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Forage fishes are key energy conduits that transfer primary and secondary pro-
ductivity to higher trophic levels. As novel environmental conditions caused
by climate change alter ecosystems and predator–prey dynamics, there is a
critical need to understand how forage fish control bottom-up forcing of
food web dynamics. In the northeast Pacific, northern anchovy (Engraulis
mordax) is an important forage species with high interannual variability in
population size that subsequently impacts the foraging and reproductive
ecology of marine predators. Anchovy habitat suitability from a species distri-
bution model (SDM) was assessed as an indicator of the diet, distribution
and reproduction of four predator species. Across 22 years (1998–2019), this
anchovy ecosystem indicator (AEI) was significantly positively correlated
with diet composition of all species and the distribution of common murres
(Uria aalge), Brandt’s cormorants (Phalacrocorax penicillatus) and California
sea lions (Zalophus californianus), but not rhinoceros auklets (Cerorhinca
monocerata). The capacity for the AEI to explain variability in predator repro-
duction varied by species but was strongest with cormorants and sea lions.
The AEI demonstrates the utility of forage SDMs in creating ecosystem
indicators to guide ecosystem-based management.

1. Introduction
Forage species are critical components of many marine ecosystems as they trans-
late primary productivity into energy available to predators [1,2]. They also
support commercially important fisheries, with catches contributing more than
30% of total global marine fisheries landings [3]. Forage species experience
large and unpredictable population fluctuations, which have been associated

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2022.2326&domain=pdf&date_stamp=2023-02-08
mailto:will.fennie@noaa.gov
https://doi.org/10.6084/m9.figshare.c.6406074
https://doi.org/10.6084/m9.figshare.c.6406074
http://orcid.org/
http://orcid.org/0000-0002-5610-455X
https://orcid.org/0000-0001-7496-8792
https://orcid.org/0000-0002-4555-6382
https://orcid.org/0000-0003-3872-9932
https://orcid.org/0000-0003-0869-9939
https://orcid.org/0000-0002-1715-2903
https://orcid.org/0000-0002-0412-7178
https://orcid.org/0000-0003-3684-0717
http://orcid.org/0000-0003-3147-2628
https://orcid.org/0000-0002-5991-4283
https://orcid.org/0000-0001-5532-4780
http://orcid.org/0000-0002-1384-2229
https://orcid.org/0000-0003-1076-8745
https://orcid.org/0000-0003-4027-6047


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20222326

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 J

an
ua

ry
 2

02
4 
with variability in fisheries landings [3] and predator reproduc-
tion in a variety of ecosystems [4]. For example, in the Southern
Ocean, fluctuations in Antarctic krill (Euphausia superba) bio-
mass precipitate seabird and marine mammal population
booms and busts [5]. Similarly, in both Norway and Alaska,
seabird reproductive success is driven by forage fish abun-
dance [6,7]. Additionally, commercial forage fish removals,
combined with environmental variability, affect forage abun-
dance, distribution and population dynamics of predators in
the northern Humboldt and Benguela Current Systems [8,9].
Because of their role in fisheries, strong responses to environ-
mental variability, and their capacity to drive population
dynamics of higher trophic levels, elucidating the connectivity
between forage species and their predators is paramount for
effective ecosystem-based management.

There is growing interest in assessing how management
actions on forage species affect the conservation of protected
forage fish predators. Multiple ecosystems have shown
increased variability in forage populations when fisheries exist
[10]. However, it is difficult to determine whether forage fish
removals affect predator population dynamics at broad scales
because forage species are highly sensitive to environmental
changes, causing large natural fluctuations and highly variable
localized abundance [11,12]. Importantly, environmental varia-
bility coupled with forage removals may decrease forage
abundance or availability within predator foraging ranges,
directly impacting local predator population dynamics [9].
Developing forage-based ecosystem indicators that guide the
management of overlapping uses inmarine ecosystems requires
techniques that capture oceanographic variability and forage
distribution at appropriate scales.

Ecological modelling can align spatial scales of forage
fish distribution and predator foraging, facilitating the creation
of indicators at scales relevant to management objecti-
ves [13,14]. Species distribution models (SDMs) quantify
relationships between environmental variables and species
habitat-use to create predictions of species distributions [15].
These predictions can be tailored to specific regions to provide
spatially resolved estimates and fill gaps in species distribution
data [16]. Indeed, SDMs have been used to develop dynamic
and spatially explicit bycatch-reduction measures [17,18]. The
need for forage indicators is apparent when considering eco-
system-based management in ecosystems like the California
Current System (CCS) where environmentally driven changes
in the spatial availability of forage species have been associated
with shifts in predator distribution, increased predation
pressure on endangered fish stocks [19] and increased marine
mammal entanglements with fishing gear [14].

