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ABSTRACT

Three-dimensional geophysical fluids support both internal and boundary-trapped waves. To obtain the normal modes in such fluids, we
must solve a differential eigenvalue problem for the vertical structure (for simplicity, we only consider horizontally periodic domains). If the
boundaries are dynamically inert (e.g., rigid boundaries in the Boussinesq internal wave problem and flat boundaries in the quasigeostrophic
Rossby wave problem), the resulting eigenvalue problem typically has a Sturm-Liouville form and the properties of such problems are well-
known. However, when restoring forces are also present at the boundaries, then the equations of motion contain a time-derivative in the
boundary conditions, and this leads to an eigenvalue problem where the eigenvalue correspondingly appears in the boundary conditions.
In certain cases, the eigenvalue problem can be formulated as an eigenvalue problem in the Hilbert space L? @ C and this theory is well-
developed. Less explored is the case when the eigenvalue problem takes place in a Pontryagin space, as in the Rossby wave problem over
sloping topography. This article develops the theory of such problems and explores the properties of wave problems with dynamically
active boundaries. The theory allows us to solve the initial value problem for quasigeostrophic Rossby waves in a region with sloping bot-
tom (we also apply the theory to two Boussinesq problems with a free-surface). For a step-function perturbation at a dynamically active
boundary, we find that the resulting time-evolution consists of waves present in proportion to their projection onto the dynamically active
boundary.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0048273

I. INTRODUCTION

An important tool in the study of wave motion near a stable equilibrium is the separation of variables. When applicable, this elemen-
tary technique transforms a linear partial differential equation into an ordinary differential eigenvalue problem for each coordinate [e.g.,
Hillen ef al. (2012)]. Upon solving the differential eigenvalue problems, one obtains the normal modes of the physical system. The normal
modes are the fundamental wave motions for the given restoring forces, each mode represents an independent degree of freedom in which
the physical system can oscillate, and any solution of the wave problem may be written as a linear combination of these normal modes.

To derive the normal modes, we must first linearize the dynamical equations of motion about some equilibrium state. We then encounter
linearized restoring forces of two kinds as follows:

1. volume-permeating forces experienced by fluid particles in the interior, and
2. boundary-confined forces only experienced by fluid particles at the boundary.

Examples of volume-permeating forces include the restoring forces resulting from continuous density stratification and continuous vol-
ume potential vorticity gradients. These restoring forces, respectively, result in internal gravity waves (Sutherland, 2010) and Rossby waves
(Vallis, 2017). Examples of boundary-confined restoring forces include the gravitational force at a free-surface (i.e., at a jump discontinuity in
the background density), forces arising from gradients in surface potential vorticity (Schneider ef al., 2003), and the molecular forces giving
rise to surface tension. These restoring forces, respectively, result in surface gravity waves (Sutherland, 2010), topographic/thermal waves
(Hoskins et al., 1985), and capillary waves (Lamb, 1975).
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In the absence of boundary-confined restoring forces, we can often apply Sturm-Liouville theory [e.g., Hillen ef al. (2012); Zett] (2010)]
to the resulting eigenvalue problem. We thus obtain a countable infinity of waves whose vertical structures form a basis of L%, the space of
square-integrable functions (see Sec. II), and given some initial vertical structure, we know how to solve for the subsequent time-evolution as
a linear combination for linearly independent waves. Moreover, a classic result of Sturm-Liouville theory is that the nth mode has # internal
Zeros.

In the presence of boundary-confined restoring forces, the governing equations have a time-derivative in the boundary conditions.
The resulting eigenvalue problem correspondingly contains the eigenvalue parameter in the boundary conditions. Sturm-Liouville theory is
inapplicable to such problems.

In this article, we present a general method for solving these problems by delineating a generalization of Sturm-Liouville theory. Some
consequences of this theory are the following. There is a countable infinity of waves whose vertical structures form a basis of L* @ C*, where s
is the number of dynamically active boundaries; thus, each boundary-trapped wave, in mathematically rigorous sense, provides an additional
degree of freedom to the problem. The modes satisfy an orthogonality relation involving boundary terms, the modes may have a negative
norm, and the modes may have finite jump discontinuities at dynamically active boundaries (although the solutions are always continuous,
see Sec. I1I C). When negative norms are possible (as in quasigeostrophic theory), there is a new expression for the Fourier coefficients that one
must use to solve initial value problems [see Eq. (23)]. We can also expand boundary step-functions (representing some boundary localized
perturbation) as a sum of modes. Moreover, the nth mode may not have #n internal zeros; indeed, depending on physical parameters in the
problem, two or three linearly independent modes with an identical number of internal zeros may be present.

We also show that the eigenfunction expansion of a function is term-by-term differentiable, with the derivative series converging uni-
formly on the whole interval, regardless of the boundary condition the function satisfies at the dynamically active boundaries. This property
is in contrast with a traditional Sturm-Liouville eigenfunction expansion where the term-by-term derivative converges uniformly only if the
function satisfies the same boundary condition as the eigenfunctions.

We apply the theory to three geophysical wave problems. The first is that of a Boussinesq fluid with a free-surface; we find that the
nth mode has n internal zeros. The second example is that of a rotating Boussinesq fluid with a free-surface where we assume that the
stratification suppresses rotational effects in the interior but not at the upper boundary. We find that there are two linearly independent
modes with M internal zeros, where the integer M depends on the ratio of the Coriolis parameter to the horizontal wavenumber, and that
the eigenfunctions have a finite jump discontinuity at the upper boundary. The third application is to a quasigeostrophic fluid with a sloping
lower boundary. We find that modes with an eastward phase speed have a negative norm, whereas modes with a westward phase speed have
a positive norm (the sign of the norm has implications for the relative phase of a wave and for series expansions). Moreover, depending
on the propagation direction, there can be two linearly independent modes with no internal zeros. For all three examples, we outline the
properties of the resulting series expansions and provide the general solution. We also consider the time-evolution resulting from a vertically
localized perturbation at a dynamically active boundary; we idealize such a perturbation as a boundary step-function. The step-function
perturbation induces a time-evolution in which the amplitude of each constituent wave is proportional to the projection of that wave onto the
boundary.

To our knowledge, most of the above results cannot be found in the literature [however, the gravity wave orthogonality relation has been
noted before, e.g., Gill (1982); Kelly (2016) for the hydrostatic case and Olbers (1986); Early et al. (2020) for the non-hydrostatic case]. For
instance, we provide the only solution to the initial value problem for Rossby waves over topography in the literature [Eq. (78)]. Moreover,
many of the properties we discuss arise in practical problems in physical oceanography. The number of internal zeros of Rossby waves is also
a useful quantity in observational physical oceanography [e.g., Clément ef al. (2014); de La Lama ef al. (2016)]. In addition, the question of
whether the quasigeostrophic baroclinic modes are complete is a controversial one. Lapeyre (2009) has suggested that the baroclinic modes
are incomplete because they assume a vanishing surface buoyancy anomaly. Consequently, Smith and Vanneste (2012) addressed this issue by
deriving an L* @ C? basis for quasigeostrophic theory. Yet, many authors, citing completeness theorems from Sturm-Liouville theory, insist
that the baroclinic modes are indeed complete and can represent all quasigeostrophic states (Ferrari and Wunsch, 2010; LaCasce, 2012; and
Rocha et al., 2015). This article shows that by including boundary-confined restoring forces, we obtain a set of modes with additional degrees-
of-freedom. These degrees-of-freedom manifest in the behavior of eigenfunction expansions at the boundaries. In addition, the distinction
between L? and L? ® C° bases that we present here is useful for equilibrium statistical mechanical calculations where one must decompose
fluid motion onto a complete set of modes (Bouchet and Venaille, 2012; Venaille ef al., 2012).

This article is organized as follows: We formulate the mathematical theory in Sec. II. We then apply the theory to the two Boussinesq
wave problems (Sec. I1T) and the quasigeostrophic wave problem (Sec. I'V). We consider the time-evolution of a localized perturbation at a
dynamically active boundary in Sec. V. We then conclude in Sec. V1.

