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ABSTRACT

A feed-forward neural network (NN) was trained to produce gridded probabilistic convective hazard pre-

dictions over the contiguous United States. Input fields to the NN included 174 predictors, derived from

38 variables output by 497 convection-allowing model forecasts, with observed severe storm reports used for

training and verification. These NN probability forecasts (NNPFs) were compared to surrogate-severe proba-

bility forecasts (SSPFs), generated by smoothing a field of surrogate reports derived with updraft helicity (UH).

NNPFs and SSPFs were produced each forecast hour on an 80-km grid, with forecasts valid for the occurrence

of any severe weather report within 40 or 120 km, and 2 h, of each 80-km grid box. NNPFs were superior to

SSPFs, producing statistically significant improvements in forecast reliability and resolution. Additionally,

NNPFs retained more large magnitude probabilities (.50%) compared to SSPFs since NNPFs did not use

spatial smoothing, improving forecast sharpness. NNPFs were most skillful relative to SSPFs when predicting

hazards on larger scales (e.g., 120 vs 40 km) and in situations where using UH was detrimental to forecast skill.

These included model spinup, nocturnal periods, and regions and environments where supercells were less

common, such as thewestern and easternUnited States and high-shear, low-CAPE regimes.NNPFs trainedwith

fewer predictors were more skillful than SSPFs, but not as skillful as the full-predictor NNPFs, with predictor

importance being a function of forecast lead time. PlacingNNPF skill in the context of existing baselines is a first

step toward integrating machine learning–based forecasts into the operational forecasting process.

1. Introduction

Convection-allowingmodels (CAMs), i.e., numerical

weather prediction (NWP) models configured with

horizontal grid spacings # 4 km, are routinely used to

provide forecast guidance for convective storms. While

partially resolving convective systems, CAMs do not

resolve most hazards (i.e., tornadoes or hail $ 2.54 cm

in diameter). Thus, an extensive body of research has

been devoted to developing methods to extract hazard

information from CAMs to improve hazard forecasting,

primarily using diagnostics as surrogates, or proxies, for

the occurrence of a convective hazard (e.g., Kain et al.

2008; Sobash et al. 2011, 2016, 2019; Clark et al. 2013;

Loken et al. 2017; Gallo et al. 2016, 2018, 2019b).

The majority of studies using CAM diagnostics as

surrogates determine the locations of severe convective

hazards by thresholding the diagnostic field and smoothing

the resulting binary forecast to account for spatial

errors in hazard location (henceforth referred to as the

‘‘surrogate-severe’’ framework). When using deter-

ministic CAM output, a quasi-probabilistic forecast of

severe weather is produced; for an ensemble, the in-

dividual smoothed deterministic hazard forecasts can

be averaged to produce a surrogate-severe ensemble-

based hazard forecast (e.g., Sobash et al. 2016). Studies

have used surrogate-severe forecasts to produce hazard

guidance for CAMs, including individual hazards such

as large hail (Gagne et al. 2017) and tornadoes (Clark

et al. 2013; Gallo et al. 2016, 2018, 2019b; Sobash et al.

2019), as well as evaluate differences in the skill of

severe hazard predictions among different CAM con-

figurations (e.g., Gallo et al. 2019a).

The 2–5 km above ground level updraft helicity (UH)

diagnostic (Kain et al. 2008) has been the most utilized

diagnostic, as it can indicate the presence of supercells

and intense squall lines in CAM output, which regularly

produce convective hazards. Sobash and Kain (2017)

demonstrated that surrogate-severe forecasts are most

skillful when the UH threshold varies as a function of

season and region, in part due to the diversity of con-

vective environments and modes that generate severeCorresponding author: Dr. Ryan A. Sobash, sobash@ucar.edu
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weather hazards. Variations in appropriate UH thresh-

olds have also been noted in case studies of cool-season

convection (e.g., Guyer and Jirak 2014). However,

varying the UH threshold is difficult to implement

without a large set of forecasts that can be used for

calibration.

Other challenges with using the surrogate-severe frame-

work include the need for multiple diagnostics to cap-

ture different processes responsible for different severe

weather hazards (e.g., UH for mesocyclones versus

column maximum graupel for hail) and the rigidity of a

diagnostic threshold value (i.e., a storm with intensity

slightly below the threshold is viewed as nonsevere).

Further, the smoothed probabilities derived from a

deterministic forecast are based solely on the spatial

density of points exceeding the diagnostic threshold,

often with fixed smoothing parameters. Constructing

an optimal set of diagnostics, thresholds, and smooth-

ing parameters quickly becomes onerous within the

surrogate-severe framework as one attempts to antici-

pate the variety of convective modes, processes, and

diagnostic magnitudes that are related to severe weather

hazards. While model configuration also plays a role in

how these parameters are chosen (e.g., Potvin et al.

2019), the sensitivity to convective environment and

mode are most relevant, since model configuration can

presumably be accounted for a priori, while the con-

vective environment and scenario can vary substantially

from day to day.

One potential path forward to improve severe weather

hazard guidance with CAMs is to applymachine-learning

(ML) algorithms to learn the relationships between

CAM diagnostics, environmental properties, and diag-

nostic magnitudes associated with the potential for se-

vere weather hazards. While ML techniques have been

applied to a variety of high-impact weather prediction

problems (Marzban and Stumpf 1998; Cintineo et al.

2014; Lagerquist et al. 2017; McGovern et al. 2017;

Herman and Schumacher 2018), few have used CAMs

as input into ML models to produce convective hazard

guidance. For example, Gagne et al. (2017) and Burke

et al. (2020) both trained ML models by combining re-

motely sensed hail size observations and forecast CAM

hail size diagnostics, and then used the trained models

to predict and calibrate hail size using real-time

CAMs as input. While their ML hail forecasts ex-

hibited skill, some verification metrics indicated that

the surrogate-severe hail forecasts generated with UH1

were competitive with theML-based guidance, although

the ML forecasts were less biased.

Other studies have used ML techniques to classify

simulated storms but did not produce hazard guidance.

For example, Robinson et al. (2013) used a neural net-

work to classify simulated CAM storms as severe or

nonsevere in CAM simulations downscaled from re-

gional reanalyses, while, Gagne et al. (2019) used CAMs

together with a convolutional neural network to identify

different stormmodes. A common limitation of many of

these studies is the reliance on a storm-based frame-

work, which constrained ML predictions to locations

where storms were present in CAM output, neglecting

storm initiation and placement biases in CAMs.

