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ABSTRACT

Accurate representation of vegetation states is required for the modeling of terrestrial water–energy–

carbon exchanges and the characterization of the impacts of natural and anthropogenic vegetation

changes on the land surface. This study presents a comprehensive evaluation of the impact of assimilating

remote sensing–based leaf area index (LAI) retrievals over the continental United States in the Noah-

MP land surface model, during a time period of 2000–17. The results demonstrate that the assimilation

has a beneficial impact on the simulation of key water budget terms, such as soil moisture, evapotrans-

piration, snow depth, terrestrial water storage, and streamflow, when compared with a large suite of

reference datasets. In addition, the assimilation of LAI is also found to improve the carbon fluxes of

gross primary production (GPP) and net ecosystem exchange (NEE). Most prominent improvements in

the water and carbon variables are observed over the agricultural areas of the United States, where

assimilation improves the representation of vegetation seasonality impacted by cropping schedules.

The systematic, added improvements from assimilation in a configuration that employs high-quality

boundary conditions highlight the significant utility of LAI data assimilation in capturing the impacts of

vegetation changes.

1. Introduction

In recognition of the intimate linkages between the

terrestrial water and carbon cycles, the focus of land

surface models (LSMs) in recent years has extended

to include more detailed representations of the carbon

cycle processes (Niyogi et al. 2009; Sato et al. 2015).

Characterization of biogeochemical processes such as

photosynthesis, respiration and leaf phenology is

important for the accurate representation of stomatal

response, which is the key factor in the determination of

transpiration and evapotranspiration (Jasechko et al.

2013; Schlesinger and Jasechko 2014). The increased

transpiration due to vegetation presence, particularly

over mid- and low latitudes, leads to the cooling of the

land surface. Vegetation also reduces the surface al-

bedo, which increases the amount of absorbed radiation,

impacting snow evolution and melt (Essery et al. 2003;

Niu and Yang 2004). The simultaneous representation

of water, energy, and biogeochemical cycle processes inCorresponding author: Sujay V. Kumar, sujay.v.kumar@nasa.gov
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LSMs is necessary for representing the water–energy–

carbon exchanges and feedbacks that are relevant at

various spatial and temporal scales. Further, detailed

characterization of vegetation and canopy physical

states is also needed for the modeling of agricultural and

crop management practices (McDermid et al. 2017) and

the impact of vegetation disturbances on the land sur-

face (Liu et al. 2005; Garcia et al. 2014).

Leaf area index (LAI), defined as the total leaf area

over a unit of ground area, essentially represents the

potential surface area available for photosynthesis. As a

variable that controls the carbon, energy, and water

balance in plants (Cowling and Field 2003), LAI is a key

parameter in models of land surface and phenology.

Most modern (third generation) LSMs include formu-

lations of LAI, either as a parameterization based on

vegetation type or prescribed from climatological values

(Sellers et al. 1997; Pitman 2003). The further develop-

ment of submodels of vegetation dynamics in LSMs

(Dickinson et al. 1998; Niu et al. 2011) has enabled the

prognostic representation of LAI and other vegetation

states, allowing the inclusion of observational constraints

in modeling.

Remote sensing measurements, particularly from opti-

cal sensors, have provided high-resolution measurements

of canopy states such as LAI, normalized difference

vegetation index (NDVI), fraction of photosynthetically

active radiation (fPAR), and biomass, among others

(Myneni et al. 2002; Tucker et al. 2005; Zheng and

Moskal 2009; Myneni et al. 2011; Kumar and Mutanga

2017), in the past 10–15 years. As these measurements

have gaps in their spatial and temporal coverage, methods

such as data assimilation (DA) are often used to incor-

porate the information content of observations in models

for developing spatially and temporally continuous esti-

mates. As demonstrated in DA studies of water cycle

measurements (Reichle et al. 2007; Liu et al. 2011; Kumar

et al. 2014; De Lannoy et al. 2012; Dziubanski and Franz

2016; Zaitchik and Rodell 2009; Peters-Lidard et al. 2011;

Zhang et al. 2014), DA methods also allow the extension

of remote sensing observations (which are often limited to

the surface states only) to other important processes such

as root zone soil moisture, evapotranspiration and

streamflow. Similarly, there have been numerous studies

of assimilating remotely sensed vegetation variables into

crop and land surface models. The assimilation of LAI

observations was shown to improve the estimation of

yields for crops such as wheat (Dente et al. 2008; Xie

et al. 2017) andmaize (Ines et al. 2013;Wang et al. 2014).

A review of such DA efforts is summarized in Jin et al.

(2018). Studies of assimilating LAI estimates (e.g.,

Sabater et al. 2008; Barbu et al. 2011, 2014; Albergel

et al. 2017, 2018) have also been used to improve the

estimation of vegetation biomass, evapotranspiration,

root zone soil moisture, and CO2 fluxes within land

surface models.

In this study,we demonstrate the assimilation of remotely

sensed LAI estimates in the Noah multiparameterization

(Noah-MP) LSM over the continental United States

(CONUS) in the North American Land Data As-

similation System phase 2 (NLDAS-2) configuration.

