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ABSTRACT

Accurate representation of vegetation states is required for the modeling of terrestrial water—energy—
carbon exchanges and the characterization of the impacts of natural and anthropogenic vegetation
changes on the land surface. This study presents a comprehensive evaluation of the impact of assimilating
remote sensing-based leaf area index (LAI) retrievals over the continental United States in the Noah-
MP land surface model, during a time period of 2000-17. The results demonstrate that the assimilation
has a beneficial impact on the simulation of key water budget terms, such as soil moisture, evapotrans-
piration, snow depth, terrestrial water storage, and streamflow, when compared with a large suite of
reference datasets. In addition, the assimilation of LAI is also found to improve the carbon fluxes of
gross primary production (GPP) and net ecosystem exchange (NEE). Most prominent improvements in
the water and carbon variables are observed over the agricultural areas of the United States, where
assimilation improves the representation of vegetation seasonality impacted by cropping schedules.
The systematic, added improvements from assimilation in a configuration that employs high-quality
boundary conditions highlight the significant utility of LAI data assimilation in capturing the impacts of
vegetation changes.

1. Introduction important for the accurate representation of stomatal
response, which is the key factor in the determination of
transpiration and evapotranspiration (Jasechko et al.
2013; Schlesinger and Jasechko 2014). The increased
transpiration due to vegetation presence, particularly
over mid- and low latitudes, leads to the cooling of the
land surface. Vegetation also reduces the surface al-
bedo, which increases the amount of absorbed radiation,
impacting snow evolution and melt (Essery et al. 2003;
Niu and Yang 2004). The simultaneous representation
Corresponding author: Sujay V. Kumar, sujay.v.kumar@nasa.gov  of water, energy, and biogeochemical cycle processes in

In recognition of the intimate linkages between the
terrestrial water and carbon cycles, the focus of land
surface models (LSMs) in recent years has extended
to include more detailed representations of the carbon
cycle processes (Niyogi et al. 2009; Sato et al. 2015).
Characterization of biogeochemical processes such as
photosynthesis, respiration and leaf phenology is
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LSMs is necessary for representing the water—energy—
carbon exchanges and feedbacks that are relevant at
various spatial and temporal scales. Further, detailed
characterization of vegetation and canopy physical
states is also needed for the modeling of agricultural and
crop management practices (McDermid et al. 2017) and
the impact of vegetation disturbances on the land sur-
face (Liu et al. 2005; Garcia et al. 2014).

Leaf area index (LAI), defined as the total leaf area
over a unit of ground area, essentially represents the
potential surface area available for photosynthesis. As a
variable that controls the carbon, energy, and water
balance in plants (Cowling and Field 2003), LAl is a key
parameter in models of land surface and phenology.
Most modern (third generation) LSMs include formu-
lations of LAI, either as a parameterization based on
vegetation type or prescribed from climatological values
(Sellers et al. 1997; Pitman 2003). The further develop-
ment of submodels of vegetation dynamics in LSMs
(Dickinson et al. 1998; Niu et al. 2011) has enabled the
prognostic representation of LAI and other vegetation
states, allowing the inclusion of observational constraints
in modeling.

Remote sensing measurements, particularly from opti-
cal sensors, have provided high-resolution measurements
of canopy states such as LAI, normalized difference
vegetation index (NDVI), fraction of photosynthetically
active radiation (fPAR), and biomass, among others
(Myneni et al. 2002; Tucker et al. 2005; Zheng and
Moskal 2009; Myneni et al. 2011; Kumar and Mutanga
2017), in the past 10-15 years. As these measurements
have gaps in their spatial and temporal coverage, methods
such as data assimilation (DA) are often used to incor-
porate the information content of observations in models
for developing spatially and temporally continuous esti-
mates. As demonstrated in DA studies of water cycle
measurements (Reichle et al. 2007; Liu et al. 2011; Kumar
et al. 2014; De Lannoy et al. 2012; Dziubanski and Franz
2016; Zaitchik and Rodell 2009; Peters-Lidard et al. 2011;
Zhang et al. 2014), DA methods also allow the extension
of remote sensing observations (which are often limited to
the surface states only) to other important processes such
as root zone soil moisture, evapotranspiration and
streamflow. Similarly, there have been numerous studies
of assimilating remotely sensed vegetation variables into
crop and land surface models. The assimilation of LAI
observations was shown to improve the estimation of
yields for crops such as wheat (Dente et al. 2008; Xie
et al. 2017) and maize (Ines et al. 2013; Wang et al. 2014).
A review of such DA efforts is summarized in Jin et al.
(2018). Studies of assimilating LAI estimates (e.g.,
Sabater et al. 2008; Barbu et al. 2011, 2014; Albergel
et al. 2017, 2018) have also been used to improve the
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estimation of vegetation biomass, evapotranspiration,
root zone soil moisture, and CO, fluxes within land
surface models.

