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ABSTRACT

Rossby waves, propagating from the midlatitudes toward the tropics, are typically absorbed by critical
latitudes (CLs) in the upper troposphere. However, these waves typically encounter CLs in the lower tro-
posphere first. We study a two-layer linear scattering problem to examine the effects of lower CLs on these
waves. We begin with a review of the simpler barotropic case to orient the reader. We then progress to the
baroclinic case using a two-layer quasigeostrophic model in which there is vertical shear in the mean flow
on which the waves propagate, and in which the incident wave is assumed to be an external-mode Rossby
wave. We use linearized equations and add small damping to remove the critical-latitude singularities. We
consider cases in which either there is only one CL, in the lower layer, or there are CLs in both layers, with the
lower-layer CL encountered first. If there is only a CL in the lower layer, the wave’s response depends on
the sign of the mean potential vorticity gradient at this lower-layer CL: if the PV gradient is positive, then
the CL partially absorbs the wave, as in the barotropic case, while for a negative PV gradient, the CL is a wave
emitter, and can potentially produce overreflection and/or overtransmission. Our numerical results indicate
that overtransmission is by far the dominant response in these cases. When an upper-layer absorbing CL
is encountered, following the lower-layer encounter, one can still see the signature of overtransmission at
the lower-layer CL.

1. Introduction for the importance of the presence or absence of an
upper-tropospheric CL. The phase speed spectra of the
transient eddy momentum fluxes described in Randel
and Held (1991) also support the importance of the
upper-tropospheric CLs.

Yet, as illustrated by the schematic in Fig. 1, waves
with a CL in the upper troposphere in the tropics will
almost invariably first encounter a CL in the lower tro-
posphere in the subtropics, because mean winds become
more westerly with height in the troposphere. One is led
to ask what factors control the wave-mean flow inter-
action at the lower-tropospheric CL. A line of argument
that these should be minor might start with the fact that
these waves have larger amplitudes in the upper tropo-
sphere than in the lower troposphere as measured by
streamfunction amplitude or kinetic energy so that,
in particular, the eddy momentum fluxes are primarily
confined to the upper troposphere. But meridional
particle displacement associated with a linear wave with
Corresponding author: Matthew T. Gliatto, mgliatto07@gmail.com  streamfunction ¢y and phase speed c is proportional to

Rossby waves propagating on a zonal flow provide a
useful theoretical simplification for the study of the fate
of waves produced in midlatitudes and propagating into
the tropics (Karoly and Hoskins 1982). Both the ob-
served transient and stationary eddy momentum fluxes
are poleward on average in the subtropics, a signature
of equatorward propagation, but fall to zero near the
equator, implying that these waves are predominately
absorbed in the tropics. This absorption is understood as
resulting from wave breaking that occurs because of the
presence of a critical latitude (CL) in the upper tropo-
sphere where the zonal mean flow equals the phase
speed of the wave. The work of Webster and Holton
(1982), who examine the propagation of waves into the
equatorial central Pacific where upper-level mean zonal
winds are often westerly, provides observational support
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Height

Midlatitudes

FIG. 1. Schematic showing a Rossby wave of a given phase speed
¢ propagating from the midlatitudes toward the tropics. Note that
the critical latitude moves equatorward as height increases, be-
cause the mean flow U becomes more westerly with height. The
waves are absorbed by critical latitudes in the upper troposphere.
This paper examines how they respond to those in the lower tro-
posphere, which they encounter first.

Tropics

Y/(U — ¢), where U is the mean zonal flow, so these
meridional displacements can be relatively large in
the lower troposphere, which suggests the potential
for lower-tropospheric wave breaking and mean-flow
modification.