To move beyond the surrogate-severe framework of

generating convective hazard guidance, this study eval-

uates the skill of output from a feed-forward neural

network (NN) that was designed to provide grid-based

probabilistic predictions of convective hazards using

CAM diagnostics as input fields. A feed-forward NNwas

chosen due to its simplicity, and makes training with a

large database of forecasts more tractable. Compared to

storm-based ML guidance (e.g., Burke et al. 2020), the

grid-basedNNpredictions are not constrained to produce

predictions where simulated storms occur, allowing the

NNs to potentially learn biases associated with CAM

storm initiation or placement. The NN probabilistic

forecasts were compared to quasi-probabilistic forecasts

generated with UH using the surrogate-severe frame-

work to understand the locations, times, and environ-

ments in which ML-based forecasts provided added

benefit over the UH-based surrogate-severe forecasts for

convective hazard prediction. Finally, the sensitivity of

the NN predictions to different subsets of predictors is

documented to better understand what variables con-

tribute most to NN forecast skill.

2. Methodology

a. 3-km WRF forecast dataset

The forecast dataset consisted of 497, 36-h, fore-

casts produced with version 3.6.1 of the WRF Model

(Skamarock et al. 2008) and used NOAA 0.58 Global

Forecast System (GFS) initial and boundary conditions.

The forecasts had 3-km horizontal grid spacing and

spanned the entire contiguous United States (CONUS;

Fig. 1). Physics schemes are listed in Table 1. Events

were selected from the NOAA Storm Prediction Center

(SPC) severe weather event archive. Many criteria de-

termined which events are included in the SPC archive,

including the number of observed storm reports on a

given day and the maximum categorical threat level

(e.g., moderate risk). The forecast dataset consisted of

1 Both Wendt et al. (2016) and Adams-Selin et al. (2019) noted

that UH is one of the most skillful CAM diagnostics for anticipating

severe hail occurrence, especially for hail $ 2 in. in diameter.
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events between 15 October 2010 and 15 July 2017, ex-

cluding 15 July–15 October each year. The selection

strategy was designed to identify high-impact warm-

and cool-season severe weather events east of the

Rockies, while neglecting events in the western United

States and in association with landfalling tropical cy-

clones. This reforecast dataset was used in previous

work to study next-day precipitation (Schwartz and

Sobash 2019) and tornado (Sobash et al. 2019) forecast

skill. The full list of events, additional details about the

selection criteria, and configuration choices for WRF

are available in Sobash et al. (2019).

b. Preprocessing CAM diagnostic fields

Each of the 497 3-km WRF forecasts produced a set

of 38 diagnostics, which were preprocessed to produce

input into the NN. The diagnostics included environ-

mental, upper-air, and explicit surrogate fields (Table 2).

Some diagnostics were derived from combinations of

other diagnostics [e.g., the significant tornado parameter

(STP) or the 700–500-hPa lapse rate; Table 2]. To reduce

the dimensionality of the raw model output, the diag-

nostics were upscaled onto an 80-km grid. For the upper-

air and environmental fields, each 80-km grid point

was assigned the mean value of the 3-km gridpoint

values within each 80-km grid box at each forecast hour.

For the surrogate fields, each 80-km grid point was as-

signed the maximum value over all 3-km grid points

within each 80-km grid box. Since the surrogate fields

were computed as hourly maximum values (Kain et al.

2010), using the gridbox maximum ensures that ex-

tremes in the output were retained.

In addition to the 38 diagnostics computed for each

forecast grid point, larger spatial and temporal averages

and maxima were computed to account for spatial and

temporal errors in storm placement. Specifically, pre-

dictors were constructed by averaging the environmen-

tal fields and computing the maximum of the explicit

fields within one or two grid boxes (in each direction)

and temporal 0-, 1-, or 2-h windows of each 80-km grid

box, producing six additional predictors for each envi-

ronmental and explicit diagnostic. Forecast hour, grid-

point latitude and longitude, and day of year were also

used as predictors. Combined, 174 predictors were used

as input for each 80-km grid box at each forecast hour

(Table 2; Fig. 2). Since observed severe weather reports

were only available within the CONUS, 80-km grid

points outside the CONUS were not used for training.

The end result of the preprocessing procedure was a

collection of 1298 80-km grid boxes, for each forecast

hour and forecast, producing a total of ;21 million grid

boxes, each with 174 predictors.

c. Training and verification

To reduce the computational burden of training the

NN with ;21 million grid boxes, the preprocessed

WRF dataset was split in half using a random selection

of grid boxes, leaving ;11 million grid points for train-

ing. Using this thinned dataset, six NNs were trained for

each year between 2011 and 2016, with the grid boxes

for that year removed. For example, forecasts for 2012

were produced using a NN trained with forecast grid

boxes occurring in 2010–11 and 2013–17. NNs were not

trained for the 2010 and 2017 forecasts to ensure that

each year’s NN had a similar size of training data (2010

and 2017 only had 9 and 19 WRF forecasts, respec-

tively). The final training dataset for each year included

;9 million grid boxes (;400 forecasts) and ;2 million

FIG. 1. WRF computational domain. The 80-km grid boxes used

for verification are shaded.

TABLE 1. Physical parameterization schemes used for WRF Model forecasts.

Parameterization type Scheme Reference

Microphysics Thompson Thompson et al. (2008)

Longwave and shortwave radiation RapidRadiative TransferModel forGlobal

Climate Models (RRTMG) with ozone

and aerosol climatologies

Mlawer et al. (1997)

Iacono et al. (2008)

Tegen et al. (1997)

Planetary boundary layer Mellor–Yamada–Janjić (MYJ) Mellor and Yamada (1982; Janjić (1994, 2001)

Land surface model Noah Chen and Dudhia (2001)

Cumulus parameterization None None
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grid boxes evaluation (;100 forecasts). Prior to train-

ing, the preprocessed data were normalized based on

the full dataset distribution mean and standard devia-

tion for each predictor.

The NN configuration used for training was chosen

based on previous work that applied NNs to meteoro-

logical data (e.g., Gagne et al. 2019). In general, a NN is

configured with multiple layers of neurons, including an

input, output, and one or more hidden layers. Each

neuron takes a linear weighted combination of inputs

from the previous layer and computes an output using

an activation function that is fed into the subsequent

layer (Fig. 2). Here, the input layer consisted of 174

neurons, one for each predictor, while the output

layer consists of 1 neuron, providing a probability of

any severe weather hazard associated with the com-

bined set of input predictors. The hidden layer in-

cluded 1024 neurons, other sizes of the hidden layer

produced NNs with similar performance characteris-

tics. Other hyperparameter choices are provided in

Table 3. Finally, the weights within the NN were ini-

tialized randomly, meaning each retraining of the NN

produced slightly different results, but these varia-

tions in skill were small and did not impact the con-

clusions. Since the results were largely insensitive to

several of the hyperparameters, we feel that the NN

configuration here is robust and not designed specifi-

cally to optimize predictions from this set of forecasts.

Generalization of the NNs beyond the CAM output

used here is discussed in section 8.

