APRIL 2019 COOK AND GREENE 671

Gridded Monthly Rainfall Estimates Derived from Historical Atoll Observations

WERNER E. COOK AND J. SCOTT GREENE

Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma

(Manuscript received 7 August 2018, in final form 28 January 2019)

ABSTRACT

To provide an analysis tool for areal rainfall estimates, 1° gridded monthly sea level rainfall estimates have
been derived from historical atoll rainfall observations contained in the Pacific Rainfall (PACRAIN) data-
base. The PACRAIN database is a searchable repository of in situ rainfall observations initiated and
maintained by the University of Oklahoma and supported by a research grant from the National Oceanic and
Atmospheric Administration (NOAA)/Climate Program Office/Ocean Observing and Monitoring. The
gridding algorithm employs ordinary kriging, a standard geostatistical technique, and selects for nonnegative
estimates and for local estimation neighborhoods yielding minimum kriging variance. This methodology
facilitates the selection of fixed-size neighborhoods from available stations beyond simply choosing the closest
stations, as it accounts for dependence between estimator stations. The number of stations used for estimation
is based on bias and standard error exhibited under cross estimation. A cross validation is conducted, com-
paring estimated and observed rains, as well as theoretical and observed standard errors for the ordinary
kriging estimator. The conditional bias of the kriging estimator and the predictive value of kriging standard
errors, with respect to observed standard errors, are discussed. Plots of the gridded rainfall estimates are given
for sample El Nifio and La Nifa cases and standardized differences between the estimates produced here and
the merged monthly rainfall estimates published by the Global Precipitation Climatology Project (GPCP) are
shown and discussed.

1. Introduction Claims of relative performance are not made, since
similar products derived from in situ data do not appear
in the literature at this time. Improvements in accuracy
are constrained by the degree to which the data capture
variations in rainfall at progressively smaller spatial
scales, regardless of the estimation method used. Also,
techniques that involve more complicated models (e.g.,
universal kriging) require more data to achieve the same
level of optimization and are not necessarily as robust
in their applicability as ordinary kriging. Space-time
kriging (see Cressie and Wikle 2011) may offer an ave-
nue to improving estimates by incorporating rainfall
data from a temporal neighborhood around a particular
month.

The sparseness of observing stations over tropical
oceans, in concert with the multitude of spatial scales
over which rainfall varies, limits the performance, in
terms of accuracy, of the gridded products introduced
here. Such estimates are subject to standard errors that
sometimes exceed the magnitudes of the estimates
themselves. Nevertheless, rainfall estimates based on
in situ measurements are indispensable for determining
confidence bounds of precipitation values obtained from
Corresponding author: Werner E. Cook, ecook@ou.edu numerical model or remote sensing algorithm outputs

The purpose of this research is to produce monthly
gridded rainfall estimates for the tropical Pacific Ocean
with validated standard error estimates, derived solely
from in situ atoll rainfall measurements. In selecting
data from which to derive estimates, we have placed a
higher priority on internal consistency of that data and
consistency, in terms of expected rainfall climatology,
between the observing stations and targeted estimate
locations, than on maximal coverage of estimates hav-
ing theoretical standard errors below some arbitrary
threshold. In selecting the estimation procedure, we
have opted for ordinary kriging, a technique first de-
scribed by Matheron (1963), which has the advantage of
producing a theoretical standard error value, kriging
variance, based upon the variability of the data as a
function of distance (the variogram) as well as the geo-
metric distribution of data points used for estimation.
The suitability of kriging variance as a predictor of ac-
tual standard error can be determined directly.
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and for climatological comparisons. Confidence in stan-
dard error estimates (not the size of standard errors
themselves) and a lack of bias are primary features we
aim to achieve here; performance, in terms of suitability
for a particular purpose, is determined properly by the
end user.

Having more comprehensive coverage than other re-
mote sensing datasets (radar, passive microwave, etc.),
as well as resolution in space and time roughly fitting the
requirements mentioned above, infrared satellite data
contain information that could be helpful in indirectly
inferring the scales and intensities of rainfall features,
but they are problematic for two reasons. First, they do
not exist for much of the history for which we wish to
produce gridded values. Second, and more importantly,
their usefulness for discriminating between contribu-
tions of different scales is limited by the smallest scales
over which their joint statistics with in situ rainfall
measurements are known. Ultimately, such joint statis-
tics must be obtained by comparing the remote sensing
datasets to in situ data subject to appropriate areal av-
eraging (rainfall estimates derived from remote sensing
data are areal estimates, not point estimates) and tem-
poral aggregation. In turn, areal averages of in situ
data and their error characteristics must be rooted in the
comparison of point interpolations directly to point
(rain gauge) measurements. In other words, the first step
in the process of determining how the physical charac-
teristics of the rainfall data affect interpolated estimates
is to generate and validate point estimates using in
situ data.

