
-,, -

NOAA Technical Memorandum NMFS

MARCH 1991

DOCUMENTATION OF THE 1980 DATA VERIFICATION PROGRAMS

AND COMMON SUBROUTINES FOR FIXED-FORMAT DATA:

PORPOISE DATA MANAGEMENT SYSTEM

Charles W. Oliver
Robert L. Butler

NOAA-TM-N MFS-SWFSC- 1 57

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Southwest Fisheries Science Center

NOAA Technical Memorandum NMFS

$-

The National Oceanic and Atmospheric Administration (NOAA), organized in
1970, has evolved into an agency which establishes national policies and
manages and conserves our oceanic, coastal, and atmospheric resources. An
organizational element within NOAA, the Office of Fisheries is responsible for
fisheries policy and the direction of the National Marine Fisheries Service
(NMFS).

In addition to its formal publications, the NMFS uses the NOAA Technical
Memorandum series to issue infqrmal scientific and technical publications when
complete formal review and editorial processing are not appropriate or feasible.
Documents within this series, however, reflect sound professional work and may
be referenced in the formal scientific and technical literature.

111. THE DATA VERIFICATION SYSTEM FOR THE
PORPOISE DATA MANAGEMENT SYSTEM

The data verification system developed for the Porpoise Data
Management System evolved into three verification phases (Phase
1, 2, and 3). An error in one phase prevents advance to the next
phase. The main edit program (Phase 3) calls the sequencing
subroutine which then executes the Phase 1 tests, and if
successful, the Phase 2 testing. If both Phase 1 and Phase 2
testing are successful, the main edit program then performs the
Phase 3 testing (blank, range, and logical error checks).

Phase 1 identifies record length and variable format type errors,
or the absence of these errors, associated with how a FORTRAN
compiler handles READ, FORMAT, EOF, and various "type formats"
(INTEGER, REAL, CHARACTER). This phase locates the first record
number in the data file being edited which fails the test, and
informs the user of this location. Corrections to the data file
are required before the Phase 1 tests are redone. It is sometimes
necessary to repeatedly execute the edit program (Phase l),
correct identified Phase 1 errors, and re-run the edit program
again until all Phase 1 problems with the data file are
corrected.

Phase 2 testing checks the sequential order of physical records
and logical records and, in some edits, ascertains that variables
such as DATE and TIME do not decrease between sequentially-
ordered physical and logical records. Phases 1 and 2 were
implemented during 1979 in the subroutines that perform the
sequencing checks on a data file, Prior to 1979, separate
sequencing programs were developed and executed prior to
execution of the main edit program for each data file,

Phase 3 testing provides detailed, cross-field verifications
(blank, range, and logical error checks). Separating the
program logic, and subroutines, into these three phases provided
simpler program structures which were easier to revise and
update, communicated the errors to data editors in a step by step
manner, and provided clear, concise documentation within the
program code.

There were two main programs per data file to be edited prior to
the 1979 implementation: 1) The combination of Phase 1 and
Phase 2 tests formed the sequencing program. Phase 3 tests were
performed by the main edit program. With the 1979 implementation,
a single main edit program was developed for each data file with
the sequencing (Phases 1 and 2) tests performed by a subroutine
called by the main edit program. The main edit program (Phase 3)
calls the sequencing subroutine which then executes the Phase 1
tests, and if successful, the Phase 2 testing. If both Phase 1
and Phase 2 testing are successful, the main edit program then
performs' the Phase 3 testing (blank, range, and logical error
checks). Thus, when the main edit is executed, it always performs
a check of the physical record sequence first.

9

The data verification system is comprised of a main program
(edit) which sequentially progresses through each of three
phases. If errors are detected during either Phase 1 or Phase 2,
the program can terminate depending upon the users predefined
criteria for termination and output. Once the program progresses
to Phase 3, the edit processes all records in the data file
regardless of the number and type of errors detected. All three
phases utilize the common subroutines and functions. The
progression through the three phases and the termination criteria
we defined are shown in Figure 1. A diagram relating the calling
sequence, by phase, for all common subroutines is shown in Figure
2, and a brief description of each of the common subroutines is
presented in section IV. Some routines are called once and
others repeatedly as indicated. The common subroutines relate to
one another via parameter lists or variables defined in the named
common block called ERROR (section V). Figure 3 provides a cross
reference of the variables within the named common block ERROR
directly referenced by the various subroutines, Section VI
provides additional documentation of the logical hierarchy of the
common subroutines ERRLOG-DP, ERRFIL, ERRCHK.DP, and WRAPUP.DP
which are called by either the main edit program or other common
subroutines. Section VI1 provides additional information on how
data is input into the edit program, subsequently passed between
the various common subroutines, and included in the error report
listing. Section VI11 describes the databases which were
developed to archive and update logical error statements (ES80DB)
and counts (EC80DB).

.
-%

ai

10

Figure 1, Data verification calling structure and hierarchy flowchart.
..

' L I S ..a

SMUENCING SUBROUTINE
PERFORMS PHASE 1 CHECKS:

a. input data file available?
b. Physical records 80 columns kmg?
c Does cruise variable match

d. Remitee data file numbering 1.1
datafile name?

SEWENCIffi.SUBRoLI1-lNE
PERFORMS PHASE 2 CHECKS
IN ORDER:

a. BCANK. CHARACTER AND RANGE
checks on variables associated
with sequendng the datafile
b. Sequence of PHYSICAL reaxis.
LOGICAL records, and LOGtCAL group!

No

Identify a d
and dose
ERROR STOP

YES locate in 25
ERROR ERRORS

ERRORS REPORT f TOTAL

NO

MAIN EDIT PERFORMS:
PHASE 3 CHECKS IN ORDER:

a. Blank
b. Character
c. Range
d. Logical

a. Physical records
b. Logical records

ON RECORD SEQUENCE ORDER:

NO

CLOSE

STOP

THE ERROR REPORT FORMATS FOR PHASES 1, 2 # AND 3

The error report formats differ between Phase 1, Phase 2, and
Phase 3 testing. Phase 1 verifications involve only errors in
relation to one record. error
messages for the record, followed by the record. The format is
defined to fit on an 80 column terminal.

Phase 2 verifications involve the order and number of records.
The record,
followed by a suitable range of records before, after, and
including the error record. The format is designed to fit on an
80 column terminal.

Phase 3 verification types are mixed but usually relate to fields
within a given record group. All error messages for a record are
printed followed by a listing of the record. When all records
within a record group are processed, the records within the
record group are printed sequentially with a column delineator.

In addition to the printed error report, a database, EC80DB, is
updated with the number of errors detected during Phase 3
execution, by error type and data file type. Analysis of this
data base can help in identifying problems in data definition and
collection, and allow quality control to be more dynamic. Records
in this database contained the frequency of errors, by error
code, encountered each time the main edit was executed on a data
file. Error codes include blank, range, and logical errors and
are differentiated by data file type (e.g., SL for Set Log). The
logical conditional
statement followed by a resultant clause. The logical error
statements are written out on the Error Message Collection Forms
which are then keypunched and loaded to the yearly database
(e.g., ES80DB) using FORTRAN program UPER0R.m.

There are two general classes or types of errors: LOGICAL and
FIELD. Both classes are tallied in database EC80DB. Logical error
definitions are contained in database ES80DB. Both data. bases
have the same KEY format, consisting of the following.

The report format allows for the

report format allows for the error messages for the

error statement is written in the form of a

DATASETID: Columns 1-8 identifies the field collection or
coding format by year.

CSEDIT80
SLEDIT80
VAEDITSO
MMEDIT80
BLEDIT80
LHEDIT80
ASEDIT80

GRPCOD : Column 9 identifies multi-format field collection
or coding formats.

d

12

ERRORTYPE :

CARDSEQ:

BEGINCOL:

ENDINGCOL :

ERROR NUMBER:

The KEY value 0-

IN1 - Non-porpoise Set Log SLEDIT
 PI - Porpoise Set Log SLEDIT
'E' - Effort MMEDIT
I S 1 - Sightings MMEDIT
I ' - all others VAEDIT, BLEDIT, CSEDIT

Column 10 identifies the nature of the field error
or logical error.

B - Blank error (Field)
C - Character error (Field)
L -I Logical error (Logical)
R - Range error (Field)

Columns 11-12 for FIELD errors, the card sequence
of a field (e.g,, lrO1ll) within a multicard format
data set. For a single card format the code is llO1li
(Length 2) . Blank for LOGICAL errors.

Columns 13-14 for FIELD errors, the beginning
column number of (e.g., 18291i) the field having an
error. (Length 2): Blank for LOGICAL errors.

Columns 15-16 for FIELD errors, the ending column
of a field (e.g., 1r3411) having an error. (Length
2) . Blank for LOGICAL errors.

Columns 17-24 identifies the particular error for a
given data file, Blank for FIELD errors. Always
ERROR" -- *I where 11-11 is some number between 1-
999.

is built bv the Phase 3 coding. Either, or both, of
the databases can be accGssed via the same key. There are rlDUMP1l
programs (DERCT.80 and DERST.80) for EC80DB and ES80DB
respectively, Access to these data bases (section VIII) occurs
through subroutine ERRLOG-DP called by subroutines BLANKT.DP,
RANGIT.DP, VALUIT.DP, and VERFIT.DP when an error is detected
(sections IV and VI),

I -
Y 13

I
I

the logical variable ANYERR is set to TRUE and then checked: 1

a

15

h.
Phase 1 Processing

The Main edit program calls the Phase 1 coding, passing the
character string, HEAD, which is then used as the header for the
top of each output pagre of the error report, Prior to 1980 there
were two different Phase 1 entries within subroutine CSEQPl:
CSEQPl and CSEQP2. During the 1980 modifications to the common
subroutines, we incorporated these two entries, along with other
Phase 1 and 2 functionis into a single subroutine (the "sequencing
subroutine11) specific: to each edit program on the CSC system.
These "sequencing subroutinesfg perform the functions desribed
below that were previously performed by entries CSEQPl or CSEQP2
in the subroutine CSEQ!.Pl. In late 1980, further modifications to
this area of the common subroutine package was required in order
to implement the package on another computer. The common
subroutine CSEQ.Pl (entries CSEQPl and CSEQP2) which is CSC
specific, was incorpolrated into a *lsequencing subroutinen The
"sequencing subroutines!' are referenced, for example, as CSEQ8l
(for Cruise Specifications sequencing subroutine for 1981).

Entry CSEQPl was called for the following data sets: Cruise
Specifications, Fishing Mode, Shipboard Mammal Watch Daily
Effort, Shipboard Mammal Watch Sighting, and Porpoise and
School Fish Set L o g s during 1975-1979. CSEQ.Pl was utilized
during 1980 on the CSC system,

s-

I-

..

The input data file is rewritten to renumber the file by 1.
The cruise number is crossed checked between the file

The input records are verified to be of length 80.
name and the inplut file.

Entry CSEQP2 was called for the Marine Mammal Bridge Log data
files for 1975-1979. CSEQ.Pl was utilized during 1980 on the
CSC system.

The input data file is rewritten to renumber the file by
The input records are verified to be of length 80.

1,

Phase 1 prompts for an1 input data file name. The input file name
is concatenated with HEAD and passed by EJECT.DP, the paginq.
routine. EJECT.DP performs a top of form stating the card
sequence program name, the input file name, the date, time, and
page number.

Subroutine ONDSK2.DP is called to verify the occurrence of the
input file on the users disk. STRIP2.DP is called by ONDSK2.DP to
prepare the input file name for use in a system routine which
does the verification of the file on disk. If the file is not on
disk, execution terminates. If the file is on disk, the
appropriate verifications and renumbering are performed.

The Phase 1 program rewrites the file so that the key begins with
1 and increments by 1. The input file is rewound. Each record is
input and a verificat.ion is performed, If an error is detected

14

PHASE 1

ERRLOG.DP PDP ERRCHKDP FIELO VERIFICATION
SUBROUTl NES:

PHASE 2

WRAPUP.DP PHASE 3

RANGITDP

EJECT.DP EJECT.DP

+I ONDSWDP .

EJECTDP

+i SIRIP2.DP

b EJIXTDP

ERRORS

c I

ERRORS 0-c)

If ANYERR is TRUE:

subroutine EJECT.DP is called for paging.

the error message is written because the logical
variable ANYERR is checked and found to be TRUE.

ANYERR is reset: to FALSE, and TOTERR is set to TRUE.

If more than 25 errors are encountered, the program will
terminate immediately. If all records are processed and 25 or
less errors were detected, TOTERR is checked. If TRUE, an error
was detected during Phase 1 testing and a stop is performed
rather than continuing on to Phase 2 testing. If no errors were
detected, the program procedes to Phase 2.

Phase 2 Processing

If there are no Phase 1 errors, Phase 2 verifications are
performed. Phase 2 coding verifys the order and number of records
in the data file. Phase 2 coding is written for each data file
type. Phase 2 coding can exist as both main programs and
subroutines. The only difference between the main programs and
subroutines is that the latter have the SUBROUTINE statement and
a RETURN statement; main programs have a STOP statement and no
SUBROUTINE STATEMENT.

All Phase 2 coding has the following basic structure. A record is
input If an error is detected,
subroutine EJECT.DP is called with the number of output lines for
the error message, the error message is written, and logical
variable ANYERR set to TRUE. Following all verifications for the
record, logical variable ANYERR is checked. If ANYERR is TRUE,
subroutine PGROUP.DP is called to print a set of records before,
after, Then ANYERR is set to
FALSE and logical variable TOTERR set to TRUE. When all records
are read, the Phase 2 coding finishes with either a STOP or
RETURN, depending upon whether it is a main program or
subroutine.

Phase 2 coding may make calls to the field verification routines.
These routines check for blanks (BLANKT.DP), range (RANGIT.DP),
character type (VERFIT.DP), and retrieve a numeric from a string
(VALUIT.DP). The fields verified would be those fields which are
used to check the sequence of the records. A general description
of these routines is given in section IV.

#-

and a verification is performed. ”.

and including ‘the record in error.

Phase 3 Processing

When a RETURN is made to the main verification program, common ‘.