NLDAS (Mitchell et al. 2004; Xia et al. 2012b) is an

operational system at NOAA/NCEP that runs multiple

land surfacemodels in an uncoupledmanner forced with

high-quality forcing inputs including gauge-based pre-

cipitation and bias-corrected shortwave radiation and

surfacemeteorology reanalysis. Themodel outputs from

NLDAS-2 are used to support a wide variety of land

modeling research and water resources management

applications, including operational drought monitoring

and prediction. The planned enhancements to the

NLDAS system include the upgrade of the LSMs to

newer versions and models such as Noah-MP. In ad-

dition, the incorporation of data assimilation instances,

currently lacking in the operational NLDAS, is another

key emphasis of the next phase of NLDAS-2 devel-

opment (Ek et al. 2017). Recent efforts, focused pri-

marily on the assimilation of water cycle observations,

have quantified the positive impacts of assimilating

remotely sensed soil moisture, snow depth, snow cover

and terrestrial water storage measurements, individu-

ally and concurrently, in the NLDAS-2 environment

(Kumar et al. 2014, 2015, 2016, 2019). This article

presents a continuation of these efforts, by describing

the assimilation of remotely sensed vegetation data

into the NLDAS-2 configuration. The impact of LAI

assimilation on energy, water, and carbon cycle

states is examined through a comprehensive evalua-

tion using independent measurements and reference

data products.

LAI estimates from the University of Maryland

Global Land Cover Facility (GLCF) Global Land Sur-

face Satellites (GLASS; Xiao et al. 2016) are employed

for data assimilation within Noah-MP. TheGLASS LAI

product represents a long-term (from 1981 to present),

global LAI product generated from the Advanced Very

High Resolution Radiometer (AVHRR) and Moderate

Resolution Imaging Spectroradiometer (MODIS) re-

flectance datasets. The availability of the long time se-

ries of the LAI record has facilitated studies of land

use change impacts and agricultural sustainability (Zhu

et al. 2016; Huang et al. 2016; Zhu et al. 2017). MODIS-

based GLASS LAI V4 product, available from 2000 to

present, is employed in this study.

The article is organized as follows: section 2 con-

tains descriptions of the model and data assimilation

1360 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 09:15 PM UTC



configurations. The description and analysis of the re-

sults are presented in section 3. A summary and major

conclusions are described in 4.

2. Study settings

a. Model configuration

All model simulations are conducted using a config-

uration similar to that used in NLDAS-2. The model

grid spans the CONUS (258–538N, 1258–678W) at 1/88
spatial resolution. The static vegetation map using the

University ofMaryland (UMD) land cover classification

(Hansen et al. 2000) shown in Fig. 1a is used in themodel

runs. Figure 1b shows a more detailed representation

of the croplands based on Leff et al. (2004). The major

crop types of wheat (over NorthDakota, Kansas), maize

(over Nebraska, Iowa, Illinois, and Indiana), soybean

(over the lower Mississippi basin, Ohio), and others

(central California, Florida) are represented in Fig. 1b.

Note that only the vegetation map shown in Fig. 1a is

used in the model runs, whereas the detailed crop clas-

sification in Fig. 1b is shown primarily for the purpose of

examining the spatial patterns of the impact of LAI

assimilation. The model simulations are forced with

the NLDAS-2 meteorology (Xia et al. 2012a), which

includes gauge-based daily precipitation temporally

disaggregated with radar data, bias corrected shortwave

radiation, and surfacemeteorological analysis. TheNASA

Land Information System (LIS; Kumar et al. 2006; Peters-

Lidard et al. 2007) framework, a widely used land surface

modeling and data assimilation system, is employed for

conducting all model integrations.

The Noah-MP model (Niu et al. 2011; Yang et al.

2011) represents the community efforts to extend the

capabilities of the Noah LSM through the incorporation

of multiple and new physics capabilities. The physics

enhancements in Noah-MP include multilayer snow-

pack, multiple options for surface water infiltration,

runoff, and groundwater, including the representation

of an unconfined water table depth (Niu et al. 2007),

among numerous other options. A key enhancement

relevant for this study is the inclusion of a dynamic

phenology model allowing for the prognostic represen-

tation of vegetation growth and senescence. Noah-MP

integrates a Ball–Berry photosynthesis-based stomatal

resistance model (Ball et al. 1987) with the dynamic

vegetation model of Dickinson et al. (1998). The model

explicitly models the carbon storages in the leaf, stem,

wood, and root parts of the vegetation. The availability

of these prognostic vegetation states allows for the as-

similation of observations of vegetation conditions such

as LAI.

FIG. 1. Maps of (top) dominant land cover using UMD classification and (bottom) the detailed crop classification

for the cropland vegetation type. Note that the detailed crop map is not used in the model simulations.
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The initial conditions for the LSM are generated by

conducting a model spinup starting with uniform con-

ditions and running the model from 1979 to 2017 twice.

The model is then reinitialized in 1979 using climato-

logical average conditions based on the spinup. The

gridded surface runoff and baseflow fields from Noah-MP

are employed by the Hydrological Modeling and Analysis

Platform (HyMAP; Getirana et al. 2012) streamflow

routing model to generate estimates of routed streamflow.

HyMAP is run over the same model grid as the LSM.

Note that the influence of lakes and reservoirs and the

management impacts from reservoir operations are not

modeled in this study. The feedback from the routing

model to the LSM moisture states is also not modeled.

b. Data assimilation configuration

The data assimilation integrations are conducted

using a one-dimensional ensemble Kalman filter (EnKF;

Reichle et al. 2002) algorithm implemented in LIS,

which has been demonstrated for many sequential data

assimilation studies (Reichle et al. 2010; De Lannoy

et al. 2012; Kumar et al. 2014; Liu et al. 2015; Kumar

et al. 2019). The model ensemble is created by applying

small perturbations to the meteorological forcing inputs

and the model states, at each grid point. Similar to prior

studies (Kumar et al. 2014, 2019), the precipitation P

and downward shortwave radiation (SW) fields are

perturbed with multiplicative perturbations with a mean

of 1 and standard deviations of 0.3 and 0.5, respectively.

