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ABSTRACT

To provide an analysis tool for areal rainfall estimates, 18 gridded monthly sea level rainfall estimates have

been derived from historical atoll rainfall observations contained in the Pacific Rainfall (PACRAIN) data-

base. The PACRAIN database is a searchable repository of in situ rainfall observations initiated and

maintained by the University of Oklahoma and supported by a research grant from the National Oceanic and

Atmospheric Administration (NOAA)/Climate Program Office/Ocean Observing and Monitoring. The

gridding algorithm employs ordinary kriging, a standard geostatistical technique, and selects for nonnegative

estimates and for local estimation neighborhoods yielding minimum kriging variance. This methodology

facilitates the selection of fixed-size neighborhoods from available stations beyond simply choosing the closest

stations, as it accounts for dependence between estimator stations. The number of stations used for estimation

is based on bias and standard error exhibited under cross estimation. A cross validation is conducted, com-

paring estimated and observed rains, as well as theoretical and observed standard errors for the ordinary

kriging estimator. The conditional bias of the kriging estimator and the predictive value of kriging standard

errors, with respect to observed standard errors, are discussed. Plots of the gridded rainfall estimates are given

for sample El Niño and La Niña cases and standardized differences between the estimates produced here and

themergedmonthly rainfall estimates published by theGlobal Precipitation Climatology Project (GPCP) are

shown and discussed.

1. Introduction

The purpose of this research is to produce monthly

gridded rainfall estimates for the tropical Pacific Ocean

with validated standard error estimates, derived solely

from in situ atoll rainfall measurements. In selecting

data from which to derive estimates, we have placed a

higher priority on internal consistency of that data and

consistency, in terms of expected rainfall climatology,

between the observing stations and targeted estimate

locations, than on maximal coverage of estimates hav-

ing theoretical standard errors below some arbitrary

threshold. In selecting the estimation procedure, we

have opted for ordinary kriging, a technique first de-

scribed by Matheron (1963), which has the advantage of

producing a theoretical standard error value, kriging

variance, based upon the variability of the data as a

function of distance (the variogram) as well as the geo-

metric distribution of data points used for estimation.

The suitability of kriging variance as a predictor of ac-

tual standard error can be determined directly.

Claims of relative performance are not made, since

similar products derived from in situ data do not appear

in the literature at this time. Improvements in accuracy

are constrained by the degree to which the data capture

variations in rainfall at progressively smaller spatial

scales, regardless of the estimation method used. Also,

techniques that involve more complicated models (e.g.,

universal kriging) require more data to achieve the same

level of optimization and are not necessarily as robust

in their applicability as ordinary kriging. Space–time

kriging (see Cressie and Wikle 2011) may offer an ave-

nue to improving estimates by incorporating rainfall

data from a temporal neighborhood around a particular

month.

The sparseness of observing stations over tropical

oceans, in concert with the multitude of spatial scales

over which rainfall varies, limits the performance, in

terms of accuracy, of the gridded products introduced

here. Such estimates are subject to standard errors that

sometimes exceed the magnitudes of the estimates

themselves. Nevertheless, rainfall estimates based on

in situ measurements are indispensable for determining

confidence bounds of precipitation values obtained from

numerical model or remote sensing algorithm outputsCorresponding author: Werner E. Cook, ecook@ou.edu
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and for climatological comparisons. Confidence in stan-

dard error estimates (not the size of standard errors

themselves) and a lack of bias are primary features we

aim to achieve here; performance, in terms of suitability

for a particular purpose, is determined properly by the

end user.

Having more comprehensive coverage than other re-

mote sensing datasets (radar, passive microwave, etc.),

as well as resolution in space and time roughly fitting the

requirements mentioned above, infrared satellite data

contain information that could be helpful in indirectly

inferring the scales and intensities of rainfall features,

but they are problematic for two reasons. First, they do

not exist for much of the history for which we wish to

produce gridded values. Second, and more importantly,

their usefulness for discriminating between contribu-

tions of different scales is limited by the smallest scales

over which their joint statistics with in situ rainfall

measurements are known. Ultimately, such joint statis-

tics must be obtained by comparing the remote sensing

datasets to in situ data subject to appropriate areal av-

eraging (rainfall estimates derived from remote sensing

data are areal estimates, not point estimates) and tem-

poral aggregation. In turn, areal averages of in situ

data and their error characteristics must be rooted in the

comparison of point interpolations directly to point

(rain gauge) measurements. In other words, the first step

in the process of determining how the physical charac-

teristics of the rainfall data affect interpolated estimates

is to generate and validate point estimates using in

situ data.

There are plentiful examples in the literature, such as

Ly et al. (2011), Kastelec and Kosmelj (2002), Tang

(2002), and Goovaerts (2000), of rainfall estimation us-

ing various forms of kriging, yet these papers use ob-

servations that are relatively dense in space compared to

the data used in this paper. In contrast, analogous work

to produce rainfall estimates over open oceans using

only sparse rain gauge observations are lacking, with

Morrissey (1991) and Morrissey et al. (1995) being no-

table exceptions; these focus on the estimation of un-

certainty of spatial averages constructed from point

measurements, where averaging domains contain many

data points. While the lack of directly comparable re-

search may indicate a presumption that monthly point

rainfall estimates derived from rain gauge data gathered

exclusively at atoll locations will severely limit the do-

mains over which standard errors are sufficiently small

to ensure suitability for a particular use, that situation

does not diminish the importance of such estimates.

