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On Quantifying Water Quality 
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Despite decades of research demonstrating links between many agricultural practices and water quality, the ability to predict water quality on 
the basis of changes in soil health remains severely limited. By better understanding how soil health affects downstream water quality, researchers 
and policymakers could prioritize different conservation practices while exploring more innovative soil health management strategies. Focusing 
on the Great Lakes region, we describe the value and challenges of different approaches to linking soil health and water quality, specifically 
applying nitrogen and phosphorus mass balances and adapting simulation models to better incorporate changing soil health conditions. We 
identify critical research needs, including paying greater attention to a broad suite of conservation practices and to biological indicators of 
soil health. We also discuss key barriers to farmer adoption of conservation practices from field to national scales, highlighting that improved 
scientific understanding alone is insufficient to drive widespread change.
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Globally, widespread nutrient losses associated   
 with more intensive and consolidated agriculture 

threaten environmental sustainability and farm viability 
(Carpenter et  al. 1998, Basso et  al. 2019). Excess applica-
tions of nitrogen (N) and phosphorus (P) through chemical 
fertilizers and animal manure exceed the proposed bound-
aries for resilient Earth systems (Steffen et  al. 2015) and 
contribute to both soil and water quality problems (NRC 
1993). Mounting frustration from the general public, who 
suffers the downstream externalities of modern agricultural 
production, has helped fuel the current interest in manage-
ment practices that maintain productivity while improving 
environmental outcomes. A growing group of practitioners 
and researchers recognize that prioritizing practices that 
build soil health and retain N and P in agroecosystems offers 
a viable path to realizing water quality goals and improving 
long-term farm viability. Agricultural stakeholders would 
therefore benefit from coalescing around research and 
policy needs to advance soil health practices rather than 
maintaining the status quo, which will conceivably lead to 
regional water quality regulations. Incorporating soil health 
metrics into predictive water quality models is a critical need 
that would help translate decades of dialogue into action.

What, then, is soil health? (See box 1.) The term refers to 
the continued capacity of soil to function as a vital living eco-
system (NRCS 2018) and has become widely used over the 
past two decades. For the US Department of Agriculture’s 
(USDA) Natural Resources Conservation Service, soil health 

represents a fundamental shift from striving to simply 
reduce soil erosion to building healthy agroecosystems and 
is helping to identify and address new knowledge gaps. The 
emphasis for building healthy soils is to promote biological 
activity. For instance, management practices that minimize 
disturbance (i.e., tillage) and provide diverse, continuous 
inputs of carbon (C) to soil can protect habitat by stabilizing 
soil structure and can also allow for reductions in external 
inputs. Healthy soils promote natural biogeochemical pro-
cesses that enhance functions, such as nutrient cycling and 
availability to crops and water holding capacity, which help 
prevent erosion and runoff while boosting long-term pro-
ductivity (Doran 2002, Karlen and Rice 2015).

Although soil quality typically describes underlying soil 
characteristics and processes (Wander et al. 2019), soil health 
emphasizes interactions among soil biological, chemical, and 
physical properties that indicate a soil’s capacity to provide 
key functions. Importantly, soil health assessments are based 
on multiple ecological functions rather than being focused 
solely on crop productivity, which was the historical basis 
for evaluating soils. In 1993, the National Research Council 
(NRC) challenged the scientific community to jointly 
address soil and water quality goals (NRC 1993), recogniz-
ing that healthy soils are vital for sustaining environmental 
quality and food security. The NRC report also addressed 
the potential for using predictive models to identify strate-
gies to improve soil health. Since the 1993 NRC report was 
published, public interest in and support for soil health 
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Box 1. What is soil health?