In this study, we demonstrate the assimilation of remotely
sensed LAI estimates in the Noah multiparameterization
(Noah-MP) LSM over the continental United States
(CONUS) in the North American Land Data As-
similation System phase 2 (NLDAS-2) configuration.
NLDAS (Mitchell et al. 2004; Xia et al. 2012b) is an
operational system at NOAA/NCEP that runs multiple
land surface models in an uncoupled manner forced with
high-quality forcing inputs including gauge-based pre-
cipitation and bias-corrected shortwave radiation and
surface meteorology reanalysis. The model outputs from
NLDAS-2 are used to support a wide variety of land
modeling research and water resources management
applications, including operational drought monitoring
and prediction. The planned enhancements to the
NLDAS system include the upgrade of the LSMs to
newer versions and models such as Noah-MP. In ad-
dition, the incorporation of data assimilation instances,
currently lacking in the operational NLDAS, is another
key emphasis of the next phase of NLDAS-2 devel-
opment (Ek et al. 2017). Recent efforts, focused pri-
marily on the assimilation of water cycle observations,
have quantified the positive impacts of assimilating
remotely sensed soil moisture, snow depth, snow cover
and terrestrial water storage measurements, individu-
ally and concurrently, in the NLDAS-2 environment
(Kumar et al. 2014, 2015, 2016, 2019). This article
presents a continuation of these efforts, by describing
the assimilation of remotely sensed vegetation data
into the NLDAS-2 configuration. The impact of LAI
assimilation on energy, water, and carbon cycle
states is examined through a comprehensive evalua-
tion using independent measurements and reference
data products.

LAT estimates from the University of Maryland
Global Land Cover Facility (GLCF) Global Land Sur-
face Satellites (GLASS; Xiao et al. 2016) are employed
for data assimilation within Noah-MP. The GLASS LAI
product represents a long-term (from 1981 to present),
global LAI product generated from the Advanced Very
High Resolution Radiometer (AVHRR) and Moderate
Resolution Imaging Spectroradiometer (MODIS) re-
flectance datasets. The availability of the long time se-
ries of the LAI record has facilitated studies of land
use change impacts and agricultural sustainability (Zhu
et al. 2016; Huang et al. 2016; Zhu et al. 2017). MODIS-
based GLASS LAI V4 product, available from 2000 to
present, is employed in this study.

The article is organized as follows: section 2 con-
tains descriptions of the model and data assimilation
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FI1G. 1. Maps of (top) dominant land cover using UMD classification and (bottom) the detailed crop classification
for the cropland vegetation type. Note that the detailed crop map is not used in the model simulations.

configurations. The description and analysis of the re-
sults are presented in section 3. A summary and major
conclusions are described in 4.

2. Study settings
a. Model configuration

All model simulations are conducted using a config-
uration similar to that used in NLDAS-2. The model
grid spans the CONUS (25°-53°N, 125°-67°W) at 1/8°
spatial resolution. The static vegetation map using the
University of Maryland (UMD) land cover classification
(Hansen et al. 2000) shown in Fig. 1a is used in the model
runs. Figure 1b shows a more detailed representation
of the croplands based on Leff et al. (2004). The major
crop types of wheat (over North Dakota, Kansas), maize
(over Nebraska, Iowa, Illinois, and Indiana), soybean
(over the lower Mississippi basin, Ohio), and others
(central California, Florida) are represented in Fig. 1b.
Note that only the vegetation map shown in Fig. 1a is
used in the model runs, whereas the detailed crop clas-
sification in Fig. 1b is shown primarily for the purpose of
examining the spatial patterns of the impact of LAI
assimilation. The model simulations are forced with
the NLDAS-2 meteorology (Xia et al. 2012a), which
includes gauge-based daily precipitation temporally
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disaggregated with radar data, bias corrected shortwave
radiation, and surface meteorological analysis. The NASA
Land Information System (LIS; Kumar et al. 2006; Peters-
Lidard et al. 2007) framework, a widely used land surface
modeling and data assimilation system, is employed for
conducting all model integrations.

The Noah-MP model (Niu et al. 2011; Yang et al.
2011) represents the community efforts to extend the
capabilities of the Noah LSM through the incorporation
of multiple and new physics capabilities. The physics
enhancements in Noah-MP include multilayer snow-
pack, multiple options for surface water infiltration,
runoff, and groundwater, including the representation
of an unconfined water table depth (Niu et al. 2007),
among numerous other options. A key enhancement
relevant for this study is the inclusion of a dynamic
phenology model allowing for the prognostic represen-
tation of vegetation growth and senescence. Noah-MP
integrates a Ball-Berry photosynthesis-based stomatal
resistance model (Ball et al. 1987) with the dynamic
vegetation model of Dickinson et al. (1998). The model
explicitly models the carbon storages in the leaf, stem,
wood, and root parts of the vegetation. The availability
of these prognostic vegetation states allows for the as-
similation of observations of vegetation conditions such
as LAL
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FIG. 2. Changes in the mean LAIL ET, O, SWE, RZSM, and GPP as a result of LAI assimilation.

The initial conditions for the LSM are generated by
conducting a model spinup starting with uniform con-
ditions and running the model from 1979 to 2017 twice.
The model is then reinitialized in 1979 using climato-
logical average conditions based on the spinup. The
gridded surface runoff and baseflow fields from Noah-MP
are employed by the Hydrological Modeling and Analysis
Platform (HyMAP; Getirana et al. 2012) streamflow
routing model to generate estimates of routed streamflow.
HyMAP is run over the same model grid as the LSM.
Note that the influence of lakes and reservoirs and the
management impacts from reservoir operations are not
modeled in this study. The feedback from the routing
model to the LSM moisture states is also not modeled.