Additive perturbations with a standard deviation of

50Wm22 are applied to the downward longwave radi-

ation (LW) fields. The forcing perturbations are applied

hourly and include cross correlations r to perturbations

between forcing fields [r(SW, P)520:8, r(SW, LW)5
20:5, r(LW, P)5 0:5], based on Kumar et al. (2014).

The state vector used in theDA configuration consists of

only one variable, the prognostic LAI. Though related,

including other variables such as soil moisture in the

state vector requires the consideration of temporal lags

in the relationship between soil moisture and LAI

FIG. 2. Changes in the mean LAI, ET, Q, SWE, RZSM, and GPP as a result of LAI assimilation.
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(Crow et al. 2012) and the influence of soil and vegeta-

tion characteristics. As a result, a simple state vector

formulation using only LAI, which is the variable most

directly connected to the observations, is used. Additive

perturbations with a standard deviation of 0.01 are ap-

plied to the modeled LAI fields. This error standard

deviation level is comparable to the values used in prior

LAI assimilation studies (Rudiger et al. 2010; Albergel

et al. 2017), albeit with a linearized extended Kalman

filter algorithm. The updated LAI from assimilation

is also used to update the leaf biomass by dividing the

LAI value with the specific leaf area, which varies with

vegetation type, consistent with the Noah-MP physics

formulations (Liu et al. 2016). Other vegetation mass

prognostic variables in Noah-MP related to the stem,

wood, and root mass are not updated as part of as-

similation. If perturbations or analysis updates lead to

unphysical values, those ensemblemembers are rescaled

to valid values using the majority of the valid ensemble

members.

The remote sensing–based observations of LAI, ob-

tained from the GLASS LAI product, are generated

using a general regression neural network approach

(Xiao et al. 2014), allowing a spatially and temporally

consistent long-term record of vegetation conditions.

The improved spatiotemporal coverage of the GLASS

product has been shown to have greater utility over that

of the standard MODIS LAI product, which is affected

by cloud obscuration gaps (Liang et al. 2013). The vali-

dation of the GLASS data and comparison against other

LAI products have also demonstrated the high quality of

the product (Liao et al. 2012; Fang et al. 2013; Xiao et al.

2016). The GLASS LAI observations are available at

8-day intervals, on a 0.058 regular latitude–longitude

global grid. Daily observations generated through a

linear temporal interpolation between the 8-day obser-

vations are used in the model simulations. A uniform

observation error standard deviation of 0.05 is used in

the DA configuration, which is an optimistic estimate of

the expected error levels (Xie et al. 2017). Though the

FIG. 3. Domain averaged mean seasonal cycle of LAI, ET,Q, SWE, RZSM, and GPP from the

OL and DA integrations. The seasonal cycle of LAI from the GLASS dataset is also shown.
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results in the following section indicate that these set-

tings are reasonable, spatially distributed observation

error specifications that better account for the strengths

and limitations of the retrievals may be helpful in further

improving the utilization of LAI data within data as-

similation. Finally, the analysis update does not account

for the effects of subgrid vegetation heterogeneity, as

the model configuration only uses the dominant vege-

tation type within each grid cell. As suggested byMunier

et al. (2018), differing tendencies from different vege-

tation types could be an important factor in the upscaled

LAI estimates, particularly when the model and obser-

vation resolutions differ significantly.

3. Results

This section presents a detailed examination of the

impact of LAI assimilation on key terrestrial water and

carbon states and fluxes. The evaluation includes an

assessment of the impact of the changes in these vari-

ables as well as comparisons against a number of refer-

ence data products. Specifically, modeled estimates of

soil moisture, evapotranspiration, streamflow, snow

depth, terrestrial water storage (TWS), gross primary

productivity (GPP), and net ecosystem exchange (NEE)

are compared against a large suite of reference data

products. The impact of DA is evaluated by quantifying

the performance improvement or degradation relative

to the model open-loop (OL) simulation that does not

employ any data assimilation. All evaluations are

conducted using the NASA Land Surface Verifica-

tion Toolkit (LVT; Kumar et al. 2012).

Changes in LAI have direct impacts on terrestrial

water and carbon fluxes. A decrease in LAI leads to

reduced canopy shading, increased net radiation at the

surface, and increased soil evaporation. Similarly, an

increase in LAI leads to increased transpiration, in-

creased root water update, and reduced soil moisture

in the root zone. The increase in LAI also implies in-

creased canopy shading, reduced available net radiation,

and reduced snowmelt. GPP, the amount of carbon fixed

by photosynthesis, is closely related to transpiration.

The increased transpiration from increased LAI also

leads to increased carbon fixation and GPP, particularly

under water-limited conditions. These first-order impacts

on the water and carbon states are seen in Fig. 2, which

shows the changes in the mean LAI, evapotranspiration

(ET), runoff Q, SWE, root zone soil moisture (RZSM),

and GPP fields during the 2000–17 period. Relative to

theOL simulation, the LAI assimilation leads to increased

LAI in most parts of the domain, except over areas near

the upper Mississippi basin, parts of the Southern Great

Plains (SGP), southwesternMexico, and southern Florida.

The increased LAI generally leads to increased evapo-

transpiration, reduced runoff, increased SWE, drier soil

moisture and increasedGPP. Conversely, over areas where

LAI is reduced, evapotranspiration and GPP reduce and

runoff and root zone soil moisture increase.

To examine the influence of LAI assimilation tem-

porally, the domain-averaged mean seasonal cycles of

LAI, ET, runoff, SWE, root zone soil moisture, andGPP

from OL and DA integrations are shown in Fig. 3.

