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Abstract

Gut microbiomes are important determinants of animal health. In sentinel marine mammals where animal and ocean health are
connected, microbiome impacts can scale to ecosystem-level importance. Mass mortality events affect cetacean populations world-
wide, yet little is known about the contributory role of their gut bacterial communities to disease susceptibility and progression.
Here, we characterized bacterial communities from fecal samples of common bottlenose dolphins, Tursiops truncatus, across an un-
usual mortality event (UME) caused by dolphin Morbillivirus (DMV). 16S rRNA gene sequence analysis revealed similar diversity and
structure of bacterial communities in individuals stranding before, during, and after the 2013-2015 Mid-Atlantic Bottlenose Dolphin
UME and these trends held in a subset of dolphins tested by PCR for DMV infection. Fine-scale shifts related to the UME were not
common (10 of 968 bacterial taxa) though potential biomarkers for health monitoring were identified within the complex bacterial
communities. Accordingly, acute DMV infection was not associated with a distinct gut bacterial community signature in T. truncatus.
However, temporal stratification of DMV-positive dolphins did reveal changes in bacterial community composition between early and
late outbreak periods, suggesting that gut community disruptions may be amplified by the indirect effects of accumulating health

burdens associated with chronic morbidity.
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Introduction

Multicellular organisms host diverse consortia of microorgan-
isms, including viruses, archaea, and bacteria (Blaser and
Kirschner 2007, Bello et al. 2018, Salazar et al. 2020). These mi-
croorganisms create resident communities (“microbiomes”) in
body sites exposed to the external environment, including the gas-
trointestinal tract, skin surface, and oral cavity (Backhed et al.
2005, Bello et al. 2018, Salazar et al. 2020). The gastrointestinal
tract (“gut”) hosts the highest microbial diversity and abundance
(>10" cells), is dominated by bacteria, and has the largest doc-
umented impacts on host health and homeostasis (Backhed et
al. 2005, Salazar et al. 2020). Gut bacterial communities expand
the functional genetic diversity of their hosts, and have, thus,
been conceptualized to function as a “microbial organ” within the
host (Backhed et al. 2005). In humans and many other mammals,
gut bacterial communities develop at birth, quickly diversifies in
the early stages of host life, then stabilize during adulthood (Yat-
sunenko etal. 2012, Derrien et al. 2019, Salazar et al. 2020). Disrup-
tions to gut bacterial communities (“dysbiosis”), including com-
munity shifts (destabilization) and diversity loss, generally corre-
late with declines in host health from disease and aging (Salazar et
al. 2020). The composition and diversity of gut bacterial commu-
nities play a vital role in host health by influencing metabolism,
immune function, hormonal activity, and digestion (Shreiner et

al. 2015, Finlayson-Trick et al. 2017, Metcalf et al. 2017, Bello et al.
2018, Zheng et al. 2020). Accordingly, disruptions to gut communi-
ties may negatively impact host health, particularly through de-
creased immunity and increased susceptibility to disease (Wang
et al. 2017).

Recent investigations have focused on characterizing the mi-
crobiomes of marine mammals to gain new insights into their
roles in host biology, ecology, and evolution (e.g. Apprill et al. 2014,
Nelson et al. 2015, Apprill et al. 2017, Erwin et al. 2017, Godoy-
Vitorino et al. 2017, Nishida and Ochman 2018, Suzuki et al. 2019,
Apprill et al. 2020, Centelleghe et al. 2020, Denison et al. 2020,
Robles-Malagamba et al. 2020). Microbiome characterization has
also been identified as an important tool for monitoring the health
of marine mammals in a rapidly changing ocean environment (re-
viewed by Nelson et al. 2015, Apprill 2017). Some marine mammal
species have been identified as “ecosystem sentinels” because of
their sensitivity to environmental stressors, including infectious
disease, and their pivotal roles within trophic systems (Bossart
2011, Nelson et al. 2015). One such species is the common bot-
tlenose dolphin (Tursiops truncatus), a long-lived, apex predator
in coastal and estuarine environments, and one that has expe-
rienced multiple epizootic events in the United States due to dol-
phin Morbillivirus (DMV), a strain of Cetacean Morbillivirus (CeMV)
(Lipscomb et al. 1994, McLellan et al. 2002, Wells et al. 2004, Rosel
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et al. 2009, Bossart 2011, Rowles et al. 2011). Cetacean Morbillivirus
causes metabolic impacts, immunosuppression, pneumonia, and
skin lesions, and is often fatal (Barrett et al. 1991, Barrett 1999,
van de Bildt et al. 2005, Bossart et al. 2011, Di Guardo et al. 2018,
Pfeffermann et al. 2018). Along the US Atlantic coast, T. trunca-
tus experienced Morbillivirus epizootics in 1987-1988 and again in
2013-2015 (reviewed by Morris et al. 2015). The recent epizootic
was classified as an Unusual Mortality Event (UME) by the Na-
tional Oceanographic and Atmospheric Administration (NOAA),
and its cause was identified as DMV (NOAA Active and Closed Un-
usual Mortality Events 2022).