b. Data assimilation configuration

The data assimilation integrations are conducted
using a one-dimensional ensemble Kalman filter (EnKF;
Reichle et al. 2002) algorithm implemented in LIS,
which has been demonstrated for many sequential data
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assimilation studies (Reichle et al. 2010; De Lannoy
et al. 2012; Kumar et al. 2014; Liu et al. 2015; Kumar
et al. 2019). The model ensemble is created by applying
small perturbations to the meteorological forcing inputs
and the model states, at each grid point. Similar to prior
studies (Kumar et al. 2014, 2019), the precipitation P
and downward shortwave radiation (SW) fields are
perturbed with multiplicative perturbations with a mean
of 1 and standard deviations of 0.3 and 0.5, respectively.
Additive perturbations with a standard deviation of
50 Wm 2 are applied to the downward longwave radi-
ation (LW) fields. The forcing perturbations are applied
hourly and include cross correlations p to perturbations
between forcing fields [p(SW, P) = —0.8, p(SW, LW) =
—0.5, p(LW, P)=0.5], based on Kumar et al. (2014).
The state vector used in the DA configuration consists of
only one variable, the prognostic LAI. Though related,
including other variables such as soil moisture in the
state vector requires the consideration of temporal lags
in the relationship between soil moisture and LAI
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FIG. 3. Domain averaged mean seasonal cycle of LAIL ET, O, SWE, RZSM, and GPP from the
OL and DA integrations. The seasonal cycle of LAI from the GLASS dataset is also shown.

(Crow et al. 2012) and the influence of soil and vegeta-
tion characteristics. As a result, a simple state vector
formulation using only LAI, which is the variable most
directly connected to the observations, is used. Additive
perturbations with a standard deviation of 0.01 are ap-
plied to the modeled LAI fields. This error standard
deviation level is comparable to the values used in prior
LALI assimilation studies (Rudiger et al. 2010; Albergel
et al. 2017), albeit with a linearized extended Kalman
filter algorithm. The updated LAI from assimilation
is also used to update the leaf biomass by dividing the
LAI value with the specific leaf area, which varies with
vegetation type, consistent with the Noah-MP physics
formulations (Liu et al. 2016). Other vegetation mass
prognostic variables in Noah-MP related to the stem,
wood, and root mass are not updated as part of as-
similation. If perturbations or analysis updates lead to
unphysical values, those ensemble members are rescaled
to valid values using the majority of the valid ensemble
members.
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The remote sensing—based observations of LAI, ob-
tained from the GLASS LAI product, are generated
using a general regression neural network approach
(Xiao et al. 2014), allowing a spatially and temporally
consistent long-term record of vegetation conditions.
The improved spatiotemporal coverage of the GLASS
product has been shown to have greater utility over that
of the standard MODIS LAI product, which is affected
by cloud obscuration gaps (Liang et al. 2013). The vali-
dation of the GLASS data and comparison against other
LAI products have also demonstrated the high quality of
the product (Liao et al. 2012; Fang et al. 2013; Xiao et al.
2016). The GLASS LAI observations are available at
8-day intervals, on a 0.05° regular latitude-longitude
global grid. Daily observations generated through a
linear temporal interpolation between the 8-day obser-
vations are used in the model simulations. A uniform
observation error standard deviation of 0.05 is used in
the DA configuration, which is an optimistic estimate of
the expected error levels (Xie et al. 2017). Though the
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results in the following section indicate that these set-
tings are reasonable, spatially distributed observation
error specifications that better account for the strengths
and limitations of the retrievals may be helpful in further
improving the utilization of LAI data within data as-
similation. Finally, the analysis update does not account
for the effects of subgrid vegetation heterogeneity, as
the model configuration only uses the dominant vege-
tation type within each grid cell. As suggested by Munier
et al. (2018), differing tendencies from different vege-
tation types could be an important factor in the upscaled
LAT estimates, particularly when the model and obser-
vation resolutions differ significantly.

3. Results

This section presents a detailed examination of the
impact of LAI assimilation on key terrestrial water and
carbon states and fluxes. The evaluation includes an
assessment of the impact of the changes in these vari-
ables as well as comparisons against a number of refer-
ence data products. Specifically, modeled estimates of
soil moisture, evapotranspiration, streamflow, snow
depth, terrestrial water storage (TWS), gross primary
productivity (GPP), and net ecosystem exchange (NEE)
are compared against a large suite of reference data
products. The impact of DA is evaluated by quantifying
the performance improvement or degradation relative
to the model open-loop (OL) simulation that does not
employ any data assimilation. All evaluations are
conducted using the NASA Land Surface Verifica-
tion Toolkit (LVT; Kumar et al. 2012).

Changes in LAI have direct impacts on terrestrial
water and carbon fluxes. A decrease in LAI leads to
reduced canopy shading, increased net radiation at the
surface, and increased soil evaporation. Similarly, an
increase in LAI leads to increased transpiration, in-
creased root water update, and reduced soil moisture
in the root zone. The increase in LAI also implies in-
creased canopy shading, reduced available net radiation,
and reduced snowmelt. GPP, the amount of carbon fixed
by photosynthesis, is closely related to transpiration.
The increased transpiration from increased LAI also
leads to increased carbon fixation and GPP, particularly
under water-limited conditions. These first-order impacts
on the water and carbon states are seen in Fig. 2, which
shows the changes in the mean LAI, evapotranspiration
(ET), runoff Q, SWE, root zone soil moisture (RZSM),
and GPP fields during the 2000-17 period. Relative to
the OL simulation, the LAI assimilation leads to increased
LAI in most parts of the domain, except over areas near
the upper Mississippi basin, parts of the Southern Great
Plains (SGP), southwestern Mexico, and southern Florida.
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FIG. 4. Differences in anomaly R values (during 2000-17) for
(top) surface soil moisture and (bottom) root zone soil moisture
from LAI assimilation relative to the OL integration. The warm
colors indicate improvements and cool colors represent degrada-
tions from DA. The gray shading indicates locations where the
differences are not statistically significant.