Upper-level CL dynamics in the tropics are typically
addressed with barotropic models, motivated in large
part by weak coupling in the vertical in the tropics
(Charney 1963). But this decoupling is not likely to
be fully operative in the subtropics. The simplest
model to begin addressing issues related to the lower-
tropospheric CLs may be the two-layer quasigeostrophic
model, keeping in mind that this model may overestimate
vertical coupling in that it does not account for the in-
crease in the radius of deformation with decreasing
latitude. In this paper, we pose a scattering problem in
the two-layer model, in which we shine a steady external
Rossby wave on a shear zone that produces various
configurations of CLs in the upper and lower layers.
We study only the linear dissipative problem, in which
weak damping removes the singularity at the steady
linear CL. The incident wave is given the external-mode
structure because of its prominence in the observed
stationary wave field and qualitative similarity to tran-
sient eddies as well. In addition, it is horizontally prop-
agating for parameters of interest, whereas the internal
mode of the two-layer model is often horizontally eva-
nescent in the same mean flow.

The classic barotropic Rossby wave CL has been
studied in both linear and nonlinear settings. In most
cases, the steady linear dissipative CL is at least partially
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absorbing, with absorption effectively complete if the
flow is smooth enough (Dickinson 1968; Geisler and
Dickinson 1974), but some reflection is possible even in
this linear theory. In fact, significant reflection is possi-
ble even if there is no CL and no classical turning points
(Potter et al. 2013). And the result that the dissipative
CL is absorbing is dependent on the sign of the potential
vorticity (PV) gradient at the CL—the absolute vorticity
gradient in this barotropic case. If the PV gradient at
the CL is negative, the CL becomes an emitter rather
than an absorber. In the simplest one-layer case with
one CL, propagation is possible on only one side of the
CL, the side from which the wave is incident, so trans-
mission is not possible and the emission of wave activity
results in overreflection (Lindzen et al. 1980). Whether
absorbing or emitting in the linear approximation, the
fully nonlinear solution generally results in the PV gra-
dient being mixed away, resulting in perfect reflection.
The relevance of the linear or nonlinear picture depends
on the efficiency of other processes that act to restore a
significant gradient in the face of this mixing (Killworth
and Mclntyre 1985). We do not discuss the nonlinear
problem here.

In the two-layer model, we also expect the sign of the
PV gradient to be an important parameter in controlling
the character of the lower-layer CL dynamics. But in this
case, we are interested in mean flows in which the
change in sign of the PV gradient in the lower layer
is due to the vertical shear rather than horizontal cur-
vature as in the barotropic case. If the PV gradient
is reversed at the latitude of the lower-layer CL, the
CL should become a wave emitter, as implied by the
two-layer analog of the conservation law from which
barotropic overreflection can be explained. However,
in the two-layer case, there is potential for wave prop-
agation on both sides of the CL, introducing the possi-
bility of overtransmission along with, or instead of,
overreflection. If the curvature is negligible, the sign
of the PV gradient in the lower layer is determined
by whether the shear is subcritical or supercritical,
according to the Phillips (1956) criterion, and as a
shorthand we refer to cases with negative and positive
lower-layer PV gradients as supercritical and sub-
critical, respectively. The PV gradient is always posi-
tive in the upper layer in all of the two-layer cases
examined here.

Lutsko et al. (2017) have recently described the
structure of lower-layer momentum fluxes in the statis-
tically steady state of a two-layer QG model. A role for
the lower-layer critical latitude is evident in the space—
time cospectra. They also find qualitatively similar mo-
mentum flux cospectra in an idealized dry GCM and
in a Southern Hemisphere reanalysis, suggesting that



MARCH 2020

the two-layer model results have some relevance to the
atmosphere.

The equations that we solve and the solution proce-
dure are described for the barotropic special case in
section 2 in some detail, to help orient readers unfa-
miliar with this Rossby wave scattering framework.
The two-layer equations are described in section 3,
followed by the results from these two-layer computa-
tions in section 4. Of particular interest is to determine
whether or not overtransmission occurs in this ideal-
ized scattering setting. To our knowledge, this possibil-
ity has not been discussed in the literature on Rossby
wave propagation. It does indeed occur, and in the
concluding section we briefly discuss whether over-
transmission has relevance to the patterns seen in
Lutsko et al. and if it has any observable consequences
for the atmosphere.