This study investigated the association between DMV infection
and gut bacterial community structure in T truncatus and the di-
agnostic potential of gut bacteria in predicting susceptibility to
infection and health outcomes. Previous studies have character-
ized the gut bacterial communities of free-ranging and captive
bottlenose dolphins (Bik et al. 2016, Soverini et al. 2016, Suzuki et
al. 2019, Robles-Malagamba et al. 2020) and differentiated these
host-associated communities from environmental microbiomes
(Bik et al. 2016, Robles-Malagamba et al. 2020). Adult T. trunca-
tus gut bacterial communities are dominated by the phyla Firmi-
cutes, Proteobacteria, and Fusobacteria (Bik et al. 2016, Soverini et
al. 2016, Suzuki et al. 2019, Robles-Malagamba et al. 2020), with
some variability among captive animals correlating with environ-
mental conditions (Suzuki et al. 2019). The gut microbial composi-
tion of Cetaceans associated with a disease outbreak has not been
explored and may help define bacterial components associated
with overall host health (Apprill et al. 2014, Nelson et al. 2015,
Li et al. 2019). Such “biomarkers” of cetacean health can include
specific bacterial taxa or community-level patterns of diversity
and similarity that correspond to host health status and disease
outcomes (Soares-Castro et al. 2019). For example, infection with
Morbillivirus has been shown to impact gut bacterial community
structure in giant pandas (Ailuropoda melanoleuca) which led to in-
creased disease progression and severity (Zhao et al. 2017).

Here, we characterized the gut bacterial communities from fe-
cal samples of 63 T. truncatus individuals that stranded in the mid-
Atlantic between 2003-2019. Taxonomic composition, diversity
and community structure of gut bacteria were compared across
individuals sampled before, during and after the 2013-2015 Mid-
Atlantic Bottlenose Dolphin UME. Further, a subset of individuals
was tested by PCR for DMV infection, allowing for direct compar-
isons of gut community differentiation between confirmed DMV-
positive and DMV-negative dolphins. Additional host factors were
investigated to account for bacterial community variation inde-
pendent of the mortality event, including sex, carcass condition,
life history stage, and evidence of fisheries interaction. This study
represents the first investigation of cetacean gut bacterial com-
munities across a disease-driven UME, an important step in inte-
grating microbiology into the health assessment of sentinel ocean
species.

Methods
Sample collection and ethics statement

Stranding response activities were carried out under a NOAA
Stranding Agreement to the University of North Carolina Wilm-
ington (UNCW) and protocols were approved by UNCW'’s Institu-
tional Animal Care and Use Committee (protocols 00-11, 2003-13,
2006-15, A0809-019, A1112-013, A1415-015, and A1718-011). Five
coastal stocks of bottlenose dolphins along the US Atlantic coast
are listed as depleted as defined by the Marine Mammal Protec-

tion Act (MMPA) 1972. This study included postmortem sampling
of stranded T. truncatus that were either found freshly dead, died
during initial response, or underwent humane euthanasia, follow-
ing consultation with the NOAA's National Marine Fisheries Ser-
vice and under the supervision of a licensed veterinarian in accor-
dance with the American Veterinary Medical Association Guide-
lines for the Euthanasia of Animals (2013 Edition).

In total, fecal samples were collected from 63 T. truncatus in-
dividuals that stranded along Virginia (n = 2), North Carolina
(n = 60), and South Carolina (n = 1) coasts between 2003 and
2019 (Table S1), encompassing the 2013-2015 Mid-Atlantic Bot-
tlenose Dolphin UME (post hoc identified as from 1 July 2013 to
15 March 2015) associated with a Morbillivirus outbreak. Samples
were stored in a -80°C freezer after collection until processing for
DNA extraction. For each individual, metadata were collected for
the factors UME status, sex, life history stage, and carcass con-
dition. For a subset of samples, metadata were collected for the
factors DMV infection (n = 33), DMV period (n = 20), and evidence
of fisheries interaction (n = 54, Table S1).

Three host factors defined by the mortality event (UME status,
DMV infection, and DMV period) were the primary focus of bacte-
rial community analyses. “UME status” factor levels were defined
by individual stranding dates occurring before (pre, n = 23), during
(UME, n = 26), and after (post, n = 14) the UME. “DMV infection”
factor levels were positive (n = 21) or negative (n = 12) based upon
polymerase chain reaction (PCR) testing for DMV RNA performed
using the previously described consensus universal Morbillivirus
primers (sense: 5-ATGTTTATGATCACAGCGGT-3'; anti-sense: 5'-
ATTGGGTTGCACCACTTGTC-3') targeting a 429 bp fragment of
the phosphoprotein gene (Barrett et al. 1993), followed by nested
primers for DMV (sense: 5'-ATGTTTATGATCACAGCGGT-3/, anti-
sense: 5-ATCTCTCTCCTGTGCCCTTT-3') that amplify a 384 bp
fragment of the phosphoprotein gene. PCR reactions consisted of
1 pl of each primer, 18.15 pl molecular grade water, 2.5 pl 10X PCR
Buffer, 0.75 ul MgCl, (50 mM), 0.5 pl ANTP (10 mM), 0.1 pl Invit-
rogen Platinum Tag DNA polymerase, and 1 ul cDNA template.
Thermocycler conditions consist of an initial denaturing step of
94°C for 2 min, followed by 35 cycles of denaturing at 94°C for
20 sec, annealing at 56°C for 20 sec, and extension at 72°C for
60 sec; and a final extension step of 72°C for 15 min. PCR products
were visualized via gel electrophoresis. Samples were tested with
mammalian f3-actin primers to demonstrate amplifiable RNA in
extracts (i.e. positive control). Individuals that tested positive for
DMV were further divided into three approximately equal bins for
the factor “DMV period”: bin 1 (July and August 2013; n = 6) and bin
2 (September and October 2013; n = 7) corresponded to early out-
break periods and peak stranding incidence, and bin 3 (November
2013 and after; n = 7) to later outbreak periods. Separate analy-
ses of all samples divided into these bins (i.e. assessment of the
factor “Season”) revealed no significant impacts on bacterial com-
munity diversity and structure, indicating that gut community
shifts across DMV periods were not a result of seasonal trends
(see Supplemental Text for details).