Soil health builds on a solid foundation that reflects numerous complementary contributions, including soil conservation, soil carbon 
management, soil security, ecosystem services, and prevention of soil degradation (Karlen et  al. 2019). Soil health is governed by 
interactions between ecosystem state factors and farm management decisions. With regard to farm management, soil health reflects a 
continuum of practices (figure 1). Soil health assessments integrate biological, chemical, and physical indicators of ecosystem proper-
ties and processes (figure 2), because they affect critical soil functions and influence ultimate management goals. The many functions 
of soil include biological activity; soil water infiltration, retention, and release; storing and cycling nutrients; and sequestering carbon.
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Figure 1. Conceptual diagram illustrating how agricultural management 
practices can influence soil health. Source: Adapted with permission from 
Karlen and colleagues (2019).
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Figure 2. A soil health assessment framework based on integrated scoring 
functions has been used globally (Karlen et al. 2019) with a variety of 
indicators (e.g., aggregate stability, active carbon) that respond to changes 
in management relatively quickly and are cost effective to measure 
(Moebius-Clune et al. 2016). Soil health assessments are used to determine 
how various soil functions (e.g., water infiltration, nutrient retention) affect a 
specific management outcome (e.g., improved water quality, crop yields). The 
ultimate aim is to maintain well-functioning, living, and dynamic soil resources 
that sustainably meet food security goals. Source: Adapted with permission 
from Andrews and colleagues (2004).
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assessments have grown significantly. Because of advances 
in computing, monitoring, and research, our understanding 
of soil health processes (Veum et  al. 2014, Moebius-Clune 
et al. 2016, Fine et al. 2017) and the predictive capabilities of 
models have also both increased significantly. We also have 
more advanced knowledge of the complex links between 
management decisions and soil health (Hurisso et al. 2016, 
Moebius-Clune et al. 2016). However, our ability to predict 
water quality improvements because of specific changes in 
soil health remains a critical research gap for integrating soil 
health into state and regional nutrient management plans 
(figure 3), despite decades of research efforts and awareness 
of the need to address eutrophication and hypoxia. By better 
understanding how in-field soil health affects downstream 
water quality, researchers and policymakers could prioritize 
best management practices while exploring more innovative 
soil health strategies for mitigation of harmful algal blooms 
(Karlen and Rice 2015).

In the present article, we identify pressing research needs 
to advance understanding of links between soil health 
and water quality. To narrow the challenge, we focus on 
the Lake Erie watershed. Located in the US Great Lakes 
Region, Lake Erie has approximately 25,740 square kilome-
ters of freshwater that is experiencing intense eutrophica-
tion, increasingly variable weather patterns, and harmful 
algal blooms (Michalak et al. 2013, Brooks et al. 2016). The 
EPA’s domestic action plan (EPA 2018) for the Lake Erie 
watershed specifically identifies the need to prioritize soil 
health in future conservation efforts. We connect soil health 
and water quality modeling perspectives to summarize cur-
rent knowledge and highlight critical gaps in our ability to 
link soil health management practices to watershed-scale N 
and P reductions.

Understanding soil health: Advances and 
research gaps
As was shown in box 1, soil health assessments use chemical, 
physical, and biological indicators to assess soil functional 
status (Veum et al. 2014, Fine et al. 2017). This more com-
prehensive evaluation distinguishes soil health assessments 
from traditional soil tests (primarily used to determine lime 
and fertilizer inputs) that focus on physiochemical metrics 
such as pH and soil nutrient concentrations (figure 3; e.g., 
Doran and Zeiss 2000, NRCS 2018). Soil organic matter is 
the source of C in soil, which fuels the soil food web and is 
therefore tightly coupled to biological and physical proper-
ties. For instance, physical indicators of soil health, such 
as aggregate stability and soil structure, are influenced by 
plants and microorganisms (Lehmann et al. 2017). Building 
on an extensive body of research on soil biology in agro-
ecosystems (e.g., Uphoff 2005), many of the new soil health 
indicators assess biological processes. These include C 
and N mineralization rates, active C, extracellular enzyme 
activities, phospholipid fatty acids, and particulate organic 
matter. Mineralization rates, particulate organic matter, 
and other indicators of relatively rapidly cycling fractions 
of soil organic matter (SOM) are critical for understanding 
N and P cycling (Marriott and Wander 2006, Hurisso et al. 
2016). This is because total SOM is not an ideal indicator 
of soil nutrient availability, given that the largest fractions 
of SOM turn over slowly (Marriott and Wander 2006). Soil 
health assessments, then, are important for realizing water 
quality goals because a broad suite of soil properties and 
processes, including SOM and microbial activity, influence 
water infiltration and N and P availability, thus contributing 
to overall soil function. Numerous agricultural management 
practices can either improve or impair these soil indicators 
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 Figure 3. A conceptual diagram illustrating the complex links relating management, soil health, and water quality. The 
dashed lines represent the largest knowledge gaps.
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and, consequently, soil health (box 1; Moebius-Clune et al. 
2016). In watersheds such as Lake Erie, soil degradation (i.e., 
decreased soil health) due to intensive management prac-
tices (e.g., excessive tillage, fertilization, irrigation) increases 
the potential for water pollution and ultimately decreases 
long-term farm productivity.