* -

17

logical variable TOTERR is examined, If TRUE, an error was
encountered in Phase 2 and Phase 3 writes a message and then
terminates the program. If TOTERR is FALSE (meaning no Phase 1 or
2 errors), then Phase 3 prompts for IfNO EDITf1 or '*GO EDITff. The
user response indicates whether or not the program should
terminate, or continue with a main edit. By incorporating this
prompt into the Phase 3 coding, we have eliminated the need f o r
stand alone Phase 1 and 2 coding (previously the lfsequencingfl
programs. All sequencing requirements (Phase 1 and 2 coding) are
incorporated into Phase 3 coding. When Phase 3 begins, the EC80DB
data base is opened with a call to OPLGCT (see ERRLOG.DP in
sections IV and VI). The actual database name (i.e. EC80DB) is
passed through the call as variable ECNAME, This allows us to
only change the MAIN programs once a year, and leave the COMMON
SUBROUTINES intact.

Variables be
tallied on EC80DB (section VIII). The disk sequence number
(variable DSKSEQ) is set to zero, A prompt is made to set the
named common block ERROR variable ALLBLK to TRUE or FALSE. If
ALLBLK is TRUE, all of the input data file, regardless of error
conditions, will be printed. If ALLBLK is FALSE, only those
record groups which have an error will be printed. Now we are
ready to proceed.

As in Phase 2, there are field verifications and logical
verifications. The field verifications are handled using the
field verification subroutines, The subroutines used are:
BLANKT.DP, RANGIT.DP, VALUIT.DP, and VERFIT.DP. All the field
verifications for a given record type are performed prior to

requires a blank check or character check, and range check the
blank or character check is done first, and if the blank or

(example 1). If a field does not require a blank or character
check (e.g., it's okay if it is blank), the blank or character
checking subroutine is called, and only if no "error condition1I
results will a range check be performed (example 2).

ELEVAL and DATSET are assigned to enable errors to

proceeding to the logical verifications, Generally, if a field -r

character check results in an error, no range check is performed - *

. Example 1

CALL BLANKT (14,4) Blank check cols. 14-17
IF(NOGO) GOT0 38 if not blank do Range check

C if blank do Character check
C

CALL VERFIT(14,4,DIGITS) Character check

CALL RANGIT(14,4,850,1100) Range 850-1100 on cols. 14-17

C

38 CONTINUE

C

Example 2
C

C
CALL RANGIT(14,4,850,1100) Range 850-1100 on cols. 14-17

18

c The logical verifications comprise the bulk of the Phase 3
coding. Each logical verification is assigned a unique 8
character error code. When the logical verification is performed,
the logical error is reported using this 8 digit code by calling
subroutine ERRLOG.DIP. ERRLOG.DP prints an error message
containing the sequence number of the input record and the error
code and tallies database EC80DB with the occurrence of the
error. Logical error checks are performed after blank, character,
and range checks have been performed. It is generally more
difficult to locate specific problems with data resulting from a
logical error occurirence, because there are multiple fields
involved. Therefore, we found it was easier to locate I1errors1* by
sequentially checking for blank, character, range, and then
logical errors. Logical errors are coded as a group within an
edit program such that they can be modified, added, or removed
easily. They can be s:imple or complex (examples 3-4).

Example 3
C

IF (P(STRING(1)(10:11)) .LE. '60') GO TO 100 cols 10-11
IF (P(STRING(1)(12:15)) .LT. '0400') GO TO 100 cols 12-15
IF (P(STRING(1)(16:16)) .EQ. '3') GO TO 100 col 16
CALL ERRLOG (' ERROR0 0 1 ') error 001

100 CONTINUE
C

C
Example 4

IF (P(STRING(1) (10:ll)) .LE. '60') .AND. cols 10-11
IF (P(STRING(1) (12:15)) .LT. 1 0 4 0 0 1) .AND. cols 12-15
IF (P(STRING(1) (16:17)) .EQ. '03') .OR. cols 16-17
IF (P(STRING(1)(16:17)) .EQ. '99') .OR. cols 16-17
IF (P(STRING(1)(72:72)) .NE. 'XI) GO TO 100 col 72
CALL ERRLOG (' ERROR112 I) error 112

100 CONTINUE
C

All verifications are performed for a record. Then subroutine
ERRCHK.DP is called to check if any errors have occurred (ANYERR
is TRUE or FALSE) for the record. If ANYERR=TRUE, the record is
printed. Following all verifications for a record group,
subroutine WRAPUP.DP is called to check if any records within the
group had an Occurrence of error (TOTERR or ALLBLK are TRUE or
FALSE). If TOTERR=TRUE, or logical variable ALLBLK is TRUE, the
entire See sections IV and VI
for a more detailed explanation of how to use ERRLOG.DP,
ERRCHK.DP, WRAPUP.DP,, and the field verification. Each logical
verification occupies a separate block of code which is entered
from the top and exited from the bottom. If a block is removed,
it will not affect the rest of the program. This form of coding
is callea block struct:uring. A block is never entered from other
than the top, and is never left other than through the end of the
block. A labeled CONTINUE statement is coded at the bottom of

data group is printed as a block.

- ' - some blocks to allow for a jump out of the block.

19 s -

CSEQP2 Phase 1 verification entry accessed through the
"sequencing subroutine" for an edit. Prior to 1979
CSEQPl and CSEQPZ were entries within the common
subroutine CSEQPl. In 1980, we modified the
subroutine CSEQPl and eliminated the need for both
entries. CSEQ.Pl is CSC specific (see Appendix 2).
This subroutine performs the same functions as entry
CSEQPl, except that records are not cross checked
against the input file name.

IV. Brief description of 1980 common subroutines and databases.

This section lists the 1980 subroutines and databases that
comprise the data verification package. A brief description of
the COMMON SUBROUTINES and databases is provided. Appendix 2
provides additional information useful to programmers considering
implementation of the package of common subroutines on another
computer system.

Subroutine Purpose

BLANKT.DP Field verification routine used for blankness.
The field specified by passed parameters (beginning
column number and field width within STRING) is
tested to be non-blank. If the field is blank, an
error message is written and optionally, EC80DB data
base is tallied with the error occurrence.

- SEQ80 The Issequencing subroutinell for a particular year and
edit where 81-11 is replaced by the edit type (e.g., C
for Cruise Specifications). Prior to 1979, the
'#sequencing subroutinell was a separate program
executed independent of the main edit program. These
separate programs used entries CSEQPl and CSEQPZ
within a common subroutine named CSEQP1. In 1980, we
incorporated these functions with the "sequencing
subroutines" through calls to CSEQ.Pl on the CSC
system.

CSEQ. P1 Phase 1 verification subroutine called by the
"sequencing subroutinell for an edit. Prior to 1979
CSEQPl and CSEQP2 were entries within the common
subroutine CSEQP1. In 1980, we modified the
subroutine and eliminated the need for both entries.
CSEQ.Pl is CSC specific (see Appendix 2). The input
files name is prompted €or and then all physcial
records in the data file are renumbered beginging
with 1 and incremented by 1. The first 3 characters
of each record are cross checked against the first 3
characters of the input file name (generally the NMFS
Cruise number assigned to the observer trip data
file(s) undergoing edit. The record length is
verified to be 80 characters.

20

i
DERCT .8 0

DERST .8 0

DOERCT. 8 0

DOERST. 8 0

EC80DB

EJECT. DP

ERRCHK . DP

ERRFIL

ERRLOG. DP

ES80DB '

ALADIN program used to provide a report listing from
the datablase EC80DB containing the frequency of
errors by error code and data file type.

ALADIN prolgram used to provide a report listing from
the datablase ES80DB containing the logical error
statements, by error code and data file type. This
program produces a disk file which can be printed and
transformed into the annual LOGICAL ERROR STATEMENT
book.

ALADIN program which declares the error count
database EC80DB.

ALADIN program which declares the error statement
database ES80DB.

ALADIN database used. to store a tally of error
occurrences by error code for a data file type,

Paging routine called whenever printed output is
desired. When initialized, a page is ejected with a
header consisting of a user specified 60 character
message, the date, the time, and the page number of
the report, followed by 2 blank lines, Subsequent
calls to EJECT.DP are for the purpose of passing the
number of output lines to be written. When
insufficient space is available on the current page,
a top of form is performed and the line number on the
page is reset. Various entry points are available.

Subroutine called after all verifications for a
specific record have been performed. If the record
had errors, (ANYERR is TRUE), ERRCHK.DP prints the
record cointained in STRING, ANYERR is set to FALSE
and TOTERR is set to TRUE. If no error existed for
the record. (ANYERR is FALSE), the subroutine returns
to the calling program.

An entry point to ERRLOG.DP. It is called by the
field verification routines BLANKT.DP, RANGIT.DP,
VALUIT-DP, and VERFIT.DP to tally the frequency of
range, chlaracter, and blank errors in the database
EC8ODB, anid to set variables NOGO and ANYERR to TRUE.

Subroutine called to handle logical errors. It can
write 3 foirms of error messages (long, short, and ?) ,
tallies thie frequencies of logical errors encountered
in the database EC80DB, and sets variables ANYERR and
NOGO to TRUE.

ALADIN dlatabase used to store logical
statements by logical error code for a data
type '

error
file

21

GENER1.DP Subroutine to provide integer functions that are
equivalent to the INFONET computer system (Computer
Sciences Corporation) functions FIVALS, FVRFYS, and
FBRKCS. Used for implementations of edit programs
usina FORTRAN where these CSC system functions are
unavhable.

GENER2,DP Subroutine to provide a character function that
closely simulates the INFONET computer system
(Computer Sciences Corporation) function FSTRS. Used
for implementations of edit programs using FORTRAN
where the CSC system function is unavailable.

GENER3,DP Subroutine to provide a single interface to the INFONET computer system (Computer Sciences
Corporation) functions FDEFN$, DOY, TOD, and UDAT2$.
Used for implementations of edit programs using
FORTRAN where these CSC system functions are
unavailable.

ONDSK2.DP A logical function which tests to see if the passed
file name is on the computer disk, The function is
set to TRUE if the file is on disk and to FALSE if

P.DP

not.

A function used to left pad zeroes on a passed
numeric string field. For valid numeric fields, the
function is assigned the field with zeroes appended
as needed, For non-numeric or blank fields, the
function is assigned the field unchanged.

PGROUP.DP A subroutine used to print a record containing an
error(s) and associated records located before and
after the record containing an error(s) by accessing
a disk file.

POST Subroutine used to calculate a geographic position
(latitude and longitude) for a time, using a starting
position and time, speed, and bearing (course).

RANGIT.DP Field verification routine for integer range (can be
modified to handle real values), The field specified
by the passed parameters beginning column and width
within STRING, is verified to be numeric and then
numerically tested to be within or equal to the
passed parameter range values. If the field is out of
range, an error message is written and optionally,
the database EC80DB is tallied with the error
occurrence,

STRIP2,DP A subroutine to prepare a file name for use by the
subroutine called by ONDSR2.DP to test the file to be
on a computer disk,

'

UPERST.80 ALADIN program used to add, delete, and change

22

records on the database ES80DB.

VALUIT.DP Field verification routine. The field specified by
the passed parameters, beginning column and field
width within STRING, is tested to be a valid integer
value (can be modified to handle real values). The
character field is translated and assigned to integer
variable VALUE. If the field is invalid, an error
message its written and optionally, the database
EC80DB is tallied with the error occurrence.

VERFIT.DP A field verification routine. The field specified by
passed parameters, beginning column and field width
within STRING, is validated against a truth-set
character string passed as a parameter. If the field
is invalid, an error message is written and
optionally, the database EC80DB is tallied with the
error occurrence.

WRAPUP.DP A subrouti.ne used to print out a record group, passed
as a parameter, when the value of TOTERR is TRUE;
TOTERR is then set to FALSE.

YESNO Subroutine to prompt for a YES or NO response to a
question.

a-

, -
I 23

VI Named common block ERROR

The named common block ERROR is the central means of
communication between the various subroutines used in the data
verification system, The common block statement and variable
declaration appears in all of the COMMON SUBROUTINES listed in
sections IV, Any program or subroutine which directly references
any of these variables must contain the common block statement
and must declare the variables properly. The common block,
variable declarations, and a description of the variables
follows.

Named common block ERROR is used by all common subroutines. A
cross reference of the variables and the routines is shown in
Figure 3. Even though each variable is not directly used, each
variable must have type specification to avoid serious storage
problems. Below is an example of the FORTRAN coding for the
common area, the type specification, and variable description.

C
C

COMMON/ERROR/ANYERR, CARSEQ , DATSET , DSKSEQ , ELEVAL, GRPCOD,
1NOG0, STRING, TEMP, VALUE, TOTERR, ALLBLK, INFILE

C

C

C

C
C

CHARACTER GRPCOD*l, STRING*80, TEMP*80, DATSET*8, INFILE*20

INTEGER CARSEQ, DSKSEQ, ELEVAL, VALUE

LOGICAL ANYERR, NOGO, TOTERR, ALLBLK

There are several categories of variables. Variables STRING,
TEMP, and VALUE make data available to the calling routine and
the field verification subroutines.

Variables NOGO, ANYERR, and TOTERR inform the users routines and
system subroutines (ERRCHK and WRAPUP) as to the occurrence of an
error within a field, a record, or a group of records,
respectively.

Variables DATSET, GRPCOD, CARSEQ, and DSKSEQ serve as field
identifiers: DATSET, denoting the type of data; GRPCOD a further
distinction in situations involving multiple-multicard format
being verified simultaneously; CARSEQ distinguishing records
within multi-record formats; and DSKSEQ relating the absolute
record number within the input file (base 1, increment 1).

Variables ELEVAL and ALLBLK control the error report
characteristics. ELEVAL controls the complexity of the error
message 'and ALLBLK controls whether all data groups are to be
printed regardless of number or types of errors detected.

24

a-

_ -

Figure 3. Variable cross reference fo r named common block ERROR and the common subroutines.

IIA” ind icates va r iab le i s assigned a value w i t h i n the phase o r subroutine.
"Rig indicates var iab le i s referenced w i t h i n the phase o r subroutine.