Similar to the trends in Fig. 2, assimilation leads to in-

creased LAI during most months except during October

and November. The largest increase in LAI is seen

during the summer months of June–August. Corre-

spondingly, the most prominent changes in ET and GPP

are also seen during these time periods where DA leads

to increasedmagnitudes of these variables. The seasonal

cycle of runoff indicates that DA leads to drier runoff

values except during May. Most significant impacts

on SWE are seen during the melt periods (March and

April), where DA leads to larger snowpacks. Finally,

LAI DA leads to drier root zone soil moisture esti-

mates, more prominently during the late summer and

fall time periods. In the following sections, the quan-

titative evaluation of the LAI assimilation impact is

presented through comparisons against reference

datasets.

FIG. 4. Differences in anomaly R values (during 2000–17) for

(top) surface soil moisture and (bottom) root zone soil moisture

from LAI assimilation relative to the OL integration. The warm

colors indicate improvements and cool colors represent degrada-

tions from DA. The gray shading indicates locations where the

differences are not statistically significant.
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a. Soil moisture

The modeled surface and root zone soil moisture es-

timates are compared against in situ measurements from

the International SoilMoistureNetwork (ISMN;Dorigo

et al. 2011). ISMN is an integrated, quality controlled

database of in situ soil profile measurements from sev-

eral networks. Datasets from different networks are

provided in a consistent format and convention and ar-

chived at the highest available temporal resolution up

to hourly from each instrument. Hourly data from over

934 stations from nine different networks at depths up to

100 cm (whenever available) are used in the evaluations

in this study. Both modeled and observed root zone soil

moisture is computed through weighted (by soil layer

thickness) vertical average over individual observation

layers within the top 1m. The data are considered

missing if not all profile measurements within the top

1m is available. As the modeled and in situ soil moisture

measurements have significant biases relative to each

other, the skill of the modeled estimates is evaluated

using the anomaly correlation (anomaly R) metric. At

each location, the monthly mean soil moisture values

are computed first, for both model and observations.

The anomaly R values are computed as the correlation

of anomalies, which are the differences between the

daily soil moisture values and the monthly mean

estimates.

Figure 4 shows the change in anomaly correlation R

values for surface and root zone soil moisture compared

to the OL integration, during 2000–17. The warm

colors indicate locations where the assimilation of

LAI provides a statistically significant improvement in

soil moisture, whereas the cool colors indicate locations

where LAIDA leads to degradations. Overall, there is a

small, but positive impact in surface soil moisture esti-

mates from LAI assimilation. The improvements are

mostly observed in the Central Plains and locations in

FIG. 5. Time series of area-averaged LAI over maize, soybean, wheat, and grassland areas from OL and DA

integrations during 2011–15. The right vertical axis shows time series of differences in the area averaged root zone

soil moisture between the DA and OL integrations.
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the intermountain West. Comparatively, there are more

locations with degradations in the root zone soil mois-

ture map. Generally, the root zone soil moisture skill

improves with assimilation over the Central Plains, but

degradations are observed at locations in the Southeast

and Southwest. Note that the locations in the Central

Plains with improvements in soil moisture generally

correspond to agricultural and farmlands (Nebraska,

lower Mississippi basin). These results suggest that the

LAI assimilation helps in capturing the impact of veg-

etation changes in moisture states, introduced primarily

from agriculture.

To investigate this further, time series of area-

averaged LAI from OL and DA integrations along

with changes in root zone soil moisture over three spe-

cific crop (maize, soybean, and wheat from Fig. 1b) and

grassland areas, which dominate the landscape over the

Midwest and the Central Plains, are shown in Fig. 5. LAI

assimilation has a larger impact over the maize and

soybean areas compared to that over the wheat regions

and grasslands. The seasonal peak in the LAI time series

is generally in sync over the wheat and grasslands. The

primary impact of assimilation over these areas is to

adjust the amplitude of LAI. On the other hand, over

the maize and soybean areas, the seasonality and the

amplitude of LAI are both corrected by DA. The ex-

amination of the crop calendars of these crop types

(AMIS 2012) indicates that over the United States, the

harvesting season ofmaize and soybean occurs in the fall

and late summer months. This suggests that the OL

simulation estimates an early peak in the LAI season-

ality for these crops, which is corrected by the assimi-

lation. The harvests of the winter wheat, on the other

hand, occur during June and July, which is generally

consistent with the peak seasonality of LAI estimated

by theOL andDA introduces smaller phase corrections.

Similarly, as the seasonality of vegetation over grass-

lands is primarily driven by natural variability, smaller

changes to the phase of the LAI seasonality is intro-

duced by DA.

As seen in the evaluations of other water/carbon

variables in the following subsections, the adjustment of

the vegetation seasonality leads to significant improve-

ments over these crop areas. The adjustment of LAI also

leads to seasonal patterns in the root zone soil moisture

updates. Over the maize and soybean areas, the large

changes (mostly reductions) in root zone soil moisture

occur in the early fall time periods. The drier soil

moisture features persist later into the fall and early

winter time periods. Comparatively, over the wheat

areas and grasslands, smaller reductions in root zone

soil moisture are observed, because there are smaller

corrections to the phase of LAI seasonality in these

regions.