The increased LAI generally leads to increased evapo-
transpiration, reduced runoff, increased SWE, drier soil
moisture and increased GPP. Conversely, over areas where
LAI is reduced, evapotranspiration and GPP reduce and
runoff and root zone soil moisture increase.

To examine the influence of LAI assimilation tem-
porally, the domain-averaged mean seasonal cycles of
LAL ET, runoff, SWE, root zone soil moisture, and GPP
from OL and DA integrations are shown in Fig. 3.
Similar to the trends in Fig. 2, assimilation leads to in-
creased LAI during most months except during October
and November. The largest increase in LAI is seen
during the summer months of June—August. Corre-
spondingly, the most prominent changes in ET and GPP
are also seen during these time periods where DA leads
to increased magnitudes of these variables. The seasonal
cycle of runoff indicates that DA leads to drier runoff
values except during May. Most significant impacts
on SWE are seen during the melt periods (March and
April), where DA leads to larger snowpacks. Finally,
LAI DA leads to drier root zone soil moisture esti-
mates, more prominently during the late summer and
fall time periods. In the following sections, the quan-
titative evaluation of the LAI assimilation impact is
presented through comparisons against reference
datasets.
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a. Soil moisture

The modeled surface and root zone soil moisture es-
timates are compared against in situ measurements from
the International Soil Moisture Network (ISMN; Dorigo
et al. 2011). ISMN is an integrated, quality controlled
database of in situ soil profile measurements from sev-
eral networks. Datasets from different networks are
provided in a consistent format and convention and ar-
chived at the highest available temporal resolution up
to hourly from each instrument. Hourly data from over
934 stations from nine different networks at depths up to
100 cm (whenever available) are used in the evaluations
in this study. Both modeled and observed root zone soil
moisture is computed through weighted (by soil layer
thickness) vertical average over individual observation
layers within the top 1m. The data are considered
missing if not all profile measurements within the top
1mis available. As the modeled and in situ soil moisture
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measurements have significant biases relative to each
other, the skill of the modeled estimates is evaluated
using the anomaly correlation (anomaly R) metric. At
each location, the monthly mean soil moisture values
are computed first, for both model and observations.
The anomaly R values are computed as the correlation
of anomalies, which are the differences between the
daily soil moisture values and the monthly mean
estimates.

Figure 4 shows the change in anomaly correlation R
values for surface and root zone soil moisture compared
to the OL integration, during 2000-17. The warm
colors indicate locations where the assimilation of
LAI provides a statistically significant improvement in
soil moisture, whereas the cool colors indicate locations
where LAI DA leads to degradations. Overall, there is a
small, but positive impact in surface soil moisture esti-
mates from LAI assimilation. The improvements are
mostly observed in the Central Plains and locations in
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FIG. 6. RMSE differences (W m™?) of evapotranspiration from LAI assimilation relative to the OL integration, using four reference
datasets. The time periods in the RMSE comparisons are 2000-08, 2000-14, 200014, and 2000-08 for FLUXNET MTE, GLEAM, ALEXI,
and UW, respectively. The warm colors represent decreases in RMSE, and the cool colors represent increases in RMSE due to LAI DA.

the intermountain West. Comparatively, there are more
locations with degradations in the root zone soil mois-
ture map. Generally, the root zone soil moisture skill
improves with assimilation over the Central Plains, but
degradations are observed at locations in the Southeast
and Southwest. Note that the locations in the Central
Plains with improvements in soil moisture generally
correspond to agricultural and farmlands (Nebraska,
lower Mississippi basin). These results suggest that the
LAI assimilation helps in capturing the impact of veg-
etation changes in moisture states, introduced primarily
from agriculture.

To investigate this further, time series of area-
averaged LAI from OL and DA integrations along
with changes in root zone soil moisture over three spe-
cific crop (maize, soybean, and wheat from Fig. 1b) and
grassland areas, which dominate the landscape over the
Midwest and the Central Plains, are shown in Fig. 5. LAI
assimilation has a larger impact over the maize and
soybean areas compared to that over the wheat regions
and grasslands. The seasonal peak in the LAI time series
is generally in sync over the wheat and grasslands. The
primary impact of assimilation over these areas is to
adjust the amplitude of LAIL On the other hand, over
the maize and soybean areas, the seasonality and the
amplitude of LAI are both corrected by DA. The ex-
amination of the crop calendars of these crop types
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(AMIS 2012) indicates that over the United States, the
harvesting season of maize and soybean occurs in the fall
and late summer months. This suggests that the OL
simulation estimates an early peak in the LAI season-
ality for these crops, which is corrected by the assimi-
lation. The harvests of the winter wheat, on the other
hand, occur during June and July, which is generally
consistent with the peak seasonality of LAI estimated
by the OL and DA introduces smaller phase corrections.
Similarly, as the seasonality of vegetation over grass-
lands is primarily driven by natural variability, smaller
changes to the phase of the LAI seasonality is intro-
duced by DA.