Referencing COMMON SUBROUTINES

BLANKT .DP ERRLOG. DP
VARIABLE Phase 1 Phase 2 Phase 3 VERFIT.DP RANGIT.DP VALUIT.DP ERRFIL.DP ERRCHK.DP URAPUP.DP

NAME

ALLBLK A R

ANYERR A R A R A R R A R

CARSEP A A A

DATSET

DSKSEP

ECNAME

ELEVAL

ESNAME

I N f l L E

GRPCOD

NOGO

STRING

TEMP

A

A R A R A R

A

A

A

A R

A R

R R R A

A R A R A R R

R

TOTERR A R A R A R

R R

R R

R R

A R A A

R R

R R

R

A A R

VALUE R R R R A

ALLBLK:

ANYERR:

CARSEQ :

DATSET:

DSKSEQ:

This logical variable is set to TRUE when it is desired
that subroutine WRAPUP.DP prints all record groups
regardless of error condition. A value of FALSE causes
WRAPUP.DP to print only those record groups meaning
TOTERR is true when record groups (i.e., TOTERR is TRUE
when WRAPUP.DP is called).

Logical variable set to TRUE to indicate that a record
contains an error and left FALSE when a record does not
have an error. Subroutines ERRCHK.DP, ERRFIL, and
ERRLOG.DP, and the Phase 1 and Phase 2 coding make
direct references to this variable. ERRCHK-DP prints the
record stored in STRING if ANYERR is TRUE and then sets
it to FALSE. Entry ERRFIL and ERRLOG.DP, which are
called for field and logical error conditions
respectively, explicitly set ANYERR to TRUE. Phase 1
and Phase 2 coding sets ANYERR to TRUE for an error
condition. When all verifications for a record are
complete, ANYERR is checked. If TRUE, the record in
error is printed.

The card sequence number within a data set. This
variable is assigned the character(s) from a record
which contains a sequence number within a multicard
format. CARSEQ need not be numeric, For non-multicard
formats it should be assigned blank(s). CARSEQ is used
by the field verification routines to help specify the
location of a field containing the error. The error
message written by these routines and the record created
on database EC80DB via the call to ERRFIL (an entry
point to ERRLOG.DP) contain CARSEQ. This variable must
be assigned by the user when the field verification
routines are called.

An 8 character string used to identify the data being
verified. This variable is concatenated with the field
and logical error specification code to create a key for
EC80DB or ES8ODB to indicate what data set type and file
contained the error. DATSET contains the data set type
identifier code (a string of characters) that indicate
the type of data file that is being processed (e.g.,
SLEDIT80 for 1980 Set Log data). DATSET is used by
ERRFIL (entry point to ERRLOG-DP) and ERRLOG.DP. DATSET
need only be assigned if EC80DB is opened in preparation
to store records. Columns 1-8 of DATSET are concatenated
with the logical error code by ERRLOG.DP to create a key
used to retrieve records from ES80DB database. ES80DB
database contains both long and short error messages.

The absolute record sequence number which begins with
zero and is incremented by one each time a record is
‘read from the input data file. This value is used to
indicate which record contains the error. It appears in
the error messages written by the field verification
routines and ERRLOG.DP. It is used to indicate the

26

record number by ERRCHK.DP and WRAPUP.DP. It is used
for the same purposes in Phase 1 and Phase 2 coding. The
value of DSKSEQ must equal the record number of the
record currently being verified when calls are made to
the field verification routines, ERRLOG.DP, or
ERRCHK.DP. It must equal the record number of the last
record in a record group when WRAPUP.DP is called.

The variable codes for the type of logical error message
written by ERRLOG.DP, controls whether EC80DB database
should be updated by ERRLOG.DP, and controls whether
error messages are written by VALUIT.DP.

ELEVAL:

,-

I

ELEVAL MESSAGE? UPDATED? MESSAGE?

-1 Code (1) Yes (4) No

0 NO No Yes

1 Code (1) Yes (4) Yes

2 Short (2) (5) Yes (4) Yes

3 Long (3) (5) Yes (4) Yes

Notations for the numbers in parentheses are:

(1) CODE -8 is an error message consisting of the
record number (DSKSEQ) and a message
stating that logical error number
llERRORCODE1l has failed.

(2) SHORT- is a 4 character error message, retrieved
from ES80DB data base element "SHORT
MESSAGE" printed in addition to the CODE
error area message.

(3) LONG- is a multiple of 4 character error message
records retrieved from the ES8ODB database
element *?LONG MESSAGE'? printed in addition
to the code error message. A maximum of 99
error message records is allowed for each
multiple record set.

(4) If the database EC80DB is to be updated,
OPLGCT (entry to ERRLOG.DP) must be called
prior to calling the data verification
subroutines, or ERRLOG.DP and CLLGCT (entry
to ERRLOG.DP) should be called at the close
of the program. These routines open and
close data bases EC80DB or ES80DB,
respectively.

27

(5) To retrieve the short and long error
messages, ES80DB database must be on disk
pack and subroutine OPLGST (entry to
ERRLOG.DP) called prior to the first call
to ERRLOG.DP.

GRPCOD: A character string, concatenated as part of the field
verification error code, used to identify the data set
of a record having a field error. When more than one
data set or card format is being simultaneously verified
some distinction must be made to avoid ambiguity. GRPCOD
becomes part of the key used when storing a field error
on EC80DB database. The field verification routines
create this key and then call ERRFIL (entry to
ERRLOG.DP) to update EC80DB. The user should assign
GRPCOD as blank if not otherwise needed. If needed, it
should be assigned any code desired, prior to calling
the field verification routines for a given record type.

INFILE: A 20 character string containing the input data file
name.

A logical variable set to TRUE to indicate that a field,
being verified by a field verification routine, is
invalid. When a field verification routine is called,
NOGO is set to FALSE. If the field is invalid, NOGO is
set to true when ERRFIL (entry to ERRLOG.DP) is called
by the field verification routines. In this way, the
calling program has an indication of whether the field
is invalid, and can branch if necessary.

It is assigned by the Phase 1 coding.

NOGO:

STRING: An 80 character string into which input records are
stored. The field verification routines verify STRING.
When ERRCHK.DP is called, the record printed out is
stored in string.

TEMP: An 80 character string to which is stored the field
being verified. The field verification routines extract
the field being verified from STRING and assign it to
TEMP . NOTE ! Bince the length function is not
associated with TEMP the length of the field placed
there is not known.

TOTERR: In Phase 3 coding this logical variable is set to TRUE
to indicate that a record group contains a record which
had an error occurrence. It is also set to TRUE by
Phase 1 and Phase 2 coding when any error occurs, as an
indication to not go to the next phase. Within Phase 3
coding, TOTERR is set to TRUE by ERRCHK-DP when Any
error is TRUE. TOTERR is set to FALSE when WRAPUP.DP is
called. Phase 1 and Phase 2 coding require explicit
'assignments for TOTERR.

VALUE: When subroutine VALUIT.DP is called explicitly by the
calling program, or implicitly by calling RANGIT.DP, the

28

integer translation of the field being verified is
assigned to VALUE. If the field is invalid or blank,
VALUE is assigned the value of zero.

29

V I . The log ica l hierarchy for the f i e l d verif icat ion
common subroutines ERRLOGIDPI ERRFIL, ERRCHK.DP, WRAPUP.DP
and cal l ing programs,

A hierarchical structure relates the field verification
subroutines ERRLOG.DP, ERRFIL (an entry point within ERRLOG.DP),
ERRCHK.DP, WRAPUP.DP, and any calling programs. This structure
performs the function of informing the different routines about
the occurrence of errors at the field level, physical record
level, and logical record group level. Logical variables NOGO,
ANYERR, and TOTERR (variables within labeled common block ERROR),
are set to TRUE or FALSE by these subroutines to control the
printing of error records, and to inform the calling subroutines.
The during
development of edit programs.

structure is designed to reduce the amount of coding

The field verification subroutines are used to perform checks on
field (variables) as part of the editing process. As each
subroutine is called, the logical variable NOGO is set to FALSE.
If a field error is detected by any of the field subroutines,
ERRFIL is called and ERRFIL sets logical variables NOGO and
ANYERR to TRUE. By setting NOGO to TRUE, the calling program is
informed that a field had an error. When a logical error is
detected, ERRLOG.DP is called to report the error, and ERRLOG.DP
sets logical variable ANYERR to TRUE. Following all verifications
for a given record, subroutine ERRCHK,DP is called. This
subroutine checks logical variable ANYERR. If ANYERR is TRUE,
then the character variable STRING containing the input record
being edited is printed. Logical variable TOTERR is set to TRUE
and logical variable ANYERR to FALSE.

The calling program or edit program is then ready for the next
physical record to be edited. When all verifications of a record
group have been completed, subroutine WRAPUP.DP is called.
WRAPUP.DP prints out the entire record group as a block of
records if either of the logical variables ANYERR or ALLBLK (see
sections VI and VII) were reset to TRUE. The logical variable
TOTERR is then set to false, and the cycle is completed. The
main edit program must initialize NOGO, ANYERR, and TOTERR at the
beginning of execution, and prior to the next cycle of records to
be edited.

30

IX. Data flow and field reference sequence.

There are fundamental error report format requirements and input
data error ramifications which help to mold a program structure.
It is the purpose of this section to provide a detailed
description.of how data is input, data is referenced, and how the
report is written. We refer to these three aspects as the program
data structure.

Each phase reads from a disk file equated to FORTRAN logical unit
10. Each record is read into STRING, a variable of type
character, length 8 0 . The field verification routines do their
verifications of a field, described by beginning passed parameter
column number and field width within variable STRING. Logical
verifications make direct references to fields within STRING.
The ANSI standard syntax for a field reference is of ‘the
following form.

STRING (BEG:END) where BEG is the beginning column number and
END is the ending column number.

e-g. I IF (STRING(4:6) .GT. STRING(13:15)) GO TO 100

Reference of this nature is self-documenting. The field which is
referenced is known simply by looking at the input data format
layout. References of this format are useful for comparisons in
which no arithmetic is; required. If a field needs to be added,
subtracted, rnultipljied, divided, or some other computation

2.- performed, the data field has to be translated to its numeric
equivalent. This utjility is provided by the field verification
routines ,RANGIT.DP arid VALUIT.DP. Both these routines assign

of the field, Following a
validation, a user designated variable may be assigned a value
via the arithmetic assignment statement.

I common block variable value with the integer, numeric equivalent
providjing the field is valid numeric.

MYVAR = VALUE

MYVAR is available for computations as necessary.

CALL RANGIT (5,3,0,,500)
MYVAR = VALUE

or

CALL RANGIT (8,2,0,,200)
IPOST = VALUE

It is in the subsequent validations where the three phases
differ. In phase 1, a record with errors is printed out by phase
1 coding’using a write statement. In phase 2, STRING is passed to
subroutine PGROUP.DP where it is printed out. In phase 3,
subroutine ERRCHK.DP is called to print the record with errors

II - (the record being stored in STRING). In addition, the record

31

stored in STRING is assigned to a dimensioned character string of
length 80, This type of variable has the capacity to store many
record images. When all of the record group has been processed,
the record stored in the dimensioned character string, is passed
along with a count of the records to subroutine WRAPUP.DP which
then selectively prints the record group. Figures 4, 5, and 6
show the data flow for phases 1, 2, and 3, respectively.

The perspective presented thus far is as if all logical
verifications are performed on a single, 80-column long, physical
record stored in the variable STRING. This is not always the
case for phases 2 and 3. Logical verifications can be performed
between the current record. stored in STRING and previous records.
The previous records were saved in a numeric or character
variable. When possible, the references were made to a field
within a record, using the beginning and ending columns.
References can be made of the form:

IF (STRING (7:9) .GT. STORE(2) (6:8j) GO TO 20

All of the logical operators. LT, LE, EQ, NE, GT, and GE are
permitted for comparing character strings, But, since not all
fields are zero filled, filled with one which is zero filled will produce an erroneous result. The common subroutine function P.DP was used to temporarily pad a
field with leading zeroes prior to performing a field edit
verification.

comparing a field which is blank

IF (P(STR1NG (28:29)) ,EQ. '02') GO TO 20

32

a

Figure 4 . Phase 1 flowchart.

_-

w INPUT MAIN EDIT
Program

I ~ A T A FIEJ

Sequencing
Subroutine

*I read 80-column

lYES
Write and ~ ~ 7) locate

REPORT
in ERROR

33

Figure 5. Phase 2 flowchart.

1 - t INPUT MAIN EDIT

Attempt to
read LOGICAL

RECORD

AYES
PGROUP.DP
subroutine

STOP
' ES Write STRING

and locate .
in ERROR

34

Figure 6. Phase 3 flowchart.

MAIN EDIT a
Program INPUT

DATA FILE

PHYSICAL
RECORD

RECORD

Identify and
locate LOGICAL

I, RECORDlGROUP
Call

WRAPUP-DB
subroutine

'

Store PHYSICAL
RECORD in

Perform checks on
variables in this PHYSlCAL

RECORD from STRING

ERRCXK-DP

I

I No
a

3s

VIII. Error Counts (EC80DB) and Error
Statements (ES80DB) databases.

Two ALADIN databases were created to contain a tally of the
number of error occurrences (EC80DB) or a record of the logical
error statements (ES80DB). The error count database (EC80DB)
records the number of error occurrences (field and logical)
detected each time the edit program is executed. Tallies are
maintained by data file type (e.g., Set Log, Marine Mammal Effort
and Sightings), subsets of data file type (e.g., Porpoise versus
Non-porpoise Set Logs), errortype (blank, range, logical, or
character), and year. Retrieval from this database is
accomplished using the ALADIN program DERCT.80 which produces
either a formatted computer disk file of the frequency of error
tallies, or a printer report of the same information.

The error statement database (ES80DB) contains both long and
short error messages that describe the error detected by the edit
program. A listing of the contents of this database is printed
and archived as the Logical Error Statements book for all edit
programs developed during a calendar year, It serves to document
the criteria used to code the logical errors, and identifies the
specific logical error detected during execution of the edit
program. Records are appended to the database ES80DB using the
FORTRAN program UPEROR.MN, or the ALADIN program UPERST.80, and
an input file of statements described below. Many of the error
statements remained unchanged between years, and the archived
records within ES80DB, for instance, can be used to create
records for 1981 edit programs (ES81DB). Retrieval from this
database is accomplished using the ALADIN program DERST.80 which
produces either a formatted computer disk file of the frequency
of error tallies, or a printer report of the same information.

There is a 24-character length key for both databases,
constructed using parameters passed by the subroutines, or
contained in the labeled common block ERROR. The key is built
using the following parameters,

DATASETID:

GRPCOD:

Columns 1-8 identifies the field collection or coding
format by year. Passed from labeled common block ERROR
as DATSET (MUST BE ONE OF THE FOLLOWING).