FIG. 6. RMSE differences (Wm22) of evapotranspiration from LAI assimilation relative to the OL integration, using four reference

datasets. The time periods in the RMSE comparisons are 2000–08, 2000–14, 2000–14, and 2000–08 for FLUXNETMTE, GLEAM, ALEXI,

and UW, respectively. The warm colors represent decreases in RMSE, and the cool colors represent increases in RMSE due to LAI DA.
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b. Evapotranspiration

The impact of LAI assimilation on modeled evapo-

transpiration fields is evaluated using four reference

datasets: 1) the gridded 0.58, monthly, FLUXNET

multi-tree-ensemble (MTE) product (Jung et al. 2009),

developed from upscaled eddy covariance tower mea-

surements of evapotranspiration (available from 1982

to 2008); 2) the 0.258, daily Global Land Evaporation

Amsterdam Model (GLEAM version 3.0a; Miralles

et al. 2011) data, a primarily passive microwave remote

sensing–based, Priestley Taylor evaporation model

product (available during 1980–2014); 3) the 4-km, daily

Atmosphere–Land Exchange Inverse (ALEXI; Anderson

et al. 2007), a thermal-infrared based evapotranspiration

product (available during 2001–15); and 4) the 5-km,

monthly MODIS-based evapotranspiration product from

University ofWashington (UW; Tang et al. 2009; available

during 2001–08). These products are derived from various

sources with different methodologies and have random

and bias errors of their own and are considered here for

the purposes of intercomparison.

Maps of RMSE differences between evapotranspira-

tion estimates from the OL and LAI DA integrations

[computed as RMSE (OL)minus the RMSE (DA)] from

the comparisons against the four reference datasets are

shown in Fig. 6. The assimilation has a positive, statis-

tically significant impact on the evapotranspiration es-

timates, with the RMSE decreasing in most parts of the

domain in all four comparisons. In particular, there

are systematic and consistent improvements over the

Central Plains, lower Mississippi, central California

valley, and parts of the Southeast. These spatial pat-

terns are generally correlated with the cropland areas

of Fig. 1. Specifically, in the comparisons with the

ALEXI and UW data, the evapotranspiration im-

provements are primarily observed over the agricul-

tural areas of maize and soybean, due to the changes

to the LAI seasonality from DA (Fig. 5) over these

areas. The use of fine-resolution thermal infrared re-

mote sensing data in ALEXI and UW data has been

shown to detect spatial variations of agricultural man-

agement impacts in prior studies (Tang et al. 2009;

Hain et al. 2015).

The mean seasonal cycle of evapotranspiration from

the OL and DA integrations (computing using all avail-

able years of each dataset during the 2000–17 time pe-

riod) stratified by four dominant vegetation categories

FIG. 7. Average seasonal cycle of evapotranspiration (Wm22) from the OL, DA, and the four reference datasets

stratified by the four key dominant vegetation categories.
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is shown in Fig. 7. The large differences in the evapo-

transpiration estimates across the reference dataset are

obvious in this comparison. The variation in mean evapo-

transpiration across the vegetation types is generally small

for FLUXNET MTE, whereas the other datasets show

larger variations. The magnitude of evapotranspiration

is larger over croplands and mixed forests and smaller

over grasslands and shrublands, except for FLUXNET

MTE. Over the croplands, the model OL has a phase lag

in the peak of the seasonal means. In the reference

datasets, the peak evapotranspiration is observed in July

whereas themodel runs show the peak in June. As noted

above, this is likely due to the misrepresentation of the

vegetation seasonality over agricultural areas. Assimila-

tion helps to increase the evapotranspiration in the late

summer months, consistent with the trends in the refer-

ence datasets. Over the other three vegetation categories,

the mean evapotranspiration signals are more in-phase,

suggesting that the natural variability is the dominant

factor in the determination of evapotranspiration. It can

be noted that the overall impact of DA is to increase the

magnitude of evapotranspiration relative to the OL,

particularly during the summer months.

c. Carbon fluxes

The impact of LAI assimilation on carbon fluxes is

evaluated by comparing the GPP and the NEE esti-

mates against reference data. While GPP represents the

total fixation of carbon through photosynthesis, NEE

refers to the GPP minus the carbon losses through res-

piration. Machine-learning-based upscaled estimates of

GPPandNEE from theFLUXCOMproject (Tramontana

et al. 2016; Jung et al. 2017), available during the time

period of 1980–2013, are used to evaluate the modeled

GPP and NEE estimates.

Improvements in RMSE of GPP and NEE relative

to the OL are shown in Fig. 8. The GPP estimates are

consistently improved over most parts of the domain,

except over a few areas such as parts of the Northwest

and regions near the Great Lakes. More prominent

improvements are seen in the lower Mississippi and

Midwest regions. The pattern of improvement over the

Midwest correlates well with the areas where maize

is cultivated whereas the improvements in the lower

Mississippi are primarily over the soybean areas

(Fig. 1b). Comparatively, smaller improvements in GPP

are observed over other crop areas such as wheat. The

improvement map of NEE shows more mixed areas

of improvements and degradations. While significant

improvements in NEE estimates are obtained over the

Central Plains and lower Mississippi through DA, as-

similation also leads to degradations over most of the

eastern United States. The areas of improvements in the

NEE fields are primarily correlated with the maize and

soybean agricultural areas over the Midwest and lower

Mississippi.

The average seasonal cycles of GPP and NEE from the

model runs and the FLUXCOM data for croplands and

grasslands are shown in Fig. 9. The model OL generally

underestimates GPP, which is corrected by the assimila-

tion. For NEE, the FLUXCOM estimates are positive,

whereas the model OL produces negative values. The

assimilation helps to correct these mismatches with the

largest improvements obtained in late spring and early

summer months. The assimilation also leads to increased

biases in NEE in the fall and winter months. Figure 9

indicates that most of the improvements in GPP and

NEE are primarily from the correction of biases in the

modelOL fields. Despite the improvements inNEE from

DA, it is obvious that both OL and DA simulations sys-

tematically underestimate NEE during the growing sea-

son, suggesting that improvements to the model physics

formulations may be necessary.

