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ABSTRACT

A feed-forward neural network (NN) was trained to produce gridded probabilistic convective hazard pre-
dictions over the contiguous United States. Input fields to the NN included 174 predictors, derived from
38 variables output by 497 convection-allowing model forecasts, with observed severe storm reports used for
training and verification. These NN probability forecasts (NNPFs) were compared to surrogate-severe proba-
bility forecasts (SSPFs), generated by smoothing a field of surrogate reports derived with updraft helicity (UH).
NNPFs and SSPFs were produced each forecast hour on an 80-km grid, with forecasts valid for the occurrence
of any severe weather report within 40 or 120 km, and 2 h, of each 80-km grid box. NNPFs were superior to
SSPFs, producing statistically significant improvements in forecast reliability and resolution. Additionally,
NNPFs retained more large magnitude probabilities (>50%) compared to SSPFs since NNPFs did not use
spatial smoothing, improving forecast sharpness. NNPFs were most skillful relative to SSPFs when predicting
hazards on larger scales (e.g., 120 vs 40 km) and in situations where using UH was detrimental to forecast skill.
These included model spinup, nocturnal periods, and regions and environments where supercells were less
common, such as the western and eastern United States and high-shear, low-CAPE regimes. NNPFs trained with
fewer predictors were more skillful than SSPFs, but not as skillful as the full-predictor NNPFs, with predictor
importance being a function of forecast lead time. Placing NNPF skill in the context of existing baselines is a first
step toward integrating machine learning—based forecasts into the operational forecasting process.

1. Introduction “surrogate-severe’” framework). When using deter-
ministic CAM output, a quasi-probabilistic forecast of
severe weather is produced; for an ensemble, the in-
dividual smoothed deterministic hazard forecasts can
be averaged to produce a surrogate-severe ensemble-
based hazard forecast (e.g., Sobash et al. 2016). Studies
have used surrogate-severe forecasts to produce hazard
guidance for CAMs, including individual hazards such
as large hail (Gagne et al. 2017) and tornadoes (Clark
et al. 2013; Gallo et al. 2016, 2018, 2019b; Sobash et al.
2019), as well as evaluate differences in the skill of
severe hazard predictions among different CAM con-
figurations (e.g., Gallo et al. 2019a).

The 2-5km above ground level updraft helicity (UH)
diagnostic (Kain et al. 2008) has been the most utilized
diagnostic, as it can indicate the presence of supercells
and intense squall lines in CAM output, which regularly
produce convective hazards. Sobash and Kain (2017)
demonstrated that surrogate-severe forecasts are most
skillful when the UH threshold varies as a function of
season and region, in part due to the diversity of con-
Corresponding author: Dr. Ryan A. Sobash, sobash@ucar.edu vective environments and modes that generate severe

Convection-allowing models (CAMs), i.e., numerical
weather prediction (NWP) models configured with
horizontal grid spacings =< 4 km, are routinely used to
provide forecast guidance for convective storms. While
partially resolving convective systems, CAMs do not
resolve most hazards (i.e., tornadoes or hail = 2.54 cm
in diameter). Thus, an extensive body of research has
been devoted to developing methods to extract hazard
information from CAMs to improve hazard forecasting,
primarily using diagnostics as surrogates, or proxies, for
the occurrence of a convective hazard (e.g., Kain et al.
2008; Sobash et al. 2011, 2016, 2019; Clark et al. 2013;
Loken et al. 2017; Gallo et al. 2016, 2018, 2019b).

The majority of studies using CAM diagnostics as
surrogates determine the locations of severe convective
hazards by thresholding the diagnostic field and smoothing
the resulting binary forecast to account for spatial
errors in hazard location (henceforth referred to as the
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weather hazards. Variations in appropriate UH thresh-
olds have also been noted in case studies of cool-season
convection (e.g., Guyer and Jirak 2014). However,
varying the UH threshold is difficult to implement
without a large set of forecasts that can be used for
calibration.

Other challenges with using the surrogate-severe frame-
work include the need for multiple diagnostics to cap-
ture different processes responsible for different severe
weather hazards (e.g., UH for mesocyclones versus
column maximum graupel for hail) and the rigidity of a
diagnostic threshold value (i.e., a storm with intensity
slightly below the threshold is viewed as nonsevere).
Further, the smoothed probabilities derived from a
deterministic forecast are based solely on the spatial
density of points exceeding the diagnostic threshold,
often with fixed smoothing parameters. Constructing
an optimal set of diagnostics, thresholds, and smooth-
ing parameters quickly becomes onerous within the
surrogate-severe framework as one attempts to antici-
pate the variety of convective modes, processes, and
diagnostic magnitudes that are related to severe weather
hazards. While model configuration also plays a role in
how these parameters are chosen (e.g., Potvin et al.
2019), the sensitivity to convective environment and
mode are most relevant, since model configuration can
presumably be accounted for a priori, while the con-
vective environment and scenario can vary substantially
from day to day.

One potential path forward to improve severe weather
hazard guidance with CAMs is to apply machine-learning
(ML) algorithms to learn the relationships between
CAM diagnostics, environmental properties, and diag-
nostic magnitudes associated with the potential for se-
vere weather hazards. While ML techniques have been
applied to a variety of high-impact weather prediction
problems (Marzban and Stumpf 1998; Cintineo et al.
2014; Lagerquist et al. 2017; McGovern et al. 2017;
Herman and Schumacher 2018), few have used CAMs
as input into ML models to produce convective hazard
guidance. For example, Gagne et al. (2017) and Burke
et al. (2020) both trained ML models by combining re-
motely sensed hail size observations and forecast CAM
hail size diagnostics, and then used the trained models
to predict and calibrate hail size using real-time
CAMs as input. While their ML hail forecasts ex-
hibited skill, some verification metrics indicated that
the surrogate-severe hail forecasts generated with UH'

! Both Wendt et al. (2016) and Adams-Selin et al. (2019) noted
that UH is one of the most skillful CAM diagnostics for anticipating
severe hail occurrence, especially for hail = 2 in. in diameter.
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were competitive with the ML-based guidance, although
the ML forecasts were less biased.

Other studies have used ML techniques to classify
simulated storms but did not produce hazard guidance.
For example, Robinson et al. (2013) used a neural net-
work to classify simulated CAM storms as severe or
nonsevere in CAM simulations downscaled from re-
gional reanalyses, while, Gagne et al. (2019) used CAMs
together with a convolutional neural network to identify
different storm modes. A common limitation of many of
these studies is the reliance on a storm-based frame-
work, which constrained ML predictions to locations
where storms were present in CAM output, neglecting
storm initiation and placement biases in CAMs.