Il. THE EIGENVALUE PROBLEM

In this section, we outline the theory of the differential eigenvalue problem
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- [a2¢(22) - b2(p¢') (22) ] = A[c2¢(22) — da (pg") (22) ], 3)

where p~', g, and r are real-valued integrable functions; where a;, b;, ¢;, and d; are real numbers with i € {1,2}; and where A € C is the eigen-
value parameter. We further assume that p > 0 and r > 0, that p and r are twice continuously differentiable, that g is continuous, and that
(ai,bi) # (0,0) for i € {1,2}. The system of equations (1)-(3) is an eigenvalue problem for the eigenvalue A € C and differs from a regu-
lar Sturm-Liouville problem in that A appears in the boundary conditions [(2) and (3)]. That is, setting ¢; = di = 0 recovers the traditional
Sturm-Liouville problem. The presence of A as part of the boundary condition leads to some fundamentally new mathematical features that
are the subject of this section and fundamental to the physics of this study.

It is useful to define the following two boundary parameters:

D; = (—1)i+l(aidi - biC,‘), i=1,2. (4)

Just as the function r acts as a weight for the interval (z1,22) in traditional Sturm-Liouville problems, the constants D;* will play analogous
roles for the boundaries z = z; when D; # 0.

Outline of the mathematics. The right-definite case, when D; > 0 for i € {1,2}, is well-known in the mathematics literature; most of the
right-definite results in this section are due to Evans (1970); Walter (1973); and Fulton (1977). In contrast, the left-definite case, defined below,
is much less studied. In this section, we generalize the right-definite results of Fulton (1977) to the left-definite problem as well as provide an
intuitive formulation [in terms of functions rather than vectors, for a vector formulation, see Fulton (1977)] of the eigenvalue problem.

In Sec. IT A, we state the conditions under which we obtain real eigenvalues and a basis of eigenfunctions. We proceed, in Sec. II B, to
explore the properties of eigenfunctions and eigenfunction expansions. Finally, in Sec. IT C, we discuss oscillation properties of the eigenfunc-
tions. Additional properties of the eigenvalue problem are found in Appendix A, and a literature review, along with various technical proofs,
is found in Appendix B.

A. Formulation of the problem

1. The functions space of the problem

We denote by L? the Hilbert space of square-integrable “functions” ¢ on the interval (zy,z,) satisfying
2,
f |§|"rdz < oo. (5)
zZ

To be more precise, the elements of L? are not functions but rather equivalence classes of functions [e.g., Reed and Simon (1980), Sec. I CJ.
Two functions, ¢ and v, are equivalent in L? (i.e., ¢ = v in L?) if they agree in a mean-square sense on [z1, 2],

f 6(z) — y(2)|’rdz = 0. (6)

Significantly, we can have ¢ = y in L* but ¢ # y pointwise.
Furthermore, as a Hilbert space, L* is endowed with a positive-definite inner product

($9), = f "¢ ydo - f "¢ yrdz, ?)

where the symbol * denotes complex conjugation and the measure ¢ associated L* induces a differential element do = rdz (see Appendix A).
The positive-definiteness is ensured by our assumption that r > 0 (i.e., (¢, ¢), > 0 for ¢ # 0 when r > 0).

It is well-known that traditional Sturm-Liouville problems [i.e., Egs. (1)-(3) with ¢; = d; = 0 for i = 1,2] are eigenvalue problems in some
subspace of L* (Debnath and Mikusinski, 2005). For the more general case of interest here, the eigenvalue problem occurs over a “larger”
function space denoted by LIZ,, which we construct in Appendix A.

Let the integer s € {0, 1,2} denote the number of A-dependent boundary conditions, and let S denote the set

§={jlje{1,2}and (¢, d)) # (0,0)}. (®)

Here, S is one of @, {1},{2},{1,2} and s is the number of elements in the set S. In Appendix A, we show that L} is isomorphic to the space

L* ® C° and is thus “larger” than L* by s dimensions.
We denote elements of Lﬁ by upper case letters ¥V; we define W(z) for z € [z1,22] by

Y(z) - Y(z) at z=z;, for i€,
v(z) otherwise,
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where ¥(z;) € C are constants for i € S, and the corresponding lower case letter ¢ denotes an element of L2. Two elements ® and ¥ of Lf, are
equivalent in Lﬁ if and only if

1. ®(zi) =Y¥Y(zi)forieSand

2. ¢(z) and w(z) are equivalent in L* [i.e., as in Eq. (6)].

Here, @, as an element of L,Z,, is defined as in Eq. (9). The primary difference between L% and Li is that Li discriminates between functions that
disagree at A-dependent boundaries.
The measure y associated with Lf, (see Appendix A) induces a differential element

du(z) = [r(z) + ZD;IS(Z - zi):|dz, (10)
i€S
where §(z) is the Dirac delta. The induced inner product on Lﬁ is

(O, W) = fZZ(D*‘I’dy: /ZZGD*‘I’rdz+ZD{I(D(zi)*‘I’(z,-). (11)
z z

1 i€S

If D; > 0 for i € S, then this inner product is positive-definite and Lf‘ is a Hilbert space. However, this is not the case in general.
Let x denote the number of negative D; for i € S (the possible values are x = 0,1,2). Then, Lﬁ has a x-dimensional subspace of elements ¥
satisfying
(¥, %) <0. (12)

This makes Lf, a Pontryagin space of index x (Bogndr, 1974). If ¥ = 0, then Lf, is again a Hilbert space. In the present case, Lﬁ also has an
infinite-dimensional subspace of elements y satisfying

(¥, %) > 0. (13)

2. Reality and completeness

In Appendix A 2, we reformulate the eigenvalue problem (1)-(3) as an eigenvalue problem of the form
LD =)D (14)

in a subspace of Lﬁ, where £ is a linear operator and @ is an element of Lﬁ. We also define the notions of right- and left-definiteness that are
required for the reality and completeness theorem. The following two propositions can be considered to define right- and left-definiteness for
applications of the theory. Both propositions are obtained through straightforward manipulations (see Appendix A).

Proposition II.1 (criterion for right-definiteness). The eigenvalue problem (1)-(3) is right-definite if r > 0 and D; > 0 for i € S.
Proposition I1.2 (criterion for left-definiteness). The eigenvalue problem (1)-(3) is left-definite if the following conditions hold:

(i) the functions p, q satisfy p > 0,9 > 0;
(ii) for the A-dependent boundary conditions, we have

aici o b o L1y fories (15)
D; D; D;
(i) for the A-independent boundary conditions, we have
bi=0 or (—1)’“% >0 ifbi#0 forie{1,2}\S. (16)

The notions of right- and left-definiteness are not mutually exclusive. In particular, a problem can be neither right- nor left-definite, both
right- and left-definite, only right-definite, or only left-definite. In this article, we always assume that p > 0 and r > 0.
The reality of the eigenvalues and the completeness of the eigenfunctions in the space Lﬁ is given by the following theorem:

Theorem I1.3 (reality and completeness). Suppose the eigenvalue problem (1)-(3) is either right-definite or left-definite. Moreover, if the
problem is not right-definite, we assume that A = 0 is not an eigenvalue. Then, the eigenvalue problem (1)-(3) has a countable infinity of real
simple eigenvalues A, satisfying

Ao <A <<y < o> o0, (17)
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with corresponding eigenfunctions ©,. Furthermore, the set of eigenfunctions {®, } 2, is a complete orthonormal basis for Lﬁ satisfying
(D, On) = £0mn. (18)

Proof. See Appendix B 3. O
Recall that x denotes the number of negative D; for i € S. We then have the following corollary of the Proof of Theorem II.3:

Proposition 11.4. Suppose the eigenvalue problem (1)-(3) is left-definite and that A = 0 is not an eigenvalue. Then, there are k negative
eigenvalues and their eigenfunctions satisfy
(®,D) <0. (19)

The remaining eigenvalues are positive and their eigenfunctions satisfy

(@, @) > 0. (20)

In other words, Proposition I1.4 states that we have the relationship
A( @y, @) > 0 1)
for left-definite problems.

B. Properties of the eigenfunctions

For the remainder of Sec. I1, we assume that the eigenvalue problem (1)-(3) satisfies the requirements of Theorem IL3.

1. Eigenfunction expansions

The eigenvalue problem (1)-(3) has eigenfunctions {®,},2, as well as corresponding solutions { ¢ } o In other words, while the ¢, are
the solutions to the differential equation defined by Eqs. (1)-(3) with A = A,, the eigenfunctions required by the operator formulation of the
problem [Eq. (14)] are ®,,. The functions ®, and ¢, are related by Eq. (9), with the boundary values ®,(z;) of ®, determined by

On(zi) = [cip(z) - di(pg')(z)] fories. (22)

Thus, while the solutions ¢, are continuously differentiable over the closed interval [z1, z2 ], the eigenfunctions @, are continuously differen-
tiable over the open interval (z1,22) but generally have finite jump discontinuities at the A-dependent boundaries. The eigenfunctions @, are
continuous in the closed interval [z1,2;] only if ¢; = 1 and d; = 0 for i € S. In this case, the eigenfunctions @, coincide with the solutions ¢,
on the closed interval [z1,23].