Two dominant global drivers of soil health decline, soil 
erosion and the loss of SOM, are largely the result of inten-
sive management practices focused on short-term yield 
goals that lead to insufficient C input, excessive crop residue 
removal and tillage, limited crop rotation diversity, and poor 
drainage control. In fact, several decades of research have 
assessed how agricultural management affects soil processes 
at various scales (i.e., plot, field, farm, catchment, water-
shed). For instance, 18 long-term (i.e., from decades to more 
than a century) cropping systems experiments in the United 
States have been incorporated into the USDA Agricultural 
Research Service’s (USDA-ARS) Long-Term Agroecosystem 
Research network, which is now coordinating experimental 
efforts across sites to determine general characteristics of 
sustainable agroecosystem management (Spiegal et al. 2018). 
Individually, these experimental sites have identified organic 
nutrient sources; reduced or no-tillage practices; reduced 
chemical inputs, seasonal, and overwintering cover crops; 
and integrated perennial species into more diverse and 
extended crop rotations as effective strategies for improving 
soil functions and reducing potential for nutrient losses (e.g., 
Drinkwater et al. 1998, Liebman et al. 2013, Robertson et al. 
2014). However, ongoing research is essential for refining 
the development and interpretation of soil health indica-
tors on the basis of reproducible methods that are tailored 
to regional conditions (Wander et al. 2019). More research 
is also needed to fully understand the effects of soil health 
practices on P export and the partitioning of losses as soluble 
or particulate P (International Joint Commission 2018). 
Furthermore, although it is well documented that particular 
combinations of these practices can maintain or increase 
crop yields and provide water quality benefits at specific 
locations, because of variation in soil types, climate, specific 
management practices, and other variables across sites, there 
is a lack of generalizable knowledge to predict how manage-
ment drives short- and long-term changes in soil health and 
water quality outcomes at scale. Such predictive knowledge 
should play a stronger role in policy development, including 
for improved state and regional nutrient management plans.

Many soil health functions may link agricultural produc-
tion and N and P loading. We focus on hydrologic capacity, 
N and P retention and cycling through SOM and associ-
ated biological activity, and sustaining crop productivity 
as the most immediate and relevant functions within the 
agricultural sector (figure 3). Hydrologic capacity increases 
water infiltration and storage, which, in turn, reduces sur-
face runoff and leaching from agricultural fields. Greater 
retention in SOM and more efficient cycling are especially 
important for N and P because of their importance to crop 
productivity and their roles in the eutrophication of aquatic 

ecosystems. Finally, increased stability and resilience of crop 
yields is essential not only to meet food, feed, fiber, and fuel 
demands under more variable climate conditions but also 
to ensure that farmers have sufficient income to implement 
new practices and long-term management changes.

Several critical research gaps should be addressed to enable 
current models to connect soil health indicators to outcomes 
including sustained or increased crop yields and improve-
ments in water quality. Despite a general understanding of 
the links between agroecosystem management practices 
and soil health indicators and those between management 
and water quality (e.g., the integration of best management 
practices into water quality models), we lack comprehensive 
data sets specifically linking soil health measurements to 
water quantity and quality. One example of a relevant effort 
is the Agricultural Collaborative Research Outcomes System 
being developed by the USDA-ARS (Delgado et al. 2018) to 
link data from several projects including the Greenhouse 
Gas Reduction through Agricultural Carbon Enhancement 
Network, Resilient Economic Agricultural Practices, and the 
Nutrient Use and Outcome Network. Such comprehensive 
data sets will ultimately enhance our ability to quantify and 
predict water quality outcomes at watershed scales associ-
ated with different soil management practices that directly 
influence soil health (figure 4).