Four host factors defined independently of the mortality event
(sex, carcass condition, life history stage, and fisheries interac-
tion status) were also investigated to account for other sources of
bacterial community variation. “Sex” factor levels were male (n =
38) and female (n = 25), as determined during necropsy. “Carcass
condition” was defined upon initial observation of each strand-
ing event and factor levels were alive (n = 14), fresh dead (n =
35), and moderately decomposed (n = 14) following the Smithso-
nian Institution Condition Code (Geraci and Lounsbury 1993). “Life
history stage” factor levels were calf (n = 12), subadult (n = 23),
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and adult (n = 28), as determined by total body length, presence
of neonate characteristics, and necropsy examination (following
Mallette et al. 2016 definitions). “Fisheries interaction” levels were
positive (n = 13) and negative (n = 41), as determined by stan-
dardized HI examination and completion of the Marine Mammal
Human Interaction Report (OMB No. 0648-0178, National Oceanic
and Atmospheric Administration National Marine Fisheries Ma-
rine Mammal Health and Stranding Response Program). Fisheries
interactions are categorized as a subset of human interaction, and
included the presence of entanglement, lesions, and/or scarring
associated with anthropogenic fisheries interaction (Moore and
Barco 2013).

DNA extraction, sequencing, and sequence
processing

Whole genomic DNA was extracted from 200 to 250 mg of fe-
cal material using the DNeasy PowerSoil Kit (Qlagen) and used
as templates for bacterial community characterization via partial
16S rRNA gene sequencing at the V4 region corresponding to the
primer pair 515f and 806r (Caporaso et al. 2011). While this pri-
mary pair can amplify DNA of bacterial and archaeal origin (e.g.
Denison et al. 2020), no sequences affiliated with the domain Ar-
chaea were recovered herein. Gel electrophoresis and DNA quan-
tification (NanoDrop® One Spectrophotometer) were conducted
to verify the quality and quantity of DNA extractions. PCR viability
of DNA extractions was determined using PCR reactions consist-
ing of 0.5 uL of each primer, 11 pL of PCR water, 12.5 uL of MyTaq
HS Red Mix, and 0.5 pL of DNA extract. Thermocycler conditions
consisting of an initial denaturing step of 95°C for 2 min, 35 cycles
of denaturing at 95°C for 15 sec, annealing at 50°C for 15 sec, and
extension at 72°C for 20 sec; and a final extension step of 72°C
for 2 min. PCR products were visualized via gel electrophoresis,
resulting in a single band for each sample.

DNA extractions were subsequently sent to Zymo Research
(Irvine, CA) for library construction, standardization, and se-
quencing on an Illumina MiSeq Platform. Briefly, DNA extracts
were amplified by real-time PCR and quantified using qPCR flu-
orescence readings. PCR products were then pooled in equimolar
solutions and purified with Select-a-Size DNA Clean & Concen-
trator™ (Zymo Research, Irvine, CA) before being quantified with
TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit®
(Thermo Fisher Scientific, Waltham, WA). The final library was se-
quenced on an Illumina® MiSeq™ platform. Negative (blank li-
brary preparations) and positive controls (ZymoBIOMICS® Micro-
bial Community DNA Standard) were processed simultaneously
with experimental samples. Controls confirmed no bioburden dur-
ing the processing (i.e. no amplification of blanks) and high output
accuracy (i.e. no significant differences in actual and theoretical
standard composition, x? = 5.49, P = 0.60)

Raw sequences were processed in the mothur software pack-
age version 1.43.0 (Schloss et al. 2009) as described previously
(Denison et al. 2020) and detailed in Table S2. Briefly, raw se-
quences were quality-filtered, aligned, and taxonomically iden-
tified (SILVA database, version 132, Quast et al. 2013), and then
clustered into operational taxonomic units (OTUs) at 97% iden-
tity. Singleton OTUs were removed and sequences were subsam-
pled to the lowest read count to standardize sequencing depth
(n = 50 460).

Composition of gut bacterial communities

The taxonomic composition of gut bacterial communities in T.
truncatus was compared at the phylum and OTU levels across host
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factors. At the phylum level, the relative abundance of the top
four phyla (accounting for >99.6% of all sequences) was com-
pared across all host factors (UME status, DMV infection, DMV pe-
riod, sex, carcass condition, life history stage, and fisheries inter-
action) using analyses of variance (ANOVA) accompanied by post
hoc Tukey’s Honest Significant Difference (HSD) tests in Sigmaplot
(version 12). Datasets that violated ANOVA assumptions (normal-
ity and equal variance) were ranked prior to statistical assessment
(Kruskal-Wallis) and post hoc comparisons (Dunn’s method). At
the OTU level, all 968 OTUs were analyzed for differences in rel-
ative abundances across all host factors using the DESeq2 algo-
rithm as implemented in MicrobiomeAnalyst (Chong et al. 2020),
with significance defined at P < 0.05 following false detection rate
(FDR) corrections. While there is no perfect method of differen-
tial analysis, DESeq2 has shown consistent performance across
datasets (Calgaro et al. 2020) and produces conservative estimates
of P values, even in datasets with high OTU sparsity (Thorsen et
al. 2016).

Diversity and structure of gut bacterial
communities

Alpha diversity statistics were performed in mothur for each sam-
ple, calculating observed richness (S), Simpson evenness (E;p), In-
verse Simpson diversity (1/D), and Berger-Parker dominance (d)
of bacterial communities in T. truncatus. Significant differences in
each alpha diversity statistic were calculated in Sigmaplot (ver-
sion 12) for all host factors with an analysis of variance (ANOVA)
accompanied by post hoc Tukey’s HSD tests.