Here, we create a northern anchovy (Engraulis mordax)
ecosystem indicator, a key forage species in the CCS, and use
predator data to assess its utility in indicating predator
foragingand reproductive ecology.Over the last 70years north-
ern anchovyabundance has fluctuated byorders ofmagnitude,
acting as a barometerof ecosystemproductivity in theCCS [20].
Although themechanisms regulating anchovypopulation fluc-
tuations are not well understood [21], SDMs can accurately
describe the distribution of anchovy adults (i.e. habitat suit-
ability) in relation to ocean conditions (e.g. temperature,
chlorophyll a). We generated an SDM-based [22] anchovy eco-
system indicator (AEI) to capture the mean anchovy habitat
suitability during the reproductive season in the foraging
range of seabird colonies in the Gulf of the Farallones (GOF)
and for a California sea lion (Zalophus californianus) rookery at
SanMiguel Island (SMI). We then used long-term observations
of predator diet during the reproductive season, predator at-sea
distribution data from visual surveys [23], andmetrics of pred-
ator reproduction [24–27] to evaluate the capacity of the AEI to
explain variability in predator foraging and reproduction. The
predators included California sea lions and three seabird
species with different foraging and reproductive strategies:
common murres (Uria aalge), rhinoceros auklets (Cerorhinca
monocerata) andBrandt’s cormorants (Phalacrocorax penicillatus).
Previous work in the GOF suggests that common murre and
rhinoceros auklet consume anchovy when available, but their
reproductive success is not strongly tied to anchovyavailability
[25,28]. We, therefore, hypothesize that for these species, the
AEI would capture trends in their diet and distribution but
would not capture variability in reproductive success. Com-
paratively, the reproductive success of Brandt’s cormorants
and California sea lions has been linked to anchovy consump-
tion [24,29] and thus we hypothesize that the AEI should
provide an effective indicator of the foraging and reproductive
ecology of these two species. We compared the variance
explained between the fine-scale AEI in the two predator
regions with a coastwide estimate of anchovy spawning stock
biomass and a regional spring anchovy abundance index to
determine if our indicator improvedourability to explain varia-
bility in predator foraging and reproductive ecology. Our
analyses used a 22-year time-series encompassing high oceano-
graphic variability, including multiple El Niño events and an
unprecedentedly large marine heatwave in 2014–2016 [30] to
understand predator responses under highly variable forage
and ecosystem states and to inform ecosystem management.
2. Methods
(a) Anchovy species distribution model
The AEI was built upon the SDM described by Muhling et al.
[22,31]. Briefly, we trained and validated a generalized additive
model (GAM) using fishery-independent presence/absence data
for adult anchovy caught in Coastal Pelagic Species trawl surveys
conducted by the NOAA Southwest Fisheries Science Center.
Sampling was conducted in surface waters at night using a
Nordic 264 trawl [32]. Environmental covariates used to describe
anchovy habitat suitability included sea surface temperature
(°C), sea surface height (m), mixed layer depth (m), surface cur-
rents and winds (northward and eastward wind stress (N m−2),
northward and eastward surface current velocities (m s−1), wind
stress curl (N m−3)) and an estimate of water column stratification
(buoyancy frequency (s−1) averaged over the top 200 m) available
at daily 0.1° resolution from a data assimilative configuration of the
Regional Ocean Modeling System (oceanmodeling.ucsc.edu) [33],
andmonthly surface chlorophyll a (mg m−3) from a satellite reana-
lysis [34]. An annual index of anchovy spawning stock biomass
(metric tons) [21,35,36] was also included as a covariate to account
for higher probabilities of occurrence within environmentally suit-
able habitat at larger stock sizes [22]. Predicted anchovy habitat
suitability was generated for every day from 1998 to 2020 at 0.1°
spatial resolution for the CCS domain (30°–48°N and inshore of
134°W). In this study, these daily predictions were averaged
monthly for each grid cell. For a detailed description of the SDM
used here and the key ways it was modified from Muhling et al.
[22,31], see the electronic supplementary material.