The boundary conditions of the eigenvalue problem (1)-(3) are not unique. One can multiply each boundary condition by an arbi-
trary constant to obtain an equivalent problem. To uniquely specify the eigenfunctions in physical applications, the boundary coefficients
{ai, bi, cid;} of Egs. (1)-(3) must be chosen so that rdz has the same dimensions as D;*8(z — z;)dz [recall that §(z) has the dimension of
inverse length]. In the quasigeostrophic problem, we must also invoke continuity and set ¢; = 1.

Since {®, },2 is a basis for Lﬁ, then any VW € Lﬁ may be expanded in terms of the eigenfunctions (Bognar, 1974, Theorem IV.3.4),

\I/ = Z m (Dn' (23)

We emphasize that the above equality is an equality in Lf, and not a pointwise equality [see the discussion following Eq. (9)]. Some properties
of Lf, expansions are given in Appendix A 3.
An important property that distinguishes the basis {®,},, of Lﬁ from an L? basis is its “sensitivity” to function values at boundary

points z = z; for i € S. See Sec. V for a physical application.
A natural question is whether the basis {®, } 2 of Lﬁ is also a basis of L2, Recall that the set {®,, } 72, is a basis of L? if every element y € L*

can be written uniquely in terms of the functions {®, }72,. However, in general, this is not true. If s > 0, the L}, basis {®, }52, is overcomplete
in L? (Walter, 1973; Russakovskii, 1997).
2. Uniform convergence and term-by-term differentiability
Along with the eigenfunction expansion (23) in terms of the eigenfunctions {®, },2,, we also have the expansion
= (¥,0,)

Al g, 24
% (0,0, " 24
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in terms of the solutions ¢,. The two expansions differ in their behavior at A-dependent boundaries, z = z; for i € S, but are otherwise equal.
In particular, the @, eigenfunction expansion (23) must converge to W¥(z;) at z = z; for i € S as this equality is required for ¥ to be equal to the
series expansion (23) in Lf, [see the discussion following Eq. (9)]. Some properties of both expansions are given in Appendix A 4. In particular,
Theorem A.4 shows that the ¢, solution series (24) does not generally converge to ¥(z;) at z = z;.

The following theorem is of central concern for physical applications:

Theorem I1.5 (uniform convergence). Let v be a twice continuously differentiable function on [z1,2z2] satisfying all A-independent
boundary conditions of the eigenvalue problem (1)-(3). Define the function ¥ on z € [z1,22] by

{ e
Then,
Vo < T o () and v () - 3 Ly ), o)
with both series converging uniformly and absolutely on [z1,22].
Proof. See Appendix B 4. O

Ifc; = 1 and d; = 0 for i € S, then we can replace ©, by ¢, and ¥ by v in Eq. (26).

In addition, if both boundary conditions of the eigenvalue problem (1)-(3) are A-dependent, then both expansions in Eq. (26) converge
uniformly on [z1, 22 ] regardless of the boundary conditions v satisfies. As discussed in Appendix A 4, for traditional Sturm-Liouville expan-
sions, an analogous result holds only if y satisfies the same boundary conditions as the eigenfunctions. Figure 1 contrasts the convergence
behavior of such a problem (with continuous eigenfunctions, so ¢; = 1 and d; = 0 for i € S) with the convergence behavior of sine and cosine
series. All numerical solutions in this article are obtained using a pseudo-spectral code in Dedalus (Burns ef al., 2020).

Another novel property of the eigenfunction expansions is that we obtain pointwise convergence to functions that are smooth in the
interior of the interval, (z1,22), but have finite jump discontinuities at A-dependent boundaries (see Appendix A 4). If d; # 0 for i € S, the
convergence is even uniform (Fulton, 1977, Corollary 2.1). Figure 2 illustrates the convergence behavior for eigenfunction expansions with A-
dependent boundary conditions in the two cases d; = 0 and d; # 0. Note the presence of Gibbs-like oscillations in the case d; = 0 shown in panel
(b). Although the @, eigenfunction series (23) converges pointwise to the discontinuous function, the ¢, solution series (24) converges to the
values given in Theorem A.4 at the A-dependent boundaries. The ability of these series expansions to converge to functions with boundary
jump discontinuities is related to their ability to expand distributions in the Bretherton (1966) “8-function formulation” of a problem.

C. Oscillation theory

Recall that for regular Sturm-Liouville problems [i.e., Eqs. (1)-(3) with ¢; = di = 0], we obtain a countable infinity of real simple
eigenvalues, A,,, that may be ordered as

A0<A1<Az<--~—>oo, (27)

with associated eigenfunctions ¢,. The nth eigenfunction ¢, has # internal zeros in the interval (z1,22) so that no two eigenfunctions have
the same number of internal zeros.

However, once the eigenvalue A appears in the boundary conditions, there may be up to s + 1 linearly independent eigenfunctions with
the same number of internal zeros. The crucial parameters deciding the number of zeros is —b;/d; for i € S, where b; and d; are the bound-
ary coefficients appearing in the boundary conditions (2) and (3). The following lemma outlines the possibilities when only one boundary
condition is A-dependent:

Lemma 11.6 (location of double oscillation count). Suppose that s =1, i € S, and let k be the number of negative D; for the eigenvalue
problem (1)-(3). We have the following possibilities:

(i) Right-definite, d; + 0: The eigenfunction ®, corresponding to the eigenvalue A, has n internal zeros if A, < —b;/d; and n — 1 internal zero
If —b,‘/di < A
(ii) Right-definite, d; = 0: The nth eigenfunction has n internal zeros.
(iii) Left-definite: If x = 0, then all eigenvalues are positive, the problem is right-definite, and either (i) or (ii) applies. Otherwise, if k = 1, then
the eigenvalues may be ordered as
M<0<A <Ay< - — oo, (28)

Both eigenfunctions @y and @, have no internal zeros. The remaining eigenfunctions @, for n > 1, have n — 1 internal zeros.
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FIG. 1. Convergence to a function F(z) = 1+ 2z + (3/2)sin(2rz)cos(n?2? + 3) for z € [-1,0], shown in panel (a), by various eigenfunction expansions of —¢’" = A¢
with fifteen terms, as discussed in Sec. || B 2. Panel (b) shows the Fourier sine expansion of F. Since the sine eigenfunctions vanish at the boundaries z = —1, 0, the series
expansion will not converge to F at the boundaries. Panel (c) shows the cosine expansion of F, which converges uniformly to F on the closed interval [—1,0]. Panel (d)
shows an expansion with boundary coefficients in Eqgs. (2) and (3) given by (ai, b1, ¢1,d1) = (-0.5,-5,1,0) and (ay, by, ¢2,d2) = (0.5,-5,1,0). Since ¢; = 1and d; = 0,
then @, = ¢, and the series expansions (23) and (24) coincide. As with the cosine series, the expansion converges uniformly to F on [—1, 0]. The derivative of F is shown in
panel (e). Panel (f) shows the derivative of the sine series expansion. In panel (g), we show the differentiated cosine series that does not converge to the derivative F” at the
boundaries z = z4, . In contrast, in panel (h), the differentiated series obtained from a problem with A-dependent boundary conditions converges uniformly to the derivative
F.

Proof. Parts (i), (ii), and (ii) are due to Linden (1991); Binding ef al. (1994); and Binding and Browne (1999), respectively. m]

When both boundary conditions are A-dependent, the situation is similar. See Binding et al. (1994); Binding and Browne (1999) for
further discussion.

lll. BOUSSINESQ GRAVITY-CAPILLARY WAVES

Consider a rotating Boussinesq fluid on an f-plane with a reference Boussinesq density of po. The fluid is subject to a constant gravita-
tional acceleration g in the downward, —2, direction and to a surface tension T [with dimensions of force per unit length, see Lamb (1975)]
at its upper boundary. The upper boundary of the fluid, given by z = 7, is a free-surface defined by the function #7(x,t), where x =xx + y y
is the horizontal position vector. The lower boundary of the fluid is a flat rigid surface given by z = —H. The fluid region is periodic in both
horizontal directions & and .