There are plentiful examples in the literature, such as
Ly et al. (2011), Kastelec and Kosmelj (2002), Tang
(2002), and Goovaerts (2000), of rainfall estimation us-
ing various forms of kriging, yet these papers use ob-
servations that are relatively dense in space compared to
the data used in this paper. In contrast, analogous work
to produce rainfall estimates over open oceans using
only sparse rain gauge observations are lacking, with
Morrissey (1991) and Morrissey et al. (1995) being no-
table exceptions; these focus on the estimation of un-
certainty of spatial averages constructed from point
measurements, where averaging domains contain many
data points. While the lack of directly comparable re-
search may indicate a presumption that monthly point
rainfall estimates derived from rain gauge data gathered
exclusively at atoll locations will severely limit the do-
mains over which standard errors are sufficiently small
to ensure suitability for a particular use, that situation
does not diminish the importance of such estimates.
These point estimates and associated standard errors
provide directly verifiable bounds on the uncertainty
of areal estimates derived from the same data, which are

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/26/24 03:49 PM UTC

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 36

used to validate other areal products, for example, out-
puts of satellite precipitation algorithms and climate
models, which are properly validated against unbiased,
areally averaged in situ estimates of quantifiable uncer-
tainty. For example, the standard error of a block kriging
(Isaaks and Srivastava 1989) estimate is less than largest
standard error of a point estimate produced by ordinary
kriging within the block (area over which estimate ap-
plies) in question. Given appropriate statistical assumptions,
unbiasedness can be shown, and uncertainty computed,
theoretically, but both must be validated empirically.

Incorporating estimates derived from remote sensing
platforms can reduce the uncertainty of rainfall esti-
mates. Peer-reviewed literature abounds with examples
of kriging being employed to merge radar rain estimates
and rain gauge data, beginning with Krajewski (1987).
More recent papers include those of Sideris et al. (2014)
and Jewell and Gaussiat (2015), which gives an overview
and comparison of several techniques and Park et al.
(2017) and Verdin et al. (2015) which merge satellite and
rain gauge data. It should be noted that all such schemes
require knowledge of the error structure of the remote
sensing algorithm output and cross validation to dem-
onstrate the fidelity of the merged product, both of
which necessitate comparisons with rainfall estimates
traced solely to direct measurements at the surface. We
will proceed with an eye to that necessity with the full
understanding that the applicability of the resulting
product will be limited, at times severely, by data
sparseness and the highly variable nature of convective,
tropical rainfall. We will begin by describing the rainfall
gridding procedure in detail, and then demonstrate
the reliability of the gridded product, through cross
validation.

The point estimates generated using this method do not
duplicate accumulation features on the scale of the grid
spacing. They are intended to provide an easily accessible
way to visualize historical distributions of sea level rain-
fall over the tropical Pacific (where available data allow)
with quantifiable bias and uncertainty, and to be a tool for
evaluating the reliability of areal rainfall estimates.

2. Data selection and quality assurance

Data for this study were drawn from the Pacific
Rainfall (PACRAIN) database (Greene et al. 2008) for
the period of January 1930-April 2018. These records
originate from a variety of sources including the Na-
tional Centers for Environmental Information (NCEI),
the New Zealand National Institute of Water and Atmo-
spheric Research (NIWA), the French Polynesian Mete-
orological Service, the Schools of the Pacific Rainfall
Climate Experiment (SPaRCE; Postawko et al. 1994),
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and the atlas of Pacific rainfall (Taylor 1973). These
records can be obtained via web query at the PACRAIN
website (www.pacrain.ou.edu), as individual files containing
daily or monthly rainfall totals for fixed locations.

For this research, data sparseness is exacerbated by
the need to exclude observations taken at locations
where topography and/or differential heating of land
and sea may lead to local, persistent spatial trends in
rainfall, for example, due to orographic and sea breeze
effects. We will hold to the postulate, consistent with
the findings of Lavoie (1963) and the application of
Morrissey and Greene (1993), that rainfall observations
collected at atoll locations are representative of rainfall
occurring in open ocean conditions and are more similar
in their distributions in space and time to those over the
surrounding open ocean, compared to the distributions of
rainfall at nonatoll stations. Therefore, only rainfall ob-
served at atoll locations are used to make gridded estimates,
as the vast majority of gridpoint locations are oceanic,
where persistent spatial rainfall trends would not be due to
fixed variations in dynamic and thermodynamic forcing.

A discussion of the physical characteristics of the ob-
served rainfall data (e.g., the intensities and spatial and
temporal scales of features contributing to observed
accumulations, and their organizing structures) and the
implications of those characteristics on the interpolation
process is not beyond the scope of this work, but is
necessarily cursory. Deducing the detailed physical
characteristics of individual rainfall features and, in turn,
their specific contributions to rainfall totals is not gener-
ally possible for the spatial-temporal domain in question,
due to insufficient data density in space and time.

