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ABSTRACT

The extent to which submonthly forecast skill can be increased by spatial pattern correction is examined in
probabilistic rainfall forecasts of weekly and week-3—4 averages, constructed with extended logistic regression
(ELR) applied to three ensemble prediction systems from the Subseasonal-to-Seasonal (S2S) project data-
base. The new spatial correction method projects the ensemble-mean rainfall neighboring each grid point
onto Laplacian eigenfunctions and then uses those amplitudes as predictors in the ELR. Over North America,
individual and multimodel ensemble (MME) forecasts that are based on spatially averaged rainfall (e.g., first
Laplacian eigenfunction) are characterized by good reliability, better sharpness, and higher skill than those
using the gridpoint ensemble mean. The skill gain is greater for week-3—4 averages than week-3 leads and is
largest for MME week-3-4 outlooks that are almost 2 times as skillful as MME week-3 forecasts over land.
Skill decreases when using more Laplacian eigenfunctions as predictors, likely because of the difficulty in
fitting additional parameters from the relatively short common reforecast period. Higher skill when increasing
reforecast length indicates potential for further improvements. However, the current design of most sub-
seasonal forecast experiments may prove to be a limit on the complexity of correction methods. Relatively
high skill for week-3-4 outlooks with winter starts during El Nifio and MJO phases 2-3 and 6-7 reflects
particular opportunities for skillful predictions.

1. Introduction errors. For instance, NCEP and CMA reforecast ar-
chives from the S2S database used in this study have
only four members, thus the reforecast probabilities
obtained by counting can only take the values of 0%,
25%,50%, 75%, and 100%, which are coarse estimates.
By contrast, distributional regression is well suited to
probability forecasting and regression models are more
skillful than straight counting for small ensemble size
in the seasonal forecasting context (Tippett et al. 2007).
Extended logistic regression (ELR), which ensures con-
sistent forecast probabilities across a range of thresholds
(Wilks 2009), was thus chosen in Vigaud et al. (2017a) to
design a multimodel ensemble (MME) prediction system
for submonthly forecasts from three ensemble prediction
systems, or EPSs [European Centre for Medium-Range
Weather Forecasts (ECMWF); National Centers for
Corresponding author: N. Vigaud, nicolas.vigaud@gmail.com Environmental Prediction (NCEP) Climate Forecast

Subseasonal-to-seasonal forecasting (lead times be-
tween 2 weeks and 2 months) is currently the focus
of intense research efforts within the World Weather
Research Programme-World Climate Research Pro-
gramme (WWRP/WCRP) Subseasonal-to-Seasonal (S2S)
prediction project (Vitart 2014), the aims of which in-
clude developing well-calibrated probabilistic subseasonal
forecasts. One of the challenges of assessing probabi-
listic skill of S2S forecasts is that reforecast ensembles
generally contain fewer ensemble members than in the
seasonal forecasting case, so a straightforward comput-
ing of probabilities by counting of reforecast ensemble
members exceeding a chosen threshold leads to large
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System, version 2 (CFSv2); and China Meteorological
Administration (CMA)] in the S2S database (Vitart
et al. 2017). As in seasonal (3-month averages) and
medium range (out to 15 days) forecasting (Robertson
et al. 2004; Hamill 2012), these ELR-based forecasts
show enhanced probabilistic forecast skill through cal-
ibration and multimodel ensembling across S2S time
scales in different regions including North America
(Vigaud et al. 2017a,b, 2018). In the ELR method,
calibration is done at the gridpoint level (i.e., a separate
regression model is constructed for every location
without using information from neighboring grid
points). In addition, local regression relationships are
prone to sampling uncertainties that can further lead
to spatially noisy forecasts, hence there might be po-
tential for improvements by including spatial infor-
mation. This study thus examines the extent to which
probabilistic skill can be improved by spatial correc-
tion relative to those of baseline ELR forecasts in
Vigaud et al. (2017a) for week-1 through week-4
(i.e., [d + 1; d + 7] through [d + 22; d + 28] targets
for a forecast initialized on day d) and week-3-4
(i.e., [d + 15; d + 28] targets) precipitation tercile
forecasts over continental North America.