Understanding and modeling links among 
management, soil health, and nutrient pollution
Along with an improved scientific understanding of soil 
health dynamics, the application of ecosystem assessments 
in agricultural landscapes has also increased. This is a vital 
first step, because it is at field and landscape scales that 
links among agricultural management decisions, soil health 
response, and water quality outcomes must be quantified. 
Ecosystem-based approaches are therefore necessary to 
account for links between soil health status and water quality 
outcomes if appropriate, high-quality data can be compiled. 
We discuss two key approaches, mechanistic models and N 
and P mass balances, which can be adapted and integrated 
in novel ways to make these links and address this complex 
problem.

Mechanistic models. A number of mechanistic models are 
available to predict the impacts of best management prac-
tices on N and P losses from agricultural fields or their 
effects on downstream water quality. Our article is not 
intended to be exhaustive but is, instead, limited to a subset 
of models that are commonly applied to evaluate agricultural 
management practices: the soil and water assessment tool 
(SWAT) model (Arnold et  al. 2012), the century/daycent 
model (Parton et al. 1998), and the agricultural policy/envi-
ronmental extender (APEX) model (Williams et  al. 1998). 
The latter is the model underlying the Nutrient Tracking 
Tool, a decision support tool being promoted in the Great 
Lakes Region for water quality tracking and trading pro-
grams. Each of these models has been applied to simulate 
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soil health practices (e.g., Wang et al. 2008, Campbell et al. 
2014, Scavia et al. 2017).

These models have relatively robust links among soil 
physical properties, management practices (i.e., reduced 
tillage), and water quality. To some extent, these models 
also link soil chemical properties and water quality, but that 
is still only a partial understanding of soil health, which 
integrates physical, chemical, and biological properties and 
processes. Therefore, despite decades of model development 
and in-field research trials, the ability to model the impacts 
of a broad suite of conservation practices on soil health and 
water quality outcomes is limited. This is particularly the 
case for less common conservation practices, such diversi-
fied crop rotations and the use of legume N sources, which 
are also the practices that long-term experiments suggest 
have the greatest promise for mitigating water pollution. 
Several factors contribute to this limitation, including a 
smaller body of literature on diversified management when 
compared with low-diversity row crop systems; limited data 
linking practices to water quality at larger spatial scales 
such as watersheds (cf. Randall et  al. 1997); and a limited 
capacity to model mechanistic links among management, 
soil health properties, and water quality. Furthermore, many 
complex plant–microbe–soil interactions that drive N and P 
cycling in farm fields and at larger scales are not fully under-
stood. Biological indicators of soil health provide a wealth 
of knowledge about soil function; however, the ability to 
directly link these indicators to management recommenda-
tions for improved water quality is a complex and important 
research need. Consequently, new bridges are needed among 
scientists quantifying biological, chemical, and physical 
aspects of soil health and field and watershed modelers.

In general, each of these models can simulate ecosystem 
properties and processes that are closely aligned with the 
concept of soil health, including rainfall infiltration or run-
off, soil water content, evapotranspiration, crop growth as a 

function of water and nutrient uptake, 
litter decomposition, SOM cycling, min-
eralization of nutrients, and nutrient 
export. The models are distinguishable 
by their intended scale of application 
(i.e., SWAT is generally applied at the 
watershed scale, APEX at field or small-
watershed scales, and century/daycent 
at the field scale), and by specific sub-
modules that constitute different relative 
strengths. For example, century/daycent 
offers a relatively advanced simulation of 
C and N gas fluxes and SOM dynamics. 
As a result, SWAT and APEX modelers 
have incorporated century/daycent sub-
models to simulate changes in SOM and 
N gas (Izaurralde et al. 2006, Zhang et al. 
2013, Yang et al. 2017).