SPC storm reports2 (Schaefer and Edwards 1999)

were used for training two NNs and for verifying the

predictions. The two NNs were identical except for the

spatial radius (40 and 120 km) used to label grid boxes

where any severe report occurred; the temporal toler-

ance of 2 h was identical for both NNs. The choice of a

spatial radius of 40 km was made to match the SPC

probabilistic forecast definition and to be consistent with

the 80-km grid size. The 120-km length scale was used to

examine forecast predictability on larger spatial scales.

The 2-h temporal tolerance was based on the desire of

SPC to produce 4-h probabilistic severe weather guid-

ance in the future (Krocak and Brooks 2020). Based on

these choices, theNNs output probabilities of any severe

weather report occurring within 40 or 120 km in space

and 2h in time for each grid box and forecast hour. The

output from the NNs will be denoted as neural network

probability forecasts (NNPFs).

NNPFs were verified with the binary storm report

fields for each of the 469 events between 2011 and 2016

using the Brier skill score (BSS; Wilks 2006) and the

relative operating characteristic area under the curve

(ROCA; Mason 1982; Marzban 2004). Additionally,

reliability diagrams (Wilks 2006) were computed to as-

sess forecast reliability. As in Sobash and Kain (2017;

SK17), instead of computing the BSS with the full

sample climatology as a reference forecast, a spatially

and temporally varying 30-yr severe weather climatol-

ogy was computed using all severe reports occurring

between 1986 and 2015. This climatology was computed

for each 80-km grid box, day of the year, and hour of the

TABLE 2. List of 42 base predictors used to train the NNs. The

mean of the environmental and upper-air fields, and the maximum

of the explicit fields, within each 80-km grid box, was used as input

into the NNs. In addition to the 42 base predictors, 132 neighbor-

hood predictors were constructed by taking larger spatial and

temporal means and maximums of the 15 environmental and 7

explicit fields, as described in the text, resulting in a final set of 174

predictors used as input into the NNs.

Base predictor Type

Forecast hour Static

Day of year Static

Latitude Static

Longitude Static

Surface-based convective available potential

energy

Environment

Most-unstable convective available potential

energy

Environment

Surface-based convective inhibition Environment

Mixed-layer convective inhibition Environment

0–6-km bulk wind difference Environment

Mixed-layer lifted condensation level Environment

0–1-km bulk wind difference Environment

0–1-km storm-relative helicity Environment

0–3-km storm-relative helicity Environment

2-m temperature Environment

2-m dewpoint temperature Environment

Surface pressure Environment

Product of most-unstable convective available po-

tential energy and 0–6-km bulk wind difference

Environment

Significant tornado parameter Environment

700–500-hPa lapse rate Environment

Hourly max 2–5-km updraft helicity Explicit

Hourly max 0–3-km updraft helicity Explicit

Hourly max 0–1-km updraft helicity Explicit

Hourly max updraft speed below 400 hPa Explicit

Hourly max downdraft speed below 400 hPa Explicit

Hourly max 10-m wind speed Explicit

Hourly precipitation accumulation Explicit

925-, 850-, 700-, and 500-hPa zonal wind speed Upper air

925-, 850-, 700-, and 500-hPameridional wind speed Upper air

925-, 850-, 700-, and 500-hPa temperature Upper air

925-, 850-, 700-, and 500-hPa dewpoint temperature Upper air

2 Including all reports of tornadoes, hail $ 1 in. in diameter, and

measured or estimated wind gusts $ 50 kt (including reports with

an unknown wind gust magnitude). Reports retrieved from SPC

storm report archive available at https://www.spc.noaa.gov/wcm/.

Section 8 discusses some of the issues associated with using storm

reports for NN training and verification.

1984 WEATHER AND FORECAST ING VOLUME 35

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:40 PM UTC

https://www.spc.noaa.gov/wcm/


day, by aggregating reports within space and time win-

dows consistent with how the probabilities were defined

when training the NNs. For example, the baseline cli-

matological forecast when computing the BSS for the

120-km, 2-h probabilities was a climatology of severe

weather occurring within 120 km and 2h of an 80-km

grid box. To produce a smoothly varying climatology, a

Gaussian smoother was applied with a standard devi-

ation of 15 days, 1.5 grid boxes, and 1.5 h. The ROCA

was computed with the scikit-learn (Pedregosa et al.

2011) function ‘‘roc_auc_score,’’ which computes the

ROCA using a trapezoidal method with all unique

probability values as decision points. To reduce the

potential impact of small probabilities when computing

the BSS and ROCA, probabilities , 0.1% were set to

0.0 in the NNPFs.

d. Creation of surrogate-severe probability forecasts

Surrogate-severe probability forecasts (SSPFs) were

used as a baseline to assess the added value of the

NNPFs. The procedure to produce the SSPFs was

similar to that outlined in Sobash et al. (2011) and SK17

who both used the UH diagnostic to identify locations

where surrogate-severe reports (SSRs) occurred in the

model and produced quasi-probabilistic forecasts by

smoothing the binary SSR fields. While Sobash et al.

(2011) used a fixed UH threshold to determine SSR

locations, SK17 used a varying UH threshold based

on latitude, longitude, and day of the year, demon-

strating that doing so led to improvements in forecast

skill. To produce the most skillful UH guidance pos-

sible, we apply the methods of SK17 here, using

‘‘optimal’’ UH thresholds that lead to SSR biases

near one when compared to a field of observed storm

reports (OSRs) computed analogously to the SSRs

FIG. 2. Summary of WRF preprocessing and procedure to generate SSPFs and NNPFs, including the neural network configuration; T and

X represent the time (2 h) and space (40 or 120 km) windows used in the paper to train the NNs.

TABLE 3. Settings used to construct and train the neural net-

works. The neural networks were trained using the keras python

package and employed graphics processing units (GPUs) to ac-

celerate the training process.

Hyperparameter Value

No. of hidden layers 1

No. of neurons in hidden layer 1024

Dropout rate 0.1

Learning rate 0.001

No. of training epochs 10

Hidden layer activation function Rectified linear unit

Output layer activation function Sigmoid

Optimizer Stochastic gradient descent

Loss function Binary cross-entropy

Batch size 1024

Regularization L2

Batch normalization On
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(i.e., a binary 80-km grid indicating locations where at

least one report occurred).

Several modifications to the SK17 approach were re-

quired. First, the discontinuous nature of the current

WRF forecasts prevented optimal thresholds from being

computed for each day of the year (i.e., weeks often exist

in the dataset where no WRF forecasts were produced).

Instead, two sets of optimal thresholds were computed,

one using all warm-season (March–July) and another

using all cool-season (October–February) forecasts.