CSEDIT80
SLEDIT8 0
VAEDIT80
MMEDIT8O
BLEDIT8O
LHEDIT80
ASEDIT80

Column 9 identifies multi-format field collection or
coding formats. Passed from labeled common block ERROR
as GRPCOD (MUST BE ONE OF THE FOLLOWING).

36

IN' - Non-porpoise Set Log SLEDIT
IPr - Porpoise Set Log SLEDIT
'E1 - Effort MMEDIT
' S t - Sightings MMEDIT
I 1 - all others VAEDIT, BLEDIT, CSEDIT

ERRORTYPE: Column 1 0 identifies the nature of the field error or
logical error. Passed from labeled common block ERROR
as ERRORTYI?E (MUST BE ONE OF THE FOLLOWING).

CARDSEQ :

BEGINCOL :

B - Blank error (Field)
C - Character error (Field)
L - Logical error (Logical)
R - Range error (Field)

Columns 11-12 for FIELD errors, the card sequence of a
field (e.g,,, nO1lr) within a multicard format data set.
For a single card format the code is 110111 (Length 2) .
Blank for LOGICAL errors. Passed from named common
block ERROR as CARSEQ.

Columns 13-14 for FIELD errors, the beginning column
number of (e.g., r1291r) the field having an error.
(Length 2) : Blank for LOGICAL errors. Passed by the
calling subroutine.

ENDINGCOL: Columns 1 5 - 1 6 for FIELD errors, the ending column of a
field (e.g., , I134*l) having an error. (Length 2) . Blank
for LOGICAL errors, Passed by the calling subroutine.

ERRORCODE: Columns 17-24 for LOGICAL errors contain the logical
error numher of the statement. Passed by the calling
subroutine as ERRCODE,

"

Logical error statements are coded onto FORTRAN coding forms
which are 80 columns in length. To accommodate statements that
are longer than the SHORT STATEMENT length of 54 characters,
columns the
sequential number of c:oding lines needed for any length statement
(up to 99 lines of 54 characters each). When the keypunched data
is used as' input t:o the update procedures (ALADIN program
UPERST.80 or the FORTRAN program UPEROR.MN, the sequential
numbers in columns 25-26 are utilized but not stored in the
database ES80DB. The ALADIN program DERST.80 restores the
sequential numbers to columns 25-26 when a lrdumpll is made of the
database.

25-26 of the coding format are reserved to indicate

37

ERROR COUNT DATABASE (EC80DB)

We desired to keep track of which errors were most frequently
detected in the input data to assist in subsequent training of
observers and to address possible ambiguities with data
definitions. The two different error types, field and logical,
are recorded via the calls to the field verification subroutines
(BLANKT.DP, RANGIT.DP, VALUIT.DP, VERFIT.DP) or the logical error
type subroutine ERRLOG.DP. When a field verification routine is
called and an error is detected, an error code llkeyll is
constructed The
IIkeytl is constructed to access the ALADIN database EC80DB for the
particular error type, etc. detected.

Subroutine ERRFIL, all entry point of ERRLOG.DP, concatenated a
key consisting of the data file type, the error code, the data
file name code, and blanks. The data file type is derived from
columns 1-8 of labeled common block ERROR element DATSET. The
data file name code is columns 9-12 of DATSET. A retrieval from
EC80DB is attempted using this key. If the record already
exists, the occurrence is tallied, If a record does not exist, a
new record is created and the tally set to 1. In this way field
errors are tallied in the ERROR COUNT database.

and passed as a parameter via a call to ERRFIL.

Examples of valid keys for the database EC80DB are:

(DATASETIM-GRPCOD+ERRORTYPE+CARDSEQ+BEGINCOL+ENDCOL+E~ORCODE~

'SLEDIT80NL ERROR112' = 1980 non-porpoise setlog logical
error 112

'SLEDIT80PR010306 = 1980 setlog range error for
physical card 1, columns 3-6

The formatted structure of the database EC80DB is as follows:

Element name

ERROR KEY
DATASETID
GRPCOD
ERRORTY PE
CARDSEQ
BEGINCOL
ENDINGCOL
ERRORCODE

COUNT

Columns Element t m e

1 - 24
1 - 8
9 - 9
10 - 10
11 - 12
13 - 14
15 - 16
17 - 24
25 - 28

Character
Character
Character
Character
Character
Character
Character
Character
Integer

38

ERROR STATEMENT DATABASE (ES80DB)

Logical errors are tallied the same as the field errors, the only
difference being the user supplies the error code. When a logical
error is detected, subroutine ERRLOG.DP is called and passed the
user specified eight character logical error code (e.g.,
glERROROO1ll, r1ERROR00211) . Error codes correspond to logical error
statements which are stored within the database ES80DB.

ES80SB database is a storage area for the logical error messages
corresponding to the logical error verifications performed within
the main edit programs (Phase 3). The error messages were the
basis by which the logical verifications were coded by
programmers. They are the explanation of the logical error code
which is printed on the error report, and documentation of the
logical verifications, performed. They may be accessed and
printed directly on th.e error report or printed for reference.

When logical errors are reported via the call to the
logical error code is passed as a parameter. Optionally,
ERRLOG.DP may be toldl to retrieve the long or short message from
ES80DB and display it or the printer. This action is controlled
by the value of ELEVAI, (see sections VI and VII) What ERRLOG.DP
does to retrieve the necessary message is to form a key
consisting of the diata file identifier code (columns 1-8 of
DATSET) , the group codle (GRPCOD) , the error type (ERRORTYPE), six
blanks, and the 8 character logical error code (e.g., ERROR001 or
ERROR002). This key is used to access the database ES80DB. If a
record does not exist for that key, ERRLOG.DP prints of that

*_ information. Examples of logical error statements are included in
Appendix 3 of this document.

Examples of valfd keys for the database ES80DB are:

ERRLOG.DP,

(DATASETID+GRPCOD+EMRTYPE+' '+ERRORCODE

' SLEDIT80NL ERROR112' = 1980 non-porpoise setlog logical
error 112

'SLEDIT80PL ERNOROOlt = 1980 porpoise setlog logical
error 001

The formatted structure of the database ES80DB is as follows:

Element name Columns Element t m e

ERROR KEY
DATASETI D
GRPCOD
ERRORTYPE
.blanks
ERRORCODE

SHORT STATEMENT
LONG STATEMENT

I L - 24 Character
I - 8 Character
53 - 9 Character
10 - 10 Character
11 - 16 blanks
17 - 24 Character
25 - 78 Character
79 -133 Character

39

IX. Acknowledgements

There have been a great many persons involved in the evolution of
the porpoise data management system. Dr. W.F. Perrin (SWFC)
encouraged us to apply computer capabilities to these data and
provided the initial support and direction in our doing so. D.
Roll and D. Mackett (SWFC) provided subsequent support and
guidance Many of the
observers who collected data while aboard tuna purse-seiners
provided useful comments on the data forms, data definitions, and
editing criteria. The data groups at the SWFC and at the SWR
office were an integral part of this development (F. Ralston and
J. Scordino), We also thank the numerous computer programmers who
have developed the edit programs using the common subroutines,
and who in some cases, have recommended improvements and
additional llcommon subroutines". Special recognition is deserved
by K . Wallace (SWFC) who worked as an observer, data editor,
computer programmer, and who during the 1980s, implemented the
common subroutine package on yet another computer system, Ken
also provided helpful comments during the drafting of this
report ,

in development of the first edit programs,

References

Butler, R,L. and C.W. Oliver, 1980. Program descriptions,
listings, and documentation for the common edit subroutines:
Porpoise Data Management System, Southwest Fisheries Center
internal reports. Southwest Fisheries Center, La Jolla,
California. 100-plus pages.

Oliver, C.W, 1983. Documentation of aerial survey sighting and
transect forms for the 1977 and 1979 eastern tropical
Pacific cetacean surveys. Southwest Fisheries Center Admin.
Report No, U-83-20. Southwest Fisheries Center, La Jolla,
California. 35p.

Perrin, W.F. 1975. Variation of the spotted and spinner porpoise
(genus Stenella) in the eastern tropical Pacific and Hawaii.
Bull. Scripps Inst, Oceanography, Univ. of Calif. 206pp.

4 0

Appendix 1. How to read intra-variable logic: explains the blank,
range, logical error coding utilized during 1974-1978
for edit programs.

HOW TO =AI) IN!FRA-VARIABLE-LOGIC

Intra-variable logic is a coined expression for the Boolean
"IF, THEN" type error checking system designed to allow complex
variable relationships to be handled without new program coding.
Its positive attributes include ease of coding, generalized error
reporting, and documentation of the errors checked with a
subroutine called TRCWOB that prints the error checks performed
in an easily read form, This document is provided to clarify the
syntax of the output provided by the program TRCWOB, which
provides a list of all error checked for by INTRA-VARIABLE LOGIC
code. Some terms should clarified:

CARD AND COLUMN (CARD.COL) :

A symbolic means of identifying variables associated with a
logical record consisting of one or more 80-column physical
records. Variables are located on a certain card within multi-
card formats and begin with a certain column, A contraction
was formed (e g., 2.05 for the variable located on card 2
beginning in column 5).

VARIABLES

f * The input data is contained within array locations, Certain
constants are also stored within the array string. Thus data
and constants may be referenced from the same string. The term
1tData-variable81 coins for an element of the array whose value
arises from the input data source. The term "Constant-
variable" coins for constants,

Within this document, variables are referenced by card and column
number, and all variablles have their array index values listed at
the end of the statement line following dashes and a referencing
number on the statements which are referenced by the error
reports themselves,

Four Boolean logical oiperators are used: LT (less than), EQ
(equal), GT (greater than), and NE (not equal) , The logical
connectors llORtl and. ltAND1l are also used, Values within
parentheses contain d.ata or @f????18. Data exists for constant-
variables, and tl????ll for data-variables.

The logic flow is entered systematically although each variable
may, or may not, have logical relationships coded with
dependencies upon ita value. However, the logic structure may
only be'reached when the variable is non-blank and within range.
Each logic construct begins with a card-column value to the far
left identifying the begin variable, Following are the two types

* of statements:

41

1. 1.01 IF VAR# 1.01 IS EQ VAR# 2.01 (????)--1--20

2. 1.01 SINCE VAR# 1.01 IS WITHIN BOUNDS--l

The latter statements merely reflects that since variable 1.01 is
non-blank and within bounds, there is going to be some resultant
relationship, while the former sets up an ltIFgt
relationship to build upon. Following each expression will be
one or more resultant contingencies of the form:

to be fulfilled,

VAR# 2.15 MUST BE GT VAR# 1.15 (????)--41--7

Thus an IIIF, THEN" expression may be formed as follows:

1.01 IF VAR# 1.01 IS EQ VAR# 2.01 (????)--1--20

VAR# 2.15 MUST BE GT VAR# 1.15 (????)--41--7

The above translate to say *IIF variable 1.01 is equal to the
stored value of the data-variable 2.01, THEN the stored data-
variable 2.15 must be greater than the stored value of data-
variable 1.15).

Use of AND^^ or (IORII.

The word "AND" is used to express additional IVIFfI statements
within two areas.

1.

2.

Compound I r I F I I : An giIFts directly followed by 1 or more
"AND IF" expressions means that both (all) 1eIFt8
relationships must be valid before the resultant clause
becomes active. The resultant clause may indicate an error
or no error depending upon the construct of the expression.

IF VAR# 1.24 is NE VAR# 2.78 ()--10--70

AND IF VAR# 1.17 is EQ VAR# .1.24 (????)--8--10

VAR# 2.13 must be GT VAR# 1.13 (????)--40--6--

Additional I I I F I I s : An IIAND IFtf following an 8tIFs1
interspersed by 1 or more resultant clauses expresses an
entirely new 8qIFgq contingency.

IF VAR# 2.17 IS EQ VAR# 2.24 (????)-42-44

VAR# 1.52 MUST BE EQ VAR# 2.84(5)--23--76--

AND IF VAR# 2.24 IS NE VAR# 2.78 () --44--70

VAR# 2.24 MUST BE EQ VAR# 2.17 (????)--44--42--

42

OR VAR# 2.24 MUST BE GT VAR# 2.17 (????)--44--42--

The logical connector llOR1l is used to connect resultant clauses
IL# as seen In the last example. However, the llORIB is only in
effect for the resultants having the and for the first
previous resultant expression before the expression having the
"OR" .

I F VAR# 2.48 IS EQ VAR# 2.79 (1)--54--71

VAR# 2.51MUST BE NE VAR# 2.78 () --55--70--

VAR# 2.49 MUST BE GT VAR# 2.80 (0)--55--72 --
OR VAR# 2.54 MLTST BE GT VAR# (2.80 (0)--56--72 --

Only the last two resultants are connected. The first resultant
must be valid regardless of the validity of the following two
resultants or an error report would occur.

To make use of this readable intra-variable logic, one looks at
the IrBegin variablet1 on the edit program output associated with
the error statement. This begin will be found on the HUMN output
listing on the far left of the page (e.g., SLHUMN for Set Log
data). To find a specific error statement, the edit program
output has a reference number (the one with the dashes). This
number will also be found to be the last number on the associated
THEN statement.

R.W. Butler second draft (8/25/75); revised C.W. Oliver

43

Appendix 2. Conversion considerations for the COMMON SUBROUTINES
written in Computer Sciences Corporation (CSC)
Fortran language

CSC FORTRAN CONVERSION EFFORT (1979-1980)

In order to convert CSC INFONET Fortran to some other system's
Fortran, the programmer should be aware of a number of problem
areas. Of primary concern is that the new Fortrans have string
capabilities CHARACTER, concatenation (/ /) , substring (STRVAR
(5:7)), character functions, passed length string variables to
functions and subroutines (FUNCTION A(STR1NG) ; CHARACTER
STRING*(*)), and passed length string functions (CHARACTER *(*)
FUNCTION STRING (A,B)).

The Porpoise Data Verification System VOMMON SUBROUTINES1@ used
do develop edit programs were modified so that they never
interface directly with CSC system routines, except for programs
GENERl, GENER2, or GENER3 and those routines that are dependent
On CSC data access or naming conventions; ONDSKZ, STRIP2, ERRLOG,
and CSEQ.Pl (CSEQ.P2 has been eliminated).