Beta-diversity statistics were performed based on OTU-
dependent metrics (Bray-Curtis similarity) calculated in Ply-
mouth Routines in Multivariate Ecological Research (PRIMER,
version 6.1.11, PRIMER-e Ltd.) and OTU-independent metrics
(UniFrac distance) calculated in mothur. Both metrics were an-
alyzed based on relative abundance (OTU relative abundance
Bray-Curtis, weighted UniFrac) and membership (OTU presence-
absence Bray—Curtis, unweighted UniFrac). Significant differences
in bacterial community similarity across all host factors were de-
termined by main and pairwise permutational multivariate analy-
ses of variance (PERMANOVA). Permutation multivariate analyses
of dispersion (PERMDISP) were conducted to test for homogene-
ity of multivariate dispersions among factor levels. In addition,
PERMANOVAs and PERMDISPs were conducted following centered
log-ratio data transformation in MicrobiomeAnalyst and based on
Euclidean distance calculations in PRIMER to confirm congruence
between “standard” and “compositional” approaches (sensu Gloor
et al. 2017; see Table S3).

Results

Composition of gut bacterial communities

A total of 968 OTUs were obtained from all 63 T. truncatus individu-
als and represented 14 bacterial phyla (Fig. 1, Table 1). Firmicutes
and Fusobacteria were particularly abundant phyla, accounting
for over 80% of gut communities and over 66% of total OTUs.
Combined with Proteobacteria and Bacteroidetes, OTUs affiliated
with these four phyla accounted for nearly all (>99%) of the
gut bacterial community in T truncatus. The remaining 10 phyla
(Actinobacteria, Chlamydiae, Chloroflexi, Cyanobacteria, Depen-
dentiae, Epsilonbacteraeota, Planctomycetes, Spirochaetes, Tener-
icutes, and Verrucomicrobia) combined accounted for <1% of the
total gut composition (Fig. 1, Table 1). A total of 14 bacterial OTUs
were dominant, together accounting for 90.7% of gut communities
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Figure 1. Phylum-level composition of gut bacterial communities in stranded T. truncatus individuals sorted by pre-, during, and post-UME time periods.
Data are shown as relative abundances. The category “Other Phyla” consists of the rare phyla (<1% relative abundance) Actinobacteria, unclassified
bacteria, Chlamydiae, Chloroflexi, Cyanobacteria, Dependentiae, Epsilonbacteraeota, Planctomycetes, Spirochaetes, Tenericutes, and Verrucomicrobia.

Table 1. Relative abundance of phyla present in gut bacterial com-
munities of 63 stranded T. truncatus samples.

Table 2. The 14 most abundant OTUs in gut bacterial communities
of stranded T. truncatus by percentage of total sequences.

Relative % Abun-
Phylum abundance OTU dance Phylum Genus
Firmicutes 4234 +2.60 0tu0001@s<) 30.82 Fusobacteria Cetobacterium
Fusobacteria 38.18 +£2.61 Otu0002@s:) 17.00 Firmicutes Clostridium_sensu_stricto_1
Proteobacteria 17.32 +£1.87 0tu0003@s<) 10.26 Firmicutes Paeniclostridium
Bacteroidetes 1.78 +£0.88 Otu0004 6.33  Proteobacteria Photobacterium
Tenericutes 0.17 £+ 0.08 0tu0005@s<) 5.93  Firmicutes Clostridium_sensu_stricto_1
Verrucomicrobia 0.09 + 0.09 0Otu0006 4.73  Fusobacteria Fusobacterium
Actinobacteria 0.07 £0.03 0tu00076) 3.28 Proteobacteria Edwardsiella
Epsilonbacteraeota 0.04 +0.02 Otu0008 2.65  Proteobacteria Escherichia-Shigella
Chlamydiae 0.01+0.01 Otu0009 2.03  Firmicutes Peptostreptococcus
Unclassified Bacteria <0.001 Otu0010 1.69 Firmicutes Clostridiaceae_1_unclassified
Cyanobacteria <0.001 Otu0011 1.91 Proteobacteria Actinobacillus
Planctomycetes <0.001 Otu0012 1.51 Bacteroidetes Bacteroides
Dependentiae <0.001 Otu0013© 1.42  Proteobacteria Actinobacillus
Spirochaetes <0.001 Otu0014 1.18  Firmicutes Clostridium_sensu_stricto_1
Chloroflexi <0.001

Relative abundance is expressed as a percentage +1 standard error.

(Table 2), 4 of which represented core OTUs (detected in all 63 T.
truncatus samples). Three core OTUs were in the phylum Firmi-
cutes and one core OTU belonged to the phylum Fusobacteria. The
analysis of core OTUs by life history stage revealed two additional
core OTUs in all calves, Fusobacterium sp. (Fusobacteria) and Acti-
nobacillus sp. (Proteobacteria), and one additional core OTU in all
subadults, Edwardsiella sp. (Proteobacteria, Table 2).

Phylum-level composition of gut bacterial communities was
similar across samples of T. truncatus. No significant differences
in phylum-level composition were detected across UME status
(Fig. 1, Table 3), DMV infection (Fig. 2, Table 4), DMV period

Phylum and genus-level taxonomy are listed for each OTU. Core OTUs (those
detected in all samples, n = 4 or in all samples of a given life history stage, n =
3) are indicated for adult (a), subadult (s), and calf (c) OTUs.

Table 3. Relative abundance of phyla in gut bacterial communities
of T. truncatus that stranded before (pre-UME), during (UME), and
after (post-UME) the mortality event.