To move beyond the surrogate-severe framework of
generating convective hazard guidance, this study eval-
uates the skill of output from a feed-forward neural
network (NN) that was designed to provide grid-based
probabilistic predictions of convective hazards using
CAM diagnostics as input fields. A feed-forward NN was
chosen due to its simplicity, and makes training with a
large database of forecasts more tractable. Compared to
storm-based ML guidance (e.g., Burke et al. 2020), the
grid-based NN predictions are not constrained to produce
predictions where simulated storms occur, allowing the
NNs to potentially learn biases associated with CAM
storm initiation or placement. The NN probabilistic
forecasts were compared to quasi-probabilistic forecasts
generated with UH using the surrogate-severe frame-
work to understand the locations, times, and environ-
ments in which ML-based forecasts provided added
benefit over the UH-based surrogate-severe forecasts for
convective hazard prediction. Finally, the sensitivity of
the NN predictions to different subsets of predictors is
documented to better understand what variables con-
tribute most to NN forecast skill.

2. Methodology
a. 3-km WREF forecast dataset

The forecast dataset consisted of 497, 36-h, fore-
casts produced with version 3.6.1 of the WRF Model
(Skamarock et al. 2008) and used NOAA 0.5° Global
Forecast System (GFS) initial and boundary conditions.
The forecasts had 3-km horizontal grid spacing and
spanned the entire contiguous United States (CONUS;
Fig. 1). Physics schemes are listed in Table 1. Events
were selected from the NOAA Storm Prediction Center
(SPC) severe weather event archive. Many criteria de-
termined which events are included in the SPC archive,
including the number of observed storm reports on a
given day and the maximum categorical threat level
(e.g., moderate risk). The forecast dataset consisted of
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F1G. 1. WRF computational domain. The 80-km grid boxes used
for verification are shaded.

events between 15 October 2010 and 15 July 2017, ex-
cluding 15 July-15 October each year. The selection
strategy was designed to identify high-impact warm-
and cool-season severe weather events east of the
Rockies, while neglecting events in the western United
States and in association with landfalling tropical cy-
clones. This reforecast dataset was used in previous
work to study next-day precipitation (Schwartz and
Sobash 2019) and tornado (Sobash et al. 2019) forecast
skill. The full list of events, additional details about the
selection criteria, and configuration choices for WRF
are available in Sobash et al. (2019).

b. Preprocessing CAM diagnostic fields

Each of the 497 3-km WREF forecasts produced a set
of 38 diagnostics, which were preprocessed to produce
input into the NN. The diagnostics included environ-
mental, upper-air, and explicit surrogate fields (Table 2).
Some diagnostics were derived from combinations of
other diagnostics [e.g., the significant tornado parameter
(STP) or the 700-500-hPa lapse rate; Table 2]. To reduce
the dimensionality of the raw model output, the diag-
nostics were upscaled onto an 80-km grid. For the upper-
air and environmental fields, each 80-km grid point
was assigned the mean value of the 3-km gridpoint
values within each 80-km grid box at each forecast hour.
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For the surrogate fields, each 80-km grid point was as-
signed the maximum value over all 3-km grid points
within each 80-km grid box. Since the surrogate fields
were computed as hourly maximum values (Kain et al.
2010), using the gridbox maximum ensures that ex-
tremes in the output were retained.

In addition to the 38 diagnostics computed for each
forecast grid point, larger spatial and temporal averages
and maxima were computed to account for spatial and
temporal errors in storm placement. Specifically, pre-
dictors were constructed by averaging the environmen-
tal fields and computing the maximum of the explicit
fields within one or two grid boxes (in each direction)
and temporal 0-, 1-, or 2-h windows of each 80-km grid
box, producing six additional predictors for each envi-
ronmental and explicit diagnostic. Forecast hour, grid-
point latitude and longitude, and day of year were also
used as predictors. Combined, 174 predictors were used
as input for each 80-km grid box at each forecast hour
(Table 2; Fig. 2). Since observed severe weather reports
were only available within the CONUS, 80-km grid
points outside the CONUS were not used for training.
The end result of the preprocessing procedure was a
collection of 1298 80-km grid boxes, for each forecast
hour and forecast, producing a total of ~21 million grid
boxes, each with 174 predictors.

c. Training and verification

To reduce the computational burden of training the
NN with ~21 million grid boxes, the preprocessed
WREF dataset was split in half using a random selection
of grid boxes, leaving ~11 million grid points for train-
ing. Using this thinned dataset, six NNs were trained for
each year between 2011 and 2016, with the grid boxes
for that year removed. For example, forecasts for 2012
were produced using a NN trained with forecast grid
boxes occurring in 2010-11 and 2013-17. NNs were not
trained for the 2010 and 2017 forecasts to ensure that
each year’s NN had a similar size of training data (2010
and 2017 only had 9 and 19 WREF forecasts, respec-
tively). The final training dataset for each year included
~9 million grid boxes (~400 forecasts) and ~2 million

TABLE 1. Physical parameterization schemes used for WRF Model forecasts.

Parameterization type Scheme

Reference

Microphysics
Longwave and shortwave radiation

Thompson

Planetary boundary layer
Land surface model
Cumulus parameterization

Noah
None

Rapid Radiative Transfer Model for Global
Climate Models (RRTMG) with ozone
and aerosol climatologies

Mellor—Yamada—Janji¢ (MYJ)

Thompson et al. (2008)

Mlawer et al. (1997)

Tacono et al. (2008)

Tegen et al. (1997)

Mellor and Yamada (1982; Janji¢ (1994, 2001)
Chen and Dudhia (2001)

None
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TABLE 2. List of 42 base predictors used to train the NNs. The
mean of the environmental and upper-air fields, and the maximum
of the explicit fields, within each 80-km grid box, was used as input
into the NNs. In addition to the 42 base predictors, 132 neighbor-
hood predictors were constructed by taking larger spatial and
temporal means and maximums of the 15 environmental and 7
explicit fields, as described in the text, resulting in a final set of 174
predictors used as input into the NNs.

Base predictor Type

Forecast hour Static
Day of year Static
Latitude Static
Longitude Static
Surface-based convective available potential Environment

energy
Most-unstable convective available potential Environment

energy
Surface-based convective inhibition Environment
Mixed-layer convective inhibition Environment
0-6-km bulk wind difference Environment
Mixed-layer lifted condensation level Environment
0-1-km bulk wind difference Environment
0-1-km storm-relative helicity Environment
0-3-km storm-relative helicity Environment
2-m temperature Environment
2-m dewpoint temperature Environment
Surface pressure Environment
Product of most-unstable convective available po- Environment

tential energy and 0-6-km bulk wind difference
Significant tornado parameter Environment
700-500-hPa lapse rate Environment
Hourly max 2-5-km updraft helicity Explicit
Hourly max 0-3-km updraft helicity Explicit
Hourly max 0-1-km updraft helicity Explicit
Hourly max updraft speed below 400 hPa Explicit
Hourly max downdraft speed below 400 hPa Explicit
Hourly max 10-m wind speed Explicit
Hourly precipitation accumulation Explicit
925-, 850-, 700-, and 500-hPa zonal wind speed Upper air
925-, 850-, 700-, and 500-hPa meridional wind speed Upper air
925-, 850-, 700-, and 500-hPa temperature Upper air
925-,850-,700-, and 500-hPa dewpoint temperature Upper air

grid boxes evaluation (~100 forecasts). Prior to train-
ing, the preprocessed data were normalized based on
the full dataset distribution mean and standard devia-
tion for each predictor.