In general, tropical Pacific rainfall comes mostly as a
result of convective features, which vary greatly in prev-
alence, size, and characteristic accumulations. These
features have horizontal scales as small as 1 km and can
be seen in satellite imagery distributed individually and in
larger organizing structures, more or less homogeneously,
over regions with radii exceeding 1000km. Thus, daily
rainfall over tropical oceans, even without tropical cy-
clones or other larger-scale rainfall features, can exhibit
fluctuations on scales not typically sampled over ocean
basins (~1-10km) that may approach, in magnitude,
variations occurring over scales two to three orders of
magnitude greater. Figure 1, derived from August 1971
atoll rainfall data within the PACRAIN database, for
stations separated by less than 2000 km, shows differences
in monthly rainfall observations between atoll stations.
From the historical example given in this figure it is
clear that differences observed at separations less than
100km may also be of the same order of magnitude as
those typically observed between stations separated by
much larger distances (>1000km).
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FIG. 1. Absolute monthly rainfall differences for stations sepa-
rated by <2000 km. Derived from August 1971 atoll rainfall data
contained in the PACRAIN database.

That differences in monthly rainfall between stations
exhibit a very broad scatter and (weakly) more so
with increasing separation distance should be expected.
Monthly tropical rainfall totals are sums of accumulations
due to meteorological features on a broad continuum of
spatial scales, including individual showers and thunder-
storms, convective storm clusters, tropical waves, tropical
cyclones, the intertropical convergence zone (ITCZ), and
the Madden-Julian oscillation (MJO). But the larger fea-
tures include, or are entirely composed of, convective cells.

The following steps were taken to assure data quality,
data comparability (internally), consistency relative to
the domain over which the gridded product is meant
to be applicable, and consistency of the data’s sample
probability density function with a Gaussian function:

e Only rainfall observed at Pacific atoll locations—
depicted in Fig. 2—were selected for this study. As
noted in section 1, we take the position, consistent
with Lavoie (1963) and Morrissey and Greene (1993),
that rainfall at such stations is most consistent with
that over the surrounding open ocean regions.

o Trace observations were changed to 0.0mm. With
accumulations reported as small as 0.1 mm and typical
monthly totals on the order of 10'-10* mm, the error
associated with zeroing a trace report is at least two
orders of magnitude smaller than a typical monthly
rainfall total or typical kriging standard error.

o Where quality assurance (QA) flags indicated that
rains in one accumulation period were recorded in a
subsequent accumulation period, for consecutive ac-
cumulation periods in different months, and where the
smaller of the two periods was 24 h or less, accumula-
tions were prorated between adjacent periods based
on a constant accumulation rate over the aggregate


http://www.pacrain.ou.edu

674

120°E 150° E 180° E 210°E 240" E
30°N
15" N .
L
0 g "¢ s
‘:,.' ~ a
15'S F:
N o
30°S
FIG. 2. Locations of atoll stations with records in the PACRAIN
database.

period. Where the shorter period was greater than
24 h, rain for both periods were discarded (flagged as
missing and omitted from the gridding procedure).
Monthly rainfall totals were also discarded where rainfall
was reported as missing for at least one accumulation
period for the month in question.

« Rainfall for stations with observation times different
than 0000 UTC was prorated between consecutive
months based on a constant accumulation rate during
the accumulation period encompassing 0000 UTC.

 For stations with accumulation periods of less than a
month (e.g., reported on a daily basis), accumulations
were aggregated into monthly totals.

o Some cases of apparent duplicate records exist within
the PACRAIN database. Notes, including a list of
suspected duplicate stations, are provided with the
results of data queries submitted to the PACRAIN
website (Wwww.pacrain.ou.edu). Records were deemed
to be duplicates if 1) latitude and longitude metadata
were identical and 2) station separation based on
available metadata was greater than zero but less
than 20km and the root-mean-square difference in
corresponding monthly rain records was less than
10mm. Where stations were found to be duplicates
based on these criteria, a single station record was
generated and assigned to the location with the longest
period of record. In combining the records of suspected
duplicates, 0.0-mm values for one station were replaced
with a positive value from the other station, where
available. Otherwise, records for the station with the
longest record were supplemented—missing values
were replaced—with data from its assumed duplicate.

e Outliers, defined as observations that 1) deviated from
an initial kriging estimate by a z score of at least 5,
relative to the kriging standard error, and 2) were not
within the range of the data used to produce that
estimate, were removed. The rationale and method-
ology for eliminating these outliers is described below.
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Spurious data must be identified in the context of the
properties of tropical, convective rainfall. Monthly trop-
ical rainfall totals are sums of accumulations due to
meteorological and climatological features on a broad
continuum of spatial and temporal scales. Consequently,
extreme values may be due to local superposition over
time of features on any one or all of these scales. Based
only on the examples of station-to-station differences
shown in Fig. 1, the threshold used here for omitting
data from the estimation process must consider the real
possibility of stations separated by 100km exhibiting
differences in monthly rainfall of more than 100 mm.
Without supplemental information (e.g., from a satellite
or radar), finer-scale in situ sampling in space and time,
or notation in the database suggesting a data quality
issue, discarding extremes demands manual examina-
tion of the surrounding data to exclude the possibility of
meteorological phenomena, unsampled by the stations
used to estimate rainfall but affecting the station reporting
the anomalous value.