Phylum Pre-UME UME Post-UME  P-value
Bacteroidetes 039 +£ 028 394 £206 0.04 £ 0.03 0.392
Firmicutes 44.05 £ 4.22 39.07 £ 4.28 4559 +£ 520 0.567
Fusobacteria 39.65 £ 4.27 40.26 &+ 436 3192 £ 490 0445
Proteobacteria 1558 +£ 2.63 16.21 £ 2.51 2223 £ 555 0.529

Relative abundances (+ standard error) are expressed as a mean percentage.
No significant differences in relative abundances (P < 0.05) were found between
phyla in dolphins across UME status periods.
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Figure 2. Phylum-level composition of gut bacterial communities in stranded T. truncatus individuals sorted by Morbillivirus negative [DMV(-)] and
Morbillivirus positive [DMV(+)] status. Data are shown as relative abundances. The category “Other Phyla” consists of the rare phyla (<1% relative
abundance) Actinobacteria, unclassified bacteria, Chlamydiae, Chloroflexi, Cyanobacteria, Dependentiae, Epsilonbacteraeota, Planctomycetes,

Spirochaetes, Tenericutes, and Verrucomicrobia.

Table 4. Relative abundance of the top four phyla in gut bacterial
communities of dolphin Morbillivirus-positive [DMV (+)] and neg-
ative [DMV (-)] stranded T. truncatus samples. Relative abundances
(+ standard error) are expressed as a mean percentage.

Phylum DMV(+) DMV(-) P-value
Bacteroidetes 3.01 + 1.85 0.037 + 0.03 0.195
Firmicutes 39.81 + 3.98 40.90 £+ 5.12 0.869
Fusobacteria 42,42 + 4.53 38.87 + 5.18 0.623
Proteobacteria 14.18 £ 2.27 20.06 + 2.92 0.125

No significant differences in relative abundances (P < 0.05) were found between
phyla in dolphins that were positive or negative for Morbillivirus infection.

Table 5. Relative abundance of the top four phyla in gut bacterial
communities of DMV (+) individuals by DMV period in stranded
T. truncatus samples.

Phylum Bin 1 Bin 2 Bin 3 P-value
Bacteroidetes 0.12 + 0.10 5.64 + 4.58 3.29 £ 3.28 0.701
Firmicutes 36.24 + 791 43.76 &£ 8.77 39.99 +£ 556 0.243
Fusobacteria 49.59 £ 9.00 3843 + 921 4176 £ 7.08 0.711
Proteobacteria 13.46 +£ 354 1197 £ 348 1397 + 432 0.927

Relative abundances (+ standard error) are expressed as a mean percentage.
No significant differences in relative abundances (P < 0.05) were found between
phyla in dolphins across the DMV period.

(Table 5), carcass condition (Table S4), or fisheries interaction (Ta
ble S5). Significant differences in phylum-level composition were
detected across sexes (Table S6) and life history stages (Table S7).

Female dolphins exhibited lower Firmicutes relative abundances
(P = 0.035) than males, whereas calves hosted a significantly
lower relative abundance of Fusobacteria (P = 0.045) compared
to subadults and adults.

Differential OTU-level analyses were conducted to assess finer-
scale taxonomic shifts in bacterial community composition by
UME-related and other host factors. Of the 968 OTUs investigated,
20 (2.1%) exhibited significant differences in relative abundance
across any factor, with low overlap among factors (Fig. 3, Table S8).
Four OTUs differed by UME status, including OTU0012 (Bacteroides)
that peaked in abundance during the UME (Fig. 3). Three addi-
tional OTUs were rare or absent before and during the UME and
increased significantly in relative abundance post-UME (Fig. 3).
One of these OTUs (OTU0011 Actinobacillus delphinicola) also exhib-
ited high relative abundance (3.4%) in dolphins that tested nega-
tive for DMV and very low relative abundance (0.1%) for dolphins
testing positive (Fig. 3). OTU0023 represented an unclassified and
rare OTU in the family Barnesiellaceae that was significantly more
abundant in DMV-positive vs. DMV-negative dolphins (0.7% vs.
<0.01%). When comparing by DMV period, five OTUs were differ-
entially abundant in animals during early and late outbreak peri-
ods. Two of these OTUs (OTU0048 Ureaplasma and OTU0088 Mor-
ganella) matched to genera that contain opportunistic pathogens
(O’'Hara et al. 2000, von Chamier et al. 2012) and were most com-
mon in the earliest outbreak period (bin 1) and rare or absent in
later periods (bins 2 and 3). The remaining three OTUs (OTU0008
Escherichia, OTU0010 Clostridiaceae_1, and OTU0060 Aeriscardovia)
were most common in the latest outbreak period (bin 3) and rare
or absent in earlier periods (bins 1 and 2). Additional OTUs were
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Figure 3. Relative abundance (bar charts) and incidence (pie charts) of OTUs that differed significantly across UME factors. The lowest taxonomic

classification of each OTU is shown. Error bars represent + 1 standard error.

detected as differentially abundant across the host factors carcass
condition (n = 7), life history stage (n = 4), and fisheries interaction
(n =2, Table S8).

Diversity and structure of gut bacterial
communities

Overall, gut bacterial communities of T. truncatus displayed min-
imal differences in diversity across UME-related and other host
factors (Table 6). Indeed, no significant differences in diversity
(1/D) and dominance (d) metrics were detected across any host
factor. All alpha-diversity metrics were similar across UME status,
while evenness (E) varied across DMV infection status and rich-

ness (S) varied across the DMV period (Table 6, Fig. 4). The even-
ness of the gut microbial communities was significantly lower in
DMV-positive as compared to DMV-negative dolphins (P = 0.026,
Fig. 4),indicating greater dominance of select bacterial taxa in dol-
phins infected with DMV. In addition, gut bacteria richness was
significantly higher in animals testing positive for DMV later in
the outbreak (P = 0.045, Fig. 4), increasing 50%-77% compared to
earlier outbreak periods. Significant differences in the evenness
of gut communities were also detected across sex (P = 0.042),
where male dolphins exhibited lower evenness compared to fe-
males (Fig. S1).

