable at the 12- and 24-h forecast
times, a clear explanation for the EP model’s poor
performance emerges (Table 4). Although the input
value of DELYV for the 12-h lead time is well above
normal, corresponding to Otis’ just-completed RI,
the 12-h value of the dry-air predictor (CFLX) is
also large, indicating that a large amount of dry
air is being mixed back into the TC’s circulation.
However, despite their similar magnitudes, the two
variables have distinctly different contributions to
the forecast, with the DELV predictor having a
much larger impact over the first 12h. At the 24-h
lead time, the value of the DELV parameter drops
notably, whereas the value of the CFLX parame-
ter remains high. However, the positive contribution
from DELYV is still more than double the nega-
tive contribution of CFLX. This greater contribution
of DELV not only stems from the weighting of the
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parameter in the calculations, but also its role in
the conditional statements and thus in determining
how many lines get executed. Meanwhile, the other
variables feature only modest deviations from cli-
matology and have a mixed impact on the forecast.
As a result, rather than forecasting a sharp change
in intensity, the EP model forecasts are more sub-
dued in their predicted rates of intensity change
given the importance of the DELV parameter to the
forecast.

4. Summary and conclusions

This paper describes the development, application,
and evaluation of two TC deterministic and proba-
bilistic intensity forecast models, one for the North
Atlantic and another for the eastern and central North
Pacific basins, from a large ensemble of evolutionary
algorithms. These algorithms utilize an if-then struc-
ture as well as linear and nonlinear predictor combi-
nations to forecast a change in intensity over a 12-h
period. Run iteratively, these algorithms produce
a deterministic forecast for TC intensity every 12h
out to 120 h and probabilistic forecasts for Rl and RW
at specified thresholds out to 72h. A set of eight
predictors from the SHIPS developmental dataset,
which are converted to standard anomalies to aid
comparison between variables of dissimilar units,
provide the input data for model training, applica-
tion, and evaluation. After being randomly initialized,
the EP process involving cloning, mutation, and se-
lective pressure drives the algorithms toward skill-
ful predictor combinations. In total, five populations
with 10000 algorithms are run over 300 iterations,
from which the 100 best-performing algorithms over
all populations and iterations are retained. Bias cor-
rection is then applied to all retained algorithms be-
fore 10 skillful yet diverse algorithms are selected
to be combined through BMC. Finally, BMC is
used to determine the weighting for each of the 10
members to produce the final deterministic model,
from which a PDF is obtained to generate RI/RW
probabilities.

Each modelis tested on independent cases from the
2017 and 2018 TC seasons. In the North Atlantic ba-
sin, the deterministic model is 10%-20% more skill-
ful than the ‘“‘no skill”” OCDS5 forecast at all leads
except 120h, with skill comparable to that of the
operational SHIPS and LGEM models at these times.
Conversely, for the eastern and central North Pacific
basin, the deterministic model is less skillful than the
“no skill”” OCDS5 forecast and all operational models
at all lead times except 120 h. Calibrated RI forecasts
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are skillful relative to climatology and are competi-
tive with operational RI forecasts at the 25-40kt
(24h)~! intensity-change thresholds in the North
Atlantic and for the 25-30kt (24h) ™! intensity-change
thresholds in the eastern and central North Pacific ba-
sins. However, calibrated RW forecasts in both basins
are not skillful for any intensity-change threshold, and
there are no operational RW forecast models to pro-
vide context for these results. The mixed performance
of the RI and RW models is likely due to the under-
lying probabilistic model being derived from a deter-
ministic model that is trained on all intensity-change
cases (of which there are many more non-RI/RW cases
than there are RI/RW cases) rather than on only RI/RW
cases. Probability calibration has mixed impacts on
forecast skill. An alternative model formulation (e.g.,
one developed only for rapid intensity change, as
with the SHIPS-RII, logistic, and Bayesian models
described in section 3b) is likely necessary to achieve
further skill increases for RI and RW forecasts.
Altogether, the results suggest that the EP method
holds great promise, with substantial room for further
(and in some cases necessary) improvements, for both
deterministic and probabilistic TC intensity-change
predictions.

Selected case studies demonstrate that the model
forecast often contain large contributions from the
DELYV predictor (i.e., intensity-change persistence),
which led to difficulties in producing accurate deter-
ministic forecasts for RI and RW cases (as each are
often associated with abrupt intensity changes from
persistence). One might therefore conclude that the
DELY predictor is detrimental to model performance.
While this conclusion is correct in part for Rl and RW
cases, it is not true over the larger set of all forecast
cases. The EP process selected the predictor to be
meaningful and therefore weighted it heavily to increase
model skill, based on its training data. Consequently,
over the training data, which are representative of the
full TC populations in each basin, persistence is a re-
liable intensity predictor. Further support for DELV’s
inclusion, especially in the Pacific model, comes from
the fact that improvements over the OCDS model
tend to be smaller in the Pacific basin than in the
Atlantic (Cangialosi 2019, their Figs. 11 and 13). This
suggests that it is harder to beat climatology and
persistence in the Pacific basin, and as such climato-
logical and persistence parameters should be given
more weight.