Solar induced fluorescence (SIF), part of the solar

radiation absorbed by chlorophyll and re-emitted as

fluorescence (Frankenberg et al. 2013; Frankenberg and

Berry 2018), has been cited in several studies as a func-

tional analog for GPP (Frankenberg et al. 2011; Guanter

et al. 2012; Sun et al. 2018). Remote sensing retrievals of

SIF are available from the Global Ozone Monitoring

Experiment-2 (GOME-2) aboard the MetOp-A satellite

FIG. 8. Improvements in RMSE (gm22 s21) of (top) GPP and

(bottom) NEE compared to the FLUXCOMdata as the reference,

during a time period of 2000–13. The warm and cool colors rep-

resent improvements and degradations from DA, respectively.
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(Joiner et al. 2014; Guanter et al. 2014). The correlation

of the GPP estimates from OL and DA integrations is

computed against the level-3, GOME-2 (version 27)

retrievals, available during 2007–18, similar to the ap-

proach used in Leroux et al. (2018). Figure 10 shows a

map of the improvements in the SIF–GPP correlation

with the assimilation of LAI. The impact of assimilation

is generally positive, with strong improvements observed

in the southeastern United States, parts of the Midwest,

southwest Mexico, and the central U.S. plains. The strong

influence of the agricultural areas is also evident in Fig. 10,

with statistically significant improvements in the SIF–GPP

correlations observed over the maize and soybean crop-

lands. This evaluation against the GOME-2 SIF retrievals

provide further confirmation of the improvements in the

modeled carbon fluxes from LAI assimilation, particularly

over agricultural areas.

d. Snow depth

As noted earlier, vegetation changes on the land sur-

face can have significant impacts on the snow evolution

through the interception of snow by the canopy and

modification of the surface albedo. These impacts are

evaluated by comparing the modeled snow depth fields

against three reference datasets: 1) the daily in situ mea-

surements from the Global Historical Climate Network

(GHCN; Menne et al. 2012); 2) the daily, gridded snow

depth analysis from the Canadian Meteorological Centre

(CMC; Brown and Brasnett 2010) available at 25-km

spatial resolution; and 3) the daily, gridded snow depth

analysis from NOAA National Weather Service’s Na-

tional Operational Hydrologic Remote Sensing Center

(NOHRSC) Snow Data Assimilation System (SNODAS;

Barrett 2003) available at 1-km spatial resolution. The

GHCN data are available during the entire simulation

FIG. 9. Mean seasonal cycle of (top) GPP and (bottom) NEE (gm22 s21) stratified for cropland and grassland

vegetation types during a time period of 2000–13.

FIG. 10. Improvements in correlation of solar induced fluores-

cence data fromGOME-2 with modeled GPP during 2007–17. The

improvement map is expressed asR(DA)minusR(OL). The warm

and cool colors represent improvements and degradations from

DA, respectively.
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time period of 1979–2017. Based on the quality control

procedures developed in previous studies (Kumar et al.

2014), a selected subset of the GHCN stations is used

here. The CMC and SNODAS comparisons encompass

a time period of 1998–2017 and 2003–17, respectively,

based on the availability of these datasets.

The evaluation of snow depth fields against these

datasets is shown in Fig. 11. The patterns in Fig. 11 in-

dicate that, overall, LAI assimilation leads to reduced

RMSE in the snow depth estimates. The improvements

are most significant over the Northwest, areas near the

Great Lakes, and Northeast. Notably, these patterns

of improvements are consistent in all three compari-

sons. The improvements in the snow depth fields are

primarily a result of the increase in snowmass due to the

changes in LAI. A representative example time series

over a region in the midwestern United States (shown

by the marked rectangle in Fig. 11c) is shown in Fig. 12.

To quantify the changes in snow depth fields from as-

similation, Fig. 12 shows the differences in the area-

averaged snow depth from DA, CMC, SNODAS, and

GHCN relative to the OL during the time period of

2008–12. The model OL has a significant dry bias in the

snow depth fields compared to the reference datasets.

This dry bias is improved by DA as the simulated snow

depth increases with LAI assimilation. It can be ob-

served that the increase in snow depth is closely tied

to the increase in LAI (also shown as a difference in

area-averaged LAI fields fromDA andOL). Compared to

the OL, the assimilation leads to a reduction in LAI during

the fall and an increase during the winter, spring and

summer months. The increase in LAI during the winter

months contributes to increased snow in the assimilation

integrations and is reflected as an improvement relative

to the reference datasets. Despite these improvements, the

snow depth estimates from the assimilation integrations

still include significant biases, particularly with respect

to SNODAS and GHCN. The spatial scale of these

products is a factor in these biases as SNODAS is gen-

erated at 1-km spatial resolution whereas the GHCN

measurements are available at point scales.

e. Terrestrial water storage

TWS represents an integrated measure of the changes

surface and subsurface water. Within Noah-MP, TWS is

defined as the sum of the soil moisture, groundwater

storage, snow, and canopy water content. The impact of

LAI assimilation on TWS is evaluated by comparing

against the TWS anomalies from the Gravity Re-

covery and Climate Experiment (GRACE; Tapley

et al. 2004) satellite. The GRACE product available from

the NASA Jet Propulsion Laboratory’s Tellus website

(https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-

land/) is used in the comparisons. This product is avail-

able on a monthly basis on 18 horizontal resolution grids

(Landerer and Swenson 2012) from 2003 to 2017 and is

based on the version RL05 spherical harmonics fields

produced by the University of Texas Center for Space

Research (CSR), Jet Propulsion Laboratory (JPL), and

German Research Centre for Geosciences (GFZ).