Multiple linear regressions such as principal com-
ponent regressions (Mo and Straus 2002) or canonical
correlation analysis (Barnston and Ropelewski 1992),
are well suited for model output statistics and correct
systematic errors in pattern positions and amplitudes
of dynamical model seasonal predictions (Ward and
Navarra 1997; Rukhovets et al. 1998; Smith and Livezey
1999; Feddersen et al. 1999; Tippett et al. 2003; Barnston
and Tippett 2017). However, the Gaussian assump-
tion made by these methods still needs to be tested
at subseasonal time scales. Among other approaches,
Laplacian eigenfunction decomposition, which has been
recently applied to climate analysis (Saito 2008; DelSole
and Tippett 2015), makes no assumption on the data and
represents an attractive alternative to summarize spatial
information by filtering out small-scale variability. De-
pending only on the geometry of the domain, Laplacian
eigenfunctions are well suited for multimodel studies
because they are uniformly defined across models
(DelSole and Tippett 2015). This study thus examines
the extent to which an existing ELR-based probabilistic
prediction system for submonthly rainfall forecasts
(Vigaud et al. 2017a) can be improved by enabling
spatial pattern correction through the decomposi-
tion of ensemble mean rainfall neighboring each grid
point using locally defined Laplacian eigenfunctions.
Similarly to the existing ELR, the Laplacian-ELR
(L-ELR) approach is applied to individual model
forecasts then averaged with equal weights to produce
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TABLE 1. Attibutes from ECMWF, NCEP, and CMA forecasts
archived in the S2S database at ECMWF.

Attributes ECMWF NCEP CMA
Time range Days 046 Days 0-44  Days 0-60
Resolution Tco639/3191L.91  T126L64 T106L40
Ensemble size 51 16 4
Frequency 2 per week daily daily
Reforecasts (RFC) On the fly Fixed Fixed
RFC length Past 20 yr 1999-2010  1994-2014
RFC frequency 2 per week Daily Daily
RFC size 11 4 4

MME precipitation tercile probability forecasts for
weekly and week-3-4 averages.

The methods and data are presented in section 2.
The skill of L-ELR forecasts initialized during January—
March (JFM; winter) and July-September (JAS; sum-
mer) is next investigated over North America and
compared with those obtained from the existing ELR
model in section 3, alongside skill relationships to ENSO
conditions and Madden-Julian oscillation (MJO) phases.
A summary and conclusions are gathered in section 4.

2. Data and methods
a. Observation and model datasets

Observation and model datasets are the same as in
Vigaud et al. (2017a), which the following data de-
scription parallels in the next two paragraphs. Week-1
[d + 1;d + 7], week-2 [d + 8; d + 14], week-3 [d + 15;
d + 21], week-4 [d + 22; d + 28], and week-3-4 [d + 15;
d + 28] targets for a forecast issued on day d were
computed from daily rainfall from the ECMWF, NCEP,
and CMA hindcasts (referred to as reforecasts in the
following) acquired from the S2S database (Vitart et al.
2017). These EPSs have distinct resolutions, numbers of
ensemble members, and reforecasts lengths as indicated
in Table 1, but in the S2S database they are all archived
on the same 1.5° grid. ECMWF is the only model with
reforecasts (11 members) generated two times per week
(Mondays and Thursdays) on the fly (i.e., new reforecast
sets are generated twice-weekly, with the latest model
version used to produce real-time ensemble forecasts for
the following 46 days). By contrast, NCEP and CMA
reforecasts are issued four times daily using the same
fixed version of their respective models. Such differ-
ences are inherent to the two configurations used by the
different centers producing reforecasts archived in the
S2S database. Weekly accumulated precipitation from
ECMWEF reforecasts generated for Thursday starts in
2016 is used in the following analysis, contrasting with
Vigaud et al. (2017a) based on Monday starts. Similarly,
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FIG. 1. First three Laplacians at 45°N, 90°W computed on a geographical box of 15 neighboring grid points in latitude and longitude.

however, ECMWF Thursday starts in 2016 also comprise
different model cycles (CY41R1, CY41R2 and CY43R1)
across the whole calendar year. Summer starts (July—
September) are based on model version CY41R2, whereas
the winter starts (January-March) are based on model
cycles CY41R1 and CY41R2. The main change be-
tween CY41R1 and CY41R2 (introduced on 8 March
2016) was a doubling of the spatial atmospheric reso-
lution. This change may have improved the skill during
March, but its impact on the seasonally averaged skill
differences between ELR and L-ELR methods is ex-
pected to be minor. NCEP and CMA four-member
daily reforecasts are then sampled for ECMWF 2016
Thursday calendar start dates across each year, thus
allowing to design a multimodel ensemble based on
exactly the same issuance dates across models, simi-
larly to the probabilistic skill analysis of precipitation
forecast from Vigaud et al. (2017a), based on the same
three-models subset. The reforecasts from all three
EPSs are available from 1999 to 2010, which is the
period used in our study. There are thus 144 reforecasts
for the JFM and JAS seasons (12 starts over 12 years)
and each model. ECMWEF reforecasts over the 1997-
2014 period are also used to test the effect of sample
variability on forecast skill by increasing reforecast
length (section 3b). To produce comparable sets of
precipitation tercile category probabilities (referred
to as forecasts in the following), S2S model data were
all interpolated spatially onto Global Precipitation
Climatology Project (GPCP) 1° horizontal grid. Fore-
cast probabilities are computed for the three models
individually and then averaged to form MME pre-
cipitation tercile category probabilities (referred to as
MME forecasts) the skill of which is assessed over
continental North America (i.e., land points between
20° and 50°N) for winter (JFM) and summer (JAS)
starts.
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Daily estimates from the GPCP (Huffman et al.
2001; Huffman and Bolvin 2012), version 1.2, avail-
able on a 1° grid from 1996 to 2015 are the observa-
tional data used to calibrate and verify the reforecasts
over 1999-2010.