However, as noted above, this type of a persistence
forecast can lead to large errors, such as at the onset
or ending of RI and RW. While the importance of
keeping DELYV is also supported by its use in both
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the OCDS and SHIPS models (Knaff et al. 2003;
DeMaria and Kaplan 1994; Shimada et al. 2018), it
is worth investigating whether other information can
be leveraged so that the model has a priori knowledge
of when a persistence forecast may not be warranted.
One method to do this would be to introduce a vari-
able such as the difference between the intensity of
the storm and its maximum potential intensity, as
is done in the LGEM model (DeMaria 2009). This
would help inform the model on whether a TC is
located toward the higher or lower end of the clima-
tological intensity distribution and thus know when
a TCis more or less capable of undergoing RI or RW.
Structural information derived from geostationary
and polar-orbiting sensors operating at infrared and
microwave wavelengths, in which structures that
reliably distinguish between RI and non-RI events
can be identified (e.g., Jiang and Ramirez 2013;
Rozoff et al. 2015; Fischer et al. 2018), also offers
promise for a priori discernment of cases when a
persistence forecast is less warranted.

The quasi-Gaussian nature of intensity change and
the bias toward TCs of weaker intensities in the his-
torical record is challenging to TC intensity fore-
casting, as the cases that are of highest interest (RI,
RW, and intense hurricanes) are the least prevalent
across all forecast times. This is a particular challenge
to training machine-learning algorithms, which may
sacrifice performance on these select few cases to
perform well across all cases as a whole. Different
cost functions (e.g., using RMSE rather than MAE at
the BMC weight-determination stage, or by weight-
ing errors from stronger TCs more heavily in the
training process or at the BMC weight-determination
stage) and/or different model formulations [e.g., using
an alternative skill metric such as BSS or continuous
ranked probability score to derive the BMC weights for
probabilistic applications, developing altogether sepa-
rate deterministic and probabilistic RI/RW models, or
using more advanced versions of the EP method such as
the coevolution predator—prey ecosystem described by
Roebber and Crockett (2019)] may hold promise for
addressing these challenges, and future work aims
to consider these approaches for TC intensity-change
prediction.
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APPENDIX

Model Algorithms

After bias correction and BMC weighting are per-
formed (section 2c), seven algorithms are retained
with nonzero weight for the Atlantic basin and two
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algorithms are retained with nonzero weight for the
eastern and central North Pacific basin. These algorithms,
including their BMC-determined weights and bias-
correction factors, are in Table Al for the Atlantic
basin and Table A2 for the North Pacific basin. The
algorithm number for each is included only for com-
pleteness; it has no specific meaning.

Algorithms are given by the form prescribed by
Eq. (1) in section 2b. The individual line numbers at left
refer to the i within (1). The V,, refer to predictor

TABLE Al. Atlantic model.

Va Ry Vi Ca X Vi O Cio X Vi On Cis X Vis

Algorithm 6: weighting = 0.166 67; bias (&) = 0.52

1 IF SHDC = TWAC THEN 0.14598 X VMPI + —0.447 44 x U20C X —0.1582 X D200

2 IF SHDC = DELV THEN 0.36127 X DELV X —0.0746 X 10 X 0.23645 X DELV

3 IF SHDC = SHDC THEN  —0.95443 X DELV + 0.95413 X DELV + 0.02358 X 10

4 IF DELV = DELV THEN  —0.18835 X SHDC + 0.408 03 X DELV + —0.24738 X CFLX

5 IF VMPI > TWAC THEN  -0.94745 X DELV X 0.18154 X VMPI X 0.849 04 x D200
Algorithm 8: weighting = 0.083 33; bias (¢) = —0.57

1 IF CFLX = DELV THEN 0.90216 X VMPI X 0.65379 X D200 X 0.21644 X DELV

2 IF SHDC = DELV THEN 0.36127 X DELV X —0.0746 X 10 X 0.23645 X DELV

3 IF SHDC = SHDC THEN -095443 X DELV + 0.95413 X DELV + 0.02358 X 10

4 IF DELV = DELV THEN  —0.18835 X SHDC + 0.408 03 X DELV + —0.24738 X CFLX

5 IF TWAC = U20C THEN  —0.32557 X TWAC + —0.20541 X VMPI X —0.38564 X CFLX
Algorithm 9: weighting = 0.083 33; bias (¢) = 0.28

1 IF CFLX > U20C THEN  —0.26381 X U20C X 0.14971 X VMPI + 0.2113 X VMPI

2 IF SHDC = DELV THEN 0.36127 X DELV X —0.0746 X 10 X 0.23645 X DELV

3 IF SHDC = SHDC THEN -095443 X DELV + 0.95413 X DELV + 0.02358 X 10

4 IF DELV = DELV THEN  —0.18835 X SHDC + 0.408 03 X DELV + —0.24738 X CFLX

5 IF SHDC = CD26 THEN  —0.42766 X TWAC X 0.36128 X CFLX X 0.03389 X SHDC
Algorithm 34: weighting = 0.083 33; bias (¢) = 0.21