An improvement map of the correlation of the TWS

anomalies from the modeled fields and the GRACE

solutions is shown in the top panel of Fig. 13. As before,

the improvement map represents the difference be-

tween the correlations from DA and OL. The impact

from DA on TWS anomalies is small, except over a

few areas in the SGP, western Nebraska, and central

California valley, where significant improvements are

FIG. 11. Improvements in RMSE of snow depth (mm) compared

to (a) CMC, (b) SNODAS, and (c) GHCN data as the reference.

The time periods in the RMSE comparisons are 2000–17, 2003–17,

and 2000–17 for CMC, SNODAS, and GHCN, respectively.
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observed. A likely reason is that the assimilation im-

proves the representation of agricultural areas and the

related changes in increased water extraction and tran-

spiration. This is confirmedby examining an area-averaged

time series of TWS anomalies from the OL, DA, and

GRACE over Nebraska and SGP (Fig. 13). Over the

Nebraska region, the TWS anomalies from DA provide

a better match to the GRACE data than that from the

OL, except for the time period from 2009 to 2010. Similar

patterns are seen over SGP, where the DA-based TWS

anomalies are consistently closer to the GRACE esti-

mates, except for a few time periods in 2007 and 2009. It is

worth highlighting that the TWS anomaly improvements

are not due to bias improvements in one direction alone.

For example, over Nebraska, the TWS anomalies from

the model OL have a wet bias in 2007–08 and a dry bias

in 2010–13. Both these opposite biases are improved by

LAI assimilation. Similar patterns can also be observed

in the SGP time series where the dry and wet biases in

TWS anomalies (during 2003–11 and 2012–13, respec-

tively) are improved through assimilation.

f. Streamflow

Similar to TWS, streamflow represents an integrated

measure of the terrestrial water balance. The daily

streamflow data available from 1979 to 2017 from the

U.S. Geological Survey over 572 hydrologic basins are

used to evaluate the modeled streamflow estimates. As

noted in prior studies (Kumar et al. 2014, 2016), these

basins are identified as areas with minimal impact from

reservoir operations.

Figure 14 shows a map of improvements in Nash–

Sutcliffe efficiency (NSE) and RMSE in streamflow DA

expressed as a normalized information contribution (NIC).

The NIC, NSE, and RMSE values are computed as

NIC
NSE

5
(NSE

a
2NSE

o
)

(12NSE
o
)

, and (1)

NIC
RMSE

5
(RMSE

o
2RMSE

a
)

(RMSE
o
)

, (2)

where subscripts a and o represent the LAI DA and

OL, respectively. The NICNSE and NICRMSE, therefore,

represent a normalized measure of improvements in

NSE and RMSE, respectively, from DA as a fraction of

the maximum possible skill improvement.

Figure 14 indicates that LAI DA leads to improve-

ments in streamflow skill over several river basins,

including the upper Mississippi, Ohio, Columbia, up-

per Missouri, and South Atlantic. Comparatively, few

locations show degradations, which are primarily lim-

ited to California and lower Colorado. Further, larger

improvements in RMSE than those obtained in NSE are

seen in Fig. 14. It is notable that improvements in the

magnitude of streamflow (RMSE improvement map)

are obtained in similar areas where the correlations also

improve. Generally, LAI assimilation leads to drier

streamflow conditions (Fig. 2) and these changes lead

to more skillful streamflow estimates. These results

confirm the indirect, but positive benefit from the as-

similating LAI observations on streamflow estimates.

g. Influence of assimilation frequency

As noted earlier, the results presented above em-

ploy a DA configuration where daily interpolated es-

timates of LAI observations are used. This approach

is used as it was found to be beneficial over that

of assimilating LAI retrievals every 8 days. Table 1

provides a summary of the performance of the two DA

configurations for different variables. It can be noted

FIG. 12. Time series of differences in the area averaged snow depth (m) over the Midwest

region (marked by the rectangle) in Fig. 11c from DA, CMC, SNODAS, and GHCN relative

to the model OL during 2008–12. The right vertical axis shows a similar time series of dif-

ferences in the area averaged LAI between the DA and OL integrations.
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that in most comparisons, the daily DA configuration pro-

vides estimates that have better agreement with the refer-

encemeasurements. The improvements in the anomalyRof

surface and root zone soilmoisture aremarginal, whereas in

the ET comparisons, the 1-day DA configuration provides

systematically lower domain-averaged RMSE estimates

compared to those from the 8-day DA configuration.

Similar trends are seen for GPP, Snow depth and

Streamflow, where the 1-day DA configuration provides

improved estimates relative to that from the 8-day DA

configuration. For NEE, however, the 8-day configura-

tion provides a lower RMSE than that from the 1-day

FIG. 13. (top) Improvements in correlations of TWS anomaly from the data assimilation

integration during 2003–17 and (middle),(bottom) the area averaged time series of TWS

anomaly (mm) from OL and DA compared to the GRACE observations over the regions A

and B.
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configuration. The domain-averaged improvements

seen in Table 1 suggest that the approach of employing

temporally interpolated LAI values is reasonable.

4. Summary

Vegetation conditions on the land surface significantly

impact the regional and global water budget and the

variability of its components through the feedbacks and

interactions between the biosphere and the terrestrial

hydrosphere. Observations of vegetation conditions

capture both anthropogenic and natural changes and

disturbances on the land surface. Assimilation of such

observations of vegetation conditions into LSMs,

therefore, provides a way to incorporate the impact of

vegetation changes in terrestrial hydrological and bio-

sphere modeling.

This study presents the assimilation of remotely

sensed LAI observations using the dynamic vegetation

model of Noah-MP over the continental United States.