Although the transformations of 
N and P are complex and different 

(e.g., adsorption of mineral P to soil particles, whereas min-
eral N is more soluble), each model simulates these chemical 
and physical processes and can provide reasonable projec-
tions of system outcomes as a consequence of individual 
components, processes, and their interactions. For example, 
measured and modeled outcomes of cover crops or buffer 
strips on runoff or leaching—and, therefore, the transport of 
contaminants to surface- or groundwater bodies—are often 
in good agreement (e.g., Singer et al. 2011). Many modeling 
studies conducted in the Lake Erie watershed have predicted 
improvements in water quality with practices such as no-
tillage, filter strips, and use of cover crops (e.g., up to 18% 
reductions in total N and P loads), but their results suggest 
that combinations of best management practices are needed 
to achieve more substantial reductions in N and P loading 
(Bosch et al. 2013, Smith et al. 2015). Consequently, mecha-
nistic models are important tools to clarify how conserva-
tion practices affect N and P losses. However, most modeling 
studies in the Lake Erie region were validated with limited 
field observations, consider a limited range of best manage-
ment practices, and lack data linking different management 
strategies to changes in soil health.

To help advance the science of soil health and water 
quality modeling, we note common limitations within the 
three models in their representation of response to known 
soil health practices (e.g., cover crops, reduced tillage, crop 
rotation, perennial crops), changes in soil health indicators, 
and nutrient loss. Specifically, the models currently lack 
detailed simulation of biological processes such as microbial 
community composition and diversity, extracellular enzyme 
activities, or measurable SOM pools, which are important 
indicators of soil health. In addition, biological processes are 
restricted to the topsoil (i.e., up to 30 centimeters) in most 
models, whereas field studies have shown that management 
can substantially alter subsoil SOM and affect nutrient 
cycling (e.g., Bell et al. 2012). Another concern is that many 

Management 
strategies/decisions

Soil properties (i.e., 
changes in soil health)

Creates management 
decision feedback loop

Water quality

Figure 4. Links between farm management practices and soil properties and 
between management and water quality (the green arrows), have been fairly 
well characterized, particularly at plot and field scales. However, the ability 
to quantify and predict water quality outcomes at watershed scales associated 
with different soil health indicators (the orange arrow) is lacking.
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models include simplistic representations of macropore flow, 
which is known to be influenced by management practices 
and can significantly affect N and P losses, especially in fine-
textured, artificially drained soils within the Western Lake 
Erie Basin. To keep the models manageable, operational, 
and therefore somewhat simplistic, many also exclude repre-
sentation of some important links and interactions between 
system components or processes. For example, although 
these models can predict N and P loss as a consequence of 
multiple soil physical properties (i.e., bulk density, available 
water capacity, and hydraulic conductivity), they generally 
do not simulate dynamic changes and temporal fluctuations 
that are known to occur in response to various soil health 
practices, although the APEX model offers an option to 
dynamically simulate available water capacity because of 
changes in SOM. Overall, these models do not simulate 
some very important soil health indicators and likely ignore 
important mechanisms by which soil health practices influ-
ence N and P losses from agricultural fields and landscapes. 
This is not an insurmountable barrier, given that simulation 
model development is an ongoing process.

To advance simulation-modeling science and better pre-
dict soil health status and potential effects on water quality, 
we suggest two broad strategies for model improvement. 
First, given that mechanistic models currently input soil 
health indicators (e.g., bulk density and available water 
capacity) as static values prior to model execution, those 
parameters could be amended prior to model execution 
to improve predictions of how soil health practices may 
influence the overall system. This approach could reduce 
the overall simulation bias, but seasonal or daily changes 
would not be correctly represented. Furthermore, this would 
require users to estimate the changes in parameters prior 
to setting up the simulation, which is time consuming and 
reduces the ease of using a model. A second approach would 
be to modify the mechanistic models (i.e., source code 
change) to force inclusion of soil health indicators using 
either empirical or mechanistic equations. This is a model 
improvement task that will require intensive measure-
ment data, understanding of the processes to derive equa-
tions, and consensus among researchers and practitioners 
regarding which practices and soil health parameters are 
most important and influential on the desired outcome 
(i.e., improved water quality). As a result, we do not recom-
mend the explicit simulation of all processes germane to soil 
health. For example, forcing the simulation of detailed soil 
microbial processes in the SWAT model is highly unlikely 
to have a meaningful impact. However, new generations 
of SOM models include microbial biomass or activity and 
other measurable SOM pools with differing turnover times 
and also consider greater soil profile depths (e.g., the MEMS 
model; Robertson et al. 2019). Other cropland models bet-
ter capture spatial and temporal dynamics of soil hydraulic 
properties and their effects on multiple soil N and P pools 
in response to management practices (e.g., the SALUS 
model; Basso et  al. 2006). Furthermore, integrating these 