We defined outliers to be removed as observations
that 1) deviated from an initial kriging estimate by a z
score of at least 5, relative to the kriging standard error,
and 2) were not within the range of the data used to
produce that estimate. These outliers were examined
manually and, in all cases, they proved inconsistent with
multiple observations within 200 km of, and in widely
differing directions from, the location of the outlying
report. Furthermore, of these anomalies, none could be
explained in terms of meteorological phenomena on
scales smaller than that in the local group of stations,
such as a small tropical cyclone, or in terms of a small
number of large daily totals that could be the natural, if
infrequent, result of “‘random” differences in the num-
ber of convective rainfall events affecting the local
group of stations over the course of a month. Of the 20
reports meeting the outlier criteria, 7 were found at one
station. A manual examination of that station’s records
indicated other instances of rainfall values seemingly at
odds with those reported by the local group of stations;
its entire record was excluded from the estimation pro-
cess. The remaining 13 outlier reports were deemed to
be isolated and were excluded individually.

Following the steps to assure quality and consistency,
a square root transform was applied to rainfall obser-
vations. The square root transform was shown (for the
case of daily rainfall) in Schuurmans et al. (2007) to yield
transformed quantiles more similar to those of the
Gaussian distribution than those resulting from a loga-
rithmic transform. This transform is also used in Sideris
et al. (2014) for both radar estimates and rain gauge
observations prior to kriging. The transform is adopted
here for three reasons. First, it results in a symmetric
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FIG. 3. P-P plots of square root and log-transformed rainfall vs Gaussian model derived from PACRAIN atoll data (1930-2018 for
January-July, 1930-2017 for August-December).

distribution. Ordinary kriging produces estimates of
reduced variance. This variance reduction corresponds
to reduced probabilities (relative to the data) of rela-
tively high and low values. Such distributional differ-
ences are not symmetric when the data are skewed.
Second, it allows for simple estimation of probability
thresholds based on kriging variance. Finally, the
square root transform provides for a simple, unbiased
back transformation. Figure 3 shows P-P plots for
transformed monthly rainfall versus Gaussian distri-
butions of the same means and standard deviations,
for log and square root transforms. As with the O-0O
plots given by Schuurmans et al. (2007) comparing the
log and square root transformations, it can be seen
that square root—transformed rainfall is more similar
in distribution than log-transformed rainfall to a
Gaussian variable of the same mean and standard
deviation. Probabilities are decidedly asymmetric for
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the log transform, being concentrated to the right of the
mean. In short, the log transform visibly ‘‘overcorrects”
for the expansive right tail observed in the dataset.

3. Semivariogram estimation

Estimation of semivariograms began with computa-
tion of semivariance data y. These data were computed,
as shown in (3.1), for each month m at integer k multi-
ples of 50km of separation, by applying normalized
weights given by a Gaussian function to squared differ-
ences between transformed rainfall values z at stations i
and j, separated by great circle distances /;;, for month m
and year y. The interval of 50km between semivariance
data points was chosen subjectively, but with attention to
the minimal sensitivity of semivariogram parameters (and,
in turn, estimation error) to that distance (and to the
Gaussian standard deviation) from 20 to 100 km:
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The year summation is for valid years (yyqq), that is,
years in which both z;,,, and zj,,,, are valid. The Gaussian
function g(x) in (3.1) is given by

1 —x22a%

X)=——¢ R
g(x) 5

(3.2)

where a@ =50km. The weight function (3.2) is not
bounded, which results in some smoothing, and semi-
variance estimates that are not independent.

Note that the adoption of ordinary kriging is not
logically consistent with computing semivariance with-
out the assumption of second-order stationarity. Uni-
versal kriging provides a logical alternative, assuming
nonstationarity; however, the spatial trend model must
be chosen—and to be consistent, applied in the com-
putation of semivariance—which (among other things)
makes incorporating data from multiple years in the
semivariogram estimation procedure a dubious exercise.
Furthermore, and as suggested by Isaaks and Srivastava
(1989) and Wackernagel (2003), universal kriging is
not a robust method with respect to estimates made
outside the spatial interior of the group of stations used
for estimation due to extrapolation of trends.

The formulation of semivariograms without account-
ing for nonstationarity is not accepted lightly; however,
of greater concern is that kriging standard errors are
demonstrated to be predictive of actual standard errors
via cross validation and expected to retain their pre-
dictive qualities at locations far removed from estimator
stations. The latter cannot be maintained with respect to
universal kriging to the degree it can with respect to
ordinary kriging, due to the extrapolation problems
mentioned previously.

It should be noted that average spatial trends in the
rainfall field serve to increase semivariance values (3.1) for
lags over which they persist. This can degrade the fidelity
of the correlation structure expressed by the associated
semivariogram, the parametric form of which also directly
affects the expressed correlation structure.