These point estimates and associated standard errors

provide directly verifiable bounds on the uncertainty

of areal estimates derived from the same data, which are

used to validate other areal products, for example, out-

puts of satellite precipitation algorithms and climate

models, which are properly validated against unbiased,

areally averaged in situ estimates of quantifiable uncer-

tainty. For example, the standard error of a block kriging

(Isaaks and Srivastava 1989) estimate is less than largest

standard error of a point estimate produced by ordinary

kriging within the block (area over which estimate ap-

plies) in question.Given appropriate statistical assumptions,

unbiasedness can be shown, and uncertainty computed,

theoretically, but both must be validated empirically.

Incorporating estimates derived from remote sensing

platforms can reduce the uncertainty of rainfall esti-

mates. Peer-reviewed literature abounds with examples

of kriging being employed to merge radar rain estimates

and rain gauge data, beginning with Krajewski (1987).

More recent papers include those of Sideris et al. (2014)

and Jewell andGaussiat (2015), which gives an overview

and comparison of several techniques and Park et al.

(2017) andVerdin et al. (2015) whichmerge satellite and

rain gauge data. It should be noted that all such schemes

require knowledge of the error structure of the remote

sensing algorithm output and cross validation to dem-

onstrate the fidelity of the merged product, both of

which necessitate comparisons with rainfall estimates

traced solely to direct measurements at the surface. We

will proceed with an eye to that necessity with the full

understanding that the applicability of the resulting

product will be limited, at times severely, by data

sparseness and the highly variable nature of convective,

tropical rainfall. We will begin by describing the rainfall

gridding procedure in detail, and then demonstrate

the reliability of the gridded product, through cross

validation.

The point estimates generated using thismethod do not

duplicate accumulation features on the scale of the grid

spacing. They are intended to provide an easily accessible

way to visualize historical distributions of sea level rain-

fall over the tropical Pacific (where available data allow)

with quantifiable bias and uncertainty, and to be a tool for

evaluating the reliability of areal rainfall estimates.

2. Data selection and quality assurance

Data for this study were drawn from the Pacific

Rainfall (PACRAIN) database (Greene et al. 2008) for

the period of January 1930–April 2018. These records

originate from a variety of sources including the Na-

tional Centers for Environmental Information (NCEI),

the New Zealand National Institute of Water and Atmo-

spheric Research (NIWA), the French Polynesian Mete-

orological Service, the Schools of the Pacific Rainfall

Climate Experiment (SPaRCE; Postawko et al. 1994),
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and the atlas of Pacific rainfall (Taylor 1973). These

records can be obtained via web query at the PACRAIN

website (www.pacrain.ou.edu), as individual files containing

daily or monthly rainfall totals for fixed locations.

For this research, data sparseness is exacerbated by

the need to exclude observations taken at locations

where topography and/or differential heating of land

and sea may lead to local, persistent spatial trends in

rainfall, for example, due to orographic and sea breeze

effects. We will hold to the postulate, consistent with

the findings of Lavoie (1963) and the application of

Morrissey and Greene (1993), that rainfall observations

collected at atoll locations are representative of rainfall

occurring in open ocean conditions and are more similar

in their distributions in space and time to those over the

surrounding open ocean, compared to the distributions of

rainfall at nonatoll stations. Therefore, only rainfall ob-

served at atoll locations are used to make gridded estimates,

as the vast majority of gridpoint locations are oceanic,

where persistent spatial rainfall trends would not be due to

fixed variations in dynamic and thermodynamic forcing.

A discussion of the physical characteristics of the ob-

served rainfall data (e.g., the intensities and spatial and

temporal scales of features contributing to observed

accumulations, and their organizing structures) and the

implications of those characteristics on the interpolation

process is not beyond the scope of this work, but is

necessarily cursory. Deducing the detailed physical

characteristics of individual rainfall features and, in turn,

their specific contributions to rainfall totals is not gener-

ally possible for the spatial–temporal domain in question,

due to insufficient data density in space and time.

In general, tropical Pacific rainfall comes mostly as a

result of convective features, which vary greatly in prev-

alence, size, and characteristic accumulations. These

features have horizontal scales as small as 1 km and can

be seen in satellite imagery distributed individually and in

larger organizing structures,more or less homogeneously,

over regions with radii exceeding 1000km. Thus, daily

rainfall over tropical oceans, even without tropical cy-

clones or other larger-scale rainfall features, can exhibit

fluctuations on scales not typically sampled over ocean

basins (;1–10km) that may approach, in magnitude,

variations occurring over scales two to three orders of

magnitude greater. Figure 1, derived from August 1971

atoll rainfall data within the PACRAIN database, for

stations separated by less than 2000km, shows differences

in monthly rainfall observations between atoll stations.