Second, optimal UH thresholds were computed for

each forecast hour, rather than daily in SK17, since

SSPFs and NNPFs were produced for each 4-h period

centered on each forecast hour, rather than the 24-h

SSPFs in SK17. Third, a 2-h temporal neighborhood

was used to aggregate OSRs (e.g., for the 1000 UTC

climatology, all OSRs occurring within 0800–1200 UTC

were considered when computing the bias). Finally, if

fewer than 25 OSRs occurred in a given 80-km grid box,

after spatial aggregation, then the optimal UH threshold

for that grid box was set to that using all SSRs andOSRs

within the domain. Other aspects of selecting the UH

thresholds were identical to SK17, including using all

SSRs and OSRs within a two gridbox spatial neighbor-

hood to compute the biases.

The result of the UH calibration process were fields of

optimal UH thresholds, computed for each 80-km grid

box, that varied by season, latitude, longitude, and

forecast hour (Fig. 3). All 497 forecasts were used to

compute the optimal UH thresholds, which gives an

advantage to the SSPFs over the NNPFs, since the op-

timal UH thresholds were determined based partly on

the verifying OSRs. Due to this, the skill of the UH

guidance presented here is likely an upper bound, re-

flecting the highest possible baseline for the NNPFs to

exceed. The variability of the optimal UH thresholds

was similar to that noted in SK17, including smaller

optimal UH thresholds during the cool season than in

the warm season and smaller optimal UH thresholds in

the eastern United States compared to the central Plains

during the warm season (Fig. 3).

The optimal UH thresholds were used to produce 40-

and 120-km, 4-h SSPFs with output from each WRF

forecast. The 40-km (120-km), 4-h SSPFs were based on

SSRs computed where the optimal UH threshold was

exceeded within 40 km (or 120 km) and 2h at each

80-km grid box. Thus, the probabilistic event definitions

for SSPFs and NNPFs were equivalent (i.e., the proba-

bility of an event within 40 or 120 km and 2h of an 80-km

grid box). The SSPFs were produced by smoothing the

binary SSRs using a Gaussian smoother at each hour

with a Gaussian standard deviation s of 160 km. This

choice of s was informed by previous work (e.g.,

Sobash et al. 2011) and produced SSPFs that maxi-

mized the BSS for most locations and times. Since the

SSPFs were based on the maximum UH occurring

within specified space and time windows, they can be

considered smoothed neighborhood-maximum ensem-

ble probabilities (NMEPs), as defined in Schwartz and

Sobash (2017).While SSPFswere produced using spatial

smoothing of the SSRs, the NNPFs were not spatially

smoothed. In fact, spatial smoothing decreased NNPF

skill (further discussion of smoothing and its impact on

probability magnitudes is provided in the next section).

As with the NNPFs, probabilities, 0.1%were set to 0.0

for the SSPFs and verified using the metrics described in

section 2c.

3. Comparison of NNPF and SSPF probability
distributions

To assess the difference in the probabilities produced

by the NNPFs and the SSPFs, the frequency of 40- and

FIG. 3. Optimal UH thresholds for 2100 UTC for the (a) warm

season and (b) cool season. Optimal UH thresholds computed as

described in the methodology. Locations where fewer than 25

observed severe weather reports occurred (denoted with x) were

assigned an optimal UH threshold using a bias of 1 computed with

all grid boxes.
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120-km 2-h forecast probability values over all forecast

hours and grid points was examined. While both the

120-km SSPFs and NNPFs covered nearly all proba-

bilities, the 40-km forecasts rarely produced probabil-

ity values . 75% (Fig. 4). This behavior was expected,

since the probabilities in the 40-km forecasts are de-

fined for an event occurring over a smaller spatial scale

than in the 120-km forecasts. The most notable differ-

ences in the SSPF and NNPF distributions occurred at

small and large probability values. The NNPFs pro-

duced fewer probability values of zero, and a larger

number of grid points with probability values . 70%

(Fig. 4). The largest relative differences between the

forecasts tended to occur at probabilities between 1%

and 20%, as well as probabilities . 70%, where the

NNPFs produced as many at 600% more grid points.

For example, probability magnitudes .;95% were

produced about 10 times as often in the 120-kmNNPFs

compared to the 120-km SSPFs (Fig. 4b); this was

similar in the 40-km forecasts, although at smaller

probability values (Fig. 4a). For intermediate proba-

bility values between 30% and 60%, the number of grid

points were more similar, with the 40-km (120-km)

SSPFs producing a slightly larger (smaller) number of

grid points than the NNPFs.

The larger number of NNPF probability values .
60%–70% is partly a result of the spatial smoothing used

to create the SSPFs, which reduced the magnitude of

the SSPF probabilities. While reducing the smoothing

length scalewould produce SSPFswith a similar number of

grid points with forecast probabilities. 60% compared to

NNPFs, this generally decreased SSPF skill and produced

larger differences within smaller probability ranges (not

shown). For the SSPFs, the spatial smoothing procedure is

the mechanism that produces the probabilistic uncertainty

estimates, based solely on the spatial distribution of UH

points exceeding the given threshold. On the other hand,

the NNs have learned this uncertainty from previous ob-

servations of severe weather events, providing a better

representation of the underlying uncertainty within the

NNPFs. Thus, it appears that the NNPFs possess proba-

bility distributions that have a similar character to the

SSPFs, but retain the highest probability magnitudes due

to the lack of spatial smoothing.Whether these differences

occur concomitant with improved forecast skill will be

examined in the next section.

4. Daily verification of NNPFs and SSPFs

Daily BSSs were computed for each event by aggre-

gating the skill of all 4-h forecasts across all forecast

hours and grid boxes to isolate events when large skill

differences occurred. While the daily skill between the

SSPFs and NNPFs was strongly correlated, likely due

to both being based on the same underlying WRF

forecast, daily NNPF BSSs were consistently larger

than the corresponding daily SSPF BSSs for both the

40- and 120-km forecasts, but especially the 120-km

forecasts (Fig. 5). In fact, the SSPFs outperformed the

NNPFs for only 20 of the events at 120 km (Fig. 5b).

The average BSS difference was ;0.04 for the 40-km

forecasts, and ;0.11 for the 120-km forecasts. The

larger difference in skill at the 120-km length scale may

be due to enhanced predictability on large scales, with

the 120-km forecasts better able to make use of the

large-scale and environmental information compared

to the SSPFs (at 40 km, both forecasts may be equally

impacted by reduced predictability).

FIG. 4. Histogram of (a) 40- and (b) 120-km NNPF and SSPF probabilities for all grid points, forecast hours,

and events.
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SSPFs and NNPFs notably differed during an over-

night convective event between 0000 and 1200 UTC

20 December 2012. During this event, a convective line

formed in eastern Oklahoma and Texas, moving east-

ward into the southeastern United States, producing

163 wind, 3 tornado, and 6 hail reports (Fig. 6a). The

0000 UTC 19 December 2012 WRF forecast correctly

predicted the location and timing of this line ;33h in ad-

vance, although the character of the convective cores was

more cellular in the model than in observations (Fig. 6b).