The NN configuration used for training was chosen
based on previous work that applied NNs to meteoro-
logical data (e.g., Gagne et al. 2019). In general, a NN is
configured with multiple layers of neurons, including an
input, output, and one or more hidden layers. Each
neuron takes a linear weighted combination of inputs
from the previous layer and computes an output using
an activation function that is fed into the subsequent
layer (Fig. 2). Here, the input layer consisted of 174
neurons, one for each predictor, while the output
layer consists of 1 neuron, providing a probability of
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any severe weather hazard associated with the com-
bined set of input predictors. The hidden layer in-
cluded 1024 neurons, other sizes of the hidden layer
produced NNs with similar performance characteris-
tics. Other hyperparameter choices are provided in
Table 3. Finally, the weights within the NN were ini-
tialized randomly, meaning each retraining of the NN
produced slightly different results, but these varia-
tions in skill were small and did not impact the con-
clusions. Since the results were largely insensitive to
several of the hyperparameters, we feel that the NN
configuration here is robust and not designed specifi-
cally to optimize predictions from this set of forecasts.
Generalization of the NNs beyond the CAM output
used here is discussed in section 8.

SPC storm reports® (Schaefer and Edwards 1999)
were used for training two NNs and for verifying the
predictions. The two NNs were identical except for the
spatial radius (40 and 120km) used to label grid boxes
where any severe report occurred; the temporal toler-
ance of 2h was identical for both NNs. The choice of a
spatial radius of 40km was made to match the SPC
probabilistic forecast definition and to be consistent with
the 80-km grid size. The 120-km length scale was used to
examine forecast predictability on larger spatial scales.
The 2-h temporal tolerance was based on the desire of
SPC to produce 4-h probabilistic severe weather guid-
ance in the future (Krocak and Brooks 2020). Based on
these choices, the NNs output probabilities of any severe
weather report occurring within 40 or 120 km in space
and 2 h in time for each grid box and forecast hour. The
output from the NNs will be denoted as neural network
probability forecasts (NNPFs).

NNPFs were verified with the binary storm report
fields for each of the 469 events between 2011 and 2016
using the Brier skill score (BSS; Wilks 2006) and the
relative operating characteristic area under the curve
(ROCA; Mason 1982; Marzban 2004). Additionally,
reliability diagrams (Wilks 2006) were computed to as-
sess forecast reliability. As in Sobash and Kain (2017;
SK17), instead of computing the BSS with the full
sample climatology as a reference forecast, a spatially
and temporally varying 30-yr severe weather climatol-
ogy was computed using all severe reports occurring
between 1986 and 2015. This climatology was computed
for each 80-km grid box, day of the year, and hour of the

% Including all reports of tornadoes, hail = 1 in. in diameter, and
measured or estimated wind gusts = 50kt (including reports with
an unknown wind gust magnitude). Reports retrieved from SPC
storm report archive available at https://www.spc.noaa.gov/wem/.
Section 8 discusses some of the issues associated with using storm
reports for NN training and verification.


https://www.spc.noaa.gov/wcm/
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Neural network probability forecast (NNPF)

For each 80-km grid box, the following
predictors are computed with the 3-km
WRF output:
* Grid-box mean environmental fields (15)
* Grid-box mean upper-air fields (16)
» Grid-box maximum explicit fields (7)
» Neighborhood fields within 1 or 2 grid
boxes and 0, 1, or 2 hours:

* Mean environmental fields (90)

+  Maximum explicit fields (42)
+ Static fields (4)

Output is severe
weather probability
within Th and Xkm
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Trained using storm
reports within T h
and X km

Surrogate severe probability forecast (SSPF)

A binary field of SSRs is

For each 80-km grid box at
each forecast hour, the
maximum of the 3-km
updraft helicity field is
computed within within T h
and X km.

produced by thresholding
the maximum UH field
using the optimal UH

threshold computed for
that grid-box, season,

The binary field is
spatially smoothed
with a Gaussian
smoother with
0=160 km

—

Output is severe
weather probability
within Th and Xkm

and forecast hour.

F1G. 2. Summary of WRF preprocessing and procedure to generate SSPFs and NNPFs, including the neural network configuration; 7" and
X represent the time (2 h) and space (40 or 120 km) windows used in the paper to train the NNs.

day, by aggregating reports within space and time win-
dows consistent with how the probabilities were defined
when training the NNs. For example, the baseline cli-
matological forecast when computing the BSS for the
120-km, 2-h probabilities was a climatology of severe
weather occurring within 120km and 2h of an 80-km
grid box. To produce a smoothly varying climatology, a
Gaussian smoother was applied with a standard devi-
ation of 15 days, 1.5 grid boxes, and 1.5h. The ROCA
was computed with the scikit-learn (Pedregosa et al.
2011) function ‘“‘roc_auc_score,” which computes the
ROCA using a trapezoidal method with all unique
probability values as decision points. To reduce the
potential impact of small probabilities when computing
the BSS and ROCA, probabilities < 0.1% were set to
0.0 in the NNPFs.

d. Creation of surrogate-severe probability forecasts

Surrogate-severe probability forecasts (SSPFs) were
used as a baseline to assess the added value of the
NNPFs. The procedure to produce the SSPFs was
similar to that outlined in Sobash et al. (2011) and SK17
who both used the UH diagnostic to identify locations
where surrogate-severe reports (SSRs) occurred in the
model and produced quasi-probabilistic forecasts by
smoothing the binary SSR fields. While Sobash et al.

Brought to you by NOAA Central

(2011) used a fixed UH threshold to determine SSR
locations, SK17 used a varying UH threshold based
on latitude, longitude, and day of the year, demon-
strating that doing so led to improvements in forecast
skill. To produce the most skillful UH guidance pos-
sible, we apply the methods of SK17 here, using
“optimal” UH thresholds that lead to SSR biases
near one when compared to a field of observed storm
reports (OSRs) computed analogously to the SSRs

TABLE 3. Settings used to construct and train the neural net-
works. The neural networks were trained using the keras python
package and employed graphics processing units (GPUs) to ac-
celerate the training process.

Hyperparameter Value
No. of hidden layers 1
No. of neurons in hidden layer 1024
Dropout rate 0.1
Learning rate 0.001

No. of training epochs 10
Hidden layer activation function Rectified linear unit
Output layer activation function Sigmoid

Optimizer Stochastic gradient descent
Loss function Binary cross-entropy
Batch size 1024
Regularization L2

Batch normalization On
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(i.e., a binary 80-km grid indicating locations where at
least one report occurred).

Several modifications to the SK17 approach were re-
quired. First, the discontinuous nature of the current
WREF forecasts prevented optimal thresholds from being
computed for each day of the year (i.e., weeks often exist
in the dataset where no WRF forecasts were produced).
Instead, two sets of optimal thresholds were computed,
one using all warm-season (March-July) and another
using all cool-season (October-February) forecasts.
Second, optimal UH thresholds were computed for
each forecast hour, rather than daily in SK17, since
SSPFs and NNPFs were produced for each 4-h period
centered on each forecast hour, rather than the 24-h
SSPFs in SK17. Third, a 2-h temporal neighborhood
was used to aggregate OSRs (e.g., for the 1000 UTC
climatology, all OSRs occurring within 0800-1200 UTC
were considered when computing the bias). Finally, if
fewer than 25 OSRs occurred in a given 80-km grid box,
after spatial aggregation, then the optimal UH threshold
for that grid box was set to that using all SSRs and OSRs
within the domain. Other aspects of selecting the UH
thresholds were identical to SK17, including using all
SSRs and OSRs within a two gridbox spatial neighbor-
hood to compute the biases.