From the historical example given in this figure it is

clear that differences observed at separations less than

100km may also be of the same order of magnitude as

those typically observed between stations separated by

much larger distances (.1000km).

That differences in monthly rainfall between stations

exhibit a very broad scatter and (weakly) more so

with increasing separation distance should be expected.

Monthly tropical rainfall totals are sums of accumulations

due to meteorological features on a broad continuum of

spatial scales, including individual showers and thunder-

storms, convective storm clusters, tropical waves, tropical

cyclones, the intertropical convergence zone (ITCZ), and

the Madden–Julian oscillation (MJO). But the larger fea-

tures include, or are entirely composed of, convective cells.

The following steps were taken to assure data quality,

data comparability (internally), consistency relative to

the domain over which the gridded product is meant

to be applicable, and consistency of the data’s sample

probability density function with a Gaussian function:

d Only rainfall observed at Pacific atoll locations—

depicted in Fig. 2—were selected for this study. As

noted in section 1, we take the position, consistent

with Lavoie (1963) and Morrissey and Greene (1993),

that rainfall at such stations is most consistent with

that over the surrounding open ocean regions.
d Trace observations were changed to 0.0mm. With

accumulations reported as small as 0.1mm and typical

monthly totals on the order of 101–102mm, the error

associated with zeroing a trace report is at least two

orders of magnitude smaller than a typical monthly

rainfall total or typical kriging standard error.
d Where quality assurance (QA) flags indicated that

rains in one accumulation period were recorded in a

subsequent accumulation period, for consecutive ac-

cumulation periods in different months, and where the

smaller of the two periods was 24 h or less, accumula-

tions were prorated between adjacent periods based

on a constant accumulation rate over the aggregate

FIG. 1. Absolute monthly rainfall differences for stations sepa-

rated by ,2000 km. Derived from August 1971 atoll rainfall data

contained in the PACRAIN database.
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period. Where the shorter period was greater than

24 h, rain for both periods were discarded (flagged as

missing and omitted from the gridding procedure).

Monthly rainfall totals were also discarded where rainfall

was reported as missing for at least one accumulation

period for the month in question.
d Rainfall for stations with observation times different

than 0000 UTC was prorated between consecutive

months based on a constant accumulation rate during

the accumulation period encompassing 0000 UTC.
d For stations with accumulation periods of less than a

month (e.g., reported on a daily basis), accumulations

were aggregated into monthly totals.
d Some cases of apparent duplicate records exist within

the PACRAIN database. Notes, including a list of

suspected duplicate stations, are provided with the

results of data queries submitted to the PACRAIN

website (www.pacrain.ou.edu). Records were deemed

to be duplicates if 1) latitude and longitude metadata

were identical and 2) station separation based on

available metadata was greater than zero but less

than 20 km and the root-mean-square difference in

corresponding monthly rain records was less than

10mm. Where stations were found to be duplicates

based on these criteria, a single station record was

generated and assigned to the location with the longest

period of record. In combining the records of suspected

duplicates, 0.0-mm values for one station were replaced

with a positive value from the other station, where

available. Otherwise, records for the station with the

longest record were supplemented—missing values

were replaced—with data from its assumed duplicate.
d Outliers, defined as observations that 1) deviated from

an initial kriging estimate by a z score of at least 5,

relative to the kriging standard error, and 2) were not

within the range of the data used to produce that

estimate, were removed. The rationale and method-

ology for eliminating these outliers is described below.

Spurious data must be identified in the context of the

properties of tropical, convective rainfall. Monthly trop-

ical rainfall totals are sums of accumulations due to

meteorological and climatological features on a broad

continuum of spatial and temporal scales. Consequently,

extreme values may be due to local superposition over

time of features on any one or all of these scales. Based

only on the examples of station-to-station differences

shown in Fig. 1, the threshold used here for omitting

data from the estimation process must consider the real

possibility of stations separated by 100km exhibiting

differences in monthly rainfall of more than 100mm.

Without supplemental information (e.g., from a satellite

or radar), finer-scale in situ sampling in space and time,

or notation in the database suggesting a data quality

issue, discarding extremes demands manual examina-

tion of the surrounding data to exclude the possibility of

meteorological phenomena, unsampled by the stations

used to estimate rainfall but affecting the station reporting

the anomalous value.

We defined outliers to be removed as observations

that 1) deviated from an initial kriging estimate by a z

score of at least 5, relative to the kriging standard error,

and 2) were not within the range of the data used to

produce that estimate. These outliers were examined

manually and, in all cases, they proved inconsistent with

multiple observations within 200km of, and in widely

differing directions from, the location of the outlying

report. Furthermore, of these anomalies, none could be

explained in terms of meteorological phenomena on

scales smaller than that in the local group of stations,

such as a small tropical cyclone, or in terms of a small

number of large daily totals that could be the natural, if

infrequent, result of ‘‘random’’ differences in the num-

ber of convective rainfall events affecting the local

group of stations over the course of a month. Of the 20

reports meeting the outlier criteria, 7 were found at one

station. A manual examination of that station’s records

indicated other instances of rainfall values seemingly at

odds with those reported by the local group of stations;

its entire record was excluded from the estimation pro-

cess. The remaining 13 outlier reports were deemed to

be isolated and were excluded individually.