GENERl has as entries, integer functions as follows:

1. FYRFYX - identical to CSC's FVRFYS.
2. FBRKCX - identical to CSCIs FBRKCS.
3 . FIVALX - identical to CSC's FIVALS.

For these routines to be used in a program, they must be defined
as INTEGER (i.e. INTEGER FVRFYX, FIVALX). There is a logical
variable in GENERl called CSC, .TRUE.
and which, for efficiency, causes these functions to involve the
appropriate CSC functions. On converting to a new system, the
variable CSC needs to be set .FALSE., and all function references
within GENERl that reference CSC routines need to be made
comments or the section of code removed.

which is currently set to

GENER2 has a single entry as a character function, FSTRX. This
function returns a character string equivalent of an integer with
leading zeros. The program which involves this function must
specify the character length of the returned string (i.e.
CHARACTER FSTRX*5, will return an integer right-justified in a
five-character string with leading zeros).

The variable CSC (see above) will determine if CSC functions will
be involved or if an V'ENCODE1' will convert the string. The form
of system being used.

GENER3 has as subroutine entries:

the ENCODE may have to be changed to conform with the

1. FDEFNX - identical to four argument call to CSC's FDEFNS.

4 4

c 2. FDEFN5 - identical to five argument call to CSC's FDEFNS.
3 . DOYX - identical to CSC's DOY.

4 . TODX - identical to CSC's TOD.

5. UDAT2X - identical to six argument call to CSC's UDAT2$.
These subroutines should have, on any system to which conversion
is made, equivalent functions or subroutines. These special
entries were created only to eliminate the need for a conversion
programmer to have to find all references to these routines in
the various edit packages,

The programs ONDSK2, STRIP2, ERRLOG, and CSEQ.Pl have not been
modified, nor have their calls, even though they are CSC
dependent, These routines depend on CSTS file naming conventions,
MANAGE data base capabilities or special capabilities of CSC's
editor, On conversion, they will have to be specially rewritten.

Corrections that were made to the Porpoise Data Verification
System COMMON SUBROUTINES used with edit programs are:

1. Variable length character functions P and FSTR$, Function P
remains, but the routine that involves P must specify a
fixed length (i.e, CHARACTER P*8). References to FSTR$ were
changed to FSTRX with a fixed length specification (i.e.
CHARACTER FSTRX*5) and any programming changes required to

,. handle a fixed length return string with leading zeroes.

2. Variable length character strings were changed to fixed
length.

3 . The intrinsic function SUBSTR. All substring references of
the form SUBSTR (STRNG,N,L) were changed to the ANSI
standard of the form STRNG(N:M), where N is the position of
the beginning character and M the ending character position
within the string STRNG of the needed substring.

4 . ENCODE'S and DECODE-S. Since the syntax of ENCODE and DECODE
is different for different system Fortrans, they were
eliminated from the porpoise Data System edit routines by
using other available routines for converting strings to
numeric and visa versa, mainly FVRFYX and FSTRX.

5. READ with PROMPT. All reads with prompt as in;

READ(5,*,PROMPT='ENTER DATA-') INPV

were eliminated with combination writes and reads.

6, CSC Routine FVRFY$, FBRKC$, FIVALS, FDEFNS, DOY, TOD, and
UDAT2$. These routine calls (or function references) were
changed to FVRFYX, FBRKCX, FIVALX, FDEFNX (for a 4 argument

45

call or FDEFN5 for a 5 argument; all), DOYX, TODX, and
UDAT2X. In addition FVRFYX, FBRKCX, and FIVALX needed an
integer type specification in the calling routine (i.e.
INTEGER FVRFYX, FBRKCX).

In addition possible problems may exist with other systems with
Fortran programs if a conversion from CSC is attempted, Some of
these potential problem areas are:

FTRIMS, FPAD$, and OBEY.
1. CSC Routines FSEQ$, FCHRS, FVALS, FDVALS, FTRMMS, FTRMBS,

2. Read from internal storage (internal file) as in:

READ (DATA, 10) VAL

This type statement can normally be replaced with a DECODE
statement,

3. Any logic which depends on 6 characters per word.

Note: All of the above mentioned special CSC routines or
statements can be referenced in CSC's Fortran Reference
Manual and related Network Release Manual's, or the CSC
Technical Notes.

4 6

4

*
Appendix 3 . The main edit program (CSEDIT.81) and sequencing

subroutine (CSOOCS.81) utilized on data collected on
the 1981 Cruise Specification Record data form.

The 1981 Cruise Specification Record edit program was written
during 1980 for use with data to be collected during 1981. The
common subroutines initially used were the 1980 versions
described within this document. During the conversion of the edit
programs (and the common subroutines) to the UCSD VAX computer
system, some of the common subroutines were subsequently
modified. This example represents the coding which was performed
using the 1980 subroutines on the CSC computer system during
1980.

The 1981 Cruise Specification Record data form (Figure 1) was
completed for each observed trip (IATTC or NMFS observer). A
logical record consists of three 80-column long physical records.
The physical records undergo edit by the main edit program
(CSEDIT.81). When a logical record is considered "ALL OK!', it is
appended to the archival database for the year (e.g. CS81DB.DAT).

This appendix is provided to demonstrate the program code for a
fixed-format logical record consisting of three physical records
which has no relationship with another logical record. This is a
relatively simple record to program an edit for because there is
a single logical record grouping to edit, consisting of three
physical records.

The blank and range criteria used to implemented within the edit
program code is provided in Table 1, and the logical error
criteria in Table 2. The coding format and data definitions for
this record is available in the 1981 Observers Field Manual
archived at the SWFSC, La Jolla, California.

The program listings are provided for the main edit
(CSEDIT81.FOR) and sequencing subroutine (CSSEQ81.FOR).

47

Figure 7. 1981 Cruise Specification Record data form.

0 1

N0.U - U S OEPT. OF CO?.ixtr~Cr-

1 1 i 1 1 1

I CRUISE SPECIFJCATIOMS RECORD

* # COUE

COMPLETED
TRIP?

auitr csHortrrotJSJ $6 m MO. 1 OAY 1 yn i :.a. o w

1 1

SAlLEO
FROM:

1 1 I 1 1 1 1
6 29

TYPE
CRUISE

GI 41

I

1 1

RETURNEO
TO:

TYPE 1 TRIPS SETS SEEtJ #

I 1 I 1

THE WET -

. c 1

48 -

1981 Crui se Specif i cati ons Record Form
Data E l ement B1 ankness and Range Edi ti ng Speci f i cations

Record 1 of 3

Data E l einent
Character 81 ankness Range

Columns type OK? Lower Upper

Cruise Number
Record Number
Vessel Code
Year Boat B u i l t
Fish Capacity (s h o r t tons)
Vessel Class
Date Sailed -Yr
Date Sailed -Mo
Date Sailed -Day
Date Returned -Yr
Date Returned -Mo
Date Returned -Day
Completed T r i p ? Y/N
Observer Number
Observer Type
Number of T r i p s
Number of marine mammal

sets seen
Sequence Number
Type Cruise
Type Gear
Number o f Speedboats
Helicopter ? Y / N
Bowthruster ? Y / N
Anti-torque Cable ? Y/N
Year Net Built
Net Length (FM)
Nex Depth (FM)
Net Depth (STRIPS)
Mesh Size (In. ti 1000ths)
Safety Panel ? Y / N
Year Panel Instal 1 ed
Panel Length (FM)
Panel Depth (FM)
Panel Depth (STRIPS)
Mesh Size (I n . & 100ths)

1-3
4- 5
6 -9

10-11
12-15

16
17-18
19-20
21-22
23-24
25-26
27-28

29
30-32
33-34
35-36

37-39
40

41-42
43-44

45
46
47
48

49-50
51-53
54-56
57 -58
59-61

63-64
65-67
68-69
70-71
72-74

62

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

No
No
No
No
No
NO
No
No
No
NO
No
No
No
No
No
No

No
NO
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

670
1

29
44

40 1
2

81
1
1

81
1
1
1

34
1
0

0
1
1
1
4
1
1
1

59
480

48
8

37 5
1

76
162

6
1

113

785
1

460
80

2000
3

81
12
31
8 1
12
31
2

370
6
6

300
3
3
8
6
2
2
2 :

80
800 .

90
15

425
2

81
200

20
4

12 5

A = Alpha B = Blank N = Numeric

49

1981 Cruise Specifications Record Form
Data El ement I31 ankness and Range Ed i t ing Specifications

Record 2 of 3

Data Element
Character Blankness Range

Columns type OK? lower Upper

Cruise Number
Record Number
Vessel Name

Subpart of name
Operator Certificate Hol der

Subpart o f holder
Certi f i cate Number

Subpart o f cer t i f icate
Subpart of cer t i f ica te
Subpart o f cer t i f ica te

1-3
4-5
6-31
6- 10

32-60
32-34
61-69
61-63
64-66
67-69

N
N
A
A
A
A
A
A
N
N

NO 6 70 78 5
No 2 2
Yes
No
Yes
No
No
NO
NO 812 812
No 50 1 640

I

A = Alpha 6 = Blank N = Numeric

1981 Cruise Specifications Record Form
Data Element Blankness and Range Ed i t ing Specifications

Record 3 o f 3

Data Element
Character B1 ankness Range

Columns type OK? tower Upper

Cruise Number
Record Number
Vessel Certi f i cate Hol der

Subpart of holder
Certificate Number

Subpart o f cer t i f icate
Subpart o f cer t i f icate
Subpart o f cer t i f icate

1-3
4-5
6-34
6-8
35-43
35-37
38-40
41-43

No 670 785
No 3 3
Yes
NO
No
NO
No 812 812
No 1 140

A = Alpha B = Blank N = Numeric

1981 Cruise Specifications Data (1981 format): BLANK, RANGE, and
LOGICAL error criteria.

ERROR001

ERROR002

ERROR003

ERROR004

ERROR005

ERRORO 0 6

ERRORO 0 7

ERROR008

ERROR009

ERROR010

ERROR011

ERRORO 12

ERROR013

ERROR014

ERROR015

ERROR016

ERROR017

ERROR018

CSEDIT81 L

IF THE YEAR BOAT BUILT IS GREATER THAN 1960 AND THE
FISH CAPACITY IS EQUAL TO OR GREATER THAN 0400 TONS...
THE VESSEL CLASS MUST BE EQUAL TO 3.
IF THE YEAR BOAT BUILT IS LESS THAN 1961,
AND THE FISH CAPACITY IS EQUAL TO OR GREATER THAN 0400

IF THE FISH CAPACITY IF LESS THAN 0400 TONS ... THE
VESSEL CLASS MUST BE EQUAL TO 1.
IF THE PRESENT OCCURRENCE OF OBSERVER (1.30) IS NOT
EQUAL TO THE PREVIOUS OCCURRENCE OF OBSERVER ... THE
PRESENT OCCURRENCE OF TOTAL OBSERVERS MUST BE EQUAL TO
THE PREVIOUS OCCURRENCE OF TOTAL OBSERVERS + 1.
IF THE PRESENT OCCURRENCE OF TOTAL OBSERVERS (1.40) IS
NOT EQL TO THE PREVIOUS OCCURRENCE OF TOTAL OBSERVERS ... THE PRESENT OCCURRENCE OF OBSERVER (1.30) MUST BE
NOT EQUAL TO THE PREVIOUS OCCURRENCE OF OBSERVER.
IF THE NUMBER OF PORPOISE SETS SEEN (1.37) IS GREATER
THAN ZERO ... THE NUMBER OF TRIPS (1.35) MUST BE
GREATER THAN ZERO.
IF THE GEAR TYPE IS 03 ... THE PANEL STRIP DEPTH MUST
BE EQUAL TO 02.
IF THE GEAR TYPE IS 03 ... THE PANEL MESH SIZE MUST BE
EQUAL TO OR LESS THAN 125 INCHES.
IF THE GEAR TYPE IS 0 4 ... THE PANEL DEPTH MUST BE
EQUAL TO 20 FATHOMS.
IF THE GEAR TYPE IS 04 ... THE PANEL STRP DEPTH MUST
BE EQUAL TO 04.
IF THE GEAR TYPE IS 04 ... THE PANEL MESH SIZE MUST BE
EQUAL TO OR LESS THAN 125 INCHES.
IF THE GEAR TYPE IS 05 ... THE PANEL STRIP DEPTH MUST
BE EQUAL TO 01.

EQUAL TO OR LESS THAN 125 INCHES.
IF THIS CRUISE SPECIFICATIONS FILE CONTAINS MORE THAN
ONE LOGICAL RECORD SET ... TRIP COMPLETED (1.29) FOR
ALL BUT THE LAST OF THESE LOGICAL RECORD SETS SHOULD
BE EQUAL TO 2.
WITHIN THIS FILE, THE LAST OCCURRENCE OF TRIP
COMPLETED (1.29) SHOULD BE EQUAL TO 1 ... IF NOT ,
THIS MAY CONSTITUTE AN ERROR.
IF THIS CRUISE SPECIFICATIONS FILE CONTAINS MORE THAN
ONE LOGICAL RECORD SET ... THE ELEMENTS : VESSEL CODE
(1.06) , YR BOAT BUILT (1.10) , FISH CAPACITY (1.12) ,
AND VESSEL CLASS (1.16) FOR EACH OF THE LOGICAL RECORD
SETS SHOULD BE IDENTICAL.
THE PRESENT OCCURRENCE OF DATE RETURNED (1.23) SHOULD
BE GTR THAN THE PRESENT OCCURRENCE OF DATE DEPARTED
(1.17) ... IF IT IS NOT , THIS CONSTITUTES AN ERROR.
THE PRESENT OCCURRENCE OF DATE DEPARTED (1.17) SHOULD
BE GTR THAN THE PREVIOUS OCCURRENCE OF DATE RETURNED

TONS ... THE VESSEL CLASS MUST BE EQUAL TO 2-

IF THE GEAR TYPE rs 05 ... THE PANEL MESH SIZE MUST BE

52

(1.23) ... I F I T I S NOT , IS CONSTITUTES AN ERROR.
ERROR019 I F THE I N I T I A L OCCURRENCE OF TOTAL OBSERVERS (1.40) IS

NOT EQUAL TO 1 ... T H I S CONSTITUTES AN ERROR,
ERROR020 I F THE PRESENT OCCURRENCE OF OBSERVER TYPE (1.33) IS

EQUAL TO 04 .., THE FOLLOWING ELEMENTS SHOULD BE
BLANK : VESSEL CODE (1.06), F I S H CAPACITY (1.12) ,
VESSEL CLASS (1.16), T R I P COMPLETED (1,29), GEAR TYPE
(1.43), NUM SPEEDBOATS (1-45) , BOWTHRUSTER (1.47) ,

ANTITORQ CABLE (1.48) , YEAR NET BUILT (1,491, NET
LENGTH (1.51), NET DEPTH (1.54), NET S T R I P DEPTH
(1 , 5 7) , NET MESH S I Z E (1 . 5 9) , PORP PANEL (1.62) , YR
PANEL INSTALD (1.63), PANEL LENGTH (1 . 6 5) , PANEL
DEPTH (1.68), PANEL S T R I P DEPTH (1.70), PANEL MESH
S I Z E (1.72), OPER CERT HOLDER (2.32), AND OPER CERT
NUMBER (2.61).