The result of the UH calibration process were fields of
optimal UH thresholds, computed for each 80-km grid
box, that varied by season, latitude, longitude, and
forecast hour (Fig. 3). All 497 forecasts were used to
compute the optimal UH thresholds, which gives an
advantage to the SSPFs over the NNPFs, since the op-
timal UH thresholds were determined based partly on
the verifying OSRs. Due to this, the skill of the UH
guidance presented here is likely an upper bound, re-
flecting the highest possible baseline for the NNPFs to
exceed. The variability of the optimal UH thresholds
was similar to that noted in SK17, including smaller
optimal UH thresholds during the cool season than in
the warm season and smaller optimal UH thresholds in
the eastern United States compared to the central Plains
during the warm season (Fig. 3).

The optimal UH thresholds were used to produce 40-
and 120-km, 4-h SSPFs with output from each WRF
forecast. The 40-km (120-km), 4-h SSPFs were based on
SSRs computed where the optimal UH threshold was
exceeded within 40km (or 120km) and 2h at each
80-km grid box. Thus, the probabilistic event definitions
for SSPFs and NNPFs were equivalent (i.e., the proba-
bility of an event within 40 or 120 km and 2 h of an 80-km
grid box). The SSPFs were produced by smoothing the
binary SSRs using a Gaussian smoother at each hour
with a Gaussian standard deviation o of 160 km. This
choice of o was informed by previous work (e.g.,
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FIG. 3. Optimal UH thresholds for 2100 UTC for the (a) warm
season and (b) cool season. Optimal UH thresholds computed as
described in the methodology. Locations where fewer than 25
observed severe weather reports occurred (denoted with x) were
assigned an optimal UH threshold using a bias of 1 computed with
all grid boxes.

Sobash et al. 2011) and produced SSPFs that maxi-
mized the BSS for most locations and times. Since the
SSPFs were based on the maximum UH occurring
within specified space and time windows, they can be
considered smoothed neighborhood-maximum ensem-
ble probabilities (NMEPs), as defined in Schwartz and
Sobash (2017). While SSPFs were produced using spatial
smoothing of the SSRs, the NNPFs were not spatially
smoothed. In fact, spatial smoothing decreased NNPF
skill (further discussion of smoothing and its impact on
probability magnitudes is provided in the next section).
As with the NNPFs, probabilities < 0.1% were set to 0.0
for the SSPFs and verified using the metrics described in
section 2c.

3. Comparison of NNPF and SSPF probability
distributions

To assess the difference in the probabilities produced
by the NNPFs and the SSPFs, the frequency of 40- and



OCTOBER 2020

SOBASH ET AL.

1987

108 10°
(a) 40 km (b) 120 km
107 107
106 106
9 8
C c
g10° S 105
o o
2104 2104
[e] (o]
g 3
£ 10 £ 10
2 E:
102 102
10! 10!
0 0
10,0 0.2 0.4 0.6 08 1o %0 0.2 0.4 0.6 0.8 1.0
Probability Probability

FIG. 4. Histogram of (a) 40- and (b) 120-km NNPF and SSPF probabilities for all grid points, forecast hours,
and events.

120-km 2-h forecast probability values over all forecast
hours and grid points was examined. While both the
120-km SSPFs and NNPFs covered nearly all proba-
bilities, the 40-km forecasts rarely produced probabil-
ity values > 75% (Fig. 4). This behavior was expected,
since the probabilities in the 40-km forecasts are de-
fined for an event occurring over a smaller spatial scale
than in the 120-km forecasts. The most notable differ-
ences in the SSPF and NNPF distributions occurred at
small and large probability values. The NNPFs pro-
duced fewer probability values of zero, and a larger
number of grid points with probability values > 70%
(Fig. 4). The largest relative differences between the
forecasts tended to occur at probabilities between 1%
and 20%, as well as probabilities > 70%, where the
NNPFs produced as many at 600% more grid points.
For example, probability magnitudes >~95% were
produced about 10 times as often in the 120-km NNPFs
compared to the 120-km SSPFs (Fig. 4b); this was
similar in the 40-km forecasts, although at smaller
probability values (Fig. 4a). For intermediate proba-
bility values between 30% and 60 %, the number of grid
points were more similar, with the 40-km (120-km)
SSPFs producing a slightly larger (smaller) number of
grid points than the NNPFs.

The larger number of NNPF probability values >
60%—70% is partly a result of the spatial smoothing used
to create the SSPFs, which reduced the magnitude of
the SSPF probabilities. While reducing the smoothing
length scale would produce SSPFs with a similar number of
grid points with forecast probabilities > 60% compared to
NNPFs, this generally decreased SSPF skill and produced
larger differences within smaller probability ranges (not
shown). For the SSPFs, the spatial smoothing procedure is
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the mechanism that produces the probabilistic uncertainty
estimates, based solely on the spatial distribution of UH
points exceeding the given threshold. On the other hand,
the NNs have learned this uncertainty from previous ob-
servations of severe weather events, providing a better
representation of the underlying uncertainty within the
NNPFs. Thus, it appears that the NNPFs possess proba-
bility distributions that have a similar character to the
SSPFs, but retain the highest probability magnitudes due
to the lack of spatial smoothing. Whether these differences
occur concomitant with improved forecast skill will be
examined in the next section.

4. Daily verification of NNPFs and SSPFs

Daily BSSs were computed for each event by aggre-
gating the skill of all 4-h forecasts across all forecast
hours and grid boxes to isolate events when large skill
differences occurred. While the daily skill between the
SSPFs and NNPFs was strongly correlated, likely due
to both being based on the same underlying WRF
forecast, daily NNPF BSSs were consistently larger
than the corresponding daily SSPF BSSs for both the
40- and 120-km forecasts, but especially the 120-km
forecasts (Fig. 5). In fact, the SSPFs outperformed the
NNPFs for only 20 of the events at 120 km (Fig. 5b).
The average BSS difference was ~0.04 for the 40-km
forecasts, and ~0.11 for the 120-km forecasts. The
larger difference in skill at the 120-km length scale may
be due to enhanced predictability on large scales, with
the 120-km forecasts better able to make use of the
large-scale and environmental information compared
to the SSPFs (at 40 km, both forecasts may be equally
impacted by reduced predictability).
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FIG. 5. Scatterplot of 469 daily BSSs for the (a) 40- and (b) 120-km SSPFs and NNPFs shown as filled gray
circles. Aggregate BSS for all forecasts shown as filled black circles. The daily BSS was computed with all
individual 4-h forecasts for all forecast hours and grid boxes over the CONUS. The BSS was computed using a
temporally and spatially varying 30-yr severe weather climatology as the reference forecast, as described in

the text.