As seen in the evaluations of other water/carbon
variables in the following subsections, the adjustment of
the vegetation seasonality leads to significant improve-
ments over these crop areas. The adjustment of LAI also
leads to seasonal patterns in the root zone soil moisture
updates. Over the maize and soybean areas, the large
changes (mostly reductions) in root zone soil moisture
occur in the early fall time periods. The drier soil
moisture features persist later into the fall and early
winter time periods. Comparatively, over the wheat
areas and grasslands, smaller reductions in root zone
soil moisture are observed, because there are smaller
corrections to the phase of LAI seasonality in these
regions.
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FIG. 7. Average seasonal cycle of evapotranspiration (W m~2) from the OL, DA, and the four reference datasets
stratified by the four key dominant vegetation categories.

b. Evapotranspiration

The impact of LAI assimilation on modeled evapo-
transpiration fields is evaluated using four reference
datasets: 1) the gridded 0.5°, monthly, FLUXNET
multi-tree-ensemble (MTE) product (Jung et al. 2009),
developed from upscaled eddy covariance tower mea-
surements of evapotranspiration (available from 1982
to 2008); 2) the 0.25°, daily Global Land Evaporation
Amsterdam Model (GLEAM version 3.0a; Miralles
et al. 2011) data, a primarily passive microwave remote
sensing—based, Priestley Taylor evaporation model
product (available during 1980-2014); 3) the 4-km, daily
Atmosphere-Land Exchange Inverse (ALEXI; Anderson
et al. 2007), a thermal-infrared based evapotranspiration
product (available during 2001-15); and 4) the 5-km,
monthly MODIS-based evapotranspiration product from
University of Washington (UW; Tang et al. 2009; available
during 2001-08). These products are derived from various
sources with different methodologies and have random
and bias errors of their own and are considered here for
the purposes of intercomparison.

Maps of RMSE differences between evapotranspira-
tion estimates from the OL and LAI DA integrations
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[computed as RMSE (OL) minus the RMSE (DA)] from
the comparisons against the four reference datasets are
shown in Fig. 6. The assimilation has a positive, statis-
tically significant impact on the evapotranspiration es-
timates, with the RMSE decreasing in most parts of the
domain in all four comparisons. In particular, there
are systematic and consistent improvements over the
Central Plains, lower Mississippi, central California
valley, and parts of the Southeast. These spatial pat-
terns are generally correlated with the cropland areas
of Fig. 1. Specifically, in the comparisons with the
ALEXI and UW data, the evapotranspiration im-
provements are primarily observed over the agricul-
tural areas of maize and soybean, due to the changes
to the LAI seasonality from DA (Fig. 5) over these
areas. The use of fine-resolution thermal infrared re-
mote sensing data in ALEXI and UW data has been
shown to detect spatial variations of agricultural man-
agement impacts in prior studies (Tang et al. 2009;
Hain et al. 2015).

The mean seasonal cycle of evapotranspiration from
the OL and DA integrations (computing using all avail-
able years of each dataset during the 2000-17 time pe-
riod) stratified by four dominant vegetation categories
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is shown in Fig. 7. The large differences in the evapo-
transpiration estimates across the reference dataset are
obvious in this comparison. The variation in mean evapo-
transpiration across the vegetation types is generally small
for FLUXNET MTE, whereas the other datasets show
larger variations. The magnitude of evapotranspiration
is larger over croplands and mixed forests and smaller
over grasslands and shrublands, except for FLUXNET
MTE. Over the croplands, the model OL has a phase lag
in the peak of the seasonal means. In the reference
datasets, the peak evapotranspiration is observed in July
whereas the model runs show the peak in June. As noted
above, this is likely due to the misrepresentation of the
vegetation seasonality over agricultural areas. Assimila-
tion helps to increase the evapotranspiration in the late
summer months, consistent with the trends in the refer-
ence datasets. Over the other three vegetation categories,
the mean evapotranspiration signals are more in-phase,
suggesting that the natural variability is the dominant
factor in the determination of evapotranspiration. It can
be noted that the overall impact of DA is to increase the
magnitude of evapotranspiration relative to the OL,
particularly during the summer months.

¢. Carbon fluxes

The impact of LAI assimilation on carbon fluxes is
evaluated by comparing the GPP and the NEE esti-
mates against reference data. While GPP represents the
total fixation of carbon through photosynthesis, NEE
refers to the GPP minus the carbon losses through res-
piration. Machine-learning-based upscaled estimates of
GPP and NEE from the FLUXCOM project (Tramontana
et al. 2016; Jung et al. 2017), available during the time
period of 1980-2013, are used to evaluate the modeled
GPP and NEE estimates.

Improvements in RMSE of GPP and NEE relative
to the OL are shown in Fig. 8. The GPP estimates are
consistently improved over most parts of the domain,
except over a few areas such as parts of the Northwest
and regions near the Great Lakes. More prominent
improvements are seen in the lower Mississippi and
Midwest regions. The pattern of improvement over the
Midwest correlates well with the areas where maize
is cultivated whereas the improvements in the lower
Mississippi are primarily over the soybean areas
(Fig. 1b). Comparatively, smaller improvements in GPP
are observed over other crop areas such as wheat. The
improvement map of NEE shows more mixed areas
of improvements and degradations. While significant
improvements in NEE estimates are obtained over the
Central Plains and lower Mississippi through DA, as-
similation also leads to degradations over most of the
eastern United States. The areas of improvements in the
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FIG. 8. Improvements in RMSE (gm s ') of (top) GPP and
(bottom) NEE compared to the FLUXCOM data as the reference,
during a time period of 2000-13. The warm and cool colors rep-
resent improvements and degradations from DA, respectively.

NEE fields are primarily correlated with the maize and
soybean agricultural areas over the Midwest and lower
Mississippi.

The average seasonal cycles of GPP and NEE from the
model runs and the FLUXCOM data for croplands and
grasslands are shown in Fig. 9. The model OL generally
underestimates GPP, which is corrected by the assimila-
tion. For NEE, the FLUXCOM estimates are positive,
whereas the model OL produces negative values. The
assimilation helps to correct these mismatches with the
largest improvements obtained in late spring and early
summer months. The assimilation also leads to increased
biases in NEE in the fall and winter months. Figure 9
indicates that most of the improvements in GPP and
NEE are primarily from the correction of biases in the
model OL fields. Despite the improvements in NEE from
DA, it is obvious that both OL and DA simulations sys-
tematically underestimate NEE during the growing sea-
son, suggesting that improvements to the model physics
formulations may be necessary.