2. The barotropic case

We describe the previously studied barotropic case in
some detail as an introduction to the Rossby wave
scattering problem. As in Potter et al. (2013) and Halevy
and Peltier (1985), we begin with the nondivergent
barotropic vorticity equation on a 8 plane, linearized
about a mean wind profile U(y):

2.4/ /
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where ¢/ is the (perturbation) streamfunction. We con-
sider steady-state solutions of the following form:

' = Re{y(y) explik(x — cr)l}. @)
Plugging this into Eq. (1) yields

62
el +V(y(y) =0, 3)
where
Vi) =BTV e @

To illustrate this barotropic problem, we work with a
tanh mean wind profile:

Uy)= %u*[tanh(ay) +1], (5)

where U(y), and therefore also V(y), approach constant
values at both asymptotic limits in y. At the southern
limit, Eq. (3) becomes
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P’y

T 4+V =(

0y V=id(y)
(V™ being the value of V at the southern limit), to which
the general solution is

P(y) = Aexp(it”y) + Bexp(—il"y). (6)
Likewise, the general solution at the northern limit is
P(y) = Cexp(il*y) + Dexp(—il*y). 7)

Here 4(y) = \/V(y) is the local meridional wavenumber,
¢~ and ¢* are its limits at negative and positive infinity,
respectively, and A, B, C, and D are complex numbers.
Note that if V(y) is negative, then ¢(y) will be imaginary,
signifying that the wave is decaying.

We choose to imagine the wave source as being in
the south (although we could have just as well chosen a
wave incident from the north). That is, we imagine the
problem as taking place in the Southern Hemisphere,
with the Rossby wave originating in the Southern
Hemisphere midlatitudes and propagating toward the
tropics. This implies that D is zero. Furthermore, we are
interested only in the ratio of B to A and the ratio of C to
A. B/A is the reflection coefficient, which we denote as
R, and C/A is the transmission coefficient, which we
denote as 7. So we have

Y (y) =exp(il”y) + Rexp(—il"y), (8)
Y (y) =Texp(il"y), ©)

where () and 4" (y) are the functions of y to which
the solution converges at the southern and northern
limits, respectively.

We now have enough information to solve for ¢(y)
numerically. We discretize the domain into n discrete
values of y, each an equal distance Ay apart, evaluating
a*y/ay* with standard finite differencing. This gives us
n — 2 equations for n variables. We can differentiate
Eq. (8) to get

% by =200 exp(il”y) (10)
and differentiate Eq. (9) to get
8!,[/+ ot g+
= 11
3y Wy, (11)

thus eliminating R and 7 for the time being. We then
discretize these boundary conditions to provide the two
additional equations needed. Thus, we have n linear
equations for n variables, and we invert the matrix for
i at each value of y.
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Following Potter et al. (2013), for the barotropic case,
we nondimensionalize with a length scale of 1/k and a
time scale of k/B. This gives us

1-9*Ulay*
U(y)—c

leaving ¢ as the only parameter in addition to the pa-
rameters describing U(y): u* and a. Given Galilean in-
variance, we could equivalently restrict ¢ to vanish,
adding a constant offset to U(y), without altering the
solutions.

If there is a CL, where U = c, this introduces a sin-
gularity to V(y). To avoid this singularity, we consider
a steady dissipative critical layer by adding a small
amount of damping of the form &(y)V%)/ to Eq. (1). We
choose &(y) to have maximum amplitude &, at the
CL and to decrease to zero a distance of 2.5 non-
dimensional units away from the CL. This choice avoids
the presence of damping near the boundaries, which
creates spatial growth which in turn adversely affects
the robustness of our numerical solution. The inclusion
of the damping term makes V(y) complex valued: it
now becomes

V()= (12)

1-9*Ulgy>
UQ) —c—iely)

and so, as is well known, the singularity is avoided.
The momentum flux is given by

Viy)= 1 (13)

_ 1 d

T = 5 1m S00) (14)
while the vorticity flux u/_g’ is the convergence of the

momentum flux:

ST = -
vi(y) = @(uv)- (15)
The linear steady-state enstrophy balance in the
presence of damping expresses the balance between
production due to downgradient vorticity flux and dis-
sipation of enstrophy:
0=—y{ -, (16)
where v is the mean vorticity gradient. Away from the
critical line, the perturbation vorticity remains finite in
the limit & — 0, implying that the vorticity flux vanishes
and the momentum flux is constant in latitude. Near the
critical line, for small ¢, the dissipation and the vorticity
flux are both large in a region of width proportional to &,
the amplitude increasing and the width of this region
decreasing with decreasing ¢ in such a way that the flux
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approaches a delta function (Dickinson 1969; Lindzen
and Tung 1978; Held 1983). The sign of the delta func-
tion in the vorticity flux, and of the corresponding
jump in the momentum flux, is determined by the re-
quirement in the enstrophy budget that the vorticity
flux be downgradient. If y(y.) > 0, then the momentum
flux will increase as a function of y at the CL, while if
v(y.) < 0, then the momentum flux will decrease at
the CL. For the tanh profile considered, the wave is
evanescent after the CL, so no transmission to large y is
possible.

We define .%2 to be the reflected momentum flux,
normalizing by the momentum flux in the incident wave:
8= |R|2. We expect partial absorption, .72 <1, in the
subcritical case, while in the supercritical case, over-
reflection, .72 >1 is expected, as discussed by Lindzen
and Tung (1978). We likewise define .7~ to be the
transmitted momentum flux, normalized by the mo-
mentum flux in the incident wave. But for the tanh
profile, .7 will always be zero.

Except in the immediate vicinity of the CL, the solu-
tion, including the value of .72, should be insensitive to
the value of g, for small-enough &y. This insensitivity
can be checked by repeating the calculation with dif-
ferent values of ¢, taking care to use a sufficiently small
Ay to resolve the rapid variations near the CL. We have
verified that our model is sufficiently insensitive to the
value of g.

We begin by examining a specific mean wind profile
[see Eq. (5)] and phase speed for the barotropic case,
as shown in Fig. 2. With the phase speed ¢ of 0.8 chosen
for this figure, there is a negative PV gradient at the
CL as the associated profile of 1 — a*U/9y* shows.
Overreflection is obtained, with .7 = 1.20. Next, for this
profile, we vary the phase speed and plot the momentum
flux at the southern limit, normalized by the incident
flux, as a function of the phase speed. This is shown in
Fig. 3. This profile has a negative PV gradient at the CL
within the range of phase speeds indicated by the two
vertical red dashed lines, and positive PV gradient for all
other c.

We see that for positive PV gradient at the CL, the
reflection can be significant even though the CL must
be partially absorbing. In the flow examined here,
the reflection rises smoothly from near zero to values
comparable to 1 as the phase speed approaches the re-
gion of reversed PV gradient. For these flows, the re-
flection is high because the wave encounters rapid
variations in V(y) before it reaches the CL. And for
nearly all of the range between the two dashed red
lines, where the PV gradient is reversed, the momen-
tum flux at the southern boundary is positive, indicat-
ing overreflection.
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FIG. 2. Profiles of U(y), ¢, and y(y) = 1 — 9*U/dy? for a barotropic
case, with u* = —1,« = 1.7, and ¢ = —0.8, so that y(y.) = —0.110.
Also, . 72 =1.20and .7 =0.

As an aside, it should be noted that if we were to ex-
amine the sech? profile (under which there would be two
CLs) rather than the tanh profile, then the wave could
propagate through both CLs into another propagating
region, which means that .7~ would be nonzero. This is
consistent with the findings of Yamada and Okamura
(1984) that there is overtransmission for this flow,
7 >1, if the PV gradient is negative at both CLs, a re-
sult that we have confirmed.

3. The baroclinic model

To address the question of the role of lower-tropospheric
CLs, we use the equations of the two-layer quasigeostrophic
(QG) Phillips model, examining Rossby wave prop-
agation in the presence of vertical shear in the mean
flow. Once again, we need to solve for the stream-
function, which the Phillips model prescribes as
follows:

oy,
—+0 —1=0 i=1,2
ot 7 ox Q > (=1,2),

Vox

(17)

where Q;, and g;, the gradient of the zonally averaged
potential vorticity and the perturbation potential vor-
ticity, are given by

q, =V + (1)) — ¢,)I(20%),

Q,=B- aZU]./ay2 — (=1/(U, = U)I(2A%),  (18)

where A is the constant Rossby radius of deforma-
tion, and Uj(y) and U,(y) are the mean wind profiles
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F1G. 3. Momentum flux at the southern limit as a function of
phase speed c for the mean wind profile shown in Fig. 1. The value
of y(y.) is negative for phase speeds between the two vertical red
dashed lines and is positive for all other c. The phase speed shown
in Fig. 1 is indicated here by the solid black vertical line. Also, & =
0.007 at the CL and Ay = 0.0075.