A. Linear equations of motion

The governing equations for infinitesimal perturbations about a background state of no motion, characterized by a prescribed
background density of pg = pp(z), are

£1:60:02 ¥20Z Atenuer 9

8?V2w+fgt9z2w+N2V§w =0 for z € (-H,0), (29)
w=0 for z=-H, (30)
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FIG. 2. Convergence to a function F with finite jump discontinuities at the boundaries by two eigenfunction expansions (with A-dependent boundary conditions) of —¢” = A¢
with fifteen terms, as discussed in Sec. || B 2. The function F(z) is defined by F(z) = F(z) for z € (1, 2,), where F(z) is the function defined in Fig. 1, F(-1) = 0.5
at the lower boundary, and F(0) = —0.7 at the upper boundary. The function F is shown in panel (a). In panel (b), the boundary coefficients in Egs. (2) and (3) are given
by (as, b1, ¢1,d1) = (=0.5,-5,1,0) and (a, by, ¢2,d2) = (0.5,-5,1,0) as in Fig. 1. In panel (c), the boundary coefficients are (a1, b1, ¢1,d1) = (-0.5,-5,1,0.1) and
(a2, bz, ¢2,dp) = (0.5,-5,1,-0.1). The @, expansion (23) and the ¢, expansion (24) are not generally equal at the boundaries z = —1,0; this figure shows the @,
expansion. The @, series (23) converges pointwise to F on [—1,0]; however, the convergence will not be uniform if d; = 0 for i € S, as in panel (b). The boundary values of
the @, series (23) are shown with a black dot. In panel (b), the eigenfunctions ®@j, are continuous, and a large number of terms are required for the series to converge to the
discontinuous function F. Panel (c) shows that the discontinuous eigenfunction ®, have almost converged to F—including the jump discontinuities; the black dot in panel (c)
overlaps with the gray dots, which represent the boundary values of F. Although the ¢, series (24) converges to F in the interior (—1,0), the ¢, series does not generally

converge to F at the boundaries but instead converges to the values given in Theorem A 4.

- &zazw - f(z)azw +gbV§w - TViw =0 for z=0, (31)

where w is the vertical velocity, f, is the constant value of the Coriolis frequency, the prescribed buoyancy frequency N is given by

20y __ 8 dps(2)
N (z) = o dz (32)

the acceleration g, is the effective gravitational acceleration at the upper boundary,
g =5 [pa-pa(0-)] (33)
Po
where p, is the density of the overlying fluid, and the parameter 7 is given by
T=— (34)
Po

where T is the surface tension. The three-dimensional Laplacian is denoted by v = 82 + 85 + 82, the horizontal Laplacian is denoted by

Vi=0Z+ ayz, and the horizontal biharmonic operator is given by Vi = V2V2. See Eq. (1.37) in Dingemans (1997) for the surface tension term
in (31). The remaining terms in Eqs. (29)-(31) are standard (Gill, 1982). Consistent with our assumption that #(x, t) is small, we evaluate the
upper boundary condition at z = 0 in Eq. (31).

B. Non-rotating Boussinesq fluid
We assume wave solutions of the form )
w(x,zt) = w(z)e®*, (35)

where k = X kx + § ky is the horizontal wavevector and w is the angular frequency. Substituting the wave solution (35) into Eqgs. (29)-(31) and
setting fo = 0 yield

£1:60:02 ¥20Z Atenuer 9

—a" + K@ =0 Nw  forze(~H,0), (36)
w=0 for z=-H, (37)
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(g + 1K) 0" = 02w for z=0, (38)

where 0 = w/k is the phase speed and k = |k| is the horizontal wavenumber. Equations (36)-(38) are an eigenvalue problem for the eigenvalue

A=0¢?
1. Definiteness and the underlying function space

Equations (36)-(38) form an eigenvalue problem with one A-dependent boundary condition, namely, the upper boundary condition
(38). The underlying function space is then

L=’eC. (39)

We write W, for the eigenfunctions and W, for the solutions of the eigenvalue problem (36)-(38) [see the paragraph containing Eq. (22)]. The
eigenfunctions W, are related to the solutions 1 Wy by Eq. (9) with boundary values W, (0) given by Eq. (22). However, since ¢; = 1 and d = 0
in Eq. (38) [compare with Egs. (1)=(3)], then W, = @, on the closed interval [~H, 0]; thus, the solutions w, are also the eigenfunctions.

By Theorem I1.3, the eigenfunctions {®, },~, form an orthonormal basis of Lﬁ. For functions ¢ and ¢, the inner product is

(0.0 = | [ 99Nz =+ )p(0)9(0) (10)

obtained from Egs. (4) and (11); we have introduced the factor 1/(Ng H) in the above expression for dimensional consistency in eigenfunction
expansions (N is a typical value of N%). Orthonormality is then given by

8mn = ("bm)wn>> (41)

and we have chosen the solutions %, to be non-dimensional (so the Kronecker delta is non-dimensional as well).
One verifies that the eigenvalue problem (36)-(38) is right-definite using Proposition II.1 and left-definite using Proposition II.2. Right-
definiteness implies that Lﬁ, with the inner product (40), is a Hilbert space. That is, all eigenfunctions @, satisfy

(W, Wa) > 0. (42)
Left-definiteness, along with Proposition I1.4, ensures that all eigenvalues A, = 0,2 are positive. Indeed, the phase speeds o, satisfy
0§>012>-~~>aﬁ>~--—>0. (43)

2. Properties of the eigenfunctions

By Lemma IL6, the nth eigenfunction @, has n internal zeros in the interval (—H,0). See Fig. 3 for an illustration of the first six
eigenfunctions.

The eigenfunctions {1, };2, are complete in L* but do not form a basis in L?; in fact, the basis is overcomplete in L*. The presence of a
free-surface provides an additional degree of freedom over the usual rigid-lid L? basis of internal wave eigenfunctions. Indeed, the # = 0 wave
in Fig. 3 corresponds to a surface gravity wave, while the remaining modes are internal gravity waves (with some surface motion).

Vertical velocity eigenfunctions w,(z) with constant stratification for /g H/(N H) =

OOW )/ [ \/ Lo @ o
S \ N N

k=10 /

a1
S
&

N\

\

-1.0

0

5

o
ob

o

Il o«;::

0
n=0 n=1 n=2 n=3 n=4
FIG. 3. The vertical velocity eigenfunctions W, = w, of the non-rotating Boussinesq eigenvalue problem (36)-(38) for two distinct wavenumbers with constant stratification,
as discussed in Sec. |l B. For both wavenumbers, the nth eigenfunction has n internal zeros as in regular Sturm-Liouville theory. The zeroth mode (n = 0) corresponds to
a surface gravity wave and is trapped to the upper boundary for large horizontal wavenumbers. In contrast to the internal wave problem with a rigid lid, the modes i, now
depend on the horizontal wavenumber k through the boundary condition (38); however, this dependence is weak for n >> 1, as can be observed in this figure; for n > 2, the

modes for k = 0.01 (in black) and for k = 10 (in gray) nearly coincide. The horizontal wavenumbers k are non-dimensionalized by H.
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3. Expansion properties

Given a twice continuously differentiable function y(z) satisfying y(—H) = 0, then from Theorem IL5, we have
X(2) =3 (o wnyon(z) and  x'(2) = 3 (f wn)wn(2), (44)
n=0 n=0

with both series converging uniformly on [-H, 0] (note that y is not required to satisfy any particular boundary condition at z = 0). If y is the
vertical structure at time ¢ = 0 (and at some wavevector k) and we assume 9;w(x,z,t = 0) = 0, then the subsequent time-evolution is given by

w(x,z,t) = i (x> W )wn(z) cos(ankt)e™™. (45)
n=0

4. The f-plane hydrostatic problem

Suppose we have hydrostatic gravity waves on an f-plane with free surface at the upper boundary, as in Kelly (2016). The appropriate
inner product is obtained by setting 7 = 0 in the inner product (40). All the above results on the eigenfunctions of gravity-capillary waves carry
over to the hydrostatic f-plane problem, provided we set

PR
Wt —
o = - f 0 (46)

C. A Boussinesq fluid with a rotating upper boundary
Although this next example is not geophysically relevant, it has the curious property that the resulting eigenfunctions are discontinuous.
Let Ng be a typical value of N*(z). Consider the situation where f§/Ng < 1 but

g + K
foH

Accordingly, we may neglect the Coriolis parameter in the interior equation (29) but not at the upper boundary condition (31). Substituting
the wave solution (35) into Egs. (29)-(31) yields