Following the steps to assure quality and consistency,

a square root transform was applied to rainfall obser-

vations. The square root transform was shown (for the

case of daily rainfall) in Schuurmans et al. (2007) to yield

transformed quantiles more similar to those of the

Gaussian distribution than those resulting from a loga-

rithmic transform. This transform is also used in Sideris

et al. (2014) for both radar estimates and rain gauge

observations prior to kriging. The transform is adopted

here for three reasons. First, it results in a symmetric

FIG. 2. Locations of atoll stations with records in the PACRAIN

database.

674 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 36

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/26/24 03:49 PM UTC

http://www.pacrain.ou.edu


distribution. Ordinary kriging produces estimates of

reduced variance. This variance reduction corresponds

to reduced probabilities (relative to the data) of rela-

tively high and low values. Such distributional differ-

ences are not symmetric when the data are skewed.

Second, it allows for simple estimation of probability

thresholds based on kriging variance. Finally, the

square root transform provides for a simple, unbiased

back transformation. Figure 3 shows P–P plots for

transformed monthly rainfall versus Gaussian distri-

butions of the same means and standard deviations,

for log and square root transforms. As with the Q–Q

plots given by Schuurmans et al. (2007) comparing the

log and square root transformations, it can be seen

that square root–transformed rainfall is more similar

in distribution than log-transformed rainfall to a

Gaussian variable of the same mean and standard

deviation. Probabilities are decidedly asymmetric for

the log transform, being concentrated to the right of the

mean. In short, the log transform visibly ‘‘overcorrects’’

for the expansive right tail observed in the dataset.

3. Semivariogram estimation

Estimation of semivariograms began with computa-

tion of semivariance data ĝ. These data were computed,

as shown in (3.1), for each month m at integer k multi-

ples of 50 km of separation, by applying normalized

weights given by a Gaussian function to squared differ-

ences between transformed rainfall values z at stations i

and j, separated by great circle distances hij, for monthm

and year y. The interval of 50km between semivariance

data points was chosen subjectively, but with attention to

the minimal sensitivity of semivariogram parameters (and,

in turn, estimation error) to that distance (and to the

Gaussian standard deviation) from 20 to 100 km:

FIG. 3. P–P plots of square root and log-transformed rainfall vs Gaussian model derived from PACRAIN atoll data (1930–2018 for

January–July, 1930–2017 for August–December).
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The year summation is for valid years (yvalid), that is,

years in which both zimy and zjmy are valid. The Gaussian

function g(x) in (3.1) is given by

g(x)5
1ffiffiffiffiffiffiffiffiffiffiffi
2pa2

p e2x2/2a2

, (3.2)

where a5 50 km. The weight function (3.2) is not

bounded, which results in some smoothing, and semi-

variance estimates that are not independent.

Note that the adoption of ordinary kriging is not

logically consistent with computing semivariance with-

out the assumption of second-order stationarity. Uni-

versal kriging provides a logical alternative, assuming

nonstationarity; however, the spatial trend model must

be chosen—and to be consistent, applied in the com-

putation of semivariance—which (among other things)

makes incorporating data from multiple years in the

semivariogram estimation procedure a dubious exercise.

Furthermore, and as suggested by Isaaks and Srivastava

(1989) and Wackernagel (2003), universal kriging is

not a robust method with respect to estimates made

outside the spatial interior of the group of stations used

for estimation due to extrapolation of trends.

The formulation of semivariograms without account-

ing for nonstationarity is not accepted lightly; however,

of greater concern is that kriging standard errors are

demonstrated to be predictive of actual standard errors

via cross validation and expected to retain their pre-

dictive qualities at locations far removed from estimator

stations. The latter cannot be maintained with respect to

universal kriging to the degree it can with respect to

ordinary kriging, due to the extrapolation problems

mentioned previously.

It should be noted that average spatial trends in the

rainfall field serve to increase semivariance values (3.1) for

lags over which they persist. This can degrade the fidelity

of the correlation structure expressed by the associated

semivariogram, the parametric form of which also directly

affects the expressed correlation structure.

An isotropic exponential semivariogram model (3.3)

was fit to the semivariance data described previously.

See Cressie (1985, 1993b, chapter 2) and Chiles and

Delfiner (1999, chapter 2) for information on common

semivariogram models and fitting techniques:

g(h)5 g
0
1 s(12 eh/t) , (3.3)

where h, g0, s, and t represent isotropic separation,

nugget, sill, and range, respectively. Nugget, sill, and

range parameters were found via iteration to obtain

minimum squared residues between the model and

semivariance data generated for each month. Data from

many years are used to estimate a single variogram for

each of the 12 calendar months.

For the purposes of cross validation, each stations’

data were omitted sequentially from the estimation

process for the semivariograms used in estimating its

monthly rainfall history. For the gridding procedure, all

available data were used.