b. Local Laplacian eigenfunction decomposition

The Laplacian operator A in spherical coordinates
A and ¢ (longitude and lattitude, respectively) is

1 e, 1 9 of
Af = o a2 + d)@(cosqﬁ%) . 1)

The finite-difference approximation of A using a five-
point stencil is

o), =L (o Tl Sy
W cos?, dxj 1 dxj
+ 2 (fiﬂ,j —f _fi,/ _fi—u) ’ 2
dyi+l + dyl dyH_l dyl
where
2(p. — ¢,
dx,=A,—A_, and dy,= (b, = 1) 3)

cos¢, + cosd, |

For each grid point of the North American domain, the
matrix representation of Eq. (2) with Dirichlet boundary
conditions is formed for the 15° X 15° box centered
on that grid point. The eigenvectors of this 225 X 225
matrix are then computed. For each model, grid point,
start and lead, reforecasts are next projected onto the
first three Laplacian eigenfunctions shown in Fig. 1
to be used as predictors in the ELR model. Because
eigenfunctions are only unique up to a multiplicative
constant, the projection is done with area weighting as
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FIG. 2. Point statistics at 13.5°N, 91.5°W
off the coast of Guatemala, shown for
each week in JAS 1999 (x axis; from 7 Jul
to 29 Sep): (top left) weekly GPCP pre-
cipitation (black) and weekly terciles (low
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in DelSole and Tippett (2015) such that the chosen
constant satisfies that the area average of the squared
eigenfunction is equal to one. As shown by values
plotted in Fig. 1 that reflect corresponding geographical
weights given to reforecasts grid points when projected
on Laplacians, the first Laplacian eigenfunction repre-
sents a weighted spatial average, while the second and
third correspond to meridional and zonal gradients, re-
spectively. The local Laplacian eigenvectors used here
differ from those in DelSole and Tippett (2015) in that
the ones here are computed on rectangular domains
and satisfy an explicit Dirichlet boundary condition. The
Laplacian eigenvectors in DelSole and Tippett (2015)
can be computed on arbitrary domains and satisfy a
nonlocal boundary condition (Saito 2008).

Brought to you by NOAA Central
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c. Extended logistic regression model

The method is similar to ELR employed in Vigaud
et al. (2017a) from which the text is derived with minor
modifications as follows in this paragraph. Logistic re-
gression is well suited to probability forecasting and
an additional explanatory variable g(g) can be used
to produce the probability p of nonexceedance of the

quantile g:
In (

with f = by + b1Xens and g = b,q, where by and b, are
regression coefficients and Xy is the gridpoint ensemble
mean precipitation. Cumulative probabilities obtained

p
1-p

) — ) + 8(a). )
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F1G. 3. Observed GPCP (top left) above- and (bottom-middle left) below-normal precipitation tercile probabilities for 7 Jul 1999 start,
together with those forecast by ECMWF and the multimodel ensemble (MME) of ECMWF, CFS, and CMA models from ELR and
L-ELR1-3 forecasts, as indicated by the labels. White shadings correspond to the dry-mask equivalent, and mean Brier score averages

over the entire domain are indicated in parentheses for each forecast.

from Eq. (4) for smaller predictand thresholds cannot
exceed those for larger thresholds (Vigaud et al. 2017a)
yielding logically consistent sets of forecasts (Wilks
2009). Precipitation tercile category probabilities (ELR
forecasts) are here computed using ELR for the 33rd
and 67th precipitation percentiles.