(b) Predator data sources
To evaluate the utility of an SDM-based forage fish indicator
of predator ecology, we selected four central place foragers:
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common murre, rhinoceros auklet, Brandt’s cormorant and
California sea lion. We examined the relationships between the
AEI and predator diet, distribution and reproduction. The preda-
tors chosen in this study are largely piscivorous and mainly
consume forage species [25,37]. Common murre diet data were
obtained from visual surveys of adults returning to their nests
with fish in their bills [25,38]. Rhinoceros auklets were captured
in mist nets, when they returned to the nests in the evening, to
identify and quantify prey carried in their bills [25,39]. Brandt’s
cormorant diet information was obtained from examining regur-
gitated pellets and identifying prey by hard parts (i.e. fish bones
and otoliths [25,40]). We used the annual percentage by number
of anchovy for our analyses of murre and auklet chick diets and
percentage occurrence of anchovy in cormorant diets. Sea lion
diet data were collected from June to September, from long-
term monitoring of a rookery at SMI ([37,41]; figure 1; electronic
supplementary material, table S1) and were reported as percen-
tage occurrence of anchovy in scats.

Seabird and sea lion at-sea distribution data were obtained
from the Rockfish Recruitment and Ecosystem Assessment
Survey (RREAS) [23] (electronic supplementary material table
S1; figures S1–S4). This annual survey measures a variety of
aspects of the CCS including the abundance and distribution of
seabirds and marine mammals from late April to early June [42].
Observations of seabirds and sea lions were collected during day-
light hours by observers on the flying bridge in a 300 m (seabirds)
semicircle from either side and in front of the vessel centred at the
bow or to the horizon (sea lions). Sightings of seabirds and sea
lions were aggregated at 0.9 km2 and at 3 km2 respectively. We
treated any sightings within a 0.1° × 0.1° ROMS grid cell within
one spring survey period as presences and no sightings on trans-
ects within a grid cell as absences.

Reproductive success data for seabirds in the GOF was
measured as the number of chicks that survived to fledging per
breeding pair in each year. These data were reported as annual
fledging anomalies derived from the annual mean number of
chicks fledged per breeding pair minus the long-term fledgling
mean (1971–2019) [25,26] (electronic supplementary material,
table S1). Sea lion reproductive dynamics were assessed using
pup weight and pup count data [26,43]. To determine sea lion
reproduction, accounting for interannual differences in popu-
lation size, we divided sea lion pup count data by the number
of reproductively mature females (estimated from [43]; electronic
supplementary material, table S1). We also examined pup weight
data as a measure of pup condition.

(c) Anchovy ecosystem indicator development
To create the AEI, we used the adult anchovy SDM to create
estimates of anchovy habitat suitability (probability of adult
anchovy occurrence) at different spatial and temporal scales
tailored to match predator foraging ranges during their reproduc-
tive season (figure 1; electronic supplementary material, figure
S5). The AEI was generated at two spatial scales: one was an
annual average adult anchovy habitat suitability value during pred-
ator reproductive season in each predator foraging area, the other
was at each 0.1° grid cell within a predator foraging region during
the reproductive season. Specifically, to encompass seabird foraging
habitat [24,39], we constrained the SDM output region to the GOF
region—37°N to 38°N and inshore of 123.5° W (figures 1 and 2).
We first averaged SDM daily anchovy habitat suitability in each
0.1° grid cell within the GOF region to the monthly scale. When
examining seabird diet and reproductive success, we then calcu-
lated the annual average habitat suitability across all grid cells
within the GOF region over April–July (seabird hatching–fledging
season [44]), to get an annual reproductive season mean anchovy
habitat suitability in the GOF (electronic supplementary material,
figure S5). For our analyses of seabird distribution, we computed
the mean habitat suitability from April to June (the months the
RREAS seabird and mammal survey data were collected) in each
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grid cell to align spatially and temporally with gridded seabird
observations from the RREAS. We examined the distribution of
seabirds within this GOF region at the scale of 0.1° grid cells.