Solar induced fluorescence (SIF), part of the solar
radiation absorbed by chlorophyll and re-emitted as
fluorescence (Frankenberg et al. 2013; Frankenberg and
Berry 2018), has been cited in several studies as a func-
tional analog for GPP (Frankenberg et al. 2011; Guanter
et al. 2012; Sun et al. 2018). Remote sensing retrievals of
SIF are available from the Global Ozone Monitoring
Experiment-2 (GOME-2) aboard the MetOp-A satellite
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FIG. 9. Mean seasonal cycle of (top) GPP and (bottom) NEE (gm ™~ 2s™ ') stratified for cropland and grassland
vegetation types during a time period of 2000-13.

(Joiner et al. 2014; Guanter et al. 2014). The correlation
of the GPP estimates from OL and DA integrations is
computed against the level-3, GOME-2 (version 27)
retrievals, available during 2007-18, similar to the ap-
proach used in Leroux et al. (2018). Figure 10 shows a
map of the improvements in the SIF-GPP correlation
with the assimilation of LAI. The impact of assimilation
is generally positive, with strong improvements observed
in the southeastern United States, parts of the Midwest,
southwest Mexico, and the central U.S. plains. The strong
influence of the agricultural areas is also evident in Fig. 10,
with statistically significant improvements in the SIF-GPP
correlations observed over the maize and soybean crop-
lands. This evaluation against the GOME-2 SIF retrievals
provide further confirmation of the improvements in the
modeled carbon fluxes from LAI assimilation, particularly
over agricultural areas.

d. Snow depth

As noted earlier, vegetation changes on the land sur-
face can have significant impacts on the snow evolution
through the interception of snow by the canopy and
modification of the surface albedo. These impacts are
evaluated by comparing the modeled snow depth fields
against three reference datasets: 1) the daily in situ mea-
surements from the Global Historical Climate Network
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(GHCN; Menne et al. 2012); 2) the daily, gridded snow
depth analysis from the Canadian Meteorological Centre
(CMC; Brown and Brasnett 2010) available at 25-km
spatial resolution; and 3) the daily, gridded snow depth
analysis from NOAA National Weather Service’s Na-
tional Operational Hydrologic Remote Sensing Center
(NOHRSC) Snow Data Assimilation System (SNODAS;
Barrett 2003) available at 1-km spatial resolution. The
GHCN data are available during the entire simulation

T
-0.4

0.0

-0.2

FIG. 10. Improvements in correlation of solar induced fluores-
cence data from GOME-2 with modeled GPP during 2007-17. The
improvement map is expressed as R(DA) minus R(OL). The warm
and cool colors represent improvements and degradations from
DA, respectively.



FIG. 11. Improvements in RMSE of snow depth (mm) compared
to (a) CMC, (b) SNODAS, and (c) GHCN data as the reference.
The time periods in the RMSE comparisons are 2000-17, 2003-17,
and 2000-17 for CMC, SNODAS, and GHCN, respectively.

time period of 1979-2017. Based on the quality control
procedures developed in previous studies (Kumar et al.
2014), a selected subset of the GHCN stations is used
here. The CMC and SNODAS comparisons encompass
a time period of 1998-2017 and 2003-17, respectively,
based on the availability of these datasets.

The evaluation of snow depth fields against these
datasets is shown in Fig. 11. The patterns in Fig. 11 in-
dicate that, overall, LAI assimilation leads to reduced
RMSE in the snow depth estimates. The improvements
are most significant over the Northwest, areas near the
Great Lakes, and Northeast. Notably, these patterns
of improvements are consistent in all three compari-
sons. The improvements in the snow depth fields are
primarily a result of the increase in snow mass due to the
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changes in LAI A representative example time series
over a region in the midwestern United States (shown
by the marked rectangle in Fig. 11c) is shown in Fig. 12.
To quantify the changes in snow depth fields from as-
similation, Fig. 12 shows the differences in the area-
averaged snow depth from DA, CMC, SNODAS, and
GHCN relative to the OL during the time period of
2008-12. The model OL has a significant dry bias in the
snow depth fields compared to the reference datasets.
This dry bias is improved by DA as the simulated snow
depth increases with LAI assimilation. It can be ob-
served that the increase in snow depth is closely tied
to the increase in LAI (also shown as a difference in
area-averaged LAI fields from DA and OL). Compared to
the OL, the assimilation leads to a reduction in LAI during
the fall and an increase during the winter, spring and
summer months. The increase in LAI during the winter
months contributes to increased snow in the assimilation
integrations and is reflected as an improvement relative
to the reference datasets. Despite these improvements, the
snow depth estimates from the assimilation integrations
still include significant biases, particularly with respect
to SNODAS and GHCN. The spatial scale of these
products is a factor in these biases as SNODAS is gen-
erated at 1-km spatial resolution whereas the GHCN
measurements are available at point scales.

e. Terrestrial water storage

TWS represents an integrated measure of the changes
surface and subsurface water. Within Noah-MP, TWS is
defined as the sum of the soil moisture, groundwater
storage, snow, and canopy water content. The impact of
LAI assimilation on TWS is evaluated by comparing
against the TWS anomalies from the Gravity Re-
covery and Climate Experiment (GRACE; Tapley
et al. 2004) satellite. The GRACE product available from
the NASA Jet Propulsion Laboratory’s Tellus website
(https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-
land/) is used in the comparisons. This product is avail-
able on a monthly basis on 1° horizontal resolution grids
(Landerer and Swenson 2012) from 2003 to 2017 and is
based on the version RLOS spherical harmonics fields
produced by the University of Texas Center for Space
Research (CSR), Jet Propulsion Laboratory (JPL), and
German Research Centre for Geosciences (GFZ).