Figure 4 shows model semivariograms together with

the semivariance data to which they are fit for the

months of January, April, July, and October—months

meant to give a sampling of the seasonal variability

of semivariograms. The semivariograms of Fig. 4 are

those used to produce gridded estimates, being derived

from all stations. There are too many semivariograms

used in the cross-validation procedure to show (one for

each month for each station). A noteworthy feature

seen in the plots of Fig. 4 is the nearly factor-of-2

change in computed sill between January and July.

This is likely due in part to differences in the geomet-

rical relationships between the spatial distribution of

stations and average rainfall gradients for the two

months; that is, a difference in relative sampling

probably accounts for some of the difference in the

semivariograms. This position is supported by Fig. 5. A

cursory inspection shows that the entire range of means

in January is accommodated in approximately the

maximum separation considered (2000 km) in fitting

the semivariograms; it is accommodated in roughly

twice that distance in July. The apparent shift seen in

all four months depicted in Fig. 4, in the trend of

the semivariance data at approximately 800 km is

also of interest. The isotropic exponential model was

retained despite this appearance due to several

considerations: limiting optimization to 3 degrees of

freedom due to sample size; its continuous nature—

it seems implausible to the authors that the ex-

pectation of squared differences would reach a

hard maximum at a particular distance; the consid-

erable likelihood that the transition’s persistence

(which is not unique) is due, in part, to the pecu-

liarities of the available spatial sampling; and its

simple interpretation and prevalent adoption in the

literature.

It should be noted that data sparseness can affect the

fit of model semivariogram parameters. Exponential

semivariograms fit to these data, where few stations are

separated by distances of, or less than, the scale of the

smallest rainfall features, may exhibit larger nuggets
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and ranges relative to those based on denser data.

With regard to kriging, the practical effect of a larger

nugget is increased smoothing and a larger minimum

estimation standard error, for a given number of es-

timator stations, everywhere the variogram is applied

(except where an estimate is collocated with an esti-

mator station). The practical effect of an increased

range is increased smoothing of estimates—less

difference in weights applied to a given set of

observations.

4. Estimation procedure

Rainfall estimates for cross validation and gridding

were produced using the same implementation of

ordinary kriging. Kriging systems (4.1) were pop-

ulated by evaluating the model semivariograms

(3.3):

2
6666664

g(h
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) � � � g(h

1n
) 1
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1 ..
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66666664
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g(h
np
)

1

3
77777775
. (4.1)

In the equations above, g(hij) are variogram model

values for distances separating stations i and j within a

group of n estimator stations and g(hip) are the variogram

model values for distances separating estimator stations

i from the station, or grid node p where rain is to be

estimated. Solution of (4.2) yields the set of weightswi and

the Lagrange parameter m with which estimates of the

transformed variable ẑp,

ẑ
p
5�

i

w
i
z
i
, (4.2)

FIG. 4. Model semivariograms derived from PACRAIN atoll data (1930–2018 for January–July, 1930–2017 for

August–December).
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and the ordinary kriging variance s2
OK are computed:

s2
OK 5�

i

w
i
g(h

ip
)1m . (4.3)

Clear derivations of the ordinary kriging system can be

found in Isaaks and Srivastava (1989, chapter 12) and

also in Wackernagel (2003, chapter 11).

Rainfall was computed for station locations and grid

nodes using groups of n5 9 estimator stations drawn

from the set of 12 closest stations to the location in

question. The number of estimator stations was chosen

based on standard errors and biases computed in ex-

ploratory trials. As seen in Fig. 6, standard errors change

much less fractionally for n. 6 relative to n, 6, while

Fig. 7 indicates that bias is minimized in the aggregate

for n5 9. The bias shown in Fig. 7 reflects the combined

effects of all sources of bias and can be made objectively

small—at least two orders of magnitude smaller than

mean monthly rains.

Bias appearing in the back-transformed rainfall esti-

mates r̂, given by Sideris et al. (2014),

r̂5 ẑ2 1s2
OK , (4.4)

can arise from both the transformed estimates them-

selves and from the kriging variance of the transformed

variable. This is not to say that (4.4) is a biased estimator;

bias can arise from the correct mapping of transformed

estimates which do not have the variance of transformed

observations (due to smoothing characteristic of a linear,

unbiased estimator) and from kriging variance estimates

that are based on semivariograms that are computed

globally for each month.

For kriging, the reduction of variance at location x is

given by Yamamoto (2000) as

FIG. 5. Mean estimated rainfall for January and July derived from PACRAIN atoll data

(1930–2018 for January–July, 1930–2017 for August–December.
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var[z(x)]2 var[ẑ(x)]5s2
OK 1 2m$ 0: (4.5)

A postprocessing algorithm to reclaim the variance of

the original data, given by Yamamoto (2005), applies

successive corrections obtained by subtracting cross es-

timates obtained for the data points used from the

data themselves, via kriging, to the grid node or cross-

validation point. The incorporation of this postprocessing

scheme requires a theoretical estimator of kriging vari-

ance for the various levels of adjustment and demon-

stration that

s2
OKl11

#s2
OKl

, (4.6)

where l denotes the number of corrections applied. If

(4.6) does not hold in general, then reclaiming the data

variance comes at the potential cost of increased stan-

dard error, to be determined empirically. Thus, since the

scheme may increase standard error, and (4.6) is not

shown theoretically, we have not included this approach.