Given the limited UH magnitudes (e.g., ,20m2 s22) as-

sociated with the convective line, SSPFs were low, with

the maximum SSPF magnitudes displaced to the north

of where reports were observed, leading to BSSs near

zero at both spatial scales (Figs. 7a,b). On the other

hand, the NNPF magnitudes were larger with a maxi-

mum shifted to the south, inmuch better agreement with

reports, leading to positive BSSs (Figs. 7c,d).

SSPFs were produced for fixed UH thresholds of 10,

20, and 30m2 s22 to test if a threshold determined a

posteriori would lead to better guidance rather than

relying on the optimal calibrated UH threshold (Fig. 8).

For this event, SSPFs using fixed UH thresholds of

10 and 20m2 s22 were more skillful than those using

the optimal calibrated UH threshold, but even so, the

BSS for these fixed-UH SSPFs remained less than the

FIG. 5. Scatterplot of 469 daily BSSs for the (a) 40- and (b) 120-km SSPFs and NNPFs shown as filled gray

circles. Aggregate BSS for all forecasts shown as filled black circles. The daily BSS was computed with all

individual 4-h forecasts for all forecast hours and grid boxes over the CONUS. The BSS was computed using a

temporally and spatially varying 30-yr severe weather climatology as the reference forecast, as described in

the text.

FIG. 6. (a) 0855 UTC observed and (b) 0900 UTC simulated composite reflectivity for the 20 Dec 2012 con-

vective weather event. Simulated reflectivity generated from deterministic WRF 33-h forecast initialized at

0000 UTC 19 Dec 2012.
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NNPFs. That is, even a UH threshold that was chosen

after the event, to maximize SSPF skill, was not as

skillful as the NNPFs. Additionally, the fixed-UH

SSPF probabilities, as well as the optimal UH SSPFs,

were shifted spatially with respect to the reports, with a

probability maximum near St. Louis, Missouri, while

the NNPFs produced a maximum in western Arkansas

where many wind reports were observed. For this

event, the NNPFs provided added value beyond what

was possible by carefully calibrating the UHmagnitude,

either through the usage of climatological optimal

threshold or an a posteriori fixed UH threshold that was

selected to maximize forecast skill. Given the challenge

of anticipating cool-season severe weather, especially

those occurring in environments of limited instability

where wind damage is the predominant threat, it is

FIG. 7. Maximum 4-h severe hazard (tornado, hail, or wind) probability produced over all forecast hours between

0000 UTC 19 Dec 2012 and 1200 UTC 20 Dec 2012 for (a) 40-km SSPFs, (b) 120-km SSPFs, (c) 40-km NNPFs,

and (d) 120-km NNPFs. SSPFs and NNPFs were derived from the deterministic WRF forecast initialized on

0000 UTC 19 Dec 2012. Circles represent grid boxes where at least one severe weather report was received within

(left) 40 or (right) 120 km during the 36-h forecast.
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promising that the NNPFs were able to provide superior

severe weather guidance compared to the SSPFs.

5. Aggregate verification of NNPF and SSPFs

In aggregate, NNPFs produced larger BSS, ROCA,

and better reliability than SSPFs at both length scales

(Fig. 9). Similar to the daily BSS results, the BSS

differences were larger at 120km than 40km. At 40-km,

NNPFs were more reliable at probabilities . 50%, but

still suffered from overforecasting. At 120 km, over-

forecasting was reduced, and NNPFs produced almost

perfect reliability for all probabilities, while SSPFs

slightly overforecasted at probabilities between 20%

and 50%. To provide additional detail on when and

where differences in skill occurred between the NNPFs

FIG. 8. (a)–(c)As in Fig. 7, but for 40-kmSSPFs produced using a fixedUH threshold, rather than the optimal UH

threshold, of 10, 20, and 30m2 s22 in (a)–(c), respectively. (d)MaximumUHmagnitude within 40 km of each 80-km

grid box.
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and SSPFs, the verification results were further aggre-

gated by forecast hour, grid box, and environment.

a. Verification by forecast hour

While both SSPFs and NNPFs possessed skill relative

to climatology at all forecast hours, NNPFs statistically

significantly outperformed SSPFs for both neighbor-

hood sizes (Fig. 10). Additionally, BSS differences were

accompanied by improvements in ROCA, with ROCA

as much as 0.2 larger for the NNPFs (Fig. 11). The

magnitude of BSS differences between the NNPFs and

SSPFs was partly a function of neighborhood size, with

less advantage of the NNPFs at 40 km than 120km

(Fig. 10). The scale dependence of the BSS differences

could be due to small-scale uncertainty impacting the

skill of both the SSPFs and NNPFs at 40km. Conversely,

ROCA magnitudes for both NNPFs and SSPFs were

largely insensitive to neighborhood size (Fig. 11).

Magnitudes of the BSS and ROCA differences be-

tween NNPFs and SSPFs exhibited some diurnal vari-

ability. While the SSPFs and NNPFs had similar diurnal

cycle of skill, with BSSmaximized during the peak of the

diurnal cycle and minimized during the overnight and

early morning, the biggest differences in skill occurred

early in the forecast, during model spinup (Fig. 10).

During the first few hours of integration, no spinup was

observed for the NNPFs, with 1–6-h NNPFs exhibiting

fairly constant BSS and ROCA, while the BSS and

ROCA of the SSPFs increase during the first 6 h as

convection and the associatedUHfield spins up (Figs. 10

and 11). The ability of the ML forecasts to account for

spinup during the first few hours of the forecast is useful,

likely relying on larger-scale fields and weighting UH

and other high-resolution fields less. This hypothesis will

be examined in section 6.

Differences in BSS also maximized between forecast

hours 18–20, during the peak period of convection ini-

tiation (Fig. 10). Here, the NN may have learned biases

related to delayed forecast initiation relative to ob-

servations. (e.g., Kain et al. 2013). This is also partly

reflected in the earlier timing of the peak in skill of the

ML forecasts (;2200 UTC), compared to the SSPFs

(;0000UTC). The ROCA differences decreased slightly

during this period (Fig. 11), indicating that improvement

in skill was mainly related to improved forecast reli-

ability. Future work should investigate the ability of the

NNs to adjust for biases in forecast initiation. Finally,

ROCA differences were maximized overnight when the

ROCA dropped for the SSPFs (Fig. 11), which may be

related to issues with UH being a poor predictor of se-

vere weather associated with elevated nocturnal con-

vective systems.