Our analyses of sea lion diet, distribution and reproduction
were bound at 32°N to 37°N and inshore of 123°W based on
the observed foraging range of lactating female sea lions from
SMI [45] (figure 1). California sea lions at SMI begin giving
birth in May, pups are counted in July and weighed in October
[43]. To capture the influence of anchovy habitat on sea lion
diet and reproduction, we averaged monthly anchovy habitat
suitability from May to October across all grid cells in the SMI
region (figures 1 and 2). For the sealion distribution analysis,
we took the April–June average of anchovy habitat suitability
in 0.1° grid cells in the SMI region to compare with sea lion dis-
tribution from RREAS observations at the scale of 0.1° grid cells.
There are multiple sea lion rookeries in the study area, so the dis-
tribution analysis is not solely based on individuals from SMI.
We used Spearman’s rank correlation to examine the correlation
between the AEI in the GOF during the seabird reproductive
season and in SMI during the sea lion reproductive season.

(d) Evaluation of the anchovy ecosystem indicator
To evaluate the capacity of theAEI to explain variability in the diet,
distribution and reproduction of predators, we ran four statistical
tests. First, we used beta regression to compare the annual pro-
portion of anchovy found in each predator’s diet with the AEI
(annual average of probability of adult anchovy occurrence
across predator region). Second, we applied GAMs to assess
whether theAEI (annual average at 0.1° resolutionwithin the pred-
ator region) explained the distribution (presence or absence) of
predators at sea. Distribution GAMs were built using a binomial
family and logit link function in the mgcv package [46,47]. We
included a tensor product smooth containing latitude, longitude
and year to reduce autocorrelation in the model residuals. We
used the area under the receiver operating characteristic curve
(AUC) to evaluate the performance of these distribution GAMs.
Third, we used GAMs to examine the correlation between the
AEI (annual average across predator region) and predator repro-
duction. Reproduction GAMs were constructed with a Gaussian
distribution and identity link function. Finally, we explored the
value of the AEI to understanding predator foraging and repro-
duction by comparing the AEI with anchovy spawning stock
biomass and the regional spring anchovy abundance index.
Anchovy spawning stock biomass provides a coastwide annual
estimate of adult anchovy abundance, is derived from geospatially
weighted anchovy egg and larval abundances, andwas used in the
development of the AEI [35,36]. The regional spring anchovy
abundance index is derived from a delta-GLM of adult anchovy
catch-per-unit-effort in spring from the RREAS survey core
region that includes the GOF, but does not cover SMI and could
not be used to evaluate sea lions [48]. We compared the number
of significant relationships (p < 0.05) and the variance explained
between each anchovy indicator and predator diet and reproduc-
tion metrics. In all our analyses, the AEI (or other anchovy
metrics) was the independent variable used to explain variability
in predator diet, distribution and reproduction.
3. Results
(a) Anchovy ecosystem indicator spatio-temporal

dynamics in the California Current System
The AEI varied through space and time and was consistent
between the two predator regions (Spearman’s rho = 0.98;
figures 1 and 2). The AEI was consistently high from 1998
to 2007, peaking in 2006, before declining rapidly to a mini-
mum in 2010. Thereafter it remained low until the system
experienced a marine heatwave from 2014 to 2016. The heat-
wave coincided with a sharp increase in the AEI (figures 1
and 2) that persisted through 2020. These patterns tracked
estimates of anchovy spawning stock biomass (figure 2).

(b) Anchovy ecosystem indicator and predator diet
The AEI was a strong indicator of anchovy in predator
diets. The AEI was significantly positively correlated with
the proportion of anchovy by number in chick diets of
common murre (βAEI = 7.7, p < 0.0001; table 1, figure 3), rhino-
ceros auklet (βAEI = 6.7, p = 0.001; table 1, figure 3), with the
percentage of Brandt’s cormorant pellets containing anchovy
hard parts (βAEI = 9.1, p < 0.0001; table 1, figure 3) and the
percentage of sea lion scats containing anchovy hard parts
(βAEI = 10.4, p < 0.0001; table 1, figure 3).