models into watershed models would better represent N and 
P cycling dynamics that link soil health with water qual-
ity outcomes. Model evaluation and comparison exercises 
need to be performed to balance the number of processes 
represented in each model and to improve accuracy by 
including the most important processes. In addition to 
determining how to link biological indicators of soil health 
to watershed models, our suggested top three processes to 
be included and tested are the direct effects of tillage and 
soil compaction on soil bulk density and soil hydraulic 
parameters (e.g., available water capacity, macropore frac-
tion, and hydraulic conductivity), the impacts of SOM on 
soil bulk density and soil hydraulic parameters, and SOM 
dynamics in deep soil (current models only simulate SOM 
in topsoil). Taken together, these suggested amendments to 
mechanistic models would provide a better understanding 
of how soil health practices affect nutrient losses and water 
quality. There are other model improvements, not directly 
related to soil health indicators, which would improve simu-
lated water and nutrient flows. For example, the models may 
be improved by replacing their one-dimensional hydrology 
submodel with a three-dimensional one. Together with our 
suggested improvements for soil health indicators, such 
adaptions to these models would provide more accurate pre-
dictions to inform management and policy decisions.

Nutrient mass balance: An ecological concept and indicator of farm 
nutrient losses. Along with improved mechanistic models, 
applying nutrient mass balances at multiple spatial scales 
can provide data that connects management decisions (i.e., a 
transition toward soil health) and potential outcomes for 
water quality. Mass balances are simple quantifications of 
complex nutrient cycling processes, calculated as the sum 
of nutrient inputs minus harvested outputs for a bounded 
system. They have been widely applied to identify N and 
P surpluses across fields, farms, watersheds, and other scales 
since their development in ecosystem ecology (Bormann 
and Likens 1967). Mass balance is a robust, ecosystem-based 
indicator of potential N and P losses where inputs of either 
nutrient have exceeded removal in crop harvests over time 
(Drinkwater and Snapp 2007, Robertson and Vitousek 2009, 
McLellan et al. 2018).

At watershed and regional scales, mass balance models 
have shown that net anthropogenic N and P inputs closely 
predict loads of those nutrients in rivers that cause fresh-
water or coastal marine eutrophication (Caraco and Cole 
1999, Howarth et al. 2012, Goyette et al. 2016). Application 
of synthetic fertilizers and manure for crop production is a 
primary source of these nutrient inputs. For specific lakes, 
the relationship between external P inputs and water quality 
is also well documented (e.g., Smith et al. 2006) and shows 
the need to reduce P fertilizer inputs to reduce losses (Han 
et  al. 2012, Kara et  al. 2012). However, many watersheds 
in the Great Lakes region have stored soil P (i.e., legacy P) 
resulting from decades of P inputs that exceeded P removal 
in crop harvest (International Joint Commission 2018). For 
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such nutrient saturated agroecosystems, it may take years for 
P loads to decrease to desired levels, even if inputs are cur-
tailed (Meunich et al. 2016). Similarly, we acknowledge that 
even if soil health practices are widely adopted in the near 
term, there will likely be a delay for realizing water quality 
improvements in the Lake Erie watershed.

Mass balances can also serve as indicators of N and P pol-
lution from cropping systems at smaller spatial scales (Zhang 
et  al. 2015, McLellan et  al. 2018). Although researchers in 
agronomy and ecology have quantified N and P balances of 
varying complexity for decades, partial field- and farm-scale 
N and P balances are an underused tool for linking manage-
ment to both soil health and water quality outcomes. Partial 
field- and farm-scale balances focus on the largest nutrient 
flows managed by farmers (figure 5) and do not include 
specific nutrient loss pathways or complex internal cycling 
processes (Robertson and Vitousek 2009). Although they are 
relatively simple, N and P balances are useful for compar-
ing management systems across working farms in a region 
and for linking management strategies to environmental 
performance (e.g., Basso et  al. 2019); however, few studies 
have applied balances to assess a wide range of conservation 
strategies, such as diversified crop rotations. One study on 
95 farms in the Corn Belt showed that rotations with legume 
N sources and perennial forages had the most efficient N 
balances (Blesh and Drinkwater 2013).