An improvement map of the correlation of the TWS
anomalies from the modeled fields and the GRACE
solutions is shown in the top panel of Fig. 13. As before,
the improvement map represents the difference be-
tween the correlations from DA and OL. The impact
from DA on TWS anomalies is small, except over a
few areas in the SGP, western Nebraska, and central
California valley, where significant improvements are
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FIG. 12. Time series of differences in the area averaged snow depth (m) over the Midwest
region (marked by the rectangle) in Fig. 11c from DA, CMC, SNODAS, and GHCN relative
to the model OL during 2008-12. The right vertical axis shows a similar time series of dif-
ferences in the area averaged LAI between the DA and OL integrations.

observed. A likely reason is that the assimilation im-
proves the representation of agricultural areas and the
related changes in increased water extraction and tran-
spiration. This is confirmed by examining an area-averaged
time series of TWS anomalies from the OL, DA, and
GRACE over Nebraska and SGP (Fig. 13). Over the
Nebraska region, the TWS anomalies from DA provide
a better match to the GRACE data than that from the
OL, except for the time period from 2009 to 2010. Similar
patterns are seen over SGP, where the DA-based TWS
anomalies are consistently closer to the GRACE esti-
mates, except for a few time periods in 2007 and 2009. It is
worth highlighting that the TWS anomaly improvements
are not due to bias improvements in one direction alone.
For example, over Nebraska, the TWS anomalies from
the model OL have a wet bias in 2007-08 and a dry bias
in 2010-13. Both these opposite biases are improved by
LATI assimilation. Similar patterns can also be observed
in the SGP time series where the dry and wet biases in
TWS anomalies (during 2003-11 and 2012-13, respec-
tively) are improved through assimilation.

f. Streamflow

Similar to TWS, streamflow represents an integrated
measure of the terrestrial water balance. The daily
streamflow data available from 1979 to 2017 from the
U.S. Geological Survey over 572 hydrologic basins are
used to evaluate the modeled streamflow estimates. As
noted in prior studies (Kumar et al. 2014, 2016), these
basins are identified as areas with minimal impact from
reservoir operations.

Figure 14 shows a map of improvements in Nash—
Sutcliffe efficiency (NSE) and RMSE in streamflow DA
expressed as a normalized information contribution (NIC).
The NIC, NSE, and RMSE values are computed as
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_ (NSE, — NSE,)

NIC g = A-NSE) and (1)
(RMSE, —RMSE )
NICRMSE = (RMSE ) ’ (2)

where subscripts a and o represent the LAI DA and
OL, respectively. The NICysg and NICgrysg, therefore,
represent a normalized measure of improvements in
NSE and RMSE, respectively, from DA as a fraction of
the maximum possible skill improvement.

Figure 14 indicates that LAI DA leads to improve-
ments in streamflow skill over several river basins,
including the upper Mississippi, Ohio, Columbia, up-
per Missouri, and South Atlantic. Comparatively, few
locations show degradations, which are primarily lim-
ited to California and lower Colorado. Further, larger
improvements in RMSE than those obtained in NSE are
seen in Fig. 14. It is notable that improvements in the
magnitude of streamflow (RMSE improvement map)
are obtained in similar areas where the correlations also
improve. Generally, LAI assimilation leads to drier
streamflow conditions (Fig. 2) and these changes lead
to more skillful streamflow estimates. These results
confirm the indirect, but positive benefit from the as-
similating LAI observations on streamflow estimates.

g Influence of assimilation frequency

As noted earlier, the results presented above em-
ploy a DA configuration where daily interpolated es-
timates of LAI observations are used. This approach
is used as it was found to be beneficial over that
of assimilating LAI retrievals every 8 days. Table 1
provides a summary of the performance of the two DA
configurations for different variables. It can be noted
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and B.

that in most comparisons, the daily DA configuration pro-
vides estimates that have better agreement with the refer-
ence measurements. The improvements in the anomaly R of
surface and root zone soil moisture are marginal, whereas in
the ET comparisons, the 1-day DA configuration provides
systematically lower domain-averaged RMSE estimates
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compared to those from the 8-day DA configuration.
Similar trends are seen for GPP, Snow depth and
Streamflow, where the 1-day DA configuration provides
improved estimates relative to that from the 8§-day DA
configuration. For NEE, however, the 8-day configura-
tion provides a lower RMSE than that from the 1-day
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tions as the reference.

configuration. The domain-averaged improvements
seen in Table 1 suggest that the approach of employing
temporally interpolated LAI values is reasonable.

4. Summary

Vegetation conditions on the land surface significantly
impact the regional and global water budget and the
variability of its components through the feedbacks and
interactions between the biosphere and the terrestrial
hydrosphere. Observations of vegetation conditions
capture both anthropogenic and natural changes and
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disturbances on the land surface. Assimilation of such
observations of vegetation conditions into LSMs,
therefore, provides a way to incorporate the impact of
vegetation changes in terrestrial hydrological and bio-
sphere modeling.