Beta-diversity metrics of community structure in gut bacte-
rial communities of T. truncatus exhibited high overall similarity
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Figure 4. Alpha-diversity metrics of gut bacterial communities in stranded T. truncatus individuals grouped by UME status, DMV infection, and DMV
period. Error bars represent + 1 standard error. Significant differences (P < 0.05) are labeled with different letters (a and b).

Table 6. Statistical analysis of variance (ANOVA) of gut bacterial
communities in stranded T. truncatus across host factors based on
the alpha-diversity metrics richness (S), diversity (1/D), evenness
(E), and dominance (d).

Richness Diversity Evenness Dominance

Factor n () (1/D) (E) (d)

UME status 63 0.556 0.967 0.290 0.595
DMV infection 33 0.452 0.547 0.026* 0.417
DMV period 20 0.045* 0.302 0.874 0.239
Sex 63 0.584 0.440 0.042* 0.544
Carcass condition 63 0.358 0.659 0.392 0.904
Life history stage 63 0.574 0.242 0.197 0.421
Fisheries interaction 61 0.620 0.288 0.671 0.422

Significant differences (P < 0.05) are denoted by an asterisk (*).

across factors related to the mortality event, with a trend toward
higher variability in animals that tested positive for DMV late in
the outbreak. Non-metric multidimensional scaling (NMDS) plots
revealed no distinct clustering of bacterial communities in pre-
UME, UME and post-UME animals (Fig. 5), and significant differ-
ences in gut community similarity across UME status were de-
tected for only one of four metrics (Table 7) and only between pre-
UME and UME animals in pairwise tests for this metric (Table S9).
No significant differences in gut bacterial community similarity
and dispersion were detected between DMV-positive and DMV-
negative T. truncatus individuals (Table 7, Fig. 6). Temporal stratifi-
cation of DMV-positive dolphins revealed significant differences in
community similarity and dispersion for two of four metrics (both
based on membership, Table 7, Fig. 7). For both metrics, differences
in bacterial community structure were driven by late outbreak an-
imals, as pairwise tests revealed significant differences between
early and late periods (bin 1 vs. bin 3 and bin 2 vs. bin 3), but not
among early periods (bins 1 and 2, Table S10).
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Figure 5. NMDS of gut bacterial communities in stranded T. truncatus colored by individuals collected before (pre-UME, blue), during (UME, orange),
and after (post-UME, yellow) the mortality event. Ordination is based on (A) Bray-Curtis similarity of relative abundance (RA); (B) Bray-Curtis
similarity of presence/absence (PA); (C) Weighted UniFrac (W) distances; and (D) Unweighted UniFrac (UW) distances. Significant differences in
bacterial community structure (PERMANOVA, P < 0.05) were detected between pre-UME and UME strandings for one metric (D). No significant
differences in bacterial community dispersion (PERMDISP) were detected among groups.

Table 7. Statistical analyses of variance (PERMANOVA, P-ANOVA) and dispersion (PERMDISP, P-DISP) of gut bacterial communities in
stranded T. truncatus across factors based on OTU-dependent (Bray-Curtis) and OTU-independent (UniFrac) metrics.

Bray-Curtis (RA) Bray-Curtis (PA) UNIFRAC-W UNIFRAC-UW
Factor n P-ANOVA P-DISP P-ANOVA P-DISP P-ANOVA P-DISP P-ANOVA P-DISP
UME status 63 0.134 0.777 0.089 0.974 0.413 0.957 0.037x 0.667
DMV infection 33 0.606 0.713 0.562 0.737 0.454 0.803 0.525 0.149
DMV period 20 0.115 0.088 0.013x 0.001x 0.862 0.662 0.015% 0.003x
Sex 63 0.138 0.224 0.237 0.074 0.091 0.599 0.310 0.323
Carcass condition 63 0.030x 0.481 0.028x 0.212 0.010x 0.348 0.020% 0.445
Life history stage 63 0.015% 0.048x 0.012x 0.299 0.026 0.046% 0.006% 0.869
Fisheries interaction 62 0.289 0.028x 0.221 0.001x 0.827 0.924 0.127 0.001x

These metrics include relative abundance (Bray-Curtis RA and UniFrac-W) and presence-absence (Bray-Curtis PA and UniFrac-UW) measures. Significant differences

are denoted by an asterisk (x).

Other host factors also impacted bacterial community struc-
ture in T. truncatus individuals. Most prominent were life history
stage and carcass condition, where significant differences in com-
munity structure or dispersion were detected for all four beta-
diversity metrics (Table 7). NMDS plots showed considerable over-
lap across life history stages but also a general trend of gut com-
munity convergence (i.e. tighter sample clustering) with matu-
rity (Fig. S2). Indeed, all significant pairwise comparisons occurred
between the earliest life history stage (calves) and later life his-
tory stages (subadults and adults, Table S11). Carcass condition
significantly impacted bacterial community structure despite the
visual overlap in gut communities across all carcass conditions
(Fig. S3). These differences were driven by strandings that experi-
enced moderate decomposition (condition 3), which differed con-
sistently from condition 1 strandings (four of four tests) and occa-
sionally from condition 2 (one of four tests, Table S12). Weaker sig-
nals were detected when comparing bacterial communities across
fisheries interaction status, where differences were restricted to
dispersion (Table 7, Fig. S4). No differences in structure or disper-

sion of gut communities were found between the sexes for any
metric (Table 7).