Potential alternatives to the algorithm of Yamamoto

(2005) include constrained kriging (Cressie 1993a) and

covariance-matching constrained kriging (Aldworth and

Cressie 2003).

As for bias due to the kriging variance of the trans-

formed variable, in adopting global semivariograms it is

assumed that rainfall fields will exhibit the same values

of semivariance at the same spatial lags, for all instances

of a given month, regardless of local means or the

prevailing mean of a given instance of that month. The

back transform assumes symmetry and homoscedas-

ticity in the error distribution for ẑ.

The method used to ensure only nonnegative esti-

mates is less restrictive than that proposed by Barnes

and Johnson (1984) or Szidarovszky et al. (1987) which

enforce positive weights, although the latter also aims

to obtain the least uncertain estimate as judged by the

corresponding value of s2
OK. We simply retained non-

negative rainfall estimates of minimum kriging vari-

ance. While negative rains are distinctly unphysical,

negative weights as applied to rainfall estimation are

no more unphysical than the notion that rainfall at a

point can be approximated as a linear combination of

rains observed in a spatial neighborhood of that point.

Still, the presence of negative weights can also result in

estimates well outside the range of rainfall observa-

tions in the neighborhood. Such estimates r̂ were ex-

cluded where

(r̂2 r
local

)

s
local_obs

. 5, (4.7)

in which rlocal is the mean of the observations used in

estimation and slocal_obs is the standard deviation of

those observations.

5. Cross-validation results

For the study period of 1930–2018, there were

7672 monthly observations in the atoll dataset for which

estimates could be derived using the best 9-station

neighborhood out of 12 closest stations criteria. Re-

gressions of estimated and observed rainfall for a sam-

pling of four seasonally representative months are

shown in Fig. 8.

Goodness of fit, as judged by the R2 metric, varies

from its maximum in February (0.657) to its minimum in

November (0.524). Slope varies by approximately 8%

from its April value of 1.0057 for April to 0.9228 in

August. The R2 results are inevitably related, to some

degree, to the spatial distribution of stations addressed

in cross validation and cannot be taken as indicative

FIG. 6. Standard error of kriging estimates vs number of esti-

mator stations derived from PACRAIN atoll data (1930–2018 for

January–July, 1930–2017 for August–December).

FIG. 7. Bias of kriging estimates vs number of estimator stations

derived from PACRAIN atoll data (1930–2018 for January–July,

1930–2017 for August–December).
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of results for the grid domain, in general. However,

R2 and slope exhibit durability with respect to, for

example, restriction to halves of the geographic

domain.

A set of P–P plots in Fig. 9 compares sample cu-

mulative probabilities for estimated and observed

rains, where Pest(ẑ, ẑ0) and Pest(r̂, r̂0) are sample

probabilities of transformed and back-transformed cross-

validation estimates, respectively, and Pobs(z, ẑ0) and

Pobs(r, r̂0) are the sample probabilities of transformed

and nontransformed observations, respectively. The

reduction in variance is seen in estimate probabili-

ties mapping to a narrower range of observation

probabilities (e.g., there are more observations below

50mm than there are estimates, and more observations

above 400mm than there are estimates). This reduc-

tion in variance of estimates, relative to observations,

an expected feature of an unbiased, linear estimator,

is seen in both transformed and back-transformed

estimates.

Overall negative bias, which could result (in isolation)

from the back transform of a set of estimates of reduced

variance is not generally evident in Fig. 7 except for esti-

mator groups of n. 9. It is notable in Fig. 9 that the shift

in observation probabilities under back transformation of

estimates is, in all cases shown, toward higher cumulative

probabilities, but is relatively small for high-end estimates.

The kriging variance, which is directly proportional

to the sum of nugget and sill of the semivariogram

employed, can be increased by the presence of relatively

large, isolated rainfall totals in the datasets used to es-

timate semivariograms. A single set of semivariogram

parameters is determined globally, and for all avail-

able years, for each calendar month. Kriging variance

is determined identically for a particular semivariogram

and configuration of estimator stations, regardless of

FIG. 8. Scatterplots of cross-validation estimated and observed rainfall derived from PACRAIN atoll data (1930–2018 for January–July,

1930–2017 for August–December).
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the actual rainfall observations for those stations.

Thus, where groups of estimator observations show

relatively low variability, the second term on the right

of the back transformation (4.4) can result in a dis-

tributional shift to the right of estimates relative to

observations.