53

.
B e g i n n i n g o f t h e C r u i s e S p e c i f i c a t i o n M a i n E d i t p r o g r a m f o r 1 9 8 1 d a t a .

C * * * P R O G R A M C S E D I T . 8 1
C
C * * * P U R P O S E T H E P U R P O S E O F T H I S P R O G R A M I S T O P E R F O R M
C F I E L D A N D I N T E R - V A R I A B L E L O G I C C H E C K S O N
C T H E D A T A C O N T A I N E D I N T H E C R U I S E S P E C I F I -
C C A T I O N S F I L E . A L S O A C A R D S E Q U E N C E / D E C K
C I N T E G R I T Y C H E C K IS C A R R I E D O U T B Y S U B R O U T I N E
C c s o o c s .
C
C * * * L A N G U A G E F O R T R A N I V (C S C I N F O N E T)

C
C * * * P R O G R A M M E R R . G R I S M O R E ; C . L O N G
C
C * * * D A T E S E P T E M B E R 1 9 8 0
C
.
.
C E X E C U T I O N I N S T R U C T I O N S

C
C ! C S E D I T . 8 1
C c s x x x : F I L E N A M E
C N O E D I T : E D I T O P T I O N

C
C O R

C
C ! C S E D I T . 8 1
C c s x x x : F I L E N A M E
C G O E D I T : E D I T O P T I O N
C T R U E OR F A L S E : L I S T I N G S O P T I O N

C
C
C O P T I O N S N O T E : N O E D I T - U S E D W H E N O N L Y A D A T A F I L E
C S E Q U E N C I N G C H E C K IS D E S I R E D .

C
C G O E D I T - U S E D W H E N F I E L D O R L O G I C A L
C E R R O R C H E C K S O N T H E F I L E A R E
C ' D E S I R E D .

C
C T R U E - U S E D W H E N A L I S T I N G OF A L L
C L O G I C A L R E C O R D G R O U P I N G S
C I S D E S I R E D .
C

C F A L S E - U S E D W H E N A L I S T I N G O F O N L Y
C L O G I C A L R E C O R D G R O U P I N G S I N
C E R R O R A R E D E S I R E D .
C
.
C
C * * * I N P U T F I L E S :
C C S # # # - C R U I S E S P E C I F I C A T I O N S I N P U T F I L E .
C C S - P R E F I X N A M I N G C O N V E N T I O N F O R I N P U T F I L E S .

54

C
C
C
C
c * * *
C
C
c * * *
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C

C
C
C
C * * *

C
C
C

C
C
C
C
C
C
C
C
C

- C R U I S E N U M B E R .
(R E A D F R O M L O G I C A L D E V I C E = 1 0 . 1

P R O M P T D E V I C E - S O U R C E O F A L L U S E R C O M M A N D S (L O G I C A L D E V I C E = 5) .

O U T P U T F I L E S :
P R I N T E R - D E S T I N A T I O N O F A L L P R O G R A M O U T P U T (L O G I C A L D E V I C E = 6).

S U B R O U T I N E S :
A D P S U B R O U T I N E S :

B L A N K T - V E R I F I E S T H A T A F I E L D IS N O N - B L A N K .
C L L G C T - C A L L E D T O C L O S E T H E D A T A B A S E H O L D I N G T H E E R R O R C O U N T S .
C S O O C S - P R E - E D I T P R O G R A M F O R T H E C R U I S E S P E C I F I C A T I O N S F I L E .
E J E C T S - C A U S E S L I N E C O U N T T O B E S E T A T 54 T O F O R C E S T A R T I N G

A N E W P A G E .
E J E C T H - S T O R E S H E A D E R I N F O R M A T I O N T O B E P R I N T E D P R E P A R A T O R Y

T O S T A R T I N G A N E U P A G E .
E J E C T R - C A U S E S A L I N E C O U N T T O B E M A I N T A I N E D I N O R D E R T O

P R I N T H E A D I N G I N F O R M A T I O N (A R G U M E N T - N U M B E R
O f L I N E S T O B E P R I N T E D) .

E R R C H K - P R I N T S A N E R R O R M E S S A G E A N D T H E P H Y S I C A L R E C O R D I N
E R R O R W H E N L O G I C A L V A R I A B L E A N Y E R R IS F O U N D T O
B E T R U E .

E R R L O G - O B T A I N S A N E R R O R M E S S A G E F R O M T H E E R R O R D A T A B A S E
A N D P O S T S T H E T Y P E O F E R R O R A N D T H E N U M B E R O F
O C C U R R E N C E S I N A N O T H E R D A T A B A S E .

O P L G C T - C A L L E D T O O P E N T H E D A T A B A S E H O L D I N G T H E E R R O R C O U N T S .
P (A R G P * F U N C T I O N S U B P R O G R A M W H I C H C H E C K S T H E F I E L D A R G F O R

N U M E R I C D A T A , A N D Z E R O F I L L S I T T O T H E L E F T I F I T
IS V A L I D N U M E R I C .

R A N G I T - V E R I F I E S T H A T T H E V A L U E O F A F I E L D F A L L S W I T H I N
S P E C I F I E D U P P E R A N D L O W E R L I M I T S .

V E R F I T - V E R I F I E S T H A T A L L C H A R A C T E R S O C C U R R I N G I N O N E S T R I N G
O C C U R I N A N O T H E R .

W R A P U P - P R I N T S O U T T H E D A T A G R O U P .
I N F O N E T S U B R O U T I N E S :

F D E F N X - D E F I N E S A N D A L L O C A T E S L O G I C A L F I L E S .
F S T R X - F U N C T I O N S U B P R O G R A M W H I C H C O N V E R T S I T S A R G U M E N T F R O M

A N A R I T H M E T I C V A L U E T O A C H A R A C T E R S T R I N G
R E P R E S E N T A T I O N .

F B R K C X - F U N C T I O N U H I C H D E T E R M I N E S F I R S T O C C U R A N C E I N
A R G 1 W H I C H A L S O O C C U R E S I N A R G 2 .

P R I M A R Y V A R I A B L E S :
A L P H A S - D A T A S T R I N G C O N T A I N I N G A L P H A B E T & C E R T A I N S P E C I A L C H A R A C T E R S

A L L B L K - U S E R - E N T E R E D L O G I C A L V A R I A B L E S E T T O T R U E I F A L L D A T A B L O C K S

A R E T O B E P R I N T E D .
A L L S T R - C O N T A I N S E N T I R E D A T A B L O C K .
A N Y E R R - S E T T O T R U E O N T H E O C C U R R E N C E O F A N Y E R R O R .
C A R S E Q - C O N T A I N S T H E C U R R E N T C A R D S E Q U E N C E N U M B E R .
C U R O B S - C U R R E N T O B S E R V E R S E Q U E N C E N U M B E R .
D A T S E T - C O N T A I N S T H E P A R T I A L K E Y F O R T H E E R R O R D A T A B A S E .
D I G I T S - D A T A S T R I N G C O N T A I N I N G T H E N U M E R I C D I G I T S .
D S K S E Q - C O N T A I N S T H E C U R R E N T P H Y S I C A L R E C O R D N U M B E R .
E L E V A L - C O D E U S E D T O S P E C I F Y T H E L E N G T H O F E R R O R M E S S A G E T O P R I N T .
G R P C O D - E Q U A L S ' P I O R I N ' A S S E T I S M A R I N E M A M M A L O R N O T .

55

C H E A D - C O N T A I N S P A G E - H E A D I N G C H A R A C T E R S T R I N G .
C I N F I L E - C O N T A I N S I N P U T F I L E N A M E .
C I R E T - R E T U R N C O D E F R O M I N F O N E T S U B R O U T I N E F D E F N X .
C L A S S E U - N U M B E R O F P H Y S I C A L R E C O R D S I N T H E D I S K F I L E .
C L O G G R P - D A T A G R O U P I D E N T I F I E R . B A S E 1 , I N C R E M E N T 1, F O R E A C H
C D A T A S E T .
C N O G O - S E T T O T R U E W H E N E R R L O G I S C A L L E D .
C O L D A R R - A R R A Y OF D I M E N S I O N 3 C O N T A I N I N G T H E L A S T P R E V I O U S D A T A B L O C K
C O U R O B S - P R E V I O U S O B S E R V E R S E Q U E N C E N U M B E R .
C S T R I N G - C O N T A I N S T H E C U R R E N T I N P U T D A T A R E C O R D .
C T O T E R R - S E T T O T R U E I F P R E - E D I T F A I L E D ; H A L T S E X E C U T I O N .
C V A L U E - C O N T A I N S I N T E G E R V A L U E R E S U L T I N G F R O M A C A L L T O R A N G I T .
C
C * * * C O M M O N A R E A D E F I N I T I O N .
C

C O M M O N / E R R O R / A N Y E R R , C A R S E Q , D A T S E T , D S K S E Q ,
1 E L E V A L , G R P C O D , N O G O , S T R I N G ,
2 T E M P , V A L U E , T O T E R R , A L L B L K ,
3 I N F I L E

L

C * * * P R O G R A M V A R I A B L E S P E C I F I C A T I O N S T A T E M E N T S .
C

C H A R A C T E R G R P C O D * l , S T R I N G * 8 0 , T E M P * 8 0 , D A T S E T * 8 ,
1 C A R S E Q * 2 , I N F I L E * 2 0 , A L L S T R (3) * 8 0 ,
2 O L D A R R (3) * 8 0 ,
3 A L P H A S * 3 0 / ' A B C D E F G H I J K L M N O P Q R S T U V W X Y Z . l & l l / ,
4 DIGITS*10/1012345678901/, H E A D * 6 0 ,
5 P * 8 , F S T R X * 6 , N U M S T * 6

C
I N T E G E R D S K S E P , E L E V A L , V A L U E , I R E T , C U R O B S , O U R O B S
I N T E G E R F B R K C X , S T A R T C

C
L O G I C A L A N Y E R R / . F A L S E . / , T O T E R R , A L L B L K , N O G O

C
L E N G T H P (*)

C
C H A R A C T E R G O E D I T * 7

C
D A T A E L E V A L / O / , G R P C O D / ' I /

C
C * * * S E C T I O N 1 .
C * * X B E G I N M A I N P R O G R A M L O G I C . .
L

C
C * * * C A L L T H E C A R D - S E Q U E N C I N G P R E - E D I T P R O G R A M .
C

C A L L C S O O C S
I F (T O T E R R) G O T O 1 9 9
E L E V A L = 1

C
C * * * O P E N E C 8 l D B D A T A B A S E . (T H I S IS A N E N T R Y P O I N T W I T H I N E R R L O G
C

C A L L O P L G C T (' E C 8 1 D B I)

C C A L L O P L G S T (' E S 8 1 D B

C A L L E J E C T R (1)

C
C P R O M P T U S E R T O G O / N O G O E D I T .
C

U R I T E < 6 , 3)

R E A D (5 , 4) G O E D I T
3 F O R M A T (' E N T E R I ' G O E D I T " O R " N O E D I T " . ')

4 F O R M A T (A 7)
IF(G O E D I T . E P . ' G O EDIT ') G O T O 6
I F (G O E D I T . E P . ' N O E D I T ') G O T O 9 9
W R I T E (6 , S) G O E D I T

5 F O R M A T (' R E S P O N S E - ' , A 7 , ' N O T " G O E D I T " O R " N O E D I T " . ')
G O T O 9 9

6 C O N T I N U E
R E U I N D 1 0

C
C * * * E S T A B L I S H D A T A B A S E K E Y .
C

C A L l F D E F N X (l R E T , ~ O , I N F I l E , ' S T D ')
D A T S E T (1 : 8) = ' C S E D I T 8 1 1

C

C * * * P R O M P T U S E R F O R V A L U E O F A L L B L K .
C

U R I T E (6 , 2)

R E A 0 (5 . *) A L L B L K
L A S S E Q = D S K S E Q
D S K S E Q = 0

2 F O R M A T (' E N T E R T R U E / F A L S E P R I N T A L L D A T A G R O U P S . '

C
C * * * T O P O F R E A D L O O P .
t

2 0 C O N T I N U E
D O 3 0 I = 1 , 3
R E A D (l O , l , E N D = 9 9) A L L S T R (1)

1 F O R M A T (A 8 0)
3 0 C O N T I N U E

L O G G R P = L O G G R P + 1
C
C D E T E R M I N E N U M B E R O F S I G N I F I C A N T C H A R ' S I N L O G G R P .
C

N U M S T = F S T R X (L 0 G G R P)
S T A R T C = fBRKCX(NUMST,'123456789')
I F (S T A R T C . E P . 0) S T A R T C = 1

C
C * * * H E A D U P O U T P U T P A G E .
C

H E A D = I * * * C S E D I T . 8 1 - - - I N P U T F I L E : 1 / / i N F I L E (1 : 8) / /

C A L L E J E C T H (H E A D 1
C A L L E J E C T B (5 4)

1 ' L O G I C A L G R O U P I / / N U M S T (S T A R T C :)

C
C * * * S E C T I O N 2 .
C * * * V E R I F Y T H E F I E L D S O F C A R D #I.
C
C
C * * * B E G I N W I T H B L A N K N E S S A N D R A N G E C H E C K S .