An isotropic exponential semivariogram model (3.3)
was fit to the semivariance data described previously.
See Cressie (1985, 1993b, chapter 2) and Chiles and
Delfiner (1999, chapter 2) for information on common
semivariogram models and fitting techniques:

y(h) =y, +s(1 - "), (3.3)
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where h, vy,, s, and 7 represent isotropic separation,
nugget, sill, and range, respectively. Nugget, sill, and
range parameters were found via iteration to obtain
minimum squared residues between the model and
semivariance data generated for each month. Data from
many years are used to estimate a single variogram for
each of the 12 calendar months.

For the purposes of cross validation, each stations’
data were omitted sequentially from the estimation
process for the semivariograms used in estimating its
monthly rainfall history. For the gridding procedure, all
available data were used.

Figure 4 shows model semivariograms together with
the semivariance data to which they are fit for the
months of January, April, July, and October—months
meant to give a sampling of the seasonal variability
of semivariograms. The semivariograms of Fig. 4 are
those used to produce gridded estimates, being derived
from all stations. There are too many semivariograms
used in the cross-validation procedure to show (one for
each month for each station). A noteworthy feature
seen in the plots of Fig. 4 is the nearly factor-of-2
change in computed sill between January and July.
This is likely due in part to differences in the geomet-
rical relationships between the spatial distribution of
stations and average rainfall gradients for the two
months; that is, a difference in relative sampling
probably accounts for some of the difference in the
semivariograms. This position is supported by Fig. 5. A
cursory inspection shows that the entire range of means
in January is accommodated in approximately the
maximum separation considered (2000km) in fitting
the semivariograms; it is accommodated in roughly
twice that distance in July. The apparent shift seen in
all four months depicted in Fig. 4, in the trend of
the semivariance data at approximately 800km is
also of interest. The isotropic exponential model was
retained despite this appearance due to several
considerations: limiting optimization to 3 degrees of
freedom due to sample size; its continuous nature—
it seems implausible to the authors that the ex-
pectation of squared differences would reach a
hard maximum at a particular distance; the consid-
erable likelihood that the transition’s persistence
(which is not unique) is due, in part, to the pecu-
liarities of the available spatial sampling; and its
simple interpretation and prevalent adoption in the
literature.

It should be noted that data sparseness can affect the
fit of model semivariogram parameters. Exponential
semivariograms fit to these data, where few stations are
separated by distances of, or less than, the scale of the
smallest rainfall features, may exhibit larger nuggets
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FIG. 4. Model semivariograms derived from PACRAIN atoll data (1930-2018 for January-July, 1930-2017 for
August-December).

and ranges relative to those based on denser data.
With regard to kriging, the practical effect of a larger
nugget is increased smoothing and a larger minimum
estimation standard error, for a given number of es-
timator stations, everywhere the variogram is applied
(except where an estimate is collocated with an esti-
mator station). The practical effect of an increased
range is increased smoothing of estimates—less
difference in weights applied to a given set of
observations.

4. Estimation procedure

Rainfall estimates for cross validation and gridding
were produced using the same implementation of
ordinary kriging. Kriging systems (4.1) were pop-
ulated by evaluating the model semivariograms
(3.3):
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In the equations above, y(h;) are variogram model
values for distances separating stations i and j within a
group of n estimator stations and y(h;,) are the variogram
model values for distances separating estimator stations
i from the station, or grid node p where rain is to be
estimated. Solution of (4.2) yields the set of weights w; and
the Lagrange parameter p with which estimates of the
transformed variable Z,,,

2, = 2wz, (42)
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FIG. 5. Mean estimated rainfall for January and July derived from PACRAIN atoll data
(19302018 for January-July, 19302017 for August-December.

and the ordinary kriging variance o2 are computed:

Oy = ;wiy(hip) + . (4.3)

Clear derivations of the ordinary kriging system can be
found in Isaaks and Srivastava (1989, chapter 12) and
also in Wackernagel (2003, chapter 11).

Rainfall was computed for station locations and grid
nodes using groups of n =9 estimator stations drawn
from the set of 12 closest stations to the location in
question. The number of estimator stations was chosen
based on standard errors and biases computed in ex-
ploratory trials. As seen in Fig. 6, standard errors change
much less fractionally for n > 6 relative to n <6, while
Fig. 7 indicates that bias is minimized in the aggregate
for n = 9. The bias shown in Fig. 7 reflects the combined
effects of all sources of bias and can be made objectively
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small—at least two orders of magnitude smaller than
mean monthly rains.

Bias appearing in the back-transformed rainfall esti-
mates 7, given by Sideris et al. (2014),

F= 24 oy, (4.4)
can arise from both the transformed estimates them-
selves and from the kriging variance of the transformed
variable. This is not to say that (4.4) is a biased estimator;
bias can arise from the correct mapping of transformed
estimates which do not have the variance of transformed
observations (due to smoothing characteristic of a linear,
unbiased estimator) and from kriging variance estimates
that are based on semivariograms that are computed
globally for each month.