(c) Anchovy ecosystem indicator and predator
distribution

GAMs including the AEI and a spatio-temporal tensor pro-
duct smooth captured variability in predator distribution



Table 1. Summary of beta regression results for predator diet. Significant p-values are in italics.

diet parameter coefficient s.e. p-value log likelihood pseudo-R2

common murre intercept −2.205 0.488 <0.001 8.912 0.5628

AEI 7.701 1.723 <0.001

phi 4.139 1.175 <0.001

rhinoceros auklet intercept −2.247 0.594 <0.001 11.66 0.4458

AEI 6.7 2.064 <0.001

phi 1.838 0.504 <0.001

Brandt’s cormorant intercept −3.383 0.578 <0.001 14.15 0.7139

AEI 9.078 1.925 <0.001

phi 5.749 2.273 0.011

California sea lion intercept −2.674 0.558 <0.001 10.69 0.691

AEI 10.43 2.032 <0.001

phi 4.332 1.361 0.0015
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(table 2). However, the AEI covariate was not significantly
related to observed rhinoceros auklet presence (table 2). Prob-
ability of common murre presence increased with increasing
AEI then levelled off above an AEI of approximately 0.1 prob-
ability of adult anchovy occurrence (table 2, figure 3).
The AEI was positively related to Brandt’s cormorant and
California sea lion at-sea distribution (table 2, figure 3).

(d) Anchovy ecosystem indicator and predator
reproduction

The strength of the relationship between the AEI and predator
reproduction varied by predator. TheAEIwas not significantly
correlated with common murre or rhinoceros auklet repro-
ductive success (figure 3; table 3). However, the AEI was
significantly positively correlated with Brandt’s cormorant
reproductive success and with sea lion pup counts per
female (table 3; figure 3). Additionally, the AEI was positively
correlated with sea lion pup weight (table 3; electronic
supplementary material, figure S6), a metric of pup condition.

(e) Comparison of anchovy ecosystem indicator to
annual and regional estimates of anchovy
abundance

The AEI outperformed the non-spatial anchovy spawning
stock biomass estimate and was comparable to the regional
spring anchovy abundance index in explaining variability
in predator diet and reproduction. Anchovy spawning stock
biomass was significantly positively related to the diets of
all four predators; however, the AEI explained considerably
more of the variability in predator diets (table 1; electronic
supplementary material, table S2; figure S7). The regional
spring anchovy abundance index and the AEI explained
similar predator diet variability (table 1; electronic sup-
plementary material, table S2 and figure S8). Neither the
AEI, anchovy spawning stock biomass, nor the regional
spring anchovy abundance index explained significant varia-
bility in common murre or rhinoceros auklet reproductive
success; however, spawning stock biomass was also unrelated
to Brandt’s cormorant and sea lion reproduction (table 3;
electronic supplementary material, table S3, and figures S7
and S8). The AEI outperformed the regional spring anchovy
abundance index in explaining cormorant reproductive suc-
cess (table 3; electronic supplementary material, table S3
and figure S8). Anchovy spawning stock biomass did explain
a significant portion of variability in sea lion pup weight, but
the AEI explained approximately 40% more variability than
spawning stock biomass alone (table 3; electronic supple-
mentary material, table S3). Finally, because neither
spawning stock biomass or regional spring anchovy abun-
dance index are available at 0.1° resolution, they could not
be used to understand the distribution of seabirds or sea
lions. These findings reiterate the value of spatio-temporally
explicit predictions of anchovy occurrence compared to
broad-scale metrics of abundance for explaining variability
in the ecology of CCS predators. While the AEI and anchovy
spawning stock biomass are not independent (the anchovy
SDM incorporated anchovy spawning stock biomass as a pre-
dictor), the addition of spatially explicit environmental
variables enhanced the ability of the AEI to predict anchovy
availability at relevant spatio-temporal scales. The regional
spring anchovy abundance index is spatially and temporally
explicit and was not incorporated in the construction of
the AEI, making it a valuable independent comparison
supporting the utility of the AEI.
4. Discussion
Effective ecosystem-based management benefits from an in-
depth understanding of predator–prey dynamics in variable
environments. Forage species are important ecosystem
indicators for predator population dynamics because they
link primary and secondary productivity to higher trophic
levels. Here, we developed an ecosystem indicator for the
CCS using anchovy SDM output that was spatially and tem-
porally matched to the life histories of specific predators. The
AEI was highly correlated with predator diet for all species,
the distribution of two seabirds and one marine mammal,
and reproduction of one seabird and marine mammal. The
strong relationships between the AEI and predator foraging
and reproduction allows for assessments of how predators
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Figure 3. Response of common murre (top), rhinoceros auklet (second from top), Brandt’s cormorant (third from top), and California sea lion (bottom) diet (left),
distribution (middle) and reproduction (right) to the AEI (i.e. mean anchovy habitat suitability). Grey ribbons represent 95% CI. Comparisons of the AEI with predator
diet are beta regressions with points labelled by year, the response curves for at sea distribution are derived from GAMs, and reproduction analyses are linear
regressions with points labelled by year. See electronic supplementary material, figures S7 and S8 for spawning stock biomass and regional anchovy abundance
index, respectively.