57

C

C

C

C

C

C

C

C

C

C

C

C

C

C A R S E Q = ' O l '
D S K S E Q = D S K S E Q + l
S T R I N G = A L L S T R < I)

C A L L B L A N K T (1 , 3)
C A L L R A N G I T (1 , 3 , 6 7 0 , 7 8 5)

C A L L B L A N K T (1 0 , Z)
C A L L R A N G I T (1 0 , 2 , 4 4 , 8 0)

C A L L B L A N K T (1 6 , I)
C A L L R A N G I T (1 6 , 1 , 2 , 3)

C A L L B L A N K T (1 7 , 2)
I F (N O G O) G O T O 3 5
C A L L V E R F I T (1 7 , Z , D I G I T S)

3 5 C O N T I N U E
C A L L R A N G I T (1 7 , 2 , 8 1 , 8 1)

C A L L B L A N K T (1 9 , Z)
I F (N O G O) G O T O 36
C A L L V E R F I T (1 9 , Z 1 D I G I T S)

36 C O N T I N U E
C A L L R A N G I T (1 9 . 2 , 1 , 1 2)

C A L L B L A N K T (2 1 , Z)
I F (N O G O) G O T O 37
C A L L V E R F J T (Z I , Z , D I G I T S)

37 C O N T I N U E
C A L L R A N G I T (2 1 , 2 , 1 , 3 1)

C A L L B L A N K T (2 3 , z)
I F (N O G O) G O T O 40
C A L L V E R F I T (2 3 , 2 , D I G I T S l

40 C O N T I N U E
C A L L R A N G I T (2 3 , 2 , 8 1 , 8 1)

C A L L B L A N K T (2 5 , Z)
I F (N O G O) G O T O 41
C A L L V E R F I T (2 5 , 2 , D I G I T S)

4 1 C O N T I N U E
C A L L R A W G I T (Z f , 2 , 1 , 1 2)

C A L L B t A N K T (2 7 , 2)
I F (N O G O) G O T O 4 2

4 2
C A L L V E R F I T (2 7 , 2 , D I G I T S)

C O N T I N U E
C A L L R A N G I T (2 7 , 2 , 1 , 3 1)

C
C A L L B L A N K T (2 9 , l)
C A L L R A N G I T (2 9 , 1 , 1 , 2)

C

45

C

C A L L B L A N K T (3 0 , 3)
I F (N O G O) G O T O 45
C A L L V E R F I T (3 0 , 3 , D I G I T S)

C O N T I N U E
C A L L R A N G I T (3 0 , 3 , 3 4 , 3 7 0)

C A L L B L A N K T (3 3 , z)
C A L L R A N G i T (3 3 , 2 , 0 1 , 0 6)

C
C A L L B L A N K T (3 5 . 2)
C A L L R A N G I T (3 5 , 2 , 0 0 , 0 6)

C
C A L L B L A N K T (3 7 , 3)
C A L L R A N G I T (3 7 , 3 , 0 0 0 , 3 0 0)

C

C A L L B L A N K T (4 0 . 1)
C A L L R A N G I T (4 0 , 1 , 1 , 3)
C U R O B S = V A L U E

C

C A L L B L A N K T (4 1 , Z)
C A L L R A N G I T (4 1 , 2 , 0 1 , 0 3)

C

C
c

C

C A L L B L A N K T (4 3 , 2)
C A L L R A N G I T (4 3 , 2 , 0 1 , 0 8)

C A L L B L A N K T (4 5 , l)
C A L L R A N G I T (4 5 , 1 , 4 , 6)

C A L L B L A N K T (4 6 , I)
C A L L R A N G I T (4 6 , 1 , 1 , 2)

C

C

C A L L B L A N K T (4 7 , I)
C A L L R A N G I T (4 7 , 1 , 1 , 2)

C A L L B L A N K T (4 8 , l)
C A L L R A N G I T (4 8 , 1 , 1 , 2)

C

C
C A L L B L A N K T (5 1 , 3)
C A L L R A N G I T (5 1 , 3 , 4 8 0 , 8 0 0)

c

lj

C

C

C

C

C

C

C
C***
C
C
C***
C

1 0 0
C
c * * *
C

1 1 0
C
c * * *
C

120
C
c***
C * * *
C

C
C***

C A L L B L A N K T (5 9 , 3)
C A L L R A N G I T (5 9 , 3 , 3 7 5 , 4 2 5)

C A L L B L A N K T (6 2 , l)
C A L L R A N G I T (6 2 , 1 , 1 , 2)

C A L L B L A N K T (6 3 , 2)
C A L L R A N G I T (6 3 , 2 , 7 6 , 8 1)

C A L L B L A N K T (6 5 , 3)
C A L L R A N G I T (6 5 , 3 , 1 6 2 , 2 0 0)

C A L L B L A N K T (6 8 , 2)
C A L L R A N G I T (6 8 , 2 , 0 6 , 2 0)

C A L L B L A N K T (7 0 , Z)
C A L L R A N G I T (7 0 , 2 , 0 1 , 0 4)

C A L L B L A N K T (7 2 , 3)
C A L L R A N G I T-C 7 2 , 3 , 1 1 3 , 1 2 5)

B E G I N I N T E R - V A R I A B L E L O G I C C H E C K S O N F I E L D S O F C A R D # I .

E R R O R 0 0 1

I F (P (A L L S T R (l) (l O : l l)) .LE. '60') G O T O 100
I F (P (A L L S T R (l) (1 2 : 1 5)) .LT. '0400') G O T O 1 0 0
I F ((A L L S T R (1) (1 6 : 1 6)) .EQ. '3') G O T O 1 0 0
C A L L E R R L O G (' E R R O R O O 1 ')
C O N T I N U E

E R R O R 0 0 2

I F ((ALLSTR(1)(10:11)) .GE. ' 6 1 8) G O T O 1 1 0
I F < P (A L L S T R (1)(12:15)) .LT. ' 0 4 0 0 ') G O T O 110
I F ((A L L S T R (1) (1 6 : 1 6)) .Ea. 1 2 a) G O T O 110
C A L L E R R L O G (' E R R O R O O 2 ')
C O N T I N U E

E R R O R 0 0 3

I F (P (A L L S T R < 1) (1 2 : 1 5)) .GE. '0400') G O T O 120
I F ((A L L S T R (1) (1 6 : 1 6)) .EQ. * I 1) G O T O 120
C A L L E R R L O G (' E R R O R 0 0 3 ')
C O N T I N U E

N E X T T W O C H E C K S I N V O L V E P R E S E N T A N D P R E V I O U S D A T A S E T S . S K I P T H E M I F
N O P R E V I O U S D A T A S E T .

I F '(P(OLDARR(1)(4:5)) .NE. G O T O 1 4 5

E R R O R 0 0 4

* .

c

1 3 0
C
C * * *

C

1 4 0
C
C * * *

C
1 4 5

C
c * * *
C

7 5 0
C
c * * *

I F (P (A L L S T R (?) (3 0 : 3 2)) . E P . P (O L D A R R (1) (3 0 : 3 2))) G O T O 1 3 0

I F (O U R O B S . E Q . C U R O B S) G O T O 1 3 0
C A L L E R R L O G (' E R R O R 0 0 4 ')
C O N T I N U E

O U R O B S = O U R O B S + 1

E R R O R 0 0 5

I F (P (A L L S T R (1) (4 0 : 4 0)) . E a . P (O L D A R R (1) (4 0 : 4 0))) G O T O 1 4 0
I F (P (A L L S T R (1) (3 0 : 3 2)) . N E . P (O L D A R R (1) (3 0 : 3 2))) G O T O 1 4 0
C A L L E R R L O G (' E R R O R 0 0 5 ')
C O N T I N U E

E N D O F P R E S E N T V S . P R E V I O U S D A T A S E T C H E C K S .

C O N T I N U E

E R R O R 0 0 6

I F (P (A L L S T R (1) (3 7 : 3 9)) . L E . 1 0 0 0 1) G O T O 1 5 0
I F (P (A L L S T R (1) (3 5 : 3 6)) . G T . l o o 1) G O T O 1 5 0
C A L L E R R L O G (' E R R O R 0 0 6 ')
C O N T I N U E

E R R O R 0 0 7

I F (P (A L L S T R (1) (4 3 : 4 4)) . N E . ' 0 3 ') G O T O 1 7 0
I F (P (A L L S T R (1) (7 0 : 7 1)) . E P . ' 0 2 ') G O T O 1 6 0
C A L L E R R L O G (' E R R O R 0 0 7 ')

1 6 0 C O N T I N U E
C

C * * * E R R O R 0 0 8
C

I F ((A L L S T R (1) (7 2 : 7 4)) . E P . l 1 2 5 ') G O T O 1 7 0
C A L L E R R L O G (' E R R O R 0 0 8 ')

1 7 0 C O N T I N U E
C
C * * * E R R O R 0 0 9
C

I F (P (A L L S T R (1) (4 3 : 4 4)) . N E . ' 0 4 ') G O T O 2 0 0
I F ((A L L S T R (1) (6 8 : 6 9)) . E a ' . ' 2 0 ') G O T O 1 8 0
C A L L E R R L O G (' E R R O R 0 0 9 ')

1 8 0 C O N T I N U E
C
C * * * E R R O R 0 1 0
C

I F (P (A L L S T R (1) (7 0 : 7 1)) . E P . ' 0 4 ') G O T O 1 9 0
C A L L E R R l O G (' E R R O R O I O ')

1 9 0 C O N T I N U E
C
C * * * E R R O R 0 1 1
C

I F (P (A L L S T R (1) (7 2 : 7 4)) . L E . ' 1 2 5 ') G O T O 2 0 0
C A L L E R R L O G (' E R R O R O 1 1 ')

2 0 0 C O N T I N U E

61

i

C*** ERROR012
C

I F (P(ALLSTR(1)(43:44)) .NE. '05') GO TO 220
I F (P(ALLSTR(1)(70:71)) .EQ. ' 0 1 4) GO TO 210
CALL ERRLOG('ERRORO12')

210 CONTINUE
C
C * * * ERROR013
L

I F (P(ALLSTR(1)(72:74)) .LE. '125') G O TO 2 2 0
CALL ERRLOG('ERROR013')

220 CONTINUE
C
C*** E R R O R014
C

I F ((LASSEQ - D S K S E Q) .LT. 3) GO TO 230
I F (ALLSTR(1)(29:29) .Ea. '2') G O TO 230
C A L L ERRLOG('ERROR014')

230 CONTINUE
C
C*** ERROR015
C

I F ((LASSEQ - DSKSEQ) .GT. 2) GO TO 240
I F (ALLSTR(1)(29:29) .EQ. '1' 1 GO TO 240
C A L L ERRLOG('ERROR015')

240 CONTINUE
C
C*** ERROR016
C

i F (P(OLDARR(1)(4:5)) .N E . ' 0 l 4) G O TO 2 5 0
I F (ALLSTR(1)(6:16) .EQ. OLDARR(1)(6:16)) GO TO 2 5 0
CALL ERRLOG('ERROR016')

250 CONTINUE
C
C*** E R R O R 0 1 7
C

I F (P(ALLSTR(1)(23:28)) .GT. P(ALLSTR(l)(17:22))1 GO TO 260
CALL ERRLOG('ERRORO17')

260 CONTINUE
C
C*** E R R O R 0 1 8
C

I F (P(OLDARR(1)(4:5)) . N E . t o l a) GO TO 2 7 0
I F (ALLSTR(1)(17:22) .GT. OLDARR(1)(23:28)) GO T O 2 7 0
C A L L ERRLOGC'ERROR018')

270 CONTINUE
C
C*** E R R O R 019
C

I F (D S K S E Q .GT. 1) G O TO 2 8 0
I F '(ALLSTR(1)(40:40) .EQ. I l l) GO TO 280
CALL ERRLOG('ERROROl9')

280 CONTINUE
C

r

62

C * * *

C
C
c * * *
C

C
c * * *
C * * *

C

C

C

C

3 0 0
C

305
C

3 1 0
C

3 1 5

E N D O F I N T E R - V A R I A B L E L O G I C C H E C K S O N C A R D #1 .

W R I T E A N Y R E C O R D S W H I C H A R E I N E R R O R .

C A L L E R R C H K

C A R S E Q = ' 0 2 '
S T R I N G = A L L S T R (Z)
D S K S E Q = D S K S E Q + l

C A L L B L A N K T (6 , s)

C A L L V E R F I T (6 , 2 6 , A L P H A S)
C O N T I N U E

I F (N O G O 1 G O T O 3 0 0

C A L L B L A N K T (3 2 , s)

C A L L V E R F I T (3 2 , 2 9 , A L P H A S)
C O N T I N U E

I F (N O G O) G O T O 3 0 5

C A L L B L A N K T (6 1 , 3)

C A L L V E R F I T (6 1 , 3 , A L P H A S)
C O N T I N U E

I F < N O G O) G O T O 3 1 0

C A L L B L A N K T (6 4 , 3)

C A L L V E R F I T (6 4 , 3 , D I G I T S)
C O N T I N U E
C A L L R A N G I T (6 4 , 3 , 8 1 2 , 8 1 2)

I F (N O G O) G O T O 3 1 5

C A L L B L A N K T (6 7 , 3)

C A L L V E R F I T (6 7 , 3 , D I G I T S)

C A L L R A N G l T (6 7 , 3 , 5 0 1 , 6 4 0)

I F (N O G O) G O T O 3 2 0

3 2 0 C O N T I N U E

I
L

C * * * U R I T E A N Y R E C O R D S W H I C H A R E I N E R R O R .
C

C A L L E R R C H K

63

S T R I N G - A L L S T R (3)
D S K S E P = D S K S E P + l

C A L L B L A N K T (1 , 3)

C A L L R A N G I T (1 , 3 , 6 7 0 , 7 8 5)

C

I F (N O G O) G O T O 4 0 0

4 0 0 C O N T I N U E
L

C A L L B L A W K T (4 , Z)
C A L L R A N G I T (4 , 2 , 3 , 3)

C A L L B L A N K T (6 , 3)
C A L L V E R F I T (6 , 2 9 , A L P H A S)

C

L

C A L L B L A N K T (3 5 , s)
I F (N O G O) G O T O 4 0 5

C A L L V E R F I T (3 5 , 3 , A L P H A S)
4 0 5 C O N T I N U E

C
C A L L B L A N K T (3 8 , 3)

I F (N O G O) G O T O 4 1 0
C A L L V E R F I T (3 8 , 3 , D I G I T S)

4 1 0 C O U T I N U E
C A L L R A N G I l (3 8 , 3 , 8 1 2 , 8 1 2)

C
C A L L B L A N K T (4 1 , 3)

C A L L V E R F I T (4 1 , 3 , D I G I T S)
I F (N O G O) G O T O 4 1 5

4 1 5 C O N T I N U E
C A L L R A N G I T (4 1 , 3 , 1 , 1 4 0)

L

C * * * B E G I N I N T E R - V A R I A B L E L O G I C C H E C K S O N F I E L D S 0
C
C
C E R R O R 0 2 0
C

C A R

I F (P (A L L S T R (1) (3 3 : 3 4)) . N E . l 0 4 ') G O T O 4 2 0
I F ((A L L S T R < 1) (6 :9 1

.* (A L L S T R (1) (1 2 : 1 5)

'* (A L L S T R (1) (2 9 : 2 9)

* (A L L S T R (1) (1 6 : 1 6)

* (A L L S T R (1) (4 3 : 4 4)
* (A L L S T R (1) (4 5 : 4 5)
* (A L L S T R (1) (4 7 : 4 7)
* (A L L S T R (1) (5 1 : 5 2)
* (A L L S T R (1) (5 4 : 5 6)
* (A L L S T R (1) (5 7 : 5 8)
* (A L L S T R (1) (5 9 : 6 1)
* (A L l S T R (1) (6 2 : 6 2)
* (A L L S T R (l) (6 3 : 6 4 1
* (A L L S T R (1) < 6 5 : 6 7)
* . (A L L S T R (1) (6 8 : 6 9)
* (A L L S T R < 1) (7 0 : 7 1)
* (A L L S T R (1) (7 2 : 7 4)
* (A L L S T R (2) (3 2 : 6 0)

64

. E P . I

. E Q . I

. E Q . a

. E P .