Discussion

This study provided the first comprehensive analysis of the com-
position, diversity, and structure of the gut bacterial communi-
ties in common bottlenose dolphins, T. truncatus, associated with
a disease-driven mortality event. Gut bacteria were similar in
dolphins that were stranded before, during, and after the 2013-
2015 Mid-Atlantic Bottlenose Dolphin UME in terms of broad-
scale taxonomic composition, diversity, and community similar-
ity. These trends held between a subset of animals that tested
PCR-positive or PCR-negative for DMV infection, where bacterial
shifts in response to infection status were minimal on the com-
munity level. OTU-level analyses identified potential biomarkers
for health monitoring within the complex gut bacterial commu-
nities (e.g. OTU0011 Actinobacillus delphinicola) though at a low
incidence (10 of 968 OTUs). The similarity of T. truncatus gut
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Figure 6. NMDS of gut bacterial communities in stranded T. truncatus in dolphin Morbillivirus negative (green) and positive (red) individuals. Ordination
is based on (A) Bray—Curtis similarity of relative abundance (RA); (B) Bray—Curtis similarity of presence/absence (PA); (C) Weighted UniFrac (W)
distances; and (D) Unweighted UniFrac (UW) distances. No significant differences in bacterial community structure (PERMANOVA) or dispersion

(PERMDISP) were detected among groups.
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Figure 7. NMDS of gut bacterial communities in stranded T. truncatus colored by early (dark purple, bin 1; purple, bin 2) and late (light purple, bin 3)
outbreak bins. Ordination is based on (A) Bray-Curtis similarity of relative abundance (RA); (B) Bray—Curtis similarity of presence/absence (PA); (C)
Weighted UniFrac (W) distances; and (D) Unweighted UniFrac (UW) distances. Significant differences in bacterial community structure (PERMANOVA,
p<0.05) were detected between early and late periods (bin 1 vs. bin 3 and bin 2 vs. bin 3) for two metrics (B, D). No significant differences were detected

between early periods (bins 1 and 2) for any metric.

bacterial communities before, during, and after the disease-driven
mortality event suggests that acute DMV infection is not asso-
ciated with a distinct and consistent gut community signature,
thereby limiting the diagnostic potential of structural character-
ization of gut bacteria for forecasting infection susceptibility of
their hosts. Further, temporal delineation of DMV-positive dol-
phins revealed larger shifts in bacterial diversity in late vs. early
outbreak periods, suggesting that long-term morbidity may dis-

rupt gut communities as a secondary impact of the accumulating
health burden in chronic infections.

Consistent with previous studies, gut bacterial communities in
T. truncatus displayed low diversity and were dominated by OTUs
affiliated with the phyla Firmicutes, Fusobacteria, and Proteobac-
teria (Bik et al. 2016, Soverini et al. 2016, Suzuki et al. 2019, Ab-
delrhman et al. 2020, Robles-Malagamba et al. 2020). Gut bac-
teria richness in T truncatus was low (<100 OTUs), typical of
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odontocetes (with the notable exception of kogiids, Erwin et al.
2017, Denison et al. 2020) and lower than mysticetes (>400 OTUs,
Sanders etal. 2015, Erwin et al. 2017). Indeed, a small core commu-
nity (four OTUs) dominated gut bacterial communities in T. trun-
catus (64.0% relative abundance), consisting of the genera Ceto-
bacterium, a bacterium endemic to Cetaceans (Staley and Whitman
2010); Paeniclostridium, a newly reclassified Clostridium genus also
found in marine sediment (Sasi Jyothsna et al. 2016); and Clostrid-
ium sensu stricto 1, a genus frequently associated with gut commu-
nities (Schleifer 2009). Notably reduced or absent from gut com-
munities in T truncatus were members of Bacteroidetes, a domi-
nant phylum in the gastrointestinal tract of other Cetaceans and
terrestrial mammals including humans (Nishida and Ochman
2018).

Our data from stranded T. truncatus revealed the same bacte-
rial community trends previously reported from bottlenose dol-
phins in the wild and under human care (Bik et al. 2016, Robles-
Malagamba et al. 2020). Within this broad structural similarity,
finer-scale patterns of variability among individuals were noted
herein and in previous studies. For example, the most dominant
bacterial phylum in the gut community of T truncatus varied
among individuals: some were dominated by Firmicutes (n = 31),
others by Fusobacteria (n = 28), and a few animals by Proteobac-
teria (n = 4). Indeed, the relative abundance of each of these dom-
inant phyla ranged from less than 2% to over 85% of gut com-
munities. Previous studies have documented similar intra-specific
variation, in some cases ascribing variation to environmental fac-
tors like aquaria conditions for animals in human care (Suzuki
et al. 2019). The consistent general features and noted plasticity
of bacterial communities in T truncatus suggest that gut profiles
from stranded animals are representative of healthy individuals
and that these communities can change in response to environ-
mental variables.

The present study assessed whether gut bacterial communi-
ties changed before, during, and after a virus-induced mortality
event and if patterns of variability were associated with infection
status and UME period. Remarkably, gut bacterial communities
in T truncatus were similar regardless of stranding period or Mor-
billivirus infection status. Broad patterns in gut community com-
position (phylum level), diversity (richness), and similarity were
consistent across the UME and between DMV-positive and DMV-
negative dolphins. Finer scale shifts in diversity were detected,
namely significantly lower evenness of gut bacterial communities
in DMV-positive vs. DMV-negative dolphins. Recent work on Indo-
Pacific bottlenose dolphins (T. aduncus) also reported changes in
gut community evenness (but not richness) when comparing cap-
tive and wild animals (Suzuki et al. 2021), suggesting this alpha-
diversity metric may be most sensitive to environmental impacts
on dolphin bacterial communities. Overall, these results indicate
that DMV infection is not associated with large changes in gut
bacterial community richness and compositionin T. truncatus, and
future work is required to investigate whether subtle changes in
gut communities signal deviation from a healthy host state.