The model integrations are conducted using the con-

figuration of the NLDAS-2 environment, featuring

high-quality meteorological input datasets. A 1-day

EnKF algorithm is used to assimilate the MODIS

reflectance-based LAI retrievals from the GLASS

project. The model simulations are conducted during a

time period of 2000–17. The impact of assimilating

LAI on key water and carbon budget terms is evalu-

ated by comparing against a large suite of available

reference data products.

Overall, the assimilation has a positive and system-

atic impact on all water budget terms. When compared

with in situ measurements, there are small, but sys-

tematic improvements in surface soil moisture esti-

mates. The root zone soil moisture evaluations show

mixed results, though improvements are observed over

the Central Plains and the agricultural areas of the

United States. Systematic improvements in the evapo-

transpiration fields are observed when compared to

reference data products developed from tower, passive

microwave, and visible/infrared measurements. Though

there are significant biases across these products, the

spatial patterns of improvements are consistent and are

obtained primarily over agricultural areas. The assimi-

lation of LAI estimates is also found to improve the

snow depth estimates, which are primarily due to the

correction of a dry bias in the snow mass estimates in

the model OL. The assimilation generally leads to an

FIG. 14. Improvements in streamflow (top) NSE and (bottom)

RMSE shown as NIC using the USGS daily streamflow observa-

tions as the reference.

TABLE 1. Comparison of the domain-averaged skill metrics from theOL andDA configuration that uses the 8-day LAI values and theDA

configuration that employs interpolated daily LAI values, for different variables. A dash (—) indicates dimensionless units.

Variable Reference data Metric (units) OL DA (8 day) DA (1 day)

Surface soil moisture ISMN Anomaly R (—) 0.53 0.53 0.54

Root zone soil moisture ISMN Anomaly R (—) 0.48 0.48 0.49

ET FLUXNET MTE RMSE (Wm22) 15.1 14.1 13.9

GLEAM 17.3 16.7 16.1

ALEXI 32.2 31.1 30.9

UW 23.1 21.5 21.4

GPP FLUXCOM RMSE (gm22 s21) 1.83 3 1024 1.41 3 1024 1.32 3 1024

NEE FLUXCOM RMSE (gm22 s21) 6.46 3 1024 5.72 3 1024 6.15 3 1024

Snow depth CMC RMSE (mm) 64.9 64.0 63.8

SNODAS 78.6 76.9 76.9

GHCN 153.7 149.0 147.8

TWS GRACE Anomaly R (—) 0.45 0.47 0.48

Streamflow USGS RMSE (m3 s21) 23.2 22.9 22.7
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increase in LAI during the winter, spring, and summer

months (relative to the OL) allowing for reduced

snowmelt and improved snow simulations. The positive

impact of assimilation on the water budget quantifica-

tion is also confirmed through the evaluation of the

TWS and streamflow fields, both indicating improve-

ments through LAI DA.

In addition to the water budget, the impact of LAI

assimilation on carbon fluxes is evaluated by comparing

the modeled GPP and NEE fields against independent

datasets.When compared to themachine learning–based,

upscaled tower estimates, consistent improvements in the

GPP estimates from assimilation are observed. Compar-

atively, the NEE results are more mixed, with degrada-

tions noted over the eastern United States. The spatial

pattern of improvements in both GPP and NEE is found

to correlate strongly with the cropland areas. The im-

provements in GPP through assimilation are also con-

firmed through an independent comparison against the

GOME-2–based SIF retrievals. Similar significant im-

provements in the representation of vegetation cycles

through the assimilation of LAI assimilation are re-

ported in Albergel et al. (2018).

The comprehensive evaluation of the model integra-

tions presented in the article indicates that the assimi-

lation of LAI data is beneficial in simultaneously

improving the key water and carbon budget compo-

nents. Due to the use of high-quality NLDAS-2 mete-

orological inputs, the model OL (based on previous

versions of Noah LSM) generally has high skill (Kumar

et al. 2014, 2019), particularly in capturing the impacts of

natural variability. The fact that the incorporation of

LAI observations further improves the NLDAS-2–

basedOL implies that assimilation is helpful in developing

better representation of vegetation changes on the land

surface, which are not always driven by meteorological

variability. As seen in the results, most significant im-

provements in the soil moisture, evapotranspiration,

TWS, streamflow, GPP, and NEE fields are obtained

over the agricultural areas in the Central Plains and

Midwest, from corrections to the vegetation seasonality

over crop areas.

Overall, assimilation leads to increasing the LAI in

most parts of the domain, which leads to increased

evapotranspiration, snow mass and GPP and reduced

soil moisture and runoff. On the other hand, over the

Midwest and parts of the Central Plains, evapotranspira-

tion andGPP reduce and runoff and soilmoisture increase,

as assimilation leads to an overall reduction in LAI over

these areas. It is worth noting that the assimilation im-

provements are obtained over these areas regardless of

the bias changes introduced by LAI assimilation. Similar

mixed changes in the biases are also observed temporally.

For example, when theTWS time series over the regions of

the central plains are compared with GRACE, the as-

similation provides both drying and wetting changes in the

TWS, while providing a better match to the GRACE ob-

servations. These findings confirm that the benefits from

LAI assimilation are not simply due to the correction of

fortuitous biases in the model OL.

It can be noted that the assimilation configuration

used in this manuscript only updates the leaf biomass

variable. In reality, contributions of the stem, wood, and

rootmass also have significant roles in the determination

of vegetation changes. Improved and discretized repre-

sentation of variables such as rooting depth is needed for

accurately capturing the soil moisture and vegetation

biomass relationships. Model development efforts cog-

nizant of data assimilation requirements will be neces-

sary for realizing the full potential and information

content inherent in remote sensing measurements.
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