.EP. I

.Ea. I

. E a . I

. E a . a

. E Q . I

. E Q .

. E a . I

. E a . I

. E Q . I

. E P . I

. E P . I

. E Q . I

. E Q . I

.EP. I

) . A N D .
) . A N D .

I } . A N D .
I) . A N D .
I) . A N D .
') . A N D .

) . A N D .
I) . A N D .
I) . A N D .

) . A N D .
) . A N D .

I) . A N D .
I) . A N D .
I) . A N D .
I) . A N D .
I) . A N D .

) . A N D .
) . A N D .

S 2.

* (A L L S T R (2) (6 1 : 6 9) . E Q . I)) G O T O 4 2 0

C A L L E R R L O G (' E R R O R O 2 0 ')
4 2 0 C O N T I N U E

C
c * * *
C
C
c * * *
C

C
c * * *
c * * *
c * * *
C
C
c * * *
C

5 0 0

C
c * * *
L

C
c * * *
C * * *

C
9 9 - 1 0 9 9

C
c * * *
C

C

C
c * * *
C

1 9 9

E N D O F I N T E R - V A R I A B L E L O G I C C H E C K S O N C A R D S # 1 & 2 .

W R I T E A N Y R E C O R D S W H i C H A R E I N E R R O R .

C A L L E R R C H K

M O V E P R E S E N T D A T A S E T I N T O P R E V I O U S D A T A S T O R A G E A R E A .

D O 5 0 0 I = 1 , 3
O L D A R R (1) = A L L S T R (1)
C O N T I N U E
O U R O B S = C U R O B S

F I N I S H P R I N T I N G P A G E , A N D G O B A C K T O R E A D N E X T D A T A B L O C K .

C A L L W R A P U P (A L L S T R , 3)
GO T O 2 0

W R I T E (6 , 1 0 9 9)
F O R M A T (1 X)

C L O S E E C 8 1 D B D A T A B A S E . (T H I S I S A N E N T R Y P O I N T W I T H I N E R R L O G .)

C A L L C L L G C T (' E C 8 1 D B ')

C A L L C L L G S T (' E S 8 1 D B ' 1
S T O P ' E N D O F C S E D I T . 8 1 '

T E R M I N A T I O N F O R C A S E O F P R E - E D I T F A I L U R E .

W R I T E (6 , 1 0 9 9)
S T O P ' P R E - E D I T F A I L E D - F I X D A T A A N D R E - R U N . '
E N D

E n d o f t h e C r u i s e S p e c i f i c a t i o n M a i n E d i t p r o g r a m f o r 1 9 8 1 d a t a .
.

.
B e g i n n i n g o f t h e C r u i s e S p e c i f i c a t i o n S e q u e n c i n g p r o g r a m f o r 1 9 8 1 d a t a .

S U B R O U T I N E C S O O C S
c * * *
C
C * * * P R O G R A M M E R : C . L O N G .
C * * * P R O G R A M : C S E Q C S . 8 1 H E R E C A L L E D C S o O C S . 8 1

C * * * D A T E : O C T O B E R , 1 9 7 8 .
C
C * * * P U R P O S E
c * T H I S P R O G R A M E D I T S T H E F O L L O W I N G D A T A W H I C H IS
C * C O N T A I N E D I N T H E C R U I S E F I L E .
c * 1 .) C R U I S E N U M B E R
c * 2 .) D A T E S A I L E D / P R E V I O U S D A T E R E T U R N E D
c * 3.) C O M P L E T E D - T R I P F I E L D O N P R E V I O U S S E T = ' 2 ' *
c * 4.) V E S S E L C H A R A C T E R I S T I C S M U S T M A T C H
c * * *
C * * * I N P U T F I L E S :
C C S # # # - I N P U T C R U I S E F I L E .
C C S - P R E F I X N A M I N G C O N V E N T I O N F O R I N P U T F I L E S .
C # # # - C R U I S E N U M B E R .
C L O G I C A L D E V I C E = I O .

* * *
*
*
*
*

*
* * *

C P R O M P T D E V I C E - S O U R C E O F U S E R C O M M A N D S .
C L O G I C A L D E V I C E = 5 .
C
C * * * O U T P U T F I L E S :
C P R I N T E R - D E S T I N A T I O N O F A L L P R O G R A M O U T P U T . @
C L O G I C A L D E V I C E = 6.
C
C * * * S U B R O U T I N E S :
C A D P S U B R O U T I N E S :
C V E R F I T - V E R I F I E S T H A T A L L C H A R A C T E R S O C C U R I N G I N O N E
C S T R I N G O C C U R I N A N O T H E R .
C
C I N F O N E T S U B R O U T I N E S :
C F D E F N X - A L L O C A T E S A N D D E F I N E S L O G I C A L F I L E S .
C
C * * * P R I M A R Y V A R I A B L E S :
C S T R I N G - C O N T A I N S C U R R E N T D A T A R E C O R D .
C T E M P - H A S P A R T O F D A T A R E T U R N E D B Y V E R F I T .
C D S K S E Q - C O N T A I N S C U R R E N T L O G I C A L R E C O R D N U M B E R .
C C A R S E P - C O N T A I N S C U R R E N T C A R D S E Q U E N C E N U M B E R .
C A H Y E R R - S E T T O T R U E I F A N Y E R R O R IS E N C O U N T E R E D .
C T O T E R R - S E T T O T R U E I F A N Y E R R I S E V E R T R U E A N D T H E N P A S S E D .
C I N F I L E - C O N T A I N S T H E I N P U T F I L E N A M E .
C P R E V O N - S T R I N G C O N T A I N I N G T H E P R E V I O U S C A R D S E P 0 1
C A N A S T E R I C K IS P L A C E D I N C O L U M N 1 . W H E N R E M O V E D
C T H I S S I G N I F I E S A P R E V I O U S C A R D 1 IS P R E S E N T .

C
C * * * D E S C R I P T I O N

C T H I S P R O G R A M ' S P R I M A R Y C O N C E R N IS T H A T T H E C A R D S E Q U E N C E O F T H E

4

66
*

C C R U I S E S P E C I F I C A T I O N D E C K I S C O R R E C T . T H E E R R O R C H E C K S A R E
a

P C P E R F O R M E D P R I M A R I L Y U I T H D I R E C T R E C O R D C O M P A R I S O N S U S I N G T H E

C S T R I N G I N G F U N C T I O N S A V A I L A B L E I N F O R T R A N . T H E F O L L O W I N G I S
C P E R F O R M E D .
L

C 1) S U B R O U T I N E C S E Q P I I S C A L L E D T O :
C A) P R O M P T F O R T H E I N P U T F I L E N A M E A N D E Q U A T E T O U N I T S 1 0 A N D 1 2
C B) R E N U M B E R T H E I N P U T F I L E T O H A V E S T A N D A R D K E Y S B E G I N N I N G
C W I T H 1 A N D I N C R E M E N T I N G B Y 1 .
C C) C H E C K T H E C R U I S E N U M B E R , C O L U M N S 1 - 3 , T O M A T C H T H E C R U I S E
C N U M B E R O F T H E F I L E N A M E , C O L U M N 3 - 5 .
C D) C H E C K F O R R E C O R D S W H O S E L E N G T H I S N O T E Q U A L T O 8 0 C O L U M N S .
C 2) T H E C A R D S E Q U E N C E N U M B E R , C O L U M N 5, I S C H E C K E D T O B E G I N U I T H
C 1 A N D I U C R E M E N T B Y 1 F O R E A C H 3 C A R D D A T A S E T .
C 3) T H E F O L L O U I N G F I E L D S A R E V E R I F I E D T O I N C L U D E O N L Y T H E D I G I T S
C 0 1 2 3 4 5 6 7 8 9
C A) T H E C R U I S E N U M B E R . C O L U M N S 1 - 3
C B) T H E C A R D S E Q U E N C E N U M B E R . C O L U M N S 4 - 5
C
C
C
C * * * C O M M O N A R E A D E F I N I T I O N .
C

C O M M O N / E R R O R / A N Y E R R , C A R S E Q , D A T S E T , D S K S E Q , E L E V A L , G R P C O D ,
X N O G O , S T R I N G , T E M P , V A L U E , T O T E R R , A L L B L K , I N F I L E

C
C * * * P R O G R A M V A R I A B L E D E F I N I T I O N S .
C

C H A R A C T E R G R P C O D * l , S T R I N G * 8 0 , D A T S E T * 8 , C A R S E Q * Z ,
X T E M P * 8 0 , I N F I L E * 2 0 , P R E V C D * 8 0 , P R E V O N * 8 0 / ' * ' / ,

X H E A D * 6 0 / ' * * * C S O O C S . 8 1 - - - I N P U T F I L E : ' 1 1
X D I G I T S * 1 0 / 1 0 1 2 3 4 5 6 7 8 9 ' /

e - C

C

L O G 1 C A L A N Y E R R / . F A L S E . / , N O G O , T O T E R R , A L L B L K

I N T E G E R D S K S E Q , E L E V A L , V A L U E ,
X I R E T

C
5 F O R M A T (A 8 0)

9 F O R M A T (/ Z O X , * R E C O R D N U M B E R = ' , 1 4 , * . * * * I ,

1 ' I N V A L I D C A R D C O D E E N C O U N T E R E D . ')
L

C * * * A C T U A L B E G I N N I N G O F P R O G R A M L O G I C .
C

1 1 9 C A L L C S E Q P I C H E A D)
C A L L F D E F N X (I R E T 1 1 O , I N F I L E , ' S T D ')

C
C * * * G E T F I R S T I N P U T D A T A R E C O R D .
C

1 0 R E A D (1 0 , S) S T R I N G
C A R S E Q = S T R I N G (4 : 5)
D S K'S E Q = 1
I F (C A R S E Q . E Q . ' O l ') G O T O 4 0

C A L L E J E C T R (2)
W R I T E (6 , 9) U S K S E Q

67

n

s

C
C * * * P G R O U P I S C A L L E D T O P R I N T O U T T H E R E C O R D I N E R R O R A N D T H E
C R E C O R D S B R A C K E T I N G T H E R E C O R D I N E R R O R .
C

2 0 I F (. N O T . A N Y E R R) G O T O 1 2
C A L L P G R O U P (l O , D S K S E P , 3 , 3 , S T R I N G)
C A L L E J E C T B (5 4)
A N Y E R R = . F A L S E .
T O T E R R = . T R U E .

1 2 P R E V C D = S T R I N G
C
C * * * G E T N E X T I N P U T D A T A R E C O R D .
C

R E A D (1 0 , 5 , E N D = 9 9) S T R I N G
C A R S E Q = S T R I N G (4 : 5)
D S K S E Q = D S K S E Q + l
C A L L V E R F l T (1 , 3 , D I G € T S)
C A L L V E R F I T (4 , 2 , D I G I T S)

C
C * * * I S T H E C A R D T Y P E V A L I D ?
C

I F (P R E V C D (4 : 5) . E Q . S T R I N G (4 : 5)) G O T O 3 4
I F (P R E V C D (4 : 5) . E Q . ' O l e) G O T O 3 1
I F (P R E V C D (4 : S) . E Q . ' 0 2 ') GO T O 3 2
I F (P R E V C D (4 : 5) . E Q . '03') GO T O 3 3
P R E V C D (4 : 5) = S T R I N G (4 : 5)
GO T O 4 0

3 1 I F (S T R I N G (4 : S) . E Q . ' 0 2 ') G O T O 1 2

3 2 I F (S T R I N G (4 : 5) . E Q . ' 0 3 ') G O T O 1 2

3 3 I F (S T R I N G (4 : 5) . E a . e O l a) G O T O 4 0

GO T O 3 4

GO T O 3 4

3 4 C O N T I N U E
C A L L E J E C T R (2)
U R I T E (6 , 9) D S K S E Q
A N Y E R R = . T R U E .
G O T O 2 0

4 0 C O N T I N U E
C

C S A V E T H E C A R D S E Q U E N C E 0 1 R E C O R D F O R L A T E R C O M P A R I S O N S
C

75 P R E V O N = S T R I N G
G O T O 2 0

C
C T H I S S T A T E M E N T IS R E A C H E D A T T H E E N D O F F I l E O N U N I T 1 0
C

9 9 C O N T I N U E
B A C K S P A C E 1 0

C
C C H E C K T H A T T H E L A S T C A R D R E A D V A S A C A R D 3
C

I F (F T R I N G (5 : 5) . E Q . ' 3 ') G O T O 1 0 0
C A L L E J E C T R (3)
U R 1 T E (6 , 1 1 0 0)

1 1 0 0 F O R H A T (/ ' T H E L A S T C A R D R E A D U A S N O T A C A R D 3 ' /