FIG. 9. (top)Reliability diagram and (bottom) frequency histogram for (a) 40- and (b) 120-kmNNPFs and SSPFs,

aggregated over all forecasts and forecast hours. Vertical lines in the reliability diagram indicate bootstrapped 90%

confidence intervals. Bins are 0%–,10%, 10%–,20%, etc.
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b. Verification by grid box

BSSs were computed for each 80-km grid box to re-

veal spatial variations in forecast skill. For each grid box,

forecasts for all forecast hours and the surrounding eight

grid boxes were included to increase the sample size.

SSPF skill was maximized across the central Plains,

with decreased BSS toward the southern and south-

eastern United States (Figs. 12a,b). On the other hand,

the NNPF BSS maxima occurred in the northeastern

United States, central Ohio River Valley, and central

Plains (Figs. 12c,d). These spatial patterns held for both

neighborhood sizes.

Differences in NNPF and SSPF skill were maximized

across the eastern United States for both neighborhood

sizes (Figs. 12e,f). BSS increases of.0.05 (for the 40-km

forecasts; Fig. 12e) and.0.15 (for the 120-km forecasts;

Fig. 12f) occurred across much of the southeastern

United States and in several areas of the western

United States. The smallest BSS differences occurred

across the central United States, with several grid boxes in

western Nebraska having differences near zero meaning

UHalone provided enough information to produce skillful

forecasts of severe convective hazards.

Spatial patterns of skill suggest NNPFs can substan-

tially improve upon SSPFs for severe weather prediction

across the eastern and western United States, with

smaller improvements over the central United States.

Across the east, increased NNPF skill is likely due to

the decreasing utility of UH as a surrogate for the most

common severe weather hazards in that region. Severe

reports are often obtained from nonsupercellular con-

vective modes in the eastern CONUS (Ashley et al.

2019). Combined with the abundance of severe wind

reports that may not exceed strict severe criteria [i.e.,

wind gust$ 50 kt (1 kt’ 0.51m s21)], UH alone, even if

carefully calibrated, is a poor predictor of whether or

not a thunderstorm will produce severe hazards. Across

the western CONUS, the relative rarity of severe

weather events presents a challenge for NNPFs, given

the lack of many training examples over this region.

Even so, NNPFs substantially outperform SSPFs in

areas where severe weather reports occur with some

regularity. One of these areas is in southern Arizona,

where severe weather often occurs in association with

monsoon thunderstorms during the summer. Many of

these events are driven by intense downburst winds in

environments with high LCLs, moderate CAPE, and

weak deep-layer shear (Carlaw et al. 2017). As in the

eastern United States, Arizona events usually do not

consist of supercells, thus UH is an insufficient severe

weather surrogate. Other diagnostic fields that are incor-

porated into the NN (e.g., 10-m wind speed, LCL height,

etc.) may be providing more useful information in these

regions where convective wind reports are common.

Southern Florida and southwest Texas are two re-

gions where NNPFs do not appreciably outperform

SSPFs, and in the latter actually underperform SSPFs.

In both of these regions, storm reports are rarely

FIG. 10. Brier skill score and BSS difference aggregated by fore-

cast hour for (a) 40- and (b) 120-km SSPFs and NNPFs. Shading

along curves represents bootstrapped 90% confidence intervals.

FIG. 11. As in Fig. 10, but for ROCA.
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received, although convection is common. As a result

of the difficulty of getting storm reports, the optimal

UH thresholds are large in both areas during the warm

season (.100m2 s22; Fig. 3a). While the NN should be

able to learn that reports do not often occur in these

areas (through the latitude and longitude fields) and

adjust probabilities accordingly, the relatively small

areas where these reporting biases exist may make it

difficult for the NN to sufficiently modify forecasts,

leading to overpredictions in the NNPFs.

c. Verification by environment

To isolate the convective regimes where NNPFs

were able to outperform SSPFs, BSS andROCA values

were computed for forecast grid points within specific

most-unstable convective available potential energy

(MUCAPE) and 0–6-km deep-layer shear (SHR06)

bins. The MUCAPE and SHR06 magnitudes used for

aggregation were the spatial averages within each

80-km grid box. Verification results using the 120-km

neighborhood are provided here; regimes with positive

skill were similar when using the 40-km neighborhood,

although magnitudes of BSS were reduced.

For both the SSPFs and NNPFs, the maximum BSS

occurred in regimes where either moderate amounts

of MUCAPE and SHR06, or both, were present

(Figs. 13a,c). In regimes with weak SHR06 and low

MUCAPE, skill was reduced. In fact, the SSPFs in the

FIG. 12. Brier skill score computed for each 80-km grid box for all (a),(b) SSPFs and (c),(d) NNPFs at the (left)

40- and (right) 120-km length scales. The BSS was computed using all forecasts within one grid box to increase

sample size and reduce small-scale spatial variations in the BSS. (e),(f) BSS differences between the NNPF and

SSPFs. The BSS is not shown at locations where,25 total observed storm reports occurred within the one gridbox

neighborhood, denoted by an ‘‘x.’’
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low MUCAPE/low SHR06 regimes performed worse

than climatology. The reliance on UH to produce

SSPFs is clearly detrimental in these regimes, since

UH is typically produced in environments with at least

modest MUCAPE and SHR06 (hence, the maxima

observed in these regimes). Poor forecast skill also

occurred in regimes with very large SHR06 (.40m s21)

and moderate MUCAPE, although the sample size of

forecast points in these regimes was small.

ROCA tended to behave opposite to BSS, with

ROCA maximized in low MUCAPE/high SHR06 re-

gimes (Figs. 13b,d). This behavior could be due to the

underlying predictability of events, since severe weather

events occurring with weak MUCAPE and moderate to

high SHR06 [i.e., high-shear, low-CAPE (HSLC), re-

gimes; Sherburn and Parker 2014; Sherburn et al. 2016]

often occur with robust amounts of large-scale forcing,

leading to enhanced predictability. Yet, the slightly

reduced BSS magnitudes suggest that the reliability of

the SSPFs in the HSLC regime was worse than SSPFs

in the moderate-to-high CAPE regimes. It may be that

given the enhanced predictability in HSLC regimes, that

the smoothing length scale of 160 km for the SSPFs was

too broad, leading to reduced reliability.

While positive benefits were noted across the entire

MUCAPE/SHR06 phase space, benefits of NNPFs

compared to SSPFs were maximized in regimes where

UH was a poor predictor, namely in HSLC environ-

ments (Figs. 13e,f). For these HSLC grid boxes, improve-

ments in BSS of .0.2 were common, with corresponding

large improvements in ROCA (.0.15–0.20). This combi-

nation of BSS andROCA indicates that NNPFs improved

the underlying ability to discriminate between severe and

nonsevere events in HSLC regimes, which often consist of

events that are challenging to anticipate, especially solely

with UH. In the ‘‘supercell’’ regime, ROCA differences

FIG. 13. (left) BSS and (right) ROCA aggregated by MUCAPE and SHR06 magnitudes for the 120-km (a),(b)

NNPFs and (c),(d) SSPFs. (e) BSS and (f) ROCA differences between the 120-km NNPFs and 120-km SSPFs.