For kriging, the reduction of variance at location x is
given by Yamamoto (2000) as
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var[z(x)] — var[Z(x)] = 05 +21.=0.  (4.5)
A postprocessing algorithm to reclaim the variance of
the original data, given by Yamamoto (2005), applies
successive corrections obtained by subtracting cross es-
timates obtained for the data points used from the
data themselves, via kriging, to the grid node or cross-
validation point. The incorporation of this postprocessing
scheme requires a theoretical estimator of kriging vari-
ance for the various levels of adjustment and demon-
stration that

2 2
g =0
OKy,q OK,>

(4.6)
where / denotes the number of corrections applied. If
(4.6) does not hold in general, then reclaiming the data
variance comes at the potential cost of increased stan-
dard error, to be determined empirically. Thus, since the
scheme may increase standard error, and (4.6) is not
shown theoretically, we have not included this approach.
Potential alternatives to the algorithm of Yamamoto
(2005) include constrained kriging (Cressie 1993a) and
covariance-matching constrained kriging (Aldworth and
Cressie 2003).

As for bias due to the kriging variance of the trans-
formed variable, in adopting global semivariograms it is
assumed that rainfall fields will exhibit the same values
of semivariance at the same spatial lags, for all instances
of a given month, regardless of local means or the
prevailing mean of a given instance of that month. The
back transform assumes symmetry and homoscedas-
ticity in the error distribution for Z.

The method used to ensure only nonnegative esti-
mates is less restrictive than that proposed by Barnes
and Johnson (1984) or Szidarovszky et al. (1987) which
enforce positive weights, although the latter also aims
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FIG. 7. Bias of kriging estimates vs number of estimator stations
derived from PACRAIN atoll data (1930-2018 for January—July,
1930-2017 for August-December).

to obtain the least uncertain estimate as judged by the
corresponding value of o,. We simply retained non-
negative rainfall estimates of minimum kriging vari-
ance. While negative rains are distinctly unphysical,
negative weights as applied to rainfall estimation are
no more unphysical than the notion that rainfall at a
point can be approximated as a linear combination of
rains observed in a spatial neighborhood of that point.
Still, the presence of negative weights can also result in
estimates well outside the range of rainfall observa-
tions in the neighborhood. Such estimates 7 were ex-
cluded where

= Toe) - 5, (4.7)

Ulocal_obs

in which 7., is the mean of the observations used in
estimation and oOyeca obs 1S the standard deviation of
those observations.

5. Cross-validation results

For the study period of 1930-2018, there were
7672 monthly observations in the atoll dataset for which
estimates could be derived using the best 9-station
neighborhood out of 12 closest stations criteria. Re-
gressions of estimated and observed rainfall for a sam-
pling of four seasonally representative months are
shown in Fig. 8.

Goodness of fit, as judged by the R? metric, varies
from its maximum in February (0.657) to its minimum in
November (0.524). Slope varies by approximately 8%
from its April value of 1.0057 for April to 0.9228 in
August. The R? results are inevitably related, to some
degree, to the spatial distribution of stations addressed
in cross validation and cannot be taken as indicative
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FIG. 8. Scatterplots of cross-validation estimated and observed rainfall derived from PACRAIN atoll data (1930-2018 for January—July,
1930-2017 for August-December).

of results for the grid domain, in general. However,
R? and slope exhibit durability with respect to, for
example, restriction to halves of the geographic
domain.

A set of P-P plots in Fig. 9 compares sample cu-
mulative probabilities for estimated and observed
rains, where P.y(Z<Zy) and P.y(F<Fy) are sample
probabilities of transformed and back-transformed cross-
validation estimates, respectively, and Pg,s(z <Zo) and
Pows(r <7y) are the sample probabilities of transformed
and nontransformed observations, respectively. The
reduction in variance is seen in estimate probabili-
ties mapping to a narrower range of observation
probabilities (e.g., there are more observations below
50 mm than there are estimates, and more observations
above 400 mm than there are estimates). This reduc-
tion in variance of estimates, relative to observations,
an expected feature of an unbiased, linear estimator,
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is seen in both transformed and back-transformed
estimates.

Overall negative bias, which could result (in isolation)
from the back transform of a set of estimates of reduced
variance is not generally evident in Fig. 7 except for esti-
mator groups of n > 9. It is notable in Fig. 9 that the shift
in observation probabilities under back transformation of
estimates is, in all cases shown, toward higher cumulative
probabilities, but is relatively small for high-end estimates.

The kriging variance, which is directly proportional
to the sum of nugget and sill of the semivariogram
employed, can be increased by the presence of relatively
large, isolated rainfall totals in the datasets used to es-
timate semivariograms. A single set of semivariogram
parameters is determined globally, and for all avail-
able years, for each calendar month. Kriging variance
is determined identically for a particular semivariogram
and configuration of estimator stations, regardless of
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F1G. 9. P-P plots of cross-validation estimated and observed rainfall samples derived from PACRAIN atoll data (1930-2018 for
January—July, 1930-2017 for August-December).

the actual rainfall observations for those stations.
Thus, where groups of estimator observations show
relatively low variability, the second term on the right
of the back transformation (4.4) can result in a dis-
tributional shift to the right of estimates relative to
observations.