in the upper and lower layers, respectively. We non-
dimensionalize with the length scale of A and a velocity
scale of BA%, which means B and A can be replaced with 1
in the above equations. We consider a steady-state so-
lution of the following form:

W= Re{y,0)explik(x —enl}, (i=1.2)  (19)
yielding a pair of differential equations:
Py 1
a—yz + V1(y)¢1())) + E%(y) =0,
i 1
WQZ"‘VZ(}’)lﬂz(Y)“‘E%(Y):O, (20)
where
142 - 92U, /0y> — U,(y)2
Vv = 1 2 _ k2,
) U.0) <
142 — U, 19y* — U, (y)/2
V,(n) = . ! - K 21
:0) Uy0) < @1

The flow we consider is obtained by keeping our previ-
ous wind profile in the lower layer and simply adding a
vertical shear 25(y) to it in the upper layer:

U @y)= %u*[tanh(ay) +1]+285(y),

U,(y)= %u*[tanh(ay) +1]. (22)
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Initially, we will take S to be constant. The parameters
are u*, a, S, ¢, k, and &

Once again, the flow is asymptotically constant for
large positive and negative values of y, and the solution
in those regions is the sum of two waves, the external and
the internal mode. These two modes are distinguished
by their meridional wavenumbers, which are the square
roots of the two eigenvalues of the matrix:

Vo) s
Loy

2

These meridional wavenumbers are given by

L0 =Hvo o+ IV - o)

() = %{Vl(y) V.0 - \/[Vl(y) V0P +1 }
(23)

As before, the meridional wavenumbers are not
always real. For most latitudes in most situations,
lin(y) will be imaginary, signifying that the internal
mode is evanescent, and for some latitudes in some
situations, 4.x(y) will also be imaginary, meaning the
external mode is also decaying, rather than propa-
gating. [Note that 2 (y) > (2 (y) for all y, so if the ex-
ternal mode is decaying, the internal mode must be
as well.]

We are now in a position to solve for the boundary
conditions. For V{(y), V,(y), £ex(¥), and £, (y), we denote
the northern limit with a superscript plus sign and the
southern limit with a superscript minus sign. At the
southern limit, Eq. (20) becomes

1
W)+ Vi) + 51500 =0,

B0+ V004 35,0) =0,
to which the general solution is
i (v) = A exp(ifey) + Byexp(—ifey) + Cpexp(itiy)
+ D, exp(—il,y),
U, (y) = A, exp(ify) + By exp(—ife.y) + C, exp(iliy)
+ D, exp(—il,y), (24)

in which the coefficients satisfy the ratios A,/A; = B,/B; =
2[(¢)* — Vil and Go/Cy = Do/Dy =2[(4;) — Vi ).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 08:01 PM UTC

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 77

Likewise, at the northern limit, the general solution is
¥, (y) = E, exp(ils,y) + F exp(—il3,y) + G, exp(il;y)
+ H exp(—il;y),
U, (v) = E,exp(ile,y) + Fyexp(—iley) + G,exp(it;,y)

+ H,exp(—iljy), (25)
in which the coefficients satisfy the ratios E,/E; = F»/F; =
20(65) = Vil and Go/Gy = HalHy =2[(6,)° = V]

As in the barotropic case, we need to specify the
particular scattering problem being posed. We assume
again that the wave is only incident from the south; this
makes the F values and the H values equal to zero. We
also assume that the incident wave consists of only the
external mode, which makes the C values equal to zero.
Finally, as with the barotropic case, we are interested
only in the ratios of the coefficients to Ay, so we divide
Egs. (24) and (25) by A; to get

Py (v) = exp(ileyy) + R, exp(—ile,y)
+ R, exp(—il,y),

P, () = A, exp(iley) + Ry exp(—ileyy)

+ R, , exp(—ilyy) (26)
and
¥y (v) = T, exp(iley) + T, exp(ilyy),
Uy () =T, exp(itiy) + T,,exp(it,y). (27)

Asin the one-layer case, we discretize the domain into
n evenly spaced values of y and use the boundary con-
ditions to complete the specification of the matrix to be
inverted to solve for ;(y) and ¢, (y).