Table 2. Estimated regression parameters for binomial logit GAM models of predator presence/absence. Significant p-values are in italics.

response predator smooth term edf Ref.df Chisq p-value AUC

common murre s(mean AEI) 6.772 7.863 23.71 0.0028 0.932

te(lon,lat,year) 80.829 89.226 171.73 <0.001

Brandt’s cormorant s(mean AEI) 1.001 1.001 13.8 <0.001 0.936

te(lon,lat,year) 27.360 36.020 127.8 <0.001

rhinoceros auklet s(mean AEI) 1.342 1.591 0.993 0.634 0.736

te(lon,lat,year) 31.837 43.067 85.822 <0.001

California sea lion s(mean AEI) 5.431 6.588 18.38 0.009 0.795

te(lon,lat,year) 38.190 46.055 189.85 <0.001
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Table 3. Summary of GAM results for the relationship between the AEI and predator reproduction. Significant p-values are in italics.

predator smooth term n Edf Ref.df F deviance explained (%) p-value

common murre reproduction s(mean AEI) 22 1 1 0.12 0.59 0.74

rhinoceros auklet reproduction s(mean AEI) 22 1 1 0.61 2.97 0.44

Brandt’s cormorant reproduction s(mean AEI) 22 1 1 10.04 33.4 0.005

California sea lion reproduction s(mean AEI) 17 1.99 2.4 7.25 57.9 0.005

pup weight s(mean AEI) 17 3.23 3.95 6.82 61.7 0.002
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will respond to fluctuations in the forage base and could be
developed further to provide an indicator of unusual
mortality events [24,29]. The common responses of marine
predators to variability in forage fish abundance [4] suggest
this approach has the potential to be applied to ecosystem-
based management in other marine ecosystems with similar
trophic dynamics.
:20222326
(a) Anchovy ecosystem indicator as an indicator of
predator ecology

The strength of the relationships between the AEI and preda-
tors is related to each predator’s life-history strategy. Each
seabird species demonstrated strong linkages between the
AEI and anchovy consumption, reflecting their capacity to
prey on anchovy when readily available [24,25]. However,
the foraging and reproductive strategies of each species may
ultimately explain the variable importance of AEI to their dis-
tribution and reproduction. Rhinoceros auklets have flexible
diets [25] and, during daylight hours, forage along the conti-
nental shelf break where anchovy are less abundant [28,49];
however, rhinoceros auklets forage at dusk to feed chicks and
this nocturnal foraging distribution is not captured by daytime
observations, potentially explainingwhy their distribution and
reproduction are not tied to the AEI. Common murres largely
feed between the Farallon Islands and the mainland of Califor-
nia [49] consuming anchovy when abundant but will switch
to other prey (mainly juvenile rockfishes) to maintain repro-
duction in the absence of anchovy [25]. The rapid increase in
common murre presence at low AEI values that persists with
increasing AEI is indicative of shared habitat associations
between common murres and anchovy. Both species are rare
offshore and abundant on the continental shelf. By compari-
son, the positive relationship between AEI and Brandt’s
cormorant presence is likely to be due to cormorants feeding
coastally where anchovy tend to be more abundant.
Common murres and rhinoceros auklets lay one egg per pair
and, by switching prey, maintain relatively consistent repro-
duction across variable ecosystem states [25]. Because of their
flexible diets, distributions and breeding strategies, common
murre and rhinoceros auklet reproduction may be more sensi-
tive to changes in collective forage abundance (e.g. rockfish
and anchovy) and less sensitive to the AEI [19,28]. By contrast,
Brandt’s cormorants typically feed near the coast where
anchovy are more abundant, experience more variable repro-
duction, and can produce up to five eggs per breeding
season allowing for increased chick survivalwhen forage avail-
ability is high, especially when anchovy are abundant [24,40].