Back-transformed kriging-estimated error variances
were computed using the back transform given by Sideris
et al. (2014) for the square root transform:

2 4,22 4
Opr =4u ook + 200k -

5.1)
Corresponding estimated standard errors are compared
to observed standard errors oop, computed as follows
using the unbiased formula for variance for 31 pairs of
rainfall estimates and observations:

j+15
JE ]2 (F,—r) (5.2)
OBj 30 s i i/
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where 7; and 7; are sorted by opr and j=31k — 16, k
being an integer such that i is neither negative nor
greater than the number of available data pairs generated
in cross validation for a particular calendar month. Plots of
estimated and observed standard errors are shown in
Fig. 10. The data points used for these plots are in-
dependent, in that they contain no common pairs of esti-
mates and observations. The number of data points
chosen for computing variances is the first odd number
(for the sake of symmetry) exceeding 30, which is the
commonly accepted minimum sample size for approxi-
mate confidence thresholds to be derived from a normal
distribution.

Two things are immediately apparent in the plots
of Fig. 10. First, in all cases, a least squares regression
of the data suggests that estimated standard errors
increase more rapidly than observed standard er-
rors. Second, the plots suggest (for January, July, and
October) that a linear relationship is applicable to
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FIG. 10. Standard errors—kriging estimated (back transformed) vs observed derived from PACRAIN atoll data (1930-2018 for
January—July, 1930-2017 for August-December).

estimated and actual standard errors, even though standard errors are shown to be predictive of actual
data used to compute observed standard errors standard errors.

are selected based on estimated standard errors
which, in turn, are wholly dependent on semivario-
grams and the spatial distributions of estimator
stations used. In other words, data for computing For each node of the 1° X 1° grid encompassing the
““observed” error variance are not sampled in a atoll stations used in this paper, the following parame-
spatially homogeneous way. Nevertheless, theoretical ters were computed:

6. Gridded monthly rainfall products

7= 2%+ 0% mean rain estimate (mm)
. 12 .
o = (42205 +208,) : standard error of back-transformed estimates (mm)

0 - standard error of transformed estimates (mm'?). (6.1)

Kriging standard error for the transformed estimates is Gaussian error distribution. For example, upper- and
included in the web-published products to facilitate lower-quartile estimates can be derived from the
the computation of confidence bounds based on a published data via
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F1G. 11. Kriging-estimated rainfall for January 1983 (El Nifo).

Fosg = [ = 020 " 20674500, ], (62)
where the number 0.6745 corresponds to the half-width
(z score) of the interval between the 25th and 75th per-
centile thresholds of the standard normal distribution.
These back transforms are given Sideris et al. (2014) for
the square root transformation. It should be noted that
the validity of (6.1) and (6.2) hinge on the distributional
similarity of the estimates and a Gaussian distribution of
the same mean and variance.

The method for generating gridded estimates deviated
from that used in cross validation in two ways: first, no
observations were excluded from the pool of data from
which estimator neighborhoods were drawn, and second,
estimates were still made in cases where there were less
than 12 available observations. In the latter case, neigh-
borhoods of nine stations were simply drawn, where
available, and selected based on the criteria explained in
section 5. The former deviation is a natural step, as the
reason for excluding stations in the estimation process for
cross validation is to ensure the integrity of comparisons
between the data (excluded) and the estimate (con-
structed from the remainder of the data). The latter simply
allows for gridded estimates in as many cases as possible
without violating the applicability of the cross-validation
results with regard to the number of estimator stations.

Plots of sample gridded rains for January 1983 and
January 1989 are given in Figs. 11 and 12, respectively.
These examples were chosen for their representative-
ness of interesting climate events: El Nifio in case of
January 1983 and La Nifia in the case of January 1989.
The less-than-smooth presentation is due to a combi-
nation of factors: the nature of the plotting software in
conjunction with the 1° resolution of the product and
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the use of local estimator neighborhoods rather than a
global fit.

Two notable differences between the patterns seen in
Figs. 11 and 12 and the “canonical’’ El Nifio and La Nifia
patterns are the heavy rainfall totals extending south-
westward toward the Solomon Islands and Vanuatu in
January 1983 and the local rainfall maximum seen near
180°E/W at approximately 10°S in January 1989. The
former is due to estimation where there is a lack of atoll
observations, the latter to a monthly rainfall total of 600 mm
(large, relative to observations in the vicinity). The daily
rainfall observations associated with the local maximum in
monthly rainfall of Fig. 12 are unexceptional and cannot be
objectively excluded based on other monthly totals in the
spatially sparse neighborhood.