~0(1). (47)

— "+ W = 0 N for z € (-H,0), (48)
w=0 for z = -H, (49)

et . f3 2\—1 .7 _
(gp+1k7) "0 =0 w+ﬁ(gh+fk) W for z =0, (50)

where o = w/k is the phase speed. Equations (48)-(50)form an eigenvalue problem for the eigenvalue A = 672

1. Definiteness and the underlying function space

As in the previous case, the eigenvalue problem is both right-definite and left-definite, the underlying function space L;, is given by
Eq. (39), and the appropriate inner product is Eq. (40). By right-definiteness, the space L2, equipped with the inner product (40), is a Hilbert

space; thus, all eigenfunctions W, satisfy
(Wi, W) > 0. (51)

By Theorem I13, all eigenvalues A, = 0, > are real and the corresponding eigenfunctions { W, } 22, form an orthonormal basis of the Hilbert
space Lﬁ. By Proposition I1.4, all eigenvalues A, = 0}, are positive and satisfy Eq. (43).
2. Boundary jump discontinuity of the eigenfunctions

The main difference between the previous non-rotating problem (36)-(38) and the above problem (48)-(50) is that, in the present
problem, if fy # 0, then da # 0 [see Eq. (3)]. Thus, by Eq. (22), the eigenfunctions W, generally have a jump discontinuity at the upper
boundary z = 0 (see Fig. 4) and so are not equal to the solutions 1,,. The eigenfunctions W, are defined by W,(z) = W, (z) for z € [-H,0)

£1:60:02 ¥20Z Atenuer 9

and 2
W, (0) = @n(0) + %(gb +7k*) ", (0) (52)
[see Eq. (22)]. It is not difficult to show that
W, (0) ~ 0 for n sufficiently large, (53)
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Vertical velocity eigenfunctions Wn(z) with constant stratification for v gH/(NH) =
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FIG. 4. The vertical velocity eigenfunctions W, of a Boussinesq fluid with a rotating upper boundary—eigenvalue problem (48)-(50). This figure is discussed in Sec. Il C. The
wavenumbers k in the figure are non-dimensionalized by the depth H. The dots represent the values of the eigenfunctions at the boundaries. Note that the eigenfunctions
have a finite jump discontinuity at z = 0. For kH = 0.01 (given by the black line), there are two modes with no internal zeros. As k increases, we obtain two modes with one
internal zero (at kH = 0.05, the thick gray line) and then two modes with three internal zeros (at kH = 0.11, the thin gray line).

as can be seen in Fig. 4.

Physical motion is given by the solutions w,, which are continuous over the closed interval [-H,0]. The jump discontinuity in the
eigenfunctions W, does not correspond to any physical motion; instead, the eigenfunctions W, are convement mathematical aids used to
obtain eigenfunction expansions in the function space L.

3. Number of internal zeros of the eigenfunctions

Another consequence of d> # 0 is that by, Lemma IL6, there are two distinct solutions Wy and W41 with the same number of internal
zeros (i.e., M) in the interval (-H,0). Noting that

by K
-2 (54)
b fi
the integer M is determined by
2
a§>012> >0M> >(7M+1 > >0. (55)

k2
A smaller fy or alarger k implies a larger M and hence that @ and @+ have a larger number of internal zeros, as shown in Fig. 4.

4. Expansion properties

As in the previous problem, the eigenfunctions are complete in Lﬁ but overcomplete in L* due to the additional surface gravity-capillary
wave.
Given a twice continuously differentiable function y(z) satisfying y(—H) = 0, we define the discontinuous function X(z) by

x(z) for z € [-H,0),

X(z) = (56)
) fo (gb+rk ) 1)('(0) for z =0,

as in Theorem IL.5. Then, by Theorem II.5, we have the expansions
x(z) =3, (X, W,,)ﬁ)n(z) and y'(z) =) (X, Wﬁw,ﬂ(z). (57)
n=0 n=0

Moreover, if y(z) is the vertical structure at t = 0 (and at some wavevector k) and we assume J;w(x,z,t = 0) = 0, then the subsequent time-
evolution is given by

w(x,z,t) = i (X, W,,)ﬁ)n(z) cos(a,,kt)eik'x. (58)

n=0

£1:60:02 ¥20Z Atenuer 9
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IV. QUASIGEOSTROPHIC WAVES
A. Linear equations

Linearizing the quasigeostrophic equations about a quiescent background state with an infinitesimally sloping lower boundary, atz = —H,
and a rigid flat upper boundary, at z = 0, renders

H[Vey+0.(S0.y) ] + 2 (Vey x Vof) =0 for z € (-H,0), (59)
O(ST'0.y) + £ (Voy x foV:h) =0 forz=-H, (60)
(S'0.y) =0 forz=0. (61)

See Rhines (1970); Charney and Flier] (1981); and Straub (1994) for details. The streamfunction v is defined through u = £ x V. y, where u is
the horizontal velocity and V., = X0, + $0, is the horizontal Laplacian. The stratification parameter S is given by

N2
sz - V@), (62)
s
where N is the buoyancy frequency and f; is the reference Coriolis parameter. The latitude dependent Coriolis parameter f is defined by
fO)=fo+By. (63)

Finally, h(x) is the height of the topography at the lower boundary and is a linear function of the horizontal position vector x. Consistent with
quasigeostrophic theory, we assume that topography h is small, and so we evaluate the lower boundary condition at z = —H in Eq. (60).

B. The streamfunction eigenvalue problem

We assume wave solutions of the form )
y(x,2,1) = {(z)eF* 0, (64)

where k = Xk, + yk, is the horizontal wavevector and w is the angular frequency.
We denote by A6 the angle between the horizontal wavevector k and the gradient of Coriolis parameter Vf,

1
sin(Afy) = @i (kxV:f), (65)
where k = |k| is the horizontal wavenumber. Positive angles are measured counter-clockwise relative to k. Thus, A0y > 0 indicates that k points
to the right of V. f, while A6 < 0 indicates that k points to the left of V. f.
We define the topographic parameter « by
«=|foV:hl| (66)

In analogy with A6y, we define the angle A8} by
1
sin(A6),) = Eé' (kx foVz:h) (67)
with a similar interpretation assigned to A8, > 0 and A, < 0.

Substituting the wave solution (64) into the linear quasigeostrophic equations (59)-(61) and assuming that asin(A6) # 0, w # 0, and
k # 0, we obtain

('Y + Ky =My for ze (-H,0), (68)

_Esin(AGf) i .
aisin(AGh)S ¥ =\y for z=-H, (69)
Sy =0  forz=0, (70)

where we have defined the eigenvalue A by
kp sin(A6y)

w

A= (71)

Since k # 0, then A = 0 is not an eigenvalue. The above problem (68)-(70) was recently considered in LaCasce (2017).
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1. Definiteness and the underlying function space

The eigenvalue problem has one A-dependent boundary condition, and so the underlying function space is
L=’®C. (72)
The appropriate inner product is obtained from Egs. (4) and (11),

(090 - 5| [ o § S oo | 73

where we have introduced the factor 1/H for dimensional consistency in eigenfunction expansions. By Proposition I1.1, the problem is right-
definite for horizontal wavevectors k satisfying
sin(A6),)
- >0, 74
sin(Afy) (74)

and in such cases, Li equipped with the inner product (11) is a Hilbert space. However, Lﬁ is not a Hilbert space for all wavevectors k. By
Proposition I1.2, the problem is left-definite for all wavevectors k, and so Lﬁ, equipped with the inner product (11), is generally a Pontryagin
space.

We write ¥, for the eigenfunctions and {,, for the solutions of Egs. (68)-(70). The eigenfunctions ¥, are related to the solutions ¥n by
(9) with boundary values ‘i’n(O) given by Eq. (22). However, since ¢1 = 1 and d1 = 0 in Eq. (69) [compare with Egs. (1)-(3)], then ¥, = /» on
the closed interval [—H, 0]. Thus, the solutions ¥, are also the eigenfunctions.

With Theorem I1.3, we deduce that all eigenvalues A, are real and the corresponding eigenfunctions {{/, },<, form an orthonormal basis
for Lﬁ. Orthonormality is defined with respect to the inner product given by Eq. (73) and takes the form

iamn = (@m:@n); (75)
where we have taken the eigenfunctions ¥, and {/, to be non-dimensional.