Back-transformed kriging-estimated error variances

were computed using the back transform given by Sideris

et al. (2014) for the square root transform:

s2
BT 5 4m2s2

OK 1 2s4
OK . (5.1)

Corresponding estimated standard errors are compared

to observed standard errors sOBj
computed as follows

using the unbiased formula for variance for 31 pairs of

rainfall estimates and observations:

s2
OBj

5
1

30
�
j115

i5j215

(r̂
i
2 r

i
)2 , (5.2)

where r̂i and ri are sorted by sBT and j5 31k2 16, k

being an integer such that i is neither negative nor

greater than the number of available data pairs generated

in cross validation for a particular calendarmonth. Plots of

estimated and observed standard errors are shown in

Fig. 10. The data points used for these plots are in-

dependent, in that they contain no common pairs of esti-

mates and observations. The number of data points

chosen for computing variances is the first odd number

(for the sake of symmetry) exceeding 30, which is the

commonly accepted minimum sample size for approxi-

mate confidence thresholds to be derived from a normal

distribution.

Two things are immediately apparent in the plots

of Fig. 10. First, in all cases, a least squares regression

of the data suggests that estimated standard errors

increase more rapidly than observed standard er-

rors. Second, the plots suggest (for January, July, and

October) that a linear relationship is applicable to

FIG. 9. P–P plots of cross-validation estimated and observed rainfall samples derived from PACRAIN atoll data (1930–2018 for

January–July, 1930–2017 for August–December).
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estimated and actual standard errors, even though

data used to compute observed standard errors

are selected based on estimated standard errors

which, in turn, are wholly dependent on semivario-

grams and the spatial distributions of estimator

stations used. In other words, data for computing

‘‘observed’’ error variance are not sampled in a

spatially homogeneous way. Nevertheless, theoretical

standard errors are shown to be predictive of actual

standard errors.

6. Gridded monthly rainfall products

For each node of the 18 3 18 grid encompassing the

atoll stations used in this paper, the following parame-

ters were computed:

r̂5 ẑ2 1s2
OK: mean rain estimate (mm)

s2
BT 5 (4ẑ2s2

OK 1 2s4
OK)

1/2
: standard error of back-transformed estimates (mm)

s
OK

: standard error of transformed estimates (mm1/2) . (6.1)

Kriging standard error for the transformed estimates is

included in the web-published products to facilitate

the computation of confidence bounds based on a

Gaussian error distribution. For example, upper- and

lower-quartile estimates can be derived from the

published data via

FIG. 10. Standard errors—kriging estimated (back transformed) vs observed derived from PACRAIN atoll data (1930–2018 for

January–July, 1930–2017 for August–December).
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r̂
lq,uq

5 [(r̂2s2
OK)

1/2
6 0:6745s

OK
]
2

, (6.2)

where the number 0.6745 corresponds to the half-width

(z score) of the interval between the 25th and 75th per-

centile thresholds of the standard normal distribution.

These back transforms are given Sideris et al. (2014) for

the square root transformation. It should be noted that

the validity of (6.1) and (6.2) hinge on the distributional

similarity of the estimates and aGaussian distribution of

the same mean and variance.

The method for generating gridded estimates deviated

from that used in cross validation in two ways: first, no

observations were excluded from the pool of data from

which estimator neighborhoods were drawn, and second,

estimates were still made in cases where there were less

than 12 available observations. In the latter case, neigh-

borhoods of nine stations were simply drawn, where

available, and selected based on the criteria explained in

section 5. The former deviation is a natural step, as the

reason for excluding stations in the estimation process for

cross validation is to ensure the integrity of comparisons

between the data (excluded) and the estimate (con-

structed from the remainder of the data). The latter simply

allows for gridded estimates in as many cases as possible

without violating the applicability of the cross-validation

results with regard to the number of estimator stations.

Plots of sample gridded rains for January 1983 and

January 1989 are given in Figs. 11 and 12, respectively.

These examples were chosen for their representative-

ness of interesting climate events: El Niño in case of

January 1983 and La Niña in the case of January 1989.

The less-than-smooth presentation is due to a combi-

nation of factors: the nature of the plotting software in

conjunction with the 18 resolution of the product and

the use of local estimator neighborhoods rather than a

global fit.

Two notable differences between the patterns seen in

Figs. 11 and 12 and the ‘‘canonical’’ El Niño and LaNiña
patterns are the heavy rainfall totals extending south-

westward toward the Solomon Islands and Vanuatu in

January 1983 and the local rainfall maximum seen near

1808E/W at approximately 108S in January 1989. The

former is due to estimation where there is a lack of atoll

observations, the latter to amonthly rainfall total of 600mm

(large, relative to observations in the vicinity). The daily

rainfall observations associated with the local maximum in

monthly rainfall of Fig. 12 are unexceptional and cannot be

objectively excluded based on other monthly totals in the

spatially sparse neighborhood.

For comparison, corresponding gridded monthly

rainfall estimates of the Global Precipitation Climatol-

ogy Project (GPCP), version 2.3, are shown in Figs. 13

and 14. One notable difference between Fig. 11 and

Fig. 13 is seen in the rainfall gradient at approximately

1758E, just south of the equator. While direct compari-

sons of the two products are not strictly valid due to the

nature of the difference between point and areal esti-

mators, any identified difference is not necessarily due

to the difference between a point and areal estimators.