Observed climatological weekly tercile categories
derived from GPCP weekly cumulated precipitation
estimates are defined based on 3-week windows in-
cluding the target week and one week on either side,
separately at each grid point for each start in JFM
(7 January-31 March Thursday start dates) and JAS
(7 July-29 September Thursday start dates), and each
lead (weeks 1-4) following a leave-one-year-out ap-
proach (i.e., using 33 weeks from 11 years). ELR
forecasts are produced only where and when the
lower tercile (33rd percentile) is nonzero (i.e., ‘“‘dry
mask” equivalent). In such dry areas where more
than one-third of the observations are zero, other
categorical forecast targets such as rain/no rain, or
above or below the median may be more suitable.
Observed climatological biweekly terciles are defined
on 6-week windows centered on week-3-4 targets
(i.e., [d + 15;d + 28]).

For each S2S model, the same pool of weeks on
which terciles are defined under cross validation (i.e.,
3-week windows centered on the target week, over
11 years) are used to train the ELR model out-of-sample
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by fitting forecasts equations at each grid point, lead,
and calendar start date separately. The regression co-
efficients thus obtained are then used to predict terciles
probabilities for the left-out year (validation set) that
are averaged across models with equal weights to pro-
duce an MME of the individual forecast probabilities
(MME forecasts); see Vigaud et al. (2017a) for more
details.

To correct forecasts spatially, the Laplacian eigen-
function decomposition of neighboring ensemble mean
precipitation (Lap) is used in Eq. (4) instead of the
gridpoint average Xens:

p
1
n<1—p

where f = by + >, b; X Lap, and g = b,,11q, with Lap;
corresponding to the projection of the ensemble
mean precipitation of 15 grid points neighboring
each location on the ith Laplacian eigenvector de-
fined on this geographical box. ELR models based on
n eigenvectors to produce tercile probabilities will
be referred to as L-ELRn forecasts for n = 1-3:
L-ELR2 using the spatial average and meridional
gradient provided by the first two eigenvectors, for
instance.

Similar to Fig. 2 in Vigaud et al. (2017a), but for
2016 ECMWF Thursday starts, Fig. 2 shows GPCP

) ~ F(Lap) + 5(q). 5)
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FIG. 4. Reliability diagrams for all three categories [(left) below normal, (center) normal, and (right) above normal] from ECMWF
L-ELR1 forecasts with starts in (a)—(c) JFM and (d)—(f) JAS from week-1 to week-4 leads (colors). Forecast frequencies of issuance are
shown as bins in histograms under the respective tercile category diagram. Forecast probabilities are plotted from 0 to 1 on the same x axis
and from 0% to 100% on the y axis, and only the bins with more than 1% of all forecasts are plotted in each category. Results are computed

for grid points of continental North America between 20° and 50°N latitudes.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:07 PM UTC



FEBRUARY 2020 VIGAUD ET AL. 529

a) JFM Below normal b) JFM Above normal
1 ! — Week1
. — Week2
208 0.8 ——— Week3
2 Week4
g 0.6 0.6
—
e
g 0.4 0.4
a
a
502 0.2
0 0
0 0.2 04 06 0.8 1 0 0.2 04 06 0.8 1
Forecast probability Forecast probability
e o N | e L O e
c) JAS Below normal d) JAS Above normal
1 1
gos 0.8
[
3
206 0.6
=
k5
s 0.4 0.4
2 ;
3
o) 0.2 0.2
0 0
0 0.2 04 06 0.8 1 0 0.2 04 06 0.8 1
Forecast probability Forecast probability

N P B [

B | PR R | P
mll mil.

mll mll.

FIG. 5. Asin Fig. 4, but for the (left) below-normal and (right) above-normal categories from the MME of
ECMWF, NCEP, and CMA L-ELRI forecasts with (a),(b) JFM and (c),(d) JAS starts.
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in parentheses for each forecast.

observations with ELR and L-ELR forecast probabil-
ities at week-1 lead for all starts in JAS 1999 at a grid
point off the Pacific coast of Guatemala (13.5°N,
91.5°W). ECMWF category forecasts display highest
weekly probabilities mostly consistent with observed
tercile categories, and are more skillful than those from
NCEP and CMA (not shown), as well as the three
models averaged with equal weights, directly reflecting
the lesser performances of NCEP and CMA relative to
ECMWF. Higher ranked probability score (RPS)
values for L-ELR than ELR reflect modest skill im-
provements for ECMWF but not for the MME; how-
ever, RPS differences are too low to be significant.
Probability maps from ELR and L-ELR1-3 forecasts
for 7 July 1999 start (Fig. 3) display highest probabilities
geographically consistent with GPCP, MME forecasts
being spatially smoother than ECMWF with broader
areas of lower maximum probabilities. Overall, these
reflect wetter-than-normal conditions in the tropics,
where convective rainfall is typical of the wet season in
the Intra-American Seas (IAS) and American mon-
soon regions, whereas below-normal probabilities in the
midlatitudes are consistent with dry conditions during
summer over these regions of North America. L-ELR1
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forecasts have less-noisy probabilities relative to the
baseline ELR, similarly to L-ELR2-3. Brier scores
(Brier 1950), which are between 0 for a perfect fore-
cast and 1 for no forecast skill, are used to roughly ver-
ify these probability forecasts over the whole domain.
Lower Brier scores for ELR than L-ELR forecasts
for ECMWF and the MME further illustrate the added
value of spatial correction relative to calibration without
knowledge of neighboring grid points.