This study presents the assimilation of remotely
sensed LAI observations using the dynamic vegetation
model of Noah-MP over the continental United States.
The model integrations are conducted using the con-
figuration of the NLDAS-2 environment, featuring
high-quality meteorological input datasets. A 1-day
EnKF algorithm is used to assimilate the MODIS
reflectance-based LAI retrievals from the GLASS
project. The model simulations are conducted during a
time period of 2000-17. The impact of assimilating
LAI on key water and carbon budget terms is evalu-
ated by comparing against a large suite of available
reference data products.

Overall, the assimilation has a positive and system-
atic impact on all water budget terms. When compared
with in situ measurements, there are small, but sys-
tematic improvements in surface soil moisture esti-
mates. The root zone soil moisture evaluations show
mixed results, though improvements are observed over
the Central Plains and the agricultural areas of the
United States. Systematic improvements in the evapo-
transpiration fields are observed when compared to
reference data products developed from tower, passive
microwave, and visible/infrared measurements. Though
there are significant biases across these products, the
spatial patterns of improvements are consistent and are
obtained primarily over agricultural areas. The assimi-
lation of LAI estimates is also found to improve the
snow depth estimates, which are primarily due to the
correction of a dry bias in the snow mass estimates in
the model OL. The assimilation generally leads to an

TABLE 1. Comparison of the domain-averaged skill metrics from the OL and DA configuration that uses the 8-day LAI values and the DA
configuration that employs interpolated daily LAI values, for different variables. A dash (—) indicates dimensionless units.

Variable Reference data Metric (units) OL DA (8 day) DA (1 day)
Surface soil moisture ISMN Anomaly R (—) 0.53 0.53 0.54
Root zone soil moisture ISMN Anomaly R (—) 0.48 0.48 0.49
ET FLUXNET MTE RMSE (Wm™?) 15.1 14.1 139

GLEAM 17.3 16.7 16.1
ALEXI 322 31.1 30.9
Uw 23.1 21.5 21.4
GPP FLUXCOM RMSE (gm ?s™ ') 1.83 x 107* 1.41 x 107* 132x 107
NEE FLUXCOM RMSE (gm2s™") 6.46 X 1074 572 x 107* 6.15 x 107*
Snow depth CMC RMSE (mm) 64.9 64.0 63.8
SNODAS 78.6 76.9 76.9
GHCN 153.7 149.0 147.8
TWS GRACE Anomaly R (—) 0.45 0.47 0.48
Streamflow USGS RMSE (m*s™ 1) 23.2 22.9 22.7
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increase in LAI during the winter, spring, and summer
months (relative to the OL) allowing for reduced
snowmelt and improved snow simulations. The positive
impact of assimilation on the water budget quantifica-
tion is also confirmed through the evaluation of the
TWS and streamflow fields, both indicating improve-
ments through LAI DA.

In addition to the water budget, the impact of LAI
assimilation on carbon fluxes is evaluated by comparing
the modeled GPP and NEE fields against independent
datasets. When compared to the machine learning—based,
upscaled tower estimates, consistent improvements in the
GPP estimates from assimilation are observed. Compar-
atively, the NEE results are more mixed, with degrada-
tions noted over the eastern United States. The spatial
pattern of improvements in both GPP and NEE is found
to correlate strongly with the cropland areas. The im-
provements in GPP through assimilation are also con-
firmed through an independent comparison against the
GOME-2-based SIF retrievals. Similar significant im-
provements in the representation of vegetation cycles
through the assimilation of LAI assimilation are re-
ported in Albergel et al. (2018).

The comprehensive evaluation of the model integra-
tions presented in the article indicates that the assimi-
lation of LAI data is beneficial in simultaneously
improving the key water and carbon budget compo-
nents. Due to the use of high-quality NLDAS-2 mete-
orological inputs, the model OL (based on previous
versions of Noah LSM) generally has high skill (Kumar
etal. 2014,2019), particularly in capturing the impacts of
natural variability. The fact that the incorporation of
LAI observations further improves the NLDAS-2-
based OL implies that assimilation is helpful in developing
better representation of vegetation changes on the land
surface, which are not always driven by meteorological
variability. As seen in the results, most significant im-
provements in the soil moisture, evapotranspiration,
TWS, streamflow, GPP, and NEE fields are obtained
over the agricultural areas in the Central Plains and
Midwest, from corrections to the vegetation seasonality
over crop areas.

Opverall, assimilation leads to increasing the LAI in
most parts of the domain, which leads to increased
evapotranspiration, snow mass and GPP and reduced
soil moisture and runoff. On the other hand, over the
Midwest and parts of the Central Plains, evapotranspira-
tion and GPP reduce and runoff and soil moisture increase,
as assimilation leads to an overall reduction in LAI over
these areas. It is worth noting that the assimilation im-
provements are obtained over these areas regardless of
the bias changes introduced by LAI assimilation. Similar
mixed changes in the biases are also observed temporally.
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For example, when the TWS time series over the regions of
the central plains are compared with GRACE, the as-
similation provides both drying and wetting changes in the
TWS, while providing a better match to the GRACE ob-
servations. These findings confirm that the benefits from
LAI assimilation are not simply due to the correction of
fortuitous biases in the model OL.

It can be noted that the assimilation configuration
used in this manuscript only updates the leaf biomass
variable. In reality, contributions of the stem, wood, and
root mass also have significant roles in the determination
of vegetation changes. Improved and discretized repre-
sentation of variables such as rooting depth is needed for
accurately capturing the soil moisture and vegetation
biomass relationships. Model development efforts cog-
nizant of data assimilation requirements will be neces-
sary for realizing the full potential and information
content inherent in remote sensing measurements.
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