California sea lion diet, distribution, reproduction and pup
condition follow changes in the AEI. Sea lions at SMI forage in
both shallow coastal and offshore waters depending on prey
distributions [41,45], but consume more anchovy when
anchovy are abundant [29,37]. During our study, the strong
relationship between sea lion metrics and the AEI may be
due to the often high anchovy habitat suitability surrounding
the sea lion rookery on SMI (figure 2); however, the strong
link between forage prey fat content and pup condition may
drive the strong linkage between sea lion reproduction and
anchovy habitat suitability [25,29]. These findings demonstrate
that the AEI provides a reliable indicator of the foraging and
reproductive ecology of SMI California sea lions.
(b) Management implications
In the future, oceans are projected to become warmer, more
acidic and more hypoxic. Extreme events occurring in combi-
nation with these long-term trends will increasingly produce
unprecedented ocean conditions [50], with concurrent impacts
on ecosystems [51]. Thus, there is a pressing need for science-
based tools to improve management responsiveness to such
climate-driven shifts in species abundance and distribution.
Here, we identify an ecosystem indicator that provides
dynamic, spatio-temporally resolved information on the
forage base that is relevant to the management of threatened
or protected species in a highly variable environment.

As the AEI is spatially resolved, it has potential as a
tool for spatial management practices, such as the setting of
seasonal closures or the use of in-season dynamicmanagement
tools to minimize protected species–fisheries interactions
(e.g. [17]). For example, anomalous conditions in the central
CCS during the 2014–2016 marine heatwave were related to
decreases in offshore krill abundance and aggregated anchovy
close to shore. These changes resulted in high overlap between
humpback whales foraging on anchovy and the central
California crab fishery leading to a 10-fold increase in whale
entanglements [14,52]. In the future, the AEI could be applied
to understand where and when protected species are
likely to co-occur with their prey and commercial activity,
allowing for the development of early warnings to minimize
human–wildlife conflict during periods of high overlap.

TheAEI could be particularly valuable for themanagement
of species that suffer high offspring mortality when overall
forage is low and lacking high quality species. Here, we
demonstrate that anchovy availability is correlated with sea
lion reproduction and confirm known associations between
anchovy consumption and sea lion pup condition [29] as
well as the reproductive success of Brandt’s cormorants [24].
As such, there is potential for further development and testing
of indicators based on forage SDMs to provide advanced
warning of unusual mortality events in regions where the
environment and anchovy spawning stock biomass can be
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forecasted with adequate skill. Combining the AEI with indi-
cators of additional forage species (e.g. Pacific sardine,
market squid or juvenile rockfish) would improve the appli-
cation of a SDM forage indicator beyond species with strong
ties to anchovy.

In ecosystems where forage species are heavily exploited,
indicators such as the AEI could be used to quantify the
impact of harvest policies at scales relevant to forage fish pre-
dators [9]. Because the AEI was a better indicator of predator
state than coastwide estimates of anchovy spawning stock bio-
mass alone, the performance of targeted spatial closures
compared to broad catch limits for meeting conservation and
economic management objectives should be examined. How-
ever, on the US west coast, where anchovy catches remain
low despite increasing biomass, recent shifts in anchovy
dynamics were largely driven by climate variability rather
than fishing pressure [36]. Thus, reductions in anchovy harvest
in this region may only affect predator productivity when
anchovy abundance is low and highly concentrated near pred-
ator colonies, but more quantitative studies are needed. The
AEI could also be integrated intomarinemammal stock assess-
ments to consider the impact of climate-driven shifts in forage
availability on population growth rate (e.g. [21]).

(c) Species distribution model approach to creating
ecosystem indicators

Our approach to creating an SDM-based ecosystem indicator
proved to be highly effective and overcame challenges faced
with more traditional approaches to developing indicators.
Previous efforts to create forage indicators were less effective
because they were based solely on shipboard observations,
which are limited in space and time, and cannot be applied
coastwide due to regional differences in sampling techniques
[53]. While the AEI is correlative rather than a mechanistic
model, we have demonstrated its use for understanding pred-
ator–prey dynamics in the CCS over multiple decades. Here,
the use of an SDM informed by both observations of anchovy
and environmental covariates allowed us to develop a spatio-
temporally resolved indicator of anchovy habitat that helps
understand the diet, distribution and reproduction of key
predators in the central and southern CCS. The relationships
between the AEI and predator ecology were mostly equival-
ent to the regional spring anchovy abundance index and
better than the coastwide estimate of spawning stock
biomass. Our results suggest that SDMs are important tools
for future use in modelling forage species [54] and could be
developed to provide forage-based indicators of predators
in other systems. The dynamic nature of our ecosystem
indicator shows promise for supporting managers and
decision-makers under future climate variability and change.
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