We also include damping with time scale g, of po-
tential vorticity to remove the singularity at any CLs. As
before, we take e(y) to be a function of latitude that has
local maxima of g at the CLs and that is O when y is
more than 2.5 nondimensional units away from any CLs.
We use gy = 0.001.

In the baroclinic case, Eq. (14) is still true in each
layer. To obtain the analog of Eq. (15) one needs to sum
over the two layers, that is,

0 /& 2 ‘
—@<Zu;v]’-) = gu;q;, (j=1,2). (28)
j=1 j=1

The eddy heat flux, which can be defined in each layer, is

H() =, —#5). (=1.2). 29)
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For this two-layer model, H,(y) = H,(y), and so we can
refer to just one heat flux H(y). As is well known, the
heat, momentum, and PV fluxes are related by

9 — 1 S
—@(u’lv’l) —5H) =v4,0),

) =, 1 T
_@(”21’2) + EH(Y) =vq5(y)- (30)

The linear steady-state potential enstrophy balance
plays the same role here as does the enstrophy balance
in the barotropic case. In layer j we have

0=~ g - a7 (31)

where vy; is the mean potential vorticity gradient in
layer j:

U
y,(n)=1- ayzl +58(y).

U
y,(n)=1- ayzz - S(@y).

If neither layer has a CL, then the total PV flux
(“total” implies the sum over the two layers), or,
equivalently the total momentum flux convergence, is
uniformly 0. The total momentum flux, being the inte-
gral in y of the total PV flux, is constant except in the
immediate vicinity of the CLs, where it changes rapidly.
The sign of vy;(y.;) determines whether the total mo-
mentum flux rises or falls at the CL in the jth layer. If
it is positive, then the total momentum flux rises there
with increasing y, while if it is negative, the total mo-
mentum flux falls there. And unlike in the barotropic
case, there can be propagation (nonzero momentum
flux) on both sides of a lower-layer CL. However, after
an upper-layer CL (if there is one), under realistic con-
ditions, the wave will be absorbed and the momentum
flux will fall to zero. [Strictly speaking, the momentum
flux falls to zero after an upper-layer critical latitude
if and only if |V} V| > (1/4), but for any realistic com-
binations of the parameters, that will be satisfied.]

If the flow is sufficiently slowly varying, then there will
be negligible mixing of the two vertical modes, so that
the amplitude ratio of the two layers will be well ap-
proximated by that of the external mode:

¥, (y)
¥ (v)

=2[6,() = V,)]. (32)

Departure from this amplitude ratio and the existence
of an eddy heat flux is a sign of mode mixing, since the
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vertical phase tilt responsible for the heat flux is not
present if the solution has the vertical structure of the
external mode. Mode mixing is a distinctive feature of
this two-layer scattering problem as compared to the
single-mode barotropic problem.

It is also worth mentioning that on each side of the
CL, one of the two squared meridional wavenumbers
remains finite while the other blows up to +% or —»
[neglecting the imaginary parts of Vi(y) and V,(y)]-.
Whether it is the external or internal mode that blows
up on either side is determined by the sign of V,(y)
as it approaches the CL. Whichever mode is finite
on one side of the CL blows up on the other side. The
implication of this is that one mode of the solution re-
mains finite and bounded throughout the domain, but
it switches between the external and internal modes as
it crosses the CL.

We are interested in the ratio of the reflected total
momentum flux at the southern limit to the incident
total momentum flux, and in the ratio of the transmit-
ted total momentum flux at the northern limit to the
incident total momentum flux. Since the reflected
momentum flux is positive and the incident and trans-
mitted momentum fluxes are negative, the former is al-
ways negative and the latter is always positive. The
absolute value of the former is the reflected flux and
is denoted .72. The latter is the transmitted flux and is
denoted .7

At the northern limit, we only need to use the
streamfunction to get the momentum flux of transmis-
sion. At the southern limit, we use the streamfunction
and the boundary conditions to solve for the various
coefficients of reflection, from which we can compute
the incident momentum flux and the momentum flux
due to reflection, and knowing those, we can calculate
7 and .7". When .72 is greater than 1, it is called over-
reflection, and when .7~ is greater than 1, it is called
overtransmission.