Bin edges for MUCAPE and SHR06 are shown in each panel. Shading indicates larger magnitudes or differences.

Scores not shown in bins comprising ,100 forecast grid boxes (indicated by ‘‘x’’).
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were much smaller (e.g., 0.02–0.04 for MUCAPE .
2000Jkg21 and SHR06 . ;20ms21), indicating that the

NNPFs were not able to improve forecast discrimination

as effectively as in the HSLC regime, but since BSS dif-

ferences were positive, forecast reliability was improved

in the NNPFs.

6. Sensitivity of NNPF skill to predictor choices

Given the potential correlation between the 174

predictors, a more limited set of predictors could pos-

sibly produce equally skillful forecasts. Reducing the

number of predictors is desirable to both minimize the

computational burden of training the NNs and to improve

interpretation of the trained NNs. Here, four NNs were

trained with subsets of the full 174 predictors to determine

the role of categories of predictors in producing skillful

NNPFs, specifically training only with the midlevel UH

predictors (11 predictors; UHonly-NNPF), training with-

out the spatial mean and maximum neighborhood fields

(using only the 42 base predictors; NoNeighbor-NNPF),

without the explicit convection-related fields (113 predic-

tors; NoExplicit-NNPF), and without the upper-air fields

(158 predictors; NoUpperAir-NNPF). All four NNs used

the four static predictors (Table 2) and were trained only

for the 120-km spatial neighborhood.

The removal of subsets of predictors when training

the NNs resulted in NNPFs that were less skillful than

the original NNPFs (Fig. 14). The largest reduction in

skill occurred for the UHonly-NNPFs, yet the BSS

(Fig. 14a) and ROCA (Fig. 14b) were superior to the

SSPFs, even though both relied solely on the same

midlevel UH diagnostic as input. The skill difference

between the UHonly-NNPFs and SSPFs may be due to

the improved estimate of uncertainty that is learned by

the NNs. Additionally, the NNs do not have a rigid op-

timal UH threshold and can learn more complex non-

linear relationships between the UH magnitude, static

predictors such as latitude and longitude, and the like-

lihood of severe weather. The UHonly-NNPF for the

20 December 2012 convective event appears much more

similar to the SSPFs than the NNPFs (cf. Figs. 15a,b).

Thus, given only UH information, the NNs were unable

to correctly shift the forecast probabilities southward

closer to the observations.

Eliminating the upper-air fields had a negligible im-

pact on the BSS and ROCA, with larger decreases in

BSS and ROCA when the neighborhood and explicit

diagnostics were removed (Fig. 14). During many

forecast hours, especially overnight, the NoNeighbor-

NNPFs had a higher BSS than the NoExplicit-NNPFs,

even though the NoNeighbor-NNPFs used only 42

predictors compared to 113 for the NoExplicit-NNPFs.

More predictors did not necessarily result in better

forecasts, suggesting that overfitting may be an issue for

some combinations of predictors. For the 20 December

2012 event, the NoUpperAir-NNPF and the NoExplicit-

NNPFwere themost skillful of the four reduced-predictor

forecasts and was comparable to theNNPF using the full

set of predictors, correctly shifting the probabilities

southward compared to the UHonly-NNPF and the

SSPF. Interestingly, the explicit diagnostics such as UH,

updraft speed, etc., were not important for this event,

since their inclusion only marginally improved the BSS

(Figs. 15a,f). The lack of sensitivity to the explicit predic-

tors for this case may reflect deficiencies in the represen-

tation of finescale convective lines during cool-season

severe weather events, since most of the explicit diagnos-

tics did not produce robust signatures (not shown), limiting

their utility.

Finally, large differences in BSS and ROCA occurred

during model spinup (i.e., forecast hours 0–6; Fig. 14).

While the NoNeighbor-NNPFs and NoExplicit-NNPFs,

produced BSS and ROCA values only slightly smaller

than the original NNPFs during these forecast hours, the

UHonly-NNPFs and SSPFs both had larger reductions

in BSS and ROCA. Additionally, the largest reductions

in skill for the NoUpperAir-NNPFs, occurred during

model spinup. The environmental information within

the NNPFs may be more valuable than the explicit or

neighborhood predictors during the first 6 forecast

FIG. 14. As in Fig. 10b, but for (a) BSS and (b) ROCA reduction

for 120-km NNPFs trained with subsets of the input predictors

relative to NNPFs trained with all predictors.
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hours, since removal of either of these two predictor

sets did not result in appreciable reductions in skill. In

other words, NNs trained with environmental informa-

tion alone were able to make skillful predictions during

the first few hours, reducing the impact of model spinup

that plagued both the SSPFs and the UHonly-NNPFs.

7. Summary

To determine if ML algorithms can improve upon

the skill of surrogate-severe guidance based on UH,

two sets of probabilistic forecasts of severe weather

hazards were generated for 462 severe weather events

between 2010 and 2017 over the CONUS using output

from deterministic WRF-based CAM forecasts. These

included a surrogate-severe UH-based probability forecast

(SSPF) and a neural network–based probability forecast

(NNPF). The SSPFs were constructed by applying a UH

threshold to the hourly maximum midlevel UH field

and smoothing the resulting binary output. The SSPF

UH threshold was calibrated based on time of day,

season, and spatial location to produce the most skillful

guidance. The NNPFs were trained with environmental

and surrogate diagnostics and designed to predict the

probability of any severe weather report occurringwithin

specified time and space windows. Both the SSPFs and

NNPFs were generated for 4-h windows, centered on each

forecast hour within the 36-h CAM forecast, at two spatial

scales (40 and 120km), and were verified with SPC storm

reports using the BSS and ROCA.

In aggregate, NNPFs more frequently produced larger

probability values compared to SSPFs, primarily as a

FIG. 15. As in Fig. 8, but for the 120-km (a) NNPF, (b) SSPF, (c) UHonly-NNPF, (d) NoUpperAir-NNPF, (d) NoNeighbor-NNPF, and

(e) NoExplicit-NNPF derived from the 0000 UTC 19 Dec 2012 forecast.
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result of the smoothing required to produce SSPFs. These

differences in probability distributions were associated

with differences in BSS and ROCA, as NNPFs possessed

larger BSSs than SSPFs at both spatial scales, for most

individual events, andwere statistically significantly more

skillful at both spatial scales at all forecast hours. ROCA

differences were largest overnight, suggesting improved

ability to discriminate between nocturnal events in the

NNPFs. While BSS differences between the NNPFs and

SSPFs were larger for the 120-km forecasts, ROCA dif-

ferences were not a function of spatial scale, suggesting

that the added benefit of NNPFs over SSPFs at 120-km

was a function of better calibration and not an inherent

difference in the ability to discriminate between events

and nonevents. BSS differences were largest during the

first hours of the forecast, when model spinup hampered

the utility of the UH output, as well as during the be-

ginning of the first diurnal cycle (i.e., 1600–2000 UTC),

when NNPFs potentially accounted for convection initi-

ation biases inherent within the SSPFs.