d. Skill metrics and significance testing

Reliability diagrams are first computed for all grid
points over continental North America between 20°
and 50°N in latitudes to evaluate the reliability, but also
resolution as well as sharpness (Wilks 1995; Hamill
1997), of ELR and L-ELR tercile category precipita-
tion forecasts. To complement reliability diagrams with
spatial information, maps of ranked probability skill
scores (RPSS; Epstein 1969; Murphy 1969, 1971; Weigel
et al. 2007) are next used to quantify to which extent
calibrated predictions are improved in comparison to
climatological frequencies. Generalized skill scores tend
to be not strictly proper (Gneiting and Raftery 2007);
however, RPSS remains one of the most commonly used
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F1G. 7. As in Fig. 6, but for the MME of ECMWEF, CFS, and CMA forecasts.

skill scores, which is generally preferred to others that
are also sensitive to distance (Daan 1985; Wilks 1995;
Weigel et al. 2007), and its values tend to be small. For
joint-Gaussian forecasts and observations, a reliable
deterministic forecast with correlation r will have an
RPSS of approximately 1 — (1 — 7%)"?, meaning that
an RPSS value of 0.1 corresponds to a correlation of
about 0.44 (Tippett et al. 2010).

The statistical significance of area averages of RPSS
during specific ENSO and MJO phases is assessed by a
permutation test. Area averages of RPSS that exceed
the 90th percentile from 100000 permutations of fore-
casts with JFM starts are statistically significant at the
0.1 significance level.

3. Results
a. Weekly averages

Reliability diagrams for weekly ECMWF L-ELR1
forecasts with starts in the JFM and JAS seasons (Fig. 4)
are very similar to those from ELR for 2016 ECMWF
Monday starts in Vigaud et al. (2017a) with good re-
liability and resolution for week 1, as shown by blue lines
near the diagonal and away from the 0.33 horizontal line
(not plotted), respectively. Histograms spread across all
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bins for week-1 forecasts characterize high sharpness,
except for the normal category. This is consistent with
seasonal forecasts of the likelihood of the near-normal
category, which cannot be greatly sharpened beyond
the climatology forecast (Kharin and Zwiers 2003)
and are thus not much more skillful than the clima-
tology (van den Dool and Toth 1991). The distribution
of forecast frequencies are skewed toward climatol-
ogy (0.33, i.e., fourth bin) with increasing leads, con-
sistently with decreasing slopes from week 2, when
reliability and resolution drop with higher skill in
winter than summer and little skill visible at higher
leads. NCEP and CMA display similar results but are
less skillful.

Greater slopes for the MME (Fig. 5) reflect bet-
ter reliability and resolution. Similarly to ELR in
Vigaud et al. (2017a), reliability and sharpness are
degraded by multimodel ensembling for L-ELRI1
forecasts, with MME histograms slightly less spread
than for the ECMWF from week 2, reflecting the
lesser performances of NCEP and CMA compared to
ECMWF.

As for ELR forecasts in Vigaud et al. (2017a), the
northwestern and eastern United States exhibit maximum
positive RPSS values over land for all week-1 ECMWF
forecasts with starts in JFM (Fig. 6), where skill
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FIG. 8. As in Fig. 7, but for starts during the JAS season. White shadings correspond to the dry-mask equivalent.

persists in week 2 but with less magnitude. These
maximums might be associated with the influence of
midlatitude depressions affecting rainfall in both regions
during winter (Barnston and Livezey 1987). Near-zero
or negative values are found everywhere at higher
leads. RPSS decreases from L-ELR1 to L-ELR3, but
higher mean RPSS for L-ELR1 than ELR indicates
more skill.