For comparison, corresponding gridded monthly
rainfall estimates of the Global Precipitation Climatol-
ogy Project (GPCP), version 2.3, are shown in Figs. 13
and 14. One notable difference between Fig. 11 and
Fig. 13 is seen in the rainfall gradient at approximately
175°E, just south of the equator. While direct compari-
sons of the two products are not strictly valid due to the
nature of the difference between point and areal esti-
mators, any identified difference is not necessarily due
to the difference between a point and areal estimators.
Rainfall is sampled immediately north and south of the
region of strong gradient, but stations sampling it are
clustered along narrow bands. Standardized differences
(see Fig. 15) based on kriging variance are relatively
large to the east and west of the location in question. The
situation is not unexpected, given that satellite data are
available where there are no surface rainfall observa-
tions and that areal rainfall estimators relying heavily
on satellite data may contradict surface observations,



684

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 36

600

w
8
estimated rainfall (mm)

200

FIG. 12. Kriging-estimated rainfall for January 1989 (La Niiia).

even if they are unbiased. For a description of the GPCP
products and their derivation, see Adler et al. (2003,
2018). GPCP monthly estimates are merged products,
derived using rain gauge, satellite, and sounding data.
To place the visible differences between the precipita-
tion patterns exhibited by the kriging estimates and the
GPCP estimates in perspective, standardized rainfall dif-
ferences (GPCP — kriging) based on kriging standard er-
ror are plotted in Fig. 15. Standardized differences with
magnitudes in excess of two are mainly confined to regions
far removed from available atoll data, and where, based on
well-known precipitation patterns associated with El Nifio,
estimates are made based on observations in an area that
would be expected to see the statistical anomalies of the
opposite sign. Care must be taken not to ascribe undue

meaning to this comparison. The products have different
resolutions and one is correctly interpreted as consisting of
areal estimates (GPCP)—the other of point estimates.

7. Summary

Gridded historical rainfall estimates, based on monthly
rainfall observed at atoll locations, have been produced
for a portion of the tropical Pacific using ordinary kriging.
The importance of these estimates is rooted in their
unbiasedness and validated standard error estimates, as
well as their availability for time periods prior to merged
products, such as the GPCP monthly rainfall grids.

The data were chosen as being the most similar, in
terms of rainfall climatology, to open ocean locations.
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F1G. 13. GPCP rainfall estimates for January 1983 (El Nifio).
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FIG. 14. GPCP rainfall estimates for January 1989 (La Nifia).

The sparseness of this data presents fundamental chal-
lenges with respect to estimation and validation of
rainfall and rainfall standard errors, including, but not
limited to the following:

e An incomplete description of correlation structure in
space—some lags are sampled much less than others

o Nonstationarity—the sparser the data, the more likely
differences due to real spatial trends will exceed a
particular threshold within groups of stations used for
estimating semivariance or rainfall, resulting in degraded
estimates

o Unsampled major rainfall features

o Regions of relatively large standard errors due to dis-
tances separating data points and the estimate location

o Large geographic gaps in cross-validation estimates

Determining the relative contributions of data sparseness
and interpolation method, to the observed uncertainties
of gridded and cross-validation estimates, is hampered by
the lack of geographical regions in which observations are
objectively dense, for example, one in which station
separations are on the order of 1km in all directions.

Ordinary kriging was chosen for its unbiasedness, its
ability to produce theoretical standard error estimates,
and its robustness relative to higher-order versions of
kriging. The selection of ordinary kriging results in
reduced estimate variance relative to the data used to
generate the estimates, but in selecting estimation
neighborhood size (n=9) it was shown that back
transformation of the square root—transformed rainfall
estimates did not result in overall bias.

180" E

210°E

standardized rainfall difference

FI1G. 15. Standardized rainfall difference January 1983 (El Nifio) (kriging — GPCP)/kriging
std error.
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The estimation method was cross validated by ex-
cluding observations from the semivariogram fitting
procedure as well as the rainfall estimation procedure
and then comparing those observations to estimates
made for the same coordinates. Regressions of observed
and estimated rainfall exhibit slopes that deviate from
1 by less than 8% and less than 6% for all months except
August. Theoretical standard error estimates were
shown to be highly predictive of observed standard er-
rors, lending confidence in the standard errors accom-
panying the gridded product.

Gridded estimates of monthly rainfall and associated
standard errors were generated and plots of rainfall for
exemplar months were discussed and briefly compared
to the current (version 2.3) monthly product published
by the GPCP. The monthly rainfall estimates, along with
transformed and back-transformed standard error esti-
mates are published on the PACRAIN website in
netCDF format. As of this writing, grids have been
generated for the period of January 1930 to the most
recent month available and are updated on a monthly
basis, with typically a 2- to 3-month lag. The geographic
coverage of the gridded product extends 15° north and
south of a line defined by lat = 60.85 — 0.3495lon where
lon is given in positive degrees east of the prime me-
ridian, and from 131°E eastward to 130°W.

Additional updates to the gridded products will occur
in the future, to possibly include incorporation of
rain gauge data collected at nonatoll locations, aniso-
tropic and/or local semivariograms. Given appropriate
data coverage, semivariograms may also be generated
uniquely for each month. Each of these updates are
expected to result in improved geographic coverage of
standard errors below a specified threshold. In the case
of adding nonatoll data, the general coverage would also be
increased. Standard errors at locations currently subject to
gross extrapolation due to their distance from available
atoll data, but rich with nonatoll data—such as broad swath
between Papua New Guinea and Fiji—will benefit most.
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