To use N and P mass balance as proxies for N and P 
losses from fields, it is necessary to assume a steady state 
for the SOM pool. Not accounting for internal nutrient 

cycling dynamics assumes that changes in total soil C, N, 
and P stocks are minor relative to the large nutrient flows 
managed by farmers (e.g., fertilizer or manure inputs and 
removal with harvested crops) and the corresponding N 
and P surpluses. This assumption may not hold if SOM is 
changing relatively quickly in a field. For instance, accu-
mulation of particulate organic matter pools and increases 
in microbial respiration in response to adoption of certain 
soil health practices would mean that SOM is a source of N 
and P in a partial balance that is unaccounted for. However, 
the steady state assumption is typically valid for farms with 
relatively stable management histories (e.g., 5 or more years), 
particularly if the balances are tracked over complete crop 
rotation cycles or longer (McLellan et al. 2018). In addition, 
changes in soil health, such as the accumulation of SOM 
pools, should ultimately allow for reductions in external N 
and P inputs to soil, because of greater microbial activity and 
internal nutrient cycling capacity (Drinkwater and Snapp 
2007, Hurisso et  al. 2016), eventually balancing nutrient 
budgets and improving water quality outcomes (Blesh and 
Drinkwater 2013).

Partial N and P balances could be readily applied to 
estimate the expected water quality outcomes of different 
soil health practices by collecting data on N and P inputs 
and harvested exports from groups of farmers that have 
adopted these practices. This is important because soil 
health practices may be insufficient for mitigating N and P 
losses if they are not accompanied by reductions in external 
N and P inputs. Mass balances are a useful tool for assessing 

FARM OR FIELD

NOy
deposition

Fertilizer

Manure, Feed, Animals Harvested crops or 
livestock products

Figure 5. Farm- or field-scale N and P mass balances are calculated as the sum of N or P inputs to a farm or field, minus 
the N or P removed from the farm or field with harvested crops for a complete crop rotation or longer. N and P surpluses 
are indicators of N and P losses.
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potential for N and P losses on the basis of data that are 
relatively easy to access (McLellan et al. 2018). Indeed, farm-
scale nutrient balances have been applied to environmental 
monitoring of agriculture in Europe (Oenema et  al. 2003) 
and have also been integrated into policies to decrease N 
balances at regional and national scales (OECD 2013, EEA 
2017). However, they have not been applied as a policy tool 
in the United States, in part because of agrienvironmental 
policies that prioritize economic incentives over regula-
tion (Potter and Wolf 2014). Despite this, there is recent 
interest in their application to voluntary conservation or 
certification schemes in the United States (McClellan et al. 
2018). Finally, a critical research gap is the need to integrate 
on-farm soil health assessments with ecosystem approaches 
such as field- and watershed-scale nutrient balances to bet-
ter understand relationships between management practices 
focused on building soil health and the potential for N and 
P losses across scales. These relationships can be further 
refined through collaborations with scientists applying the 
predictive models described above.

Farmer adoption
Academic efforts to draw stronger connections among soil 
health, N and P mass balances, and water quality models may 
prove useful for policy developers and land use planners, but 
they will not directly translate into on the ground decision 
changes by farmers. Simply providing more accurate infor-
mation and better predictive models will have a minimal 
impact for on-farm decisions because of a suite of social–
ecological factors that constrain farmer adoption of conser-
vation practices at larger scales (Stuart and Gillon 2013). This 
is especially true for the diversified practices that cropping 
systems experiments suggest hold the most promise for miti-
gating N and P losses, which would represent transformative 
changes for many grain and livestock farms. Indeed, despite 
decades of promoting fairly common conservation practices, 
overall farmer adoption remains low throughout the Corn 
Belt. For example, cover crops are currently being used on 
less than 3% of planted acres and less than 20% is being man-
aged using no-till practices (USDA 2017).