Relative to the best model (ECMWF), RPSS is in-
creased everywhere by multimodel combination (Fig. 7),
which damps negative skill values at all leads. The
Southwest and the eastern United States still exhibit
maximum positive RPSS in week 2 over land, where
positive skill only remains over the U.S. East Coast and
northeastern regions of the Gulf of Mexico in week 3
and could be explained by local rainfall relationships
to jet-stream modulations and shifts of storm tracks in
winter (Barnston and Livezey 1987; Monteverdi and
Null 1998). MME RPSS levels decrease from L-ELR1
to L-ELR3 but increase from ELR to L-ELR1 with
greater gain than ECMWEF at all leads. Skill is lower in
summer (Fig. 8), with maximum RPSS values north
and south of the subcontinent, south of 24°N and north
of 40°N in the Pacific, over the IAS and U.S. East
Coast in week 1. These skill patterns are consistent
with the occurrences of convective rainfall and storms
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typical of the wet season within the IAS and American
monsoon regions, as well as prevailing dry conditions
over North America midlatitudes in summer. Low
skill at higher leads do not allow to identify any in-
crease from ELR to L-ELR1 and RPSS decreases with
more Laplacians, reflecting the low predictability of
tropical rainfall.

Figure 9 shows spatial averages over North America
between 20° and 50°N of the percentages of forecasts
different from climatology in Figs. 4 and 5, which is an
indication of sharpness, together with spatial averages of
RPSS for ECMWF and MME forecasts with starts in
JFM. Sharpness and RPSS decrease with lead and reflect
low skill after week 2, when mean RPSS is only positive
for ELR and L-ELR1 MME forecasts. L-ELR1 fore-
casts have higher sharpness and RPSS than those from
ELR for both ECMWF and the MME at all leads,
confirming higher skill when using spatially averaged
rainfall (i.e., Laplacian 1) than the gridpoint mean
as predictor. Increasing the number of predictors in
L-ELR2-3 degrades the forecasts at all leads in terms
of RPSS while sharpness is increased from ELR and
L-ELR1 even at week-1 lead and, together with de-
creasing skill in Figs. 6-8, suggests overconfidence
and reduced reliability. This overconfidence can be re-
lated to the sensitivity of regression methods to sample
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FI1G. 9. Percentages of forecasts outside the fourth bin (0.33) in Figs. 4 and 5 for week-1-4 forecasts from (a),(b) ECMWF and (c),(d) the
MME for the below- and above-normal categories as labeled, along with (e),(f) mean RPSS averaged over continental North America
between 20° and 50°N latitudes, for ELR and L-ELR1-3 precipitation tercile forecasts with JFM starts.

variability, which increases with the number of coeffi-
cients being estimated and can be reduced by increasing
sample size (Tippett et al. 2014). The short length of
reforecasts used here for training at each start date
based on the same pool of weeks used to define terciles
under cross-validation (three reforecasts over 11 years)
to produce weekly forecasts does not allow to sig-
nificantly satisfy the rule of thumb of having ap-
proximately ten samples per explanatory variables,
beyond two predictors (i.e., 1 Laplacian). This aspect
is further investigated for week-3—-4 outlooks in the
following.

b. Week-3-4 outlooks

Reliability diagrams for 2-week week-3-4 L-ELR1
outlooks with JFM starts (Fig. 10) are comparable
to those of ELR in Vigaud et al. (2017a), with low
sharpness but greater slopes than weekly forecasts
(Figs. 4 and 5), thus better reliability and resolution.
Greater slopes for week-3-4 forecasts than weekly
forecasts indicate increased gain from multimodel
ensembling.

Week-3-4 MME outlooks have higher RPSS values
(Fig. 11) than week-3 and week-4 forecasts over the
northeastern, western, and southwestern United States,
across the IAS and Florida in JFM, and over the West
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United States and east Pacific for JAS starts. These skill
patterns are consistent with winter rainfall relationships
to the modulations of the jet stream, storm tracks
and atmospheric rivers (Barnston and Livezey 1987;
Monteverdi and Null 1998; Dettinger 2011; Ralph
et al. 2011; Zhang 2013), and the maximum ENSO-
related predictability of tropical convective rainfall in
the eastern Pacific and surroundings in summer. Areas
of skill are spatially broader for L-ELR1 compared to
ELR, but skill decreases from L-ELR2 to L-ELR3 likely
reflecting limitations from the small sample size. The
effect of sample variability can, however, be reduced
by increasing reforecast length (Tippett et al. 2014),
as shown in Fig. 13 by increased RPSS for ECMWF
week-3-4 forecasts, as well as weekly targets (not
shown), and enhanced skill gain for L-ELR1 when ver-
ifying and extending the pool of reforecasts to 1997-
2014. Less improvement is seen in RPSS, however, when
verifying forecasts over the 1999-2010 period (Fig. 13
bottom panels).