The largest NNPF–SSPF BSS differences occurred in

the western and eastern United States, where SSPF skill

was reduced. In these regions, severe weather environ-

ments are often not supportive of supercells and may

involve other modes such as quasi-linear convective

systems. The difference in skill as a function of environ-

ment was supported when verifying based on convective

regime with MUCAPE and SHR06. In environments

supportive of supercells, SSPFs produced skillful guid-

ance, and the skill gap between NNPFs and SSPFs was

reduced compared to environments not supportive of

supercells (i.e., those with small MUCAPE and/or small

SHR06 magnitudes). In the nonsupercellular regimes,

SSPF skill was poor, and often worse than climatology,

while NNPFs were substantially superior to SSPFs. Large

improvements in BSS andROCAalso occurred inHSLC

environments, where marginal instability and less robust

CAM surrogate diagnostic signatures often lead to poor

operational forecasts (e.g., Guyer and Jirak 2014).

Finally, sensitivity tests were undertaken to determine

the impact of removing various sets of predictors from

the NN training. The environmental predictors were

more valuable than the explicit predictors during the

first few hours of the forecast, when the latter were

spinning up, while the explicit predictors were more

valuable overnight, potentially providing useful

guidance on the longevity of overnight mesoscale

convective systems. Finally, NNs trained with only

midlevel UH information (and static fields) out-

performed SSPFs, suggesting that even without ad-

ditional diagnostics, NNs can learn useful relationships

about forecast uncertainty and the behavior of the UH

diagnostic in different seasons and regions better than

accounting for these variations by computing optimal

UH thresholds.

8. Discussion

Some questions regarding the optimal configuration

choices for a ML-based algorithm went unaddressed in

this work, including the sensitivity of forecast skill to

many of the NN hyperparameters and choice of ML

algorithm (e.g., using a random forest [RF; Breiman

2001] instead of a NN). Regarding the optimal NN

configuration, the NN model trained with data from

2010 to 2015 was applied to produce real-time forecasts

during the spring of 2020. Preliminary results show that

this NN configuration remains capable of producing

similarly skillful forecasts to those documented here,

providing confidence in the ability of the NN configu-

ration to generalize beyond the present training dataset.

Regarding the choice of algorithm, we initially trained a

RF to produce the forecast probabilities using the same

preprocessed input as the NNs; these forecasts were

slightly less skillful than the NNPFs, but were still more

skillful than the SSPFs (i.e., the RF forecasts were more

similar to the NNPFs than the SSPFs). Optimizing the

RF hyperparameters (e.g., number of trees) may have

produced forecasts with similar skill to the NNPFs, but

the NNs were faster to train given the availability of

graphics processing units (GPUs) and produced smaller

output files, since only the NN weights and biases need

to be stored, rather than each decision tree within a RF.

Our subjective impression is that the gains in skill

achieved by using NNPFs rather than SSPFs appear to

be insensitive to the choice of using a RF or NN.

Since the NNPFs are generated from NNs that use

observed storm reports, theNNPFs inherit several of the

biases that exist within the storm report database.

These biases include the presence of an abundance of

wind damage reports that are not associated with se-

verewind gusts, especially in areas of the easternCONUS

(Weiss and Vescio 1998; Weiss et al. 2002; Doswell et al.

2005; Smith et al. 2013; Edwards et al. 2018; Bunkers et al.

2020). For example, the 20 December 2012 event pre-

sented in section 4 consisted of mostly estimated wind

gusts based on wind damage reports, with only a few

measured gusts, although the guidance was accurate in

depicting the likelihood of severe weather reports. Such

guidancemay still be useful for forecasters in anticipating

impacts even though wind speeds may have not reached

severe criteria. While the usage of an 80-km grid likely

reduces some of these overreporting biases, it cannot

account for underreporting biases in areas with low

population density, such as large swaths of the western

CONUS (Weiss et al. 2002). Additionally, our training
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dataset does not include many events occurring in the

western CONUS, or marginally severe events in other

regions. In these scenarios, NNPFs may be prone to

overprediction. In the future, we hope to include addi-

tional events and verification datasets, such as radar-

estimated hail sizes, in the training procedure, and to

produce distinct probabilities for measured and esti-

mated wind gusts.

Other simple postprocessing baselines should be con-

sidered for comparison to ML-based guidance to justify

the added complexity and computational costs of ML

algorithms. One example is probabilistic forecasts de-

rived using historical frequencies of reports given explicit

and environmental parameters, such as calibrated prob-

abilistic guidance generated by the SPC using output

from the NOAA High-Resolution Ensemble Forecast

(HREF) and Short-Range Ensemble Forecast (SREF)

systems (Jirak et al. 2014). These calibrated forecastsmay

perform more skillfully than SSPFs since the historical

information informs the probability magnitudes, while

SSPF magnitudes are solely a function of the spatial

density of points where the UH threshold is exceeded

within chosen space and time windows.

Given the robust improvements in skill of NNPFs

across a broad range of environments, forecast hours, and

regions, especially in environments where SSPF skill was

poor, this work supports the inclusion of ML-based se-

vere weather guidance in the forecasting process to assist

in the identification of severe weather hazards. That said,

our forecasts were not designed to mimic current opera-

tional forecasting guidance, such as SPC Convective

Outlooks, as in prior work that produced and verified

SSPFs (e.g., Sobash et al. 2011, 2016; Loken et al.

2017). As implemented here, SSPFs and NNPFs are

more aligned with efforts to produce rapidly updating

finescale probabilistic hazard guidance, such as that

envisioned within the NOAA Forecasting a Continuum

of Environmental Threats (FACETs) paradigm (Rothfusz

et al. 2018), where the spatial and temporal scales of the

guidance may vary based on forecast lead time and the

underlying predictability of each hazard. Additionally,

future SPC guidance products will likely provide more

temporal specificity, and efforts to produce subdaily

probabilistic forecasts are underway within NOAA

(Krocak and Brooks 2020; I. Jirak 2020, personal

communication). UsingML-based algorithms to produce

first-guess or final-check guidance products could form

the basis for these next-generation probabilistic con-

vective weather postprocessing systems, yet better

understanding the internals of the trained NNs will be

necessary to elucidate the most important input fields

and to reduce their complexity before they are used

operationally (e.g., McGovern et al. 2019).
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