SSPFs and NNPFs notably differed during an over-
night convective event between 0000 and 1200 UTC
20 December 2012. During this event, a convective line
formed in eastern Oklahoma and Texas, moving east-
ward into the southeastern United States, producing
163 wind, 3 tornado, and 6 hail reports (Fig. 6a). The
0000 UTC 19 December 2012 WRF forecast correctly
predicted the location and timing of this line ~33h in ad-
vance, although the character of the convective cores was
more cellular in the model than in observations (Fig. 6b).
Given the limited UH magnitudes (e.g., <20m?s %) as-
sociated with the convective line, SSPFs were low, with
the maximum SSPF magnitudes displaced to the north

(a) 20 Dec 2012 08:55Z observed reflectivity

of where reports were observed, leading to BSSs near
zero at both spatial scales (Figs. 7a,b). On the other
hand, the NNPF magnitudes were larger with a maxi-
mum shifted to the south, in much better agreement with
reports, leading to positive BSSs (Figs. 7c,d).

SSPFs were produced for fixed UH thresholds of 10,
20, and 30m?s~ 2 to test if a threshold determined a
posteriori would lead to better guidance rather than
relying on the optimal calibrated UH threshold (Fig. 8).
For this event, SSPFs using fixed UH thresholds of
10 and 20m?s~? were more skillful than those using
the optimal calibrated UH threshold, but even so, the
BSS for these fixed-UH SSPFs remained less than the

(b) 20 Dec 2012 09Z simulated composite reflectl\.'lty

FIG. 6. (a) 0855 UTC observed and (b) 0900 UTC simulated composite reflectivity for the 20 Dec 2012 con-
vective weather event. Simulated reflectivity generated from deterministic WRF 33-h forecast initialized at

0000 UTC 19 Dec 2012.
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FIG. 7. Maximum 4-h severe hazard (tornado, hail, or wind) probability produced over all forecast hours between
0000 UTC 19 Dec 2012 and 1200 UTC 20 Dec 2012 for (a) 40-km SSPFs, (b) 120-km SSPFs, (c) 40-km NNPFs,
and (d) 120-km NNPFs. SSPFs and NNPFs were derived from the deterministic WRF forecast initialized on
0000 UTC 19 Dec 2012. Circles represent grid boxes where at least one severe weather report was received within

(left) 40 or (right) 120 km during the 36-h forecast.

NNPFs. That is, even a UH threshold that was chosen
after the event, to maximize SSPF skill, was not as
skillful as the NNPFs. Additionally, the fixed-UH
SSPF probabilities, as well as the optimal UH SSPFs,
were shifted spatially with respect to the reports, with a
probability maximum near St. Louis, Missouri, while
the NNPFs produced a maximum in western Arkansas
where many wind reports were observed. For this

Brought to you by NOAA Central

event, the NNPFs provided added value beyond what
was possible by carefully calibrating the UH magnitude,
either through the usage of climatological optimal
threshold or an a posteriori fixed UH threshold that was
selected to maximize forecast skill. Given the challenge
of anticipating cool-season severe weather, especially
those occurring in environments of limited instability
where wind damage is the predominant threat, it is
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threshold, of 10,20, and 30 m?s ™2 in (a)—(c), respectively. (d) Maximum UH magnitude within 40 km of each 80-km
grid box.

promising that the NNPFs were able to provide superior  differences were larger at 120 km than 40 km. At 40-km,
severe weather guidance compared to the SSPFs. NNPFs were more reliable at probabilities > 50%, but
still suffered from overforecasting. At 120km, over-
forecasting was reduced, and NNPFs produced almost
perfect reliability for all probabilities, while SSPFs

In aggregate, NNPFs produced larger BSS, ROCA, slightly overforecasted at probabilities between 20%
and better reliability than SSPFs at both length scales and 50%. To provide additional detail on when and
(Fig. 9). Similar to the daily BSS results, the BSS where differences in skill occurred between the NNPFs

5. Aggregate verification of NNPF and SSPFs
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1991

confidence intervals. Bins are 0%-<10%, 10%-<20%, etc.

and SSPFs, the verification results were further aggre-
gated by forecast hour, grid box, and environment.

a. Verification by forecast hour

While both SSPFs and NNPFs possessed skill relative
to climatology at all forecast hours, NNPFs statistically
significantly outperformed SSPFs for both neighbor-
hood sizes (Fig. 10). Additionally, BSS differences were
accompanied by improvements in ROCA, with ROCA
as much as 0.2 larger for the NNPFs (Fig. 11). The
magnitude of BSS differences between the NNPFs and
SSPFs was partly a function of neighborhood size, with
less advantage of the NNPFs at 40km than 120km
(Fig. 10). The scale dependence of the BSS differences
could be due to small-scale uncertainty impacting the
skill of both the SSPFs and NNPFs at 40 km. Conversely,
ROCA magnitudes for both NNPFs and SSPFs were
largely insensitive to neighborhood size (Fig. 11).

Magnitudes of the BSS and ROCA differences be-
tween NNPFs and SSPFs exhibited some diurnal vari-
ability. While the SSPFs and NNPFs had similar diurnal
cycle of skill, with BSS maximized during the peak of the
diurnal cycle and minimized during the overnight and
early morning, the biggest differences in skill occurred
early in the forecast, during model spinup (Fig. 10).
During the first few hours of integration, no spinup was
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observed for the NNPFs, with 1-6-h NNPFs exhibiting
fairly constant BSS and ROCA, while the BSS and
ROCA of the SSPFs increase during the first 6h as
convection and the associated UH field spins up (Figs. 10
and 11). The ability of the ML forecasts to account for
spinup during the first few hours of the forecast is useful,
likely relying on larger-scale fields and weighting UH
and other high-resolution fields less. This hypothesis will
be examined in section 6.

Differences in BSS also maximized between forecast
hours 18-20, during the peak period of convection ini-
tiation (Fig. 10). Here, the NN may have learned biases
related to delayed forecast initiation relative to ob-
servations. (e.g., Kain et al. 2013). This is also partly
reflected in the earlier timing of the peak in skill of the
ML forecasts (~2200 UTC), compared to the SSPFs
(~0000 UTC). The ROCA differences decreased slightly
during this period (Fig. 11), indicating that improvement
in skill was mainly related to improved forecast reli-
ability. Future work should investigate the ability of the
NNs to adjust for biases in forecast initiation. Finally,
ROCA differences were maximized overnight when the
ROCA dropped for the SSPFs (Fig. 11), which may be
related to issues with UH being a poor predictor of se-
vere weather associated with elevated nocturnal con-
vective systems.
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F1G. 10. Brier skill score and BSS difference aggregated by fore-
cast hour for (a) 40- and (b) 120-km SSPFs and NNPFs. Shading
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b. Verification by grid box

BSSs were computed for each 80-km grid box to re-
veal spatial variations in forecast skill. For each grid box,
forecasts for all forecast hours and the surrounding eight
grid boxes were included to increase the sample size.
SSPF skill was maximized across the central Plains,
with decreased BSS toward the southern and south-
eastern United States (Figs. 12a,b). On the other hand,
the NNPF BSS maxima occurred in the northeastern
United States, central Ohio River Valley, and central
Plains (Figs. 12¢,d). These spatial patterns held for both
neighborhood sizes.