OTU-level analyses revealed fine-scale changes in specific gut
bacteria related to the UME and promising biomarker candidates
for future microbiome diagnostics. Only 2% of the 968 different
OTUs detected in gut bacterial communities in T. truncatus dif-
fered across host factors, supporting the overall similarity high-
lighted above. However, several potential biomarkers were identi-
fied within the complex gut bacterial communities. Most notably,
a bacterium in the genus Actinobacillus (OTU0011) was common
in dolphins post-UME and those testing negative for DMV, yet rare

during the UME and in DMV-positive dolphins. This OTU matched
identically to Actinobacillus delphincola (strain NCTC12871, NCBI
Acc. No. LR134510), a bacterium first isolated and described from
three Cetacean species (Phocoena phocoena, Mesoploden bidens, and
Stenella coeruleoalba; Foster et al. 1996) and later detected as an
abundant gut bacterium in free-living T truncatus using DNA-
based methods (Bik et al. 2016). The loss of this common gut com-
munity member may signal incipient dysbiosis or play a contrib-
utory role in morbidity following viral infection, thereby repre-
senting a promising target for developing bacterial biomarkers for
health monitoring.

Alternatively, shifts in gut bacterial communities may signal
dysbiosis following infection, an indirect impact of disease-related
health declines associated with infection course. Dolphin Morbil-
livirus usually manifests as an acute infection, with sudden symp-
tomatic onset and death of the animal, and as a chronic infection,
where the host survives the initial viral infection but ultimately
succumbs to secondary causes of death from prolonged host im-
munosuppression and opportunistic infections (van Bressem et al.
2014, Pfeffermann et al. 2018). In this study, shifts in gut commu-
nity diversity were found when DMV-positive T. truncatus individ-
uals were stratified temporally across the outbreak period. Early
outbreak bins (1 and 2) more likely contained animals that died
soon after DMV exposure (i.e. acute infections), whereas the later
bin (3) included animals with suspected chronic infections. The
longer infection periods and slower declines in host health asso-
ciated with chronic infections may result in a dysbiotic state not
seen in acute infections, characterized by higher bacterial diver-
sity and compositional shifts. While this hypothesis requires addi-
tional testing and incorporation of histological and gross anatomy
data to confirm acute vs. chronic infection stages, future studies
accounting for infection course with clinical diagnoses may be key
to documenting bacterial community impacts (dysbiosis) in acute
and chronic infections.

Notably, acute Morbillivirus infection has been associated with
gut community dysbiosis in other mammalian species, namely
giant pandas (Ailuropoda melanoleuca), where animals positive for
canine distemper virus (CDV) exhibited an increased inflamma-
tory response and altered bacterial communities compared to
healthy controls (Zhao et al. 2017). Specifically, the gut commu-
nities of CDV-positive pandas had proportionally more Firmicutes
and fewer Proteobacteria, with an increase in overall diversity and
community variability, compared to uninfected animals. Two an-
imals were sampled on the date of infection and longitudinally
over 18 and 40 days until death, documenting changes to bacterial
communities over the course of infection and the corresponding
reduction in dominant resident taxa (e.g. Escherichia and Clostrid-
ium, Zhao et al. 2017). Although this type of longitudinal sampling
was not possible with the dolphins investigated in this study, sim-
ilar increases in gut bacteria diversity and community variability
were detected in late outbreak DMV-positive T. truncatus individu-
als. However, no corresponding changes at the phylum level were
observed, even when separating acute from chronic infections, in-
dicating that the link between Morbillivirus infection and gut bac-
terial community structure differs by host species and virus type.

Other host factors were correlated with differences in gut
community structure in T. truncatus, including carcass condition
and life history stage. Moderately decomposed carcasses (code 3)
showed signs of minor bacterial community shifts: community
similarity differed between carcass condition extremes, though no
corresponding changes in alpha-diversity (richness, evenness) or
phylum-level taxonomic composition occurred. These results are
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consistent with past studies of bacterial communities in stranded
Cetaceans (Erwin et al. 2017, Denison et al. 2020) and experimental
studies of postmortem shifts in mammals (murine models, Met-
calf et al. 2013), where gut bacterial communities remain largely
stable until more advanced stages of decomposition. Animals that
were stranded in advanced stages of decomposition (codes 4 and
5) were not included in this study. Shifts in gut community sim-
ilarity and membership were also detected between the earliest
life history stage investigated (calves) and later life history stages
(subadults and adults) of T. truncatus. Gut bacterial communities
displayed convergence across host ontogeny, with more similar
communities and fewer core OTUs in later life history stages, a
trend also observed in kogiid whales (Denison et al. 2020). These
changes may reflect dietary differences and transitions across life
history stages, from a dependency on a mother’s milk to a pisciv-
orous diet (Soverini et al. 2016, Suzuki et al. 2019).

In summary, we show that gut bacterial communities in T. trun-
catus were similar before, during and after a disease-driven mor-
tality event and accordingly have a limited ability to predict in-
fection susceptibility at the community level. However, finer-scale
investigations (OTU level) identified individual taxa that corre-
lated with the disease outbreak and host infection status (notably,
Actinobacillus delphincola), providing promising candidates for fu-
ture studies targeting the development of bacterial biomarkers for
health monitoring. Evidence of indirect impacts from chronic in-
fections warrant further investigation to better understand the in-
teractions between gut bacterial community changes and chronic
disease that may precipitate secondary infections and accelerate
health declines. Further, these results highlight the host-specific
link between Morbillivirus infection and gut community structure
(Zhao et al. 2017) and encourage the investigation of additional
body sites for microbial diagnostics (sensu Apprill et al. 2017). For
example, respiratory microbiomes may readily shift as the pri-
mary site of DMV infection, and skin bacteria changes may pre-
cede characteristic skin lesions associated with DMV infection.
Additional investigations of marine mammal microbiomes in the
context of disease susceptibility and progression may ultimately
help elucidate outcomes of Morbillivirus exposure and infection
that contribute to recurrent mass mortality events threatening
cetacean populations worldwide.
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