2. Properties of the eigenfunctions

By Lemma IL.6, the number of internal zeros of the eigenfunctions {{, },~; depends on the propagation direction and hence [by Eq. (74)]
on the definiteness of the problem (see Fig. 5):

1. Ifthe problem is right-definite, then the nth eigenfunction has n internal zeros.
2. If the problem is not right-definite, then both yo and y; have no internal zeros; the remaining eigenfunctions v, for n > 1, have n — 1
internal zeros.

As the problem is left-definite for all wavevectors k, we can use Proposition I1.4 to determine the sign of the eigenvalues. Proposition II.4
informs us that

(G ) > 0. (76)

Streamfunction eigenfuntions y, for kLy=1.5, a;/(BH)=0.5, and a/(BH)=0.0

0.0
— right-definite
left-definite only

(
| | N

0
0 n=1 n

N\
NSNS

o
o
I oA
o

&2

0
n 2 n=3 n=4

=

FIG. 5. The streamfunction eigenfunctions {, of the quasigeostrophic eigenvalue problem with a sloping bottom from Sec. |V B. Two cases are shown. The first is with
ABf = —900 and A8y = —300 and is both right-definite and left-definite. The second is with A@¢ = —450 and A6; = 150 and is only left-definite. In the right-definite case,
the nth eigenfunction has n internal zero, whereas in the left-definite only case, there are two eigenfunctions (n = 0, 1) with no internal zeros.
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In the first case, when the problem is right-definite, all eigenvalues are positive and all eigenfunctions ¥, satisfy (s, {») > 0.In the second case,
when the problem is only left-definite, then there is one negative eigenvalue A¢ and the corresponding eigenfunction { satisfies (g0, o) < 0.
The remaining eigenvalues are positive, and their corresponding eigenfunctions satisfy (¥/», ¥») > 0. In fact, from Eq. (71), we see that waves
with ({4, ¥x) > 0 have westward phase speeds w,/k < 0, while waves with (¥, ¥/») < 0 have eastward phase speeds w,/k > 0.

3. Expansion properties

The eigenfunctions {¥,},2, are complete in Lﬁ but overcomplete in L?. Physically, there is now an additional eigenfunction
corresponding to a topographic Rossby wave (n = 0 in Fig. 5).
Given a twice continuously differentiable function ¢(z) satisfying ¢’(0) = 0, then from Theorem IL5, we have

oo

i:: l/(i’w';)l[/n(z) and ¢'(z) = z:: fn,lgn>A;(z) (77)

with both series converging uniformly on [-H, 0] (note that ¢ is not required to satisfy any particular boundary condition at z = —H). If the
vertical structure at time ¢ = 0 (and at some wavevector k) is given by ¢, then the subsequent time-evolution is given by

y(x,z,t) = Z l/;/ )l//n(z) cos(wyt)e™™, (78)

where the angular frequency w, is given by Eq. (71).

V. A LOCALIZED PERTURBATION AT THE BOUNDARY

We now consider a localized perturbation at a dynamically active boundary; we idealize such a perturbation by a boundary step-function
O; (for i € S) given by

1 if z =z,
Bi(z) = (79)
@ {0 otherwise.
Using Eq. (23), the series expansion of ®; is found to be
1 & Ou(zi)
— > ——Du(z2). 80
" 0.2 (0,00 )

For the non-rotating Boussinesq problem of Sec. I1I B, a step-function perturbation with amplitude wy (at some wavevector k) yields the
time-evolution

w(x,z,t) = wo(gbz\;;k )an(o)wn(z) cos(okt)e™*. (81)
0 n=0

Analogously, for the quasigeostrophic problem of Sec. IV B, a step-function perturbation with amplitude o (at some wavevector k) yields the
time-evolution

ik- x. (82)

a sin(A6y) Un(-H)
v(x,z,t) = 1//0[ Vn(z) cos(wat)e
Hp sin(A6y) ,;) (Vn> ¥n)

That both the above series converge to a step-function at t = 0 (and x = 0) is confirmed by Theorem A.3 along with Theorem 2 in Fulton (1977).

We thus see that a step-function perturbation induces wave motion with an amplitude that is proportional to the boundary-confined
restoring force (at wavevector k). Moreover, the amplitude of each constituent wave in the resulting motion is proportional to the projection
of that wave onto the dynamically active boundary.

VI. SUMMARY AND CONCLUSIONS

We have developed a mathematical framework for the analysis of three-dimensional wave problems with dynamically active boundaries
(i.e., boundaries where time derivatives appear in the boundary conditions). The resulting waves have vertical structures that depend on the
wavevector k: For Boussinesq gravity waves, the dependence is only through the wavenumber k, whereas the dependence for quasigeostrophic
Rossby waves is on both the wavenumber k and the propagation direction k/k. Moreover, the vertical structures of the waves are complete in
a space larger than 12 namely, they are complete in L2 ~ I’ @ C°, where s is the number of dynamically active boundaries (and the number
of boundary-trapped waves). Each dynamically active boundary contributes an additional boundary-trapped wave and hence an additional
degree of freedom to the problem. Mathematically, the presence of boundary-trapped waves allows us to expand a larger collection of func-
tions (with a uniformly convergent series) in terms of the modes. The resulting series are term-by-term differentiable and the differentiated
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series converges uniformly. In fact, the normal modes have the intriguing property converging pointwise to functions with finite jump dis-
continuities at the boundaries, a property related to their ability to expand distributions in the Bretherton (1966) “6-function formulation” of
a physical problem. By considering a step-function perturbation at a dynamically active boundary, we find that the subsequent time-evolution
consists of waves whose amplitude is proportional to their projection at the dynamically active boundary. Within the mathematical formu-
lation is a qualitative oscillation theory relating the number of internal zeros of the eigenfunctions to physical quantities; indeed, for the
quasigeostrophic problem, the number of zeros of the topographic Rossby wave depends on the propagation direction, while, for the rotating
Boussinesq problem, the ratio of the Coriolis parameter to the horizontal wavenumber determines at which integer M we obtain two modes
with M zeros.

Our results also clarify the difference between the traditional quasigeostrophic baroclinic modes and the L* & C? eigenfunctions of Smith
and Vanneste (2012). In particular, the series expansion of a function in terms of the Smith and Vanneste (2012) eigenfunctions has a term-by-
term derivative that converges uniformly over the whole interval regardless of the boundary conditions satisfied by the function. In contrast,
an eigenfunction expansion in terms of the baroclinic modes only has this property if the function satisfies the same boundary conditions as
the baroclinic modes. One consequence is the following. Suppose we expand an arbitrary quasigeostrophic state, with boundary buoyancy
anomalies, in terms of the baroclinic modes. The presence of these boundary buoyancy anomalies implies that this state does not satisfy the
same boundary conditions as the baroclinic modes. The resulting series expansion in term of the baroclinic modes is then not differentiable
at the boundaries. We are thus unable to recover the value of the boundary buoyancy anomalies from the series expansion, and so we have
lost information in the expansion process. This loss of information does not occur with L? @ C* expansions.

Normal mode decompositions of quasigeostrophic motion play an important role in physical oceanography [e.g., Wunsch (1997);
Lapeyre (2009); and LaCasce (2017)]. Other applications include the extension of equilibrium statistical mechanical calculations [e.g., Bouchet
and Venaille (2012); Venaille ef al. (2012)] to three-dimensional systems with dynamically active boundaries. Moreover, the mathematical
framework developed here is useful for the development of weakly non-linear wave turbulence theories [e.g., Fu and Flierl (1980); Smith and
Vallis (2001); and Scott (2014)] in systems with both internal and boundary-trapped waves.
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APPENDIX A: ADDITIONAL PROPERTIES OF THE EIGENVALUE PROBLEM
1. Construction of L2

First, define the weighted Lebesgue measure o by

b
a([a,b]) = [1 rdz  where a,b € [z1,2]. (AD)

The measure ¢ induces the differential element
do(z) = r(z)dz (A2)

and is the measure associated with L? [see Egs. (6) and (7)].
Now, for i € S [see Eq. (8)], define the pure point measure v; by [e.g., Reed and Simon (1980), Sec. I D, Example 2]

D;! if zi € [a,]],

(A3)
0 otherwise,

vi([a,0]) ={

where D; is the combination of boundary condition coefficients given by Eq. (4). The pure point measure v; induces the differential element
dvi(z) = D;'8(z - z))dz, (A4)

where §(z) is the Dirac distribution.
Consider now the space L, of “functions” ¢ satisfying

|/ZZ2|¢|2dw

Elements of L2, are not functions but rather equivalence classes of functions. Two functions, ¢ and y, on the interval [z, z; ] are equivalent in
L: if ¢(zi) = y(z;). In particular, L}, is a one-dimensional vector space and is hence isomorphic to the field of complex numbers C,

= |Di_1|/21zz|¢|26(z -zi)dz = |D,»_1||¢(zi)|2 < oo. (A5)
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L = C. (A6)
Now, define the measure y by
u=0+ Zv,- (A7)
ieS
with an induced differential element of
du(z) = [r(z) + ZD;18(2 - Z,‘):|dZ. (A8)
ieS

Then, Lf, is the space of equivalence classes of functions that are square-integrable with respect to the measure y.
Since the measures o and v;, for i € S, are mutually singular, we have [Reed and Simon (1980), Sec. IT A, Example 5]

L=le)L,2eC (A9)
€S

from which we see that Lf, is “larger” by s dimensions.