Differences in NNPF and SSPF skill were maximized
across the eastern United States for both neighborhood
sizes (Figs. 12e.f). BSS increases of >0.05 (for the 40-km
forecasts; Fig. 12e) and >0.15 (for the 120-km forecasts;
Fig. 12f) occurred across much of the southeastern
United States and in several areas of the western
United States. The smallest BSS differences occurred
across the central United States, with several grid boxes in
western Nebraska having differences near zero meaning
UH alone provided enough information to produce skillful
forecasts of severe convective hazards.

Spatial patterns of skill suggest NNPFs can substan-
tially improve upon SSPFs for severe weather prediction
across the eastern and western United States, with
smaller improvements over the central United States.
Across the east, increased NNPF skill is likely due to
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FIG. 11. As in Fig. 10, but for ROCA.

the decreasing utility of UH as a surrogate for the most
common severe weather hazards in that region. Severe
reports are often obtained from nonsupercellular con-
vective modes in the eastern CONUS (Ashley et al.
2019). Combined with the abundance of severe wind
reports that may not exceed strict severe criteria [i.e.,
wind gust = 50kt (1kt ~ 0.51ms~")], UH alone, even if
carefully calibrated, is a poor predictor of whether or
not a thunderstorm will produce severe hazards. Across
the western CONUS, the relative rarity of severe
weather events presents a challenge for NNPFs, given
the lack of many training examples over this region.
Even so, NNPFs substantially outperform SSPFs in
areas where severe weather reports occur with some
regularity. One of these areas is in southern Arizona,
where severe weather often occurs in association with
monsoon thunderstorms during the summer. Many of
these events are driven by intense downburst winds in
environments with high LCLs, moderate CAPE, and
weak deep-layer shear (Carlaw et al. 2017). As in the
eastern United States, Arizona events usually do not
consist of supercells, thus UH is an insufficient severe
weather surrogate. Other diagnostic fields that are incor-
porated into the NN (e.g., 10-m wind speed, LCL height,
etc.) may be providing more useful information in these
regions where convective wind reports are common.
Southern Florida and southwest Texas are two re-
gions where NNPFs do not appreciably outperform
SSPFs, and in the latter actually underperform SSPFs.
In both of these regions, storm reports are rarely
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FIG. 12. Brier skill score computed for each 80-km grid box for all (a),(b) SSPFs and (c),(d) NNPFs at the (left)
40- and (right) 120-km length scales. The BSS was computed using all forecasts within one grid box to increase
sample size and reduce small-scale spatial variations in the BSS. (e),(f) BSS differences between the NNPF and
SSPFs. The BSS is not shown at locations where <25 total observed storm reports occurred within the one gridbox

neighborhood, denoted by an “x.”

received, although convection is common. As a result
of the difficulty of getting storm reports, the optimal
UH thresholds are large in both areas during the warm
season (>100m?s~?; Fig. 3a). While the NN should be
able to learn that reports do not often occur in these
areas (through the latitude and longitude fields) and
adjust probabilities accordingly, the relatively small
areas where these reporting biases exist may make it
difficult for the NN to sufficiently modify forecasts,
leading to overpredictions in the NNPFs.

c¢. Verification by environment

To isolate the convective regimes where NNPFs
were able to outperform SSPFs, BSS and ROCA values
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were computed for forecast grid points within specific
most-unstable convective available potential energy
(MUCAPE) and 0-6-km deep-layer shear (SHRO06)
bins. The MUCAPE and SHRO06 magnitudes used for
aggregation were the spatial averages within each
80-km grid box. Verification results using the 120-km
neighborhood are provided here; regimes with positive
skill were similar when using the 40-km neighborhood,
although magnitudes of BSS were reduced.

For both the SSPFs and NNPFs, the maximum BSS
occurred in regimes where either moderate amounts
of MUCAPE and SHRO06, or both, were present
(Figs. 13a,c). In regimes with weak SHR06 and low
MUCAPE, skill was reduced. In fact, the SSPFs in the



1994 WEATHER AND FORECASTING
(a) NNPFBSS (b) NNPF ROCA
0 0.96
100
500
2
§ 1000
g 2000
=
3000 1.00
4000 0.86
0.90
(c) SSPFBSS (d) SSPF ROCA i
e o o1}
0 0.08 0.01 0.02 0.04 0.75 00 3
100 | -0.12 0.01 0.07 0.06 0.06 0.7 0.73 0.74 0.71 0.68 ors >
T 00| -0.09 0.02 0.09 0.06 -0.04 0.68 0.71 0.72 0.7 0.64 0.70
g
@ 1000 | -0.04 0.07 0.11 0.08 -0.06 0.72 0.73 0.73 0.72 0.64 0.65
<
Sz2000 004 0.1 0.14 0.06 0.1 0.75 0.75 0.75 0.72 0.66 L
3000 | 0.08 0.11 0.12 0.07 X 0.75 0.74 074 04 %
03 o
aoo0 | 0.1 0.09 0.13 0.04 X 0.74 0.73 0.74 3
0.2
(e) NNPF - SSPF BSS difference () NNPF — SSPF ROCA difference 0.1 %
0 1 00 Q
0.1 >
100 e
==
- 02 %
ey 500
4 -0.3 §
w 1000 0.08
g _0.4
S 2000 0.13 0.09 0.04 0.03 0.05
3000 0.1 0.1 0.07 0.04 0.02 X
4000 | 0.02 0.1 0.04 0.04 0.05 0.02 X
0 10 20 30 40 0 10 20 30 40
SHRO6 (ms—*) SHRO6 (ms™?)

FIG. 13. (left) BSS and (right) ROCA aggregated by MUCAPE and SHRO06 magnitudes for the 120-km (a),(b)
NNPFs and (c),(d) SSPFs. (e) BSS and (f) ROCA differences between the 120-km NNPFs and 120-km SSPFs.
Bin edges for MUCAPE and SHRO6 are shown in each panel. Shading indicates larger magnitudes or differences.

VOLUME 35

Scores not shown in bins comprising <100 forecast grid boxes (indicated by “x”).

low MUCAPE/low SHRO06 regimes performed worse
than climatology. The reliance on UH to produce
SSPFs is clearly detrimental in these regimes, since
UH is typically produced in environments with at least
modest MUCAPE and SHRO06 (hence, the maxima
observed in these regimes). Poor forecast skill also
occurred in regimes with very large SHR06 (>40ms ')
and moderate MUCAPE, although the sample size of
forecast points in these regimes was small.