Over North America in winter, week-3—-4 outlooks
exhibit systematically higher RPSS and sharpness than
week-3 and week-4 forecasts (Fig. 12) with greater
RPSS for the MME compared to ECMWF for all
forecasts, while the opposite is true for sharpness at all
leads. L-ELR1 week-3-4 outlooks are in average
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slightly sharper than those from ELR. High levels
of sharpness increasing from L-ELR2 to L-ELR3
for both ECMWF and the MME (from 50% to
70%) and lower week3-4 RPSS levels in L-ELR2-3
than ELR and L-ELR1 forecasts might again in-
dicate overconfidence and reflect the small sample
size issue. Sharpness levels remain high but are sub-
stantially lower when extending ECMWEF reforecasts to
the 1997-2014 period (not shown), suggesting reduced
overconfidence when the sample size is increased.
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The gain from multimodel ensembling is greater for
week3—4 relatively to weekly averages, with larger
RPSS differences between ECMWF and the MME in
Fig. 12 than in Fig. 9, and maximized for L-ELR1
forecasts displaying twice the RPSS values from week-3
leads.

c. Skill relationships to ENSO and the MJO

Figure 14 top panels show week-3-4 MME RPSS
values versus probabilities for the below and above
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F1G. 11. RPSS for week-3-4 outlooks from the MME of ECMWEF, NCEP, and CMA for ELR and L-ELR1-3 tercile precipitation forecasts
and all starts during the (top) JFM and (bottom) JAS seasons. Mean RPSS is indicated in parentheses for each forecast.
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JFM starts.

normal categories averaged over land grid points for
North America between 20° and 50°N and JFM starts
during distinct ENSO conditions (El Nifio and La Nifia
when Nifio-3.4 is greater and lower than 0.5, respec-
tively, and neutral conditions otherwise). The highest
RPSS values occur during El Nifio conditions and
correspond to enhanced forecast probabilities for the
above normal category. Skill is lower during La Nifia,
when forecasts tend to indicate drier than normal
conditions. This is consistent with maximum RPSS
values over the southwestern United States/Mexico in
Fig. 11 and increased skill for ELR forecasts over
these regions for El Nifio (Vigaud et al. 2017a) re-
lated to jet-stream modulations and shifts in storm
tracks (Barnston and Livezey 1987; Monteverdi and
Null 1998). Week-3-4 RPSS increases from ELR to
L-ELR1 during El Nifio and neutral phases but not
during la Nifia, with lower RPSS values for L-ELR2-3
in all phases.

Higher mean RPSS and probability ranges across
MJO phases (Fig. 14 bottom panels) than for ENSO
suggest stronger modulations of skill and probabilis-
tic forecasts. RPSS is highest for forecasts issued
during MJO phases 2-3 and 6-7, coinciding with en-
hanced and reduced forecast probabilities for the
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above and below normal categories, respectively, ex-
cept for phase 6, consistent with skill relationships to
MJO RMM2 (Vigaud et al. 2017a) maximum during
these phases, when the MJO modulates atmospheric
rivers and western U.S. rainfall (Zhang 2013). Greater
week-3-4 RPSS for L-ELR1 than ELR during most
phases again contrasts with lower RPSS values for
L-ELR2-3.

4. Discussion and conclusions

The added value of spatial pattern correction on the
skill of submonthly precipitation tercile forecasts has
been examined for probabilities from extended lo-
gistic regression (ELR) when applied to reforecasts
from three models (ECMWF, NCEP and CMA) in the
S2S database over the common 1999-2010 period.
Spatial information is summarized in the ELR model
by projecting the ensemble mean precipitation over
15 grid points in latitude and longitude neighbor-
ing each location onto the Laplacian eigenfunctions
(DelSole and Tippett 2015) computed for that geo-
graphical box (Fig. 1). A multimodel ensemble (MME)
is formed by averaging the individual model probabil-
ities (Fig. 2) and L-ELR1-3 forecasts obtained by using



536 MONTHLY WEATHER REVIEW VOLUME 148

ELR (-0.0020) L-ELR1 (0.0008)

L-ELR2 (-0.0096) L-ELR3 (-0.0197)