2. The eigenvalue problem in L2

We construct here an operator formulation of (1)-(3) as an eigenvalue problem in the Pontryagin space Lf,.
Define the differential operator ¢ acting on a function ¢ by

l¢ = %[(pqﬁ')’ - a¢)- (A10)

We also define the following boundary operators for i € S:
Bi = [aip(z) - bi(pd')(21)], (A11)
Cip = [cip(zi) - di(pg) (1) ]. (A12)

Let @ be an element of Lﬁ, as in Eq. (9), with boundary values ®(z;) = C;¢ for i € S and equal to ¢ elsewhere. We then define the operator £,
acting on functions @, by

—£ fi ,22)5
LO- ¢ or z € (z1,22) (A13)
-Bi¢ for z = z;wherei e S
with a domain D(L) c L; defined by
D(L)={De Li | ¢ is continuously differentiable, ¢ € L%, ®(z;) = Cip (AL4)

forieSandBi¢ =0 forie {1,2}\S}.

Recall that S contains indices of the A-dependent boundary conditions, and therefore, {1,2}\S contains the indices of the A-independent
boundary conditions.
Then, on the subspace D(L) of 12, the eigenvalue problem (1)-(3) may be written as

LD =10D. (A15)

As shown in Russakovskii (1975; 1997), L is a self-adjoint operator in the space Lﬁ.
There is a natural quadratic form Q, induced by the eigenvalue problem (1)-(3), given by

QDY) = (0, LF). (A16)

For elements @, ¥ € D(L), we obtain

Qo) = [C[pg"y rag vl T (-1 o) w(@)
z ie{12}\S bi

_Zi( v(z) )*_ aici  aid; #(zi) (A17)
i€S D; -y (=) aidi bid; —(P</5/)(Zi)

£1:60:02 ¥20Z Atenuer 9

J. Math. Phys. 62, 093102 (2021); doi 10.1063/5.0048273 62, 093102-16
© Author(s) 2021


https://scitation.org/journal/jmp

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

forbi #0forie {1,2}\S. If b; = 0 fori € {1,2}\S, then we replace the term a;/b; with zero.
To develop the reality and completeness theorem (Theorem I1.3), we provide the following definitions:

Definition A.1 (right-definite). The eigenvalue problem (1)-(3) is said to be right-definite if L is a Hilbert space or, equivalently, if
(0, 0)>0 (A18)
for all non-zero @ € Lﬁ.
Definition A.2 (left-definite). The eigenvalue problem (1)-(3) is said to be left-definite if
Q(®,®) >0 (A19)
forall® € D(L).

One can then prove Propositions II.1 and II.2 through straightforward manipulations.

3. Properties of eigenfunction expansions
The following theorem features some of the novel properties of the basis {®,};2o of Lﬁ. Theorem A.3 is a generalization of a theorem
first formulated, in the right-definite case, by Walter (1973); Fulton (1977).

Theorem A.3 (eigenfunction expansions). Let {®,},2, be the set of eigenfunctions of the eigenvalue problem (1)-(3). Then, the following
properties hold.

(i) Null series: For i € S, we have

= i CDn(zl)cp,,(z) (A20)

n=0

with equality in the sense of L*.
(ii)  Unit series: For i € S, we have

_ io @n,mn)@"(z‘)' (A21)
(iii) L*-expansion: Let v € L%, then
y= 2 (@, @) (/ v ¢nrd2)¢ (A22)
with equality in the sense of L.
(iv) Interior-boundary orthogonality: Let y € L2, then for i € S, we have
0= 2 @qu)n)(/;zw*gbnrdz)d)n(zi). (A23)
Proof. The proof is similar to the proof of Corollary 1.1 in Fulton (1977). O

4. Pointwise convergence and Sturm-Liouville series

Theorem 3 in Fulton (1977) states that the @, series expansion (23) behaves like a Fourier series in the interior of the interval (z1,22)
(see Appendix B for why this theorem applies in the left-definite case). Since the expansions (23) and (24) in terms of @, and ¢, are equal in
the interior, then the above theorem applies to the ¢, series (24) as well. It is at the boundaries points, z = z1, z2, where the novel behavior of
the series expansions (23) and (24) appears.

For traditional Sturm-Liouville expansions [with eigenfunctions of problem (1)-(3) with ¢;,d;i = 0 for i = 1,2], eigenfunction expan-
sions behave like the analogous Fourier series on [z1,22] [p. 16 in Titchmarsh (1962) or Chap. 1, Sec. 9, in Levitan and Sargsjan (1975)].
In particular, for a twice continuously differentiable function y, the eigenfunction expansion of ¥ converges uniformly to y on [z1,22] so
long as the eigenfunctions ¢, do not vanish at the boundaries. If the eigenfunctions vanish at one of the boundaries, then we only obtain
uniform convergence if y vanishes at the corresponding boundary as well (Brown and Churchill, 1993, Sec. 22). Under these conditions, the
resulting expansion will be differentiable in the interior of the interval, (z1,2>), but not at the boundaries z = z1,z, [see Chap. 8, Sec. 3, in
Levitan and Sargsjan (1975) for the equiconvergence of differentiated Sturm-Liouville series with Fourier series and see Sec. 23 in Brown and
Churchill (1993) for the convergence behavior of differentiated Fourier series].
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Returning to the case of eigenfunction expansions for the eigenvalue problem (1)-(3) with A-dependent boundaries, the following
theorem provides pointwise (as well as uniform, in the case d; # 0) convergence conditions for the ¢, series (24):

Theorem A.4 (pointwise convergence). Let v be a twice continuously differentiable function on the interval [z1,z2] satisfying any A-
independent boundary conditions in the eigenvalue problem (1)-(3). Define the function ¥ on [z1,z2] by

b4 i t = Zi» f j S:
W(z) = (zi) at z=z;, for ie (A24)
v(z) otherwise,
where VY (z;) are constants for i € S (the A-dependent boundaries). Then, we have the following:
(i) If di # 0 forie€S, then the ¢, series expansion (24) converges uniformly to y(z) on the closed interval [z1,22],
= (Y, (Dn
Z </>n(z) ¥(2). (A25)
n:O
Furthermore, for the differentiated series, we have
had ‘Yq)n ciy(zi) —Y(zi d; at z=z; for ie S
Z o %( ) = (IV/( ) =¥(z))/ _ (A26)
= (D, @ v (2) otherwise.
(ii) If di = 0, then we have
i Y(zi)/ci at z=z; for ie$S (A27)
=0 (Dm ch) v(z) otherwise.

Proof. This theorem is a generalization of Corollary 2.1 in Fulton (1977). We provide the extension of the corollary to the left-definite
problem in Appendix B 4. O

The @, series (23) converges to ¥(z;) at z = z; for i € S (i.e., at \-dependent boundaries) but otherwise behaves as in Theorem A 4.

APPENDIX B: LITERATURE SURVEY AND MATHEMATICAL PROOFS

1. Literature survey

There is an extensive literature associated with the eigenvalue problem (1)-(3) with A-dependent boundary conditions (see Schifke and
Schneider (1966); Fulton (1977), and citations within). One can use the S-Hermitian theory of Schifke and Schneider (1965; 1966; and 1968)
to show that one obtains real eigenvalues when the problem is either right-definite or left-definite (see Sec. IT), but completeness results in Lﬁ
are unavailable in this theory.