ROCA tended to behave opposite to BSS, with
ROCA maximized in low MUCAPE/high SHRO06 re-
gimes (Figs. 13b,d). This behavior could be due to the
underlying predictability of events, since severe weather
events occurring with weak MUCAPE and moderate to
high SHRO6 [i.e., high-shear, low-CAPE (HSLC), re-
gimes; Sherburn and Parker 2014; Sherburn et al. 2016]
often occur with robust amounts of large-scale forcing,
leading to enhanced predictability. Yet, the slightly
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reduced BSS magnitudes suggest that the reliability of
the SSPFs in the HSLC regime was worse than SSPFs
in the moderate-to-high CAPE regimes. It may be that
given the enhanced predictability in HSLC regimes, that
the smoothing length scale of 160 km for the SSPFs was
too broad, leading to reduced reliability.

While positive benefits were noted across the entire
MUCAPE/SHRO06 phase space, benefits of NNPFs
compared to SSPFs were maximized in regimes where
UH was a poor predictor, namely in HSLC environ-
ments (Figs. 13e,f). For these HSLC grid boxes, improve-
ments in BSS of >0.2 were common, with corresponding
large improvements in ROCA (>0.15-0.20). This combi-
nation of BSS and ROCA indicates that NNPFs improved
the underlying ability to discriminate between severe and
nonsevere events in HSLC regimes, which often consist of
events that are challenging to anticipate, especially solely
with UH. In the “supercell” regime, ROCA differences
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were much smaller (e.g., 0.02-0.04 for MUCAPE >
2000Jkg ' and SHRO6 > ~20ms 1), indicating that the
NNPFs were not able to improve forecast discrimination
as effectively as in the HSLC regime, but since BSS dif-
ferences were positive, forecast reliability was improved
in the NNPFs.

6. Sensitivity of NNPF skill to predictor choices

Given the potential correlation between the 174
predictors, a more limited set of predictors could pos-
sibly produce equally skillful forecasts. Reducing the
number of predictors is desirable to both minimize the
computational burden of training the NNs and to improve
interpretation of the trained NNs. Here, four NNs were
trained with subsets of the full 174 predictors to determine
the role of categories of predictors in producing skillful
NNPFs, specifically training only with the midlevel UH
predictors (11 predictors; UHonly-NNPF), training with-
out the spatial mean and maximum neighborhood fields
(using only the 42 base predictors; NoNeighbor-NNPF),
without the explicit convection-related fields (113 predic-
tors; NoExplicit-NNPF), and without the upper-air fields
(158 predictors; NoUpperAir-NNPF). All four NNs used
the four static predictors (Table 2) and were trained only
for the 120-km spatial neighborhood.

The removal of subsets of predictors when training
the NNs resulted in NNPFs that were less skillful than
the original NNPFs (Fig. 14). The largest reduction in
skill occurred for the UHonly-NNPFs, yet the BSS
(Fig. 14a) and ROCA (Fig. 14b) were superior to the
SSPFs, even though both relied solely on the same
midlevel UH diagnostic as input. The skill difference
between the UHonly-NNPFs and SSPFs may be due to
the improved estimate of uncertainty that is learned by
the NNs. Additionally, the NNs do not have a rigid op-
timal UH threshold and can learn more complex non-
linear relationships between the UH magnitude, static
predictors such as latitude and longitude, and the like-
lihood of severe weather. The UHonly-NNPF for the
20 December 2012 convective event appears much more
similar to the SSPFs than the NNPFs (cf. Figs. 15a,b).
Thus, given only UH information, the NNs were unable
to correctly shift the forecast probabilities southward
closer to the observations.

Eliminating the upper-air fields had a negligible im-
pact on the BSS and ROCA, with larger decreases in
BSS and ROCA when the neighborhood and explicit
diagnostics were removed (Fig. 14). During many
forecast hours, especially overnight, the NoNeighbor-
NNPFs had a higher BSS than the NoExplicit-NNPFs,
even though the NoNeighbor-NNPFs used only 42
predictors compared to 113 for the NoExplicit-NNPFs.
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FIG. 14. As in Fig. 10b, but for (a) BSS and (b) ROCA reduction
for 120-km NNPFs trained with subsets of the input predictors
relative to NNPFs trained with all predictors.

More predictors did not necessarily result in better
forecasts, suggesting that overfitting may be an issue for
some combinations of predictors. For the 20 December
2012 event, the NoUpperAir-NNPF and the NoExplicit-
NNPF were the most skillful of the four reduced-predictor
forecasts and was comparable to the NNPF using the full
set of predictors, correctly shifting the probabilities
southward compared to the UHonly-NNPF and the
SSPF. Interestingly, the explicit diagnostics such as UH,
updraft speed, etc., were not important for this event,
since their inclusion only marginally improved the BSS
(Figs. 15a,f). The lack of sensitivity to the explicit predic-
tors for this case may reflect deficiencies in the represen-
tation of finescale convective lines during cool-season
severe weather events, since most of the explicit diagnos-
tics did not produce robust signatures (not shown), limiting
their utility.

Finally, large differences in BSS and ROCA occurred
during model spinup (i.e., forecast hours 0-6; Fig. 14).
While the NoNeighbor-NNPFs and NoExplicit-NNPFs,
produced BSS and ROCA values only slightly smaller
than the original NNPFs during these forecast hours, the
UHonly-NNPFs and SSPFs both had larger reductions
in BSS and ROCA. Additionally, the largest reductions
in skill for the NoUpperAir-NNPFs, occurred during
model spinup. The environmental information within
the NNPFs may be more valuable than the explicit or
neighborhood predictors during the first 6 forecast
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FIG. 15. As in Fig. 8, but for the 120-km (a) NNPF, (b) SSPF, (c) UHonly-NNPF, (d) NoUpperAir-NNPF, (d) NoNeighbor-NNPF, and
(e) NoExplicit-NNPF derived from the 0000 UTC 19 Dec 2012 forecast.

hours, since removal of either of these two predictor (SSPF) and a neural network-based probability forecast
sets did not result in appreciable reductions in skill. In  (NNPF). The SSPFs were constructed by applying a UH
other words, NNs trained with environmental informa- threshold to the hourly maximum midlevel UH field
tion alone were able to make skillful predictions during and smoothing the resulting binary output. The SSPF
the first few hours, reducing the impact of model spinup UH threshold was calibrated based on time of day,
that plagued both the SSPFs and the UHonly-NNPFs.  season, and spatial location to produce the most skillful
guidance. The NNPFs were trained with environmental
and surrogate diagnostics and designed to predict the
probability of any severe weather report occurring within
To determine if ML algorithms can improve upon specified time and space windows. Both the SSPFs and
the skill of surrogate-severe guidance based on UH, NNPFs were generated for 4-h windows, centered on each
two sets of probabilistic forecasts of severe weather forecast hour within the 36-h CAM forecast, at two spatial
hazards were generated for 462 severe weather events  scales (40 and 120km), and were verified with SPC storm
between 2010 and 2017 over the CONUS using output  reports using the BSS and ROCA.
from deterministic WRF-based CAM forecasts. These In aggregate, NNPFs more frequently produced larger
included a surrogate-severe UH-based probability forecast  probability values compared to SSPFs, primarily as a

7. Summary
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result of the smoothing required to produce SSPFs. These
differences in probability distributions were associated
with differences in BSS and ROCA, as NNPFs possessed
larger BSSs than SSPFs at both spatial scales, for most
individual events, and were statistically significantly more
skillful at both spatial scales at all forecast hours. ROCA
differences were largest overnight, suggesting improved
ability to discriminate between nocturnal events in the
NNPFs. While BSS differences between the NNPFs and
SSPFs were larger for the 120-km forecasts, ROCA dif-
ferences were not a function of spatial scale, suggesting
that the added benefit of NNPFs over SSPFs at 120-km
was a function of better calibration and not an inherent
difference in the ability to discriminate between events
and nonevents. BSS differences were largest during the
first hours of the forecast, when model spinup hampered
the utility of the UH output, as well as during the be-
ginning of the first diurnal cycle (i.e., 1600-2000 UTC),
when NNPFs potentially accounted for convection initi-
ation biases inherent within the SSPFs.