1 IF TWAC = CFLX THEN 0.31731 X CFLX X —0.90571 X D200 X —0.21776 X SHDC

2 IF SHDC > CFLX THEN 0.25237 X TWAC + —0.36317 X TWAC X 0.27941 X CFLX

3 IF DELV > TWAC THEN 0.03356 X CD26 X 0.098 53 X DELV + 0.03853 X 10

4 IF VMPI = VMPI THEN 0.33592 X DELV X —0.21264 X TWAC + 0.15755 X DELV

5 IF SHDC = SHDC THEN -0.18206 X SHDC + 0.1172 X VMPI + —0.176 64 X CFLX
Algorithm 35: weighting = 0.083 33; bias (&) = 0.10

1 IF CFLX = SHDC THEN 0.86228 X CD26 + 0.41323 X TWAC + —0.85329 x CD26

2 IF CD26 > D200 THEN  —0.10933 X DELV + 0.54357 X TWAC X —0.28723 X CD26

3 IF DELV > TWAC THEN 0.03356 x CD26 X 0.098 53 X DELV + 0.03853 X 10

4 IF VMPI = VMPI THEN 0.33592 X DELV X —0.21264 X TWAC + 0.15755 X DELV

5 IF SHDC = SHDC THEN -0.18206 X SHDC + 0.1172 X VMPI + —0.176 64 X CFLX
Algorithm 49: weighting = 0.166 67; bias (¢) = 0.19

1 IF D200 = VMPI THEN 0.32367 X TWAC + —0.156 24 x D200 X 0.11885 X CFLX

2 IF D200 = SHDC THEN  —0.24229 X TWAC X 0.0833 X DELV + —0.07426 X DELV

3 IF DELV > TWAC THEN 0.03356 X CD26 X 0.098 53 X DELV + 0.03853 X 10

4 IF VMPI = VMPI THEN 0.33592 X DELV X —0.21264 X TWAC + 0.15755 X DELV

5 IF SHDC = SHDC THEN -0.18206 X SHDC + 0.1172 X VMPI + —0.176 64 X CFLX
Algorithm 53: weighting = 0.25; bias (¢) = —0.67

1 IF CD26 = CD26 THEN  —0.59528 X 10 X —0.83168 X TWAC X —0.1173 X TWAC

2 IF D200 = 10 THEN  —0.78933 X VMPI X 0.26422 X TWAC X —0.78223 X CFLX

3 IF DELV > TWAC THEN 0.03356 X CD26 X 0.09853 x DELV + 0.03853 X 10

4 IF VMPIL = VMPI THEN 0.33592 X DELV X —0.21264 X TWAC + 0.15755 X DELV

5 IF SHDC = SHDC THEN -0.18206 X SHDC + 0.1172 X VMPI + —0.176 64 X CFLX
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TABLE A2. Pacific model.
Vi R Via Ciy X Vi3 Oi Cin X Viy Op Ciz X Vis

Algorithm 31: weighting = 0.25; bias (¢) = —0.07

1 IF TWAC > VMPI THEN 0.36679 X CFLX X 0.55976 X TWAC + —0.03705 X DELV

2 IF CFLX = DELV THEN 0.167 84 X CFLX X 0.83909 X DELV X 0.58132 X TWAC

3 IF SHDC > D200 THEN —0.12243 X VMPI + 0.31332 X TWAC + 0.018 71 X CD26

4 IF D200 = D200 THEN  —0.89092 X TWAC X 0.28928 X TWAC + —0.1396 X CFLX

5 IF VMPI = VMPI THEN 0.6716 X VMPI + —0.44336 X VMPI + 0.42004 X DELV
Algorithm 69: weighting = 0.75; bias (¢) = —0.09

1 IF DELV > U20C THEN 0.178 81 X VMPI X —0.73721 X U20C + —0.36376 X SHDC

2 IF DELV > CFLX THEN  —0.14589 X DELV + 0.0649 X TWAC X 0.8098 x CD26

3 IF SHDC > D200 THEN —0.12243 X VMPI + 0.31332 X TWAC + 0.018 71 X CD26

4 IF D200 = D200 THEN  —0.89092 X TWAC X 0.28928 X TWAC + —0.1396 X CFLX

5 IF VMPI = VMPI THEN 0.6716 X VMPI + —0.44336 X VMPI + 0.42004 X DELV

variables, a full listing of which is given in Table 1. R;;
refers to one of the allowable relational operators of =
or >. The C;, refer to coefficients in the range of [—1, 1].
The O,, refer to one of the allowable arithmetic opera-
tors of + or X. For each, n denotes the nth instance of
the parameter on a given line.
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