Rainfall is sampled immediately north and south of the

region of strong gradient, but stations sampling it are

clustered along narrow bands. Standardized differences

(see Fig. 15) based on kriging variance are relatively

large to the east andwest of the location in question. The

situation is not unexpected, given that satellite data are

available where there are no surface rainfall observa-

tions and that areal rainfall estimators relying heavily

on satellite data may contradict surface observations,

FIG. 11. Kriging-estimated rainfall for January 1983 (El Niño).
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even if they are unbiased. For a description of the GPCP

products and their derivation, see Adler et al. (2003,

2018). GPCP monthly estimates are merged products,

derived using rain gauge, satellite, and sounding data.

To place the visible differences between the precipita-

tion patterns exhibited by the kriging estimates and the

GPCP estimates in perspective, standardized rainfall dif-

ferences (GPCP 2 kriging) based on kriging standard er-

ror are plotted in Fig. 15. Standardized differences with

magnitudes in excess of two aremainly confined to regions

far removed from available atoll data, andwhere, based on

well-known precipitation patterns associatedwith ElNiño,
estimates are made based on observations in an area that

would be expected to see the statistical anomalies of the

opposite sign. Care must be taken not to ascribe undue

meaning to this comparison. The products have different

resolutions and one is correctly interpreted as consisting of

areal estimates (GPCP)—the other of point estimates.

7. Summary

Gridded historical rainfall estimates, based on monthly

rainfall observed at atoll locations, have been produced

for a portion of the tropical Pacific using ordinary kriging.

The importance of these estimates is rooted in their

unbiasedness and validated standard error estimates, as

well as their availability for time periods prior to merged

products, such as the GPCP monthly rainfall grids.

The data were chosen as being the most similar, in

terms of rainfall climatology, to open ocean locations.

FIG. 12. Kriging-estimated rainfall for January 1989 (La Niña).

FIG. 13. GPCP rainfall estimates for January 1983 (El Niño).
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The sparseness of this data presents fundamental chal-

lenges with respect to estimation and validation of

rainfall and rainfall standard errors, including, but not

limited to the following:

d An incomplete description of correlation structure in

space—some lags are sampled much less than others
d Nonstationarity—the sparser the data, the more likely

differences due to real spatial trends will exceed a

particular threshold within groups of stations used for

estimating semivariance or rainfall, resulting in degraded

estimates
d Unsampled major rainfall features
d Regions of relatively large standard errors due to dis-

tances separating data points and the estimate location
d Large geographic gaps in cross-validation estimates

Determining the relative contributions of data sparseness

and interpolation method, to the observed uncertainties

of gridded and cross-validation estimates, is hampered by

the lack of geographical regions inwhich observations are

objectively dense, for example, one in which station

separations are on the order of 1km in all directions.

Ordinary kriging was chosen for its unbiasedness, its

ability to produce theoretical standard error estimates,

and its robustness relative to higher-order versions of

kriging. The selection of ordinary kriging results in

reduced estimate variance relative to the data used to

generate the estimates, but in selecting estimation

neighborhood size (n5 9) it was shown that back

transformation of the square root–transformed rainfall

estimates did not result in overall bias.

FIG. 14. GPCP rainfall estimates for January 1989 (La Niña).

FIG. 15. Standardized rainfall difference January 1983 (El Niño) (kriging 2 GPCP)/kriging

std error.
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The estimation method was cross validated by ex-

cluding observations from the semivariogram fitting

procedure as well as the rainfall estimation procedure

and then comparing those observations to estimates

made for the same coordinates. Regressions of observed

and estimated rainfall exhibit slopes that deviate from

1 by less than 8% and less than 6% for all months except

August. Theoretical standard error estimates were

shown to be highly predictive of observed standard er-

rors, lending confidence in the standard errors accom-

panying the gridded product.

Gridded estimates of monthly rainfall and associated

standard errors were generated and plots of rainfall for

exemplar months were discussed and briefly compared

to the current (version 2.3) monthly product published

by theGPCP. Themonthly rainfall estimates, along with

transformed and back-transformed standard error esti-

mates are published on the PACRAIN website in

netCDF format. As of this writing, grids have been

generated for the period of January 1930 to the most

recent month available and are updated on a monthly

basis, with typically a 2- to 3-month lag. The geographic

coverage of the gridded product extends 158 north and

south of a line defined by lat5 60:852 0:3495lon where

lon is given in positive degrees east of the prime me-

ridian, and from 1318E eastward to 1308W.

Additional updates to the gridded products will occur

in the future, to possibly include incorporation of

rain gauge data collected at nonatoll locations, aniso-

tropic and/or local semivariograms. Given appropriate

data coverage, semivariograms may also be generated

uniquely for each month. Each of these updates are

expected to result in improved geographic coverage of

standard errors below a specified threshold. In the case

of adding nonatoll data, the general coveragewould also be

increased. Standard errors at locations currently subject to

gross extrapolation due to their distance from available

atoll data, but rich with nonatoll data—such as broad swath

between Papua New Guinea and Fiji—will benefit most.
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