The largest NNPF-SSPF BSS differences occurred in
the western and eastern United States, where SSPF skill
was reduced. In these regions, severe weather environ-
ments are often not supportive of supercells and may
involve other modes such as quasi-linear convective
systems. The difference in skill as a function of environ-
ment was supported when verifying based on convective
regime with MUCAPE and SHRO06. In environments
supportive of supercells, SSPFs produced skillful guid-
ance, and the skill gap between NNPFs and SSPFs was
reduced compared to environments not supportive of
supercells (i.e., those with small MUCAPE and/or small
SHRO06 magnitudes). In the nonsupercellular regimes,
SSPF skill was poor, and often worse than climatology,
while NNPFs were substantially superior to SSPFs. Large
improvements in BSS and ROCA also occurred in HSLC
environments, where marginal instability and less robust
CAM surrogate diagnostic signatures often lead to poor
operational forecasts (e.g., Guyer and Jirak 2014).

Finally, sensitivity tests were undertaken to determine
the impact of removing various sets of predictors from
the NN training. The environmental predictors were
more valuable than the explicit predictors during the
first few hours of the forecast, when the latter were
spinning up, while the explicit predictors were more
valuable overnight, potentially providing useful
guidance on the longevity of overnight mesoscale
convective systems. Finally, NNs trained with only
midlevel UH information (and static fields) out-
performed SSPFs, suggesting that even without ad-
ditional diagnostics, NNs can learn useful relationships
about forecast uncertainty and the behavior of the UH
diagnostic in different seasons and regions better than
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accounting for these variations by computing optimal
UH thresholds.

8. Discussion

Some questions regarding the optimal configuration
choices for a ML-based algorithm went unaddressed in
this work, including the sensitivity of forecast skill to
many of the NN hyperparameters and choice of ML
algorithm (e.g., using a random forest [RF; Breiman
2001] instead of a NN). Regarding the optimal NN
configuration, the NN model trained with data from
2010 to 2015 was applied to produce real-time forecasts
during the spring of 2020. Preliminary results show that
this NN configuration remains capable of producing
similarly skillful forecasts to those documented here,
providing confidence in the ability of the NN configu-
ration to generalize beyond the present training dataset.
Regarding the choice of algorithm, we initially trained a
RF to produce the forecast probabilities using the same
preprocessed input as the NNs; these forecasts were
slightly less skillful than the NNPFs, but were still more
skillful than the SSPFs (i.e., the RF forecasts were more
similar to the NNPFs than the SSPFs). Optimizing the
RF hyperparameters (e.g., number of trees) may have
produced forecasts with similar skill to the NNPFs, but
the NNs were faster to train given the availability of
graphics processing units (GPUs) and produced smaller
output files, since only the NN weights and biases need
to be stored, rather than each decision tree within a RF.
Our subjective impression is that the gains in skill
achieved by using NNPFs rather than SSPFs appear to
be insensitive to the choice of using a RF or NN.

Since the NNPFs are generated from NNs that use
observed storm reports, the NNPFs inherit several of the
biases that exist within the storm report database.
These biases include the presence of an abundance of
wind damage reports that are not associated with se-
vere wind gusts, especially in areas of the eastern CONUS
(Weiss and Vescio 1998; Weiss et al. 2002; Doswell et al.
2005; Smith et al. 2013; Edwards et al. 2018; Bunkers et al.
2020). For example, the 20 December 2012 event pre-
sented in section 4 consisted of mostly estimated wind
gusts based on wind damage reports, with only a few
measured gusts, although the guidance was accurate in
depicting the likelihood of severe weather reports. Such
guidance may still be useful for forecasters in anticipating
impacts even though wind speeds may have not reached
severe criteria. While the usage of an 80-km grid likely
reduces some of these overreporting biases, it cannot
account for underreporting biases in areas with low
population density, such as large swaths of the western
CONUS (Weiss et al. 2002). Additionally, our training
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dataset does not include many events occurring in the
western CONUS, or marginally severe events in other
regions. In these scenarios, NNPFs may be prone to
overprediction. In the future, we hope to include addi-
tional events and verification datasets, such as radar-
estimated hail sizes, in the training procedure, and to
produce distinct probabilities for measured and esti-
mated wind gusts.

Other simple postprocessing baselines should be con-
sidered for comparison to ML-based guidance to justify
the added complexity and computational costs of ML
algorithms. One example is probabilistic forecasts de-
rived using historical frequencies of reports given explicit
and environmental parameters, such as calibrated prob-
abilistic guidance generated by the SPC using output
from the NOAA High-Resolution Ensemble Forecast
(HREF) and Short-Range Ensemble Forecast (SREF)
systems (Jirak et al. 2014). These calibrated forecasts may
perform more skillfully than SSPFs since the historical
information informs the probability magnitudes, while
SSPF magnitudes are solely a function of the spatial
density of points where the UH threshold is exceeded
within chosen space and time windows.

Given the robust improvements in skill of NNPFs
across a broad range of environments, forecast hours, and
regions, especially in environments where SSPF skill was
poor, this work supports the inclusion of ML-based se-
vere weather guidance in the forecasting process to assist
in the identification of severe weather hazards. That said,
our forecasts were not designed to mimic current opera-
tional forecasting guidance, such as SPC Convective
Outlooks, as in prior work that produced and verified
SSPFs (e.g., Sobash et al. 2011, 2016; Loken et al.
2017). As implemented here, SSPFs and NNPFs are
more aligned with efforts to produce rapidly updating
finescale probabilistic hazard guidance, such as that
envisioned within the NOAA Forecasting a Continuum
of Environmental Threats (FACETs) paradigm (Rothfusz
et al. 2018), where the spatial and temporal scales of the
guidance may vary based on forecast lead time and the
underlying predictability of each hazard. Additionally,
future SPC guidance products will likely provide more
temporal specificity, and efforts to produce subdaily
probabilistic forecasts are underway within NOAA
(Krocak and Brooks 2020; I. Jirak 2020, personal
communication). Using ML-based algorithms to produce
first-guess or final-check guidance products could form
the basis for these next-generation probabilistic con-
vective weather postprocessing systems, yet better
understanding the internals of the trained NNs will be
necessary to elucidate the most important input fields
and to reduce their complexity before they are used
operationally (e.g., McGovern et al. 2019).
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