At the farm level, some farmers dispute the potential 
impacts of different management practices on water quality, 
whereas others accept responsibility but are not acting. For 
instance, Floress and colleagues (2017) noted that half of 
their study participants in Indiana did not believe that fertil-
izer was a significant contributor to water quality impair-
ments, and farmers in Saginaw Bay, Michigan, attributed 
urban sources of water pollutants as more responsible for 
poor water quality than agricultural sources (Eanes et  al. 
2017). Similarly, even though a study in Iowa (Karlen et al. 
2005) confirmed that using a late-spring soil nitrate test 
for corn N fertilizer recommendations could significantly 
reduce N losses in drainage water, concerns about the 
increased risk caused farmers to revert to prestudy fertil-
ization practices and therefore negate documentable water 
quality improvements realized during the project. The fear 

of increased production risk may also explain why 55% of 
the farmers in the western Lake Erie basin reported a will-
ingness to use cover crops, but the current adoption rate is 
only 30% (Wilson et al. 2019).

Research on cover crop adoption has identified numer-
ous barriers, which are relevant to adoption of soil health 
practices generally, at scales ranging from individual farms 
to national policies. These constraints include difficulties 
of establishing cover crops into highly productive corn–
soybean rotations (e.g., a short period for cover crop 
growth between main crops), the cost of obtaining seed, 
and economic incentives in national farm policy, including 
crop insurance schemes that maintain high-input crop-
ping systems (Blesh and Wolf 2014, Roesch-McNally et  al. 
2017). For farmers who are willing but not yet using cover 
crops and other recommended conservation practices, the 
biggest barrier is often perceived efficacy. Efficacy reflects 
both a farmer’s confidence in their ability to implement the 
practices successfully and their belief in the effectiveness of 
the recommended practices (Gardezi and Arbuckle 2019, 
Wilson et al. 2018, 2019). The reasons efficacy is low differ 
for each particular practice but generally have to do with 
a range of challenges including short-term costs, weather-
related implementation problems, and perceived complexity 
of the practice. Moving forward, there is a need to build 
farmer efficacy more broadly.

One option to address this challenge at the farm scale 
would be through interactive decision support tools that 
capitalize on N and P mass balances and improved mecha-
nistic models. Such tools could allow individual farmers to 
assess the effectiveness of particular practices on a field by 
field basis, so that the recommendations are personalized 
as opposed to randomly allocated at a watershed scale. For 
an individual farmer, these tailored management plans may 
improve adoption of the soil health practices rooted in a 
particular support tool. However, models need to accurately 
capture the dynamics of soil health to build confidence 
in the proposed solutions. Finally, supporting widespread 
transitions to soil health practices on farms will also require 
reassessing current farm bill and state-led conservation 
incentive programs for their utility in driving long-term 
management change within agriculture.

Conclusions
Soil health is increasing in importance across the agricul-
tural sector because of narrowing profit margins and a 
desire among producers and consumers to sustain soil and 
water resources for future generations. To make meaningful 
change in conservation we must couple scientific efforts to 
assess soil health with mechanistic modeling of soil processes 
and water quality. Specifically, we identify several immediate 
research needs. First, models may be modified to include 
processes important to soil health using either empirical 
or mechanistic equations. Such improvements will require 
robust investments in data collection and synthesis for 
model validation, particularly for the newer indicators of soil 
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health that reflect complex biological and physical processes 
in agroecosystems. Second, future research should integrate 
on-farm soil health assessments with field- and watershed-
scale N and P balances. This research will prove critical 
for understanding the relationship between building soil 
health through conservation practices and N and P losses, 
with potential for direct application as policy tools. Finally, 
despite decades of awareness among stakeholders that eutro-
phication presents a global sustainability challenge, minimal 
progress has been made, in large part because of social and 
economic barriers within the agricultural sector. Therefore, 
in addition to advancing the scientific goals outlined in the 
present article, there is an urgent need to develop improved 
decision support tools for farmers alongside rethinking our 
current approach to conservation incentive programs, to 
increase the likelihood of management practice adoption. 
Researchers and practitioners should outline a clear and 
concise set of conservation practices that achieve joint soil 
health and water quality goals and develop innovative poli-
cies and approaches to overcome the large socioeconomic 
barriers to widespread farmer adoption.
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