The right-definite theory is well-known (Evans, 1970; Walter, 1973; and Fulton, 1977). In particular, Fulton (1977) applies the residue
calculus techniques of Titchmarsh (1962) to the right-definite problem and, in the process, extends some well-known properties of Fourier
series to eigenfunction expansions associated with (1)-(3). A recent Hilbert space approach to the right-definite problem, in the context of
obtaining a projection basis for quasigeostrophic dynamics, is given by Smith and Vanneste (2012).

The left-definite problem is less examined. As we show in this article, the eigenvalue problem is naturally formulated in a Pontryagin
space, and in such a setting, one can prove, in the left-definite case, that the eigenvalues are real and that the eigenfunctions form a basis for
the underlying function space. We prove this result, stated in Theorem I1.3, in Appendix B 3.

With these completeness results, we may apply the residue calculus techniques of Titchmarsh (1962) to extend the results of Fulton (1977)
to the left-definite problem. Indeed, Fulton (1977) used a combination of Hilbert space methods as well as residue calculus techniques to prove
various convergence results for the right-definite problem. However, only Theorem 1 of Fulton (1977) makes use of Hilbert space methods. If
we extend Fulton’s Theorem 1 to the left-definite problem, then all the results of Fulton (1977) will apply equally to the left-definite problem.
A left-definite analog of Theorem 1 of Fulton (1977), along with its proof, is given in Appendix B 4.

2. A Pontryagin space theorem

A Pontryagin space I, for a finite non-negative integer «, is a Hilbert space with a x-dimensional subspace of elements satisfying

(¢, ¢) <O0. (B1)
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An introduction to the theory of Pontryagin spaces can be found in Iohvidov and Krein (1960) as well as in the monograph of Bognar (1974).
Another resource is the monograph of Azizov and lokhvidov (1989) on linear operators in indefinite inner product spaces.
Pontryagin spaces admit a decomposition
I, =IT"e I (B2)

into orthogonal subspaces (IT*, +(-,-}) and (IT", —(,-)). Moreover, one can associate with a Pontryagin space (I, (-,-)) a corresponding
Hilbert space (I, (-, -), ), where the positive-definite inner product (-, ), is defined by

(69}, = (b ys) — (¢ y-), S yell, (B3)

where ¢ = ¢, + ¢_ and ¥ = y. + y_, with ¢, yx € IT* (Azizov and Tokhvidov, 1981).
As a prerequisite to proving Theorem I1.3, we require the following theorem:

Theorem B.1 (positive compact Pontryagin space operators). Let A be a positive compact operator in a Pontryagin space Il and suppose
that A = 0 is not an eigenvalue. Then, all eigenvalues are real and the corresponding eigenvectors form an orthonormal basis for 1. There
are precisely k negative eigenvalues and the remaining eigenvalues are positive. Moreover, positive eigenvalues have positive eigenvectors and
negative eigenvalues have negative eigenvectors.

Proof. By Theorem VII.1.3 in Bogndr (1974), the eigenvalues are all real. Moreover, since A = 0 is not an eigenvalue, then all eigenspaces
are definite (Bognar, 1974, Theorem VII.1.2), and hence, all eigenvalues are semi-simple (Bognar, 1974, Lemma I1.3.8).

Since A is a compact operator and A = 0 is not an eigenvalue, then the span of the generalized eigenspaces is dense in IT; (Azizov and
Tokhvidov, 1989, Lemma 4.2.14). Since all eigenvalues are semi-simple, then all generalized eigenvectors are eigenvectors and so the span of
the eigenvectors is dense in IT,. Orthogonality of eigenvectors can be shown as in a Hilbert space.

Let A be an eigenvalue and ¢ be the corresponding eigenvector. By the positivity of A, we have

(Ag, ¢) = A9, ¢) > 0. (B4)

Since all eigenspaces are definite, it follows that positive eigenvectors must correspond to positive eigenvalues and negative eigenvectors must
correspond to negative eigenvalues.

Finally, by Theorem IX.1.4 in Bognir (1974), any dense subset of II, must contain a negative-definite ¥ dimensional subspace.
Consequently, there are x negative eigenvectors and hence x negative eigenvalues. O

3. Proof of theorem I11.3

Proof. The proof for the left-definite case is essentially the standard proof [e.g., Debnath and Mikusinski (2005), Sec. 5.10] with Theorem
B.1 substituting for the Hilbert-Schmidt theorem. We give a general outline nonetheless.

First, it is well-known that £ is self-adjoint in Lﬁ [e.g., Russakovskii (1975; 1997)]. Since A = 0 is not an eigenvalue, then the inverse oper-
ator £7! exists and is an integral operator on Lﬁ. For an explicit construction, see Sec. 4 in Walter (1973); Fulton (1977); and Hinton (1979).
The eigenvalue problem for £, Eq. (14), is then equivalent to

Ll¢=1""¢, (B5)

and both problems have the same eigenfunctions.

The operator £ is a positive compact operator and so satisfies the requirements of Theorem B.1. Application of Theorem B.1 to £
then assures that all eigenvalues 1, are real, the eigenfunctions form an orthonormal basis for L7, and the sequence of eigenvalues {1, } 2 is
countable and bounded from below.

The claim that the eigenvalues are simple is verified in Binding and Browne (1999) for the left-definite problem. Alternatively, an
argument similar to that of Fulton (1977) and Titchmarsh (1962), (p. 12) can be made to prove the simplicity of the eigenvalues. O

4. Extending Fulton (1977) to the left-definite problem

The following is a left-definite analog of Theorem 1 in Fulton (1977). The proof is almost identical to the right-definite case (Fulton, 1977;
Hinton, 1979) with minor modifications. Essentially, since (¥, ¥') can be negative, we must replace these terms in the inequalities below with
the induced Hilbert space inner product (¥, V), given by Eq. (B3). Our Lﬁ Green’s functions G corresponds to G in Hinton (1979).

Theorem B.2 (a left-definite extension of Fulton’s Theorem 1). Let ¥ € Lﬁ be defined on the interval [z1,z,] by

(B6)

W(z2) - ¥(z) at z=z;, for i€S,
y(z) otherwise,
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where w € L* and ¥ (z;) are constants for i € S. The eigenfunctions ®, are defined similarly (see Sec. IT).

(i) Parseval formula: For ¥ € Lﬁ, we have

(P, V) = 2 %. (B7)
(i) For¥ e D(L), we have
v - io %o (B8)
with equality in the sense of L;. Moreover, we have
Y= 2 &%an, (B9)

which converges uniformly and absolutely for z € [z1,z2] and may be differentiated term-by-term, with the differentiated series converging
uniformly and absolutely to y' for z € [z1,22]. The boundaries series

¥(zi) = i ;%H@n(zi) (B10)

for i € S is absolutely convergent.

Proof. The Parseval formula (B7) is a consequence of the completeness of the eigenfunctions {®, }2, in L2, given by Theorems I1.3 and
IV.3.4 in Bognar (1974). Similarly, expansion (B8) is also due to completeness of the eigenfunctions.
We first prove that the series (B9) converges uniformly and absolutely for z € [z1,22]. We begin with the identity

¢n(2) = (A= n){G(z,-, 1), Dn), (B11)

where A € C is not an eigenvalue of £ and G is the Lﬁ Green’s function [see Eq. (8) in Hinton (1979)]. Then,

(e ] 2 (o]
> M"p”k‘ : = Y Ml(G(z 1), @u) [} < (G(2,,4), LG(2, 1)), < Bi(}), (B12)
n=0 —Mn n=0

where (-,-), is the induced Hilbert space inner product given by Eq. (B3) and By (1) is a z independent upper bound [Eq. (9) in Hinton (1979)].
In addition, since ¥ € D(L), then (LY, L¥), < co. Thus, we obtain

SN, D) = (LY, L), < oo (B13)

The uniform and absolute convergence of (B9) follows from

S [{H ) S (¥, ®,)
nz:;) <<Dn,®n)¢" 72 (A A )( ~ha )(@n,cpn) (B14)

along with Egs. (B12) and (B13). The absolute convergence of the boundary series (B10) follows as well.

To show that the series (B9) is term-by-term differentiable, it is sufficient to show that the differentiated series converges uniformly for
z € [21,22] (Kaplan, 1993, Sec. 6.14, Theorem 33). The proof of the uniform convergence of the differentiated series follows from the identity
(Hinton, 1979)

U
d
A%n = (G2, 0) = (DG (1), @) (B16)
and a similar argument. o
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