= 48°N 48°N ? 48°N ? 48°N 1Y ) % | e
© 40°N 40°N 40°N 40°N =
oy 32N 32°N 32°N t 32°N s
RN 24°N 240N [l 24° ft = :
= 16°N 16°N . 16°N . 16°N [ B o, i
(0.0004) (0.0015) (-0.0054) (-0.0127)
48°N % 48°N ?" 48°N % 48°N t‘<D =
Yo
40°N 40°N 40°N 40°N = 3
32°N 32°N 32°N 32°N N
= O
o 24°N 24°N 24°N 24°N o =
8 16°N . 16°N . 16°N % | 16°N - g S &
~
2 (-0.0015) (-0.0017) (-0.0110)
D asen % 48°N % 48°N 48°N % s e
L] : Yo
40°N 40°N 40°N 40°N L ;h g
32°N 32°N 32°N 32°N P
& O
24°N 24°N 24°N 24°N =
i o B
16°N . 16°N ’ 16°N 16°N . S

120°W105°W 90°W 75°W 60°W 120°W105°W 90°W 75°W 60°W

120°W105°W 90°W 75°W 60°W 120°W105°W 90°W 75°W 60°W

| ]

-0.1 -0.05 O

0.05

0.1 015 0.2

FI1G. 13. RPSS for week-3-4 outlooks from ECMWEF tercile precipitation ELR and L-ELR1-3 forecasts, for all starts during the JFM
season when using reforecasts from the (top) 1999-2010 and 1997-2014 periods, when the latter are verified over (middle) 1997-2014 or
(bottom) 1999-2010. Mean RPSS is indicated in parentheses for each forecast.

1 to 3 Laplacian eigenfunctions as predictors are com-
pared to ELR forecasts based on the gridpoint mean
(Vigaud et al. 2017a).

L-ELR1 weekly precipitation tercile forecasts exhibit
low sharpness (Figs. 4 and 5) and skill decreasing with
leads and from winter to summer (Figs. 6-8). However,
skill is increased compared to ELR (Fig. 9) indicat-
ing more skillful predictions when using spatially
averaged precipitation instead of the gridpoint en-
semble mean as predictor. The size of this 15 X 15
gridpoint box used to compute Laplacian eigenfunctions
is consistent with meteorological synoptic scales such
as those of midlatitude depressions for instance (thou-
sands of kilometers), which could explain the increase
in winter skill when including spatial information. Af-
ter week 2, reliability and resolution drop over North
America, where skill remains low for all forecasts.
Skill also decreases when including more Laplacians
as additional explanatory variables. This can be ex-
plained by the sensitivity of regressions to sample
variability, which increases with the number of pre-
dictors, leading to overconfident probability forecasts
as reflected by high sharpness as lead increases for
L-ELR2-3, and suggesting that improvements are
limited by the small size of reforecasts used to train the
ELR model.

Skill is enhanced from week-3 and week-4 forecasts
when combining both leads to form week-3—4 tercile
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probabilities (Figs. 10 and 11). The 2-week targets are
in line with the concept of seamless predictions (Zhu
et al. 2014) and might have the advantage to capture
better the time-scales of rainfall relationships to shifts
in the jet stream and storm tracks, including those
induced by ENSO and the MJO. Skill is maximized for
L-ELR1 with almost 2 times the skill of week-3 leads
(Fig. 12) and highest skill over the Northeast, West,
and Southwest in JFM, and the western United States
in JAS. These patterns of maximum skill are consis-
tent with the maximum influence of jet-stream and
storm-track modulations on North American rainfall
in winter and the highest predictability of tropical
rainfall in eastern Pacific regions related to ENSO in
summer, respectively. L-ELR2-3 exhibit lower skill
because of the small sample size. However, increased
RPSS (Fig. 13) and reduced overconfidence (not
shown) for ECMWF week-3-4 outlooks when verify-
ing and extending the pool of reforecasts to 1997-2014
indicate potential for further skill improvements by
increasing reforecasts length.

Skill relationships to large-scale tropical forc-
ings such as ENSO or the MJO are maximized in
L-ELRI1 forecasts, with greater RPSS relative to ELR
(Fig. 14). Highest skill in all forecasts for winter starts
during El Nifio and MJO phases 2-3 and 6-7 are
consistent with El Nifio and MJO modulations of
the jet stream and U.S. precipitation. Even if skill
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North America between 20° and 50°N latitudes, for ELR and L-ELR1-3 precipitation tercile MME forecasts with
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are indicated by @, O, and © symbols, respectively, and those of the MJO are indicated by their respective number.
Dashed lines correspond to the 0.1 level of significance using a permutation test, and black lines in the top panels

indicate the skill gain from ELR to L-ELR1.

remains low, these results suggest increased oppor-
tunities for skillful predictions through spatial pat-
tern correction and increasing length of reforecast
archives.
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