4. Baroclinic results

We begin with the baroclinic case with constant ver-
tical shear, with a critical latitude in only the lower layer.
Such a case is sketched in Fig. 4. We will examine one
subcritical case and one supercritical case, which differ
only in their vertical shear. The values of u*, «, ¢, and
k were chosen to match the values used in Fig. 2, after
converting from our two-layer to our one-layer non-
dimensionalization. For each of these two baroclinic
cases, we plot the amplitudes of the streamfunctions in
both layers [|1(y)| and |¥(y)|], the amplitude ratio
[2(»)/r1(y)], and the momentum flux (in each layer and
the total), all as a function of latitude y. We plot the
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FI1G. 4. Graph of the mean wind profiles for a baroclinic case with
constant vertical shear 25 and with a critical latitude in only the
lower layer.

amplitude ratio only up to the critical latitude, and we
plot the external-mode amplitude ratio for comparison.
We also plot the heat flux on the same graph as the
momentum fluxes. For the subcritical case, the stream-
function amplitudes are shown in Fig. 5, the amplitude
ratios in Fig. 6, and the momentum and heat fluxes in
Fig. 7. For the supercritical case, the streamfunction
amplitudes are shown in Fig. 8, the amplitude ratios in
Fig. 9, and the momentum and heat fluxes in Fig. 10.
We find that the reflected and transmitted flux
(normalized by the incident flux), (72, .77), is (0.0014,
0.552) in the subcritical case, and (0.0155, 2.84) in the

: o

1/\/’\/\ ,,,,L.;amp |
09F 1
0.8}
0.7 i

B06F ~__-77> % g SR
05 1
04F
03F \ 1

0.2} T 1

FIG. 5. Amplitudes of the streamfunctions in both layers, |(y)|
and |,(y)|, vs latitude for the subcritical case. Here, u* = —0.9,a =
0.5,¢c=-05,5=0.85,k = 0.5, = 0.001, and the gradient of mean
PV at CL is 0.125. The result is .72 = 0.0014 and .7~ = 0.552.
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FI1G. 6. The real and imaginary parts of the amplitude ratio
o(y)/p1(y) and the external-mode amplitude ratio vs latitude for
the subcritical case.

supercritical case. As expected, there is a wave sink in
the subcritical case and a source in the supercritical case.
The transmission is totally dominant in both cases, for
reasons that are not clear to us. In particular, the su-
percritical case exhibits overtransmission.

In both sub- and supercritical cases, both upper- and
lower-level streamfunction amplitudes have a sinusoidal
component toward the southern limit, with larger os-
cillations in the supercritical case. These oscillations
are a sign of reflection and of interference between in-
cident and reflected external waves. (The internal mode
is evanescent near both the northern and southern
boundaries.) Since .72 has a quadratic dependence on the
reflected wave amplitude, noticeable oscillation can

0.2 T T T

-02F

04+ ~J

Momentum Flux
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r : ) ‘
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FIG. 7. Momentum flux in the upper layer, lower layer, and their
sum, along with the heat flux, for the subcritical case.
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FIG. 8. Amplitudes of the streamfunctions in both layers, |y (y)|
and |y (y)|, vs latitude for the supercritical case. Here, u* = —0.9,
a=05c=-058=1.15k=0.5,e =0.001, and the gradient of
mean PV at CL is —0.1747. The resultis 72 = 0.0155 and .7~ = 2.84.

exist even with .72 values as small as 0.0014 in the sub-
critical case. The constant value to the north of the shear
zone indicates the constant amplitude of the transmitted
external mode. We also see that for the subcritical case,
the streamfunctions have a greater amplitude before the
CL than after it, while for the supercritical case, the
opposite is true, due to the overtransmission.

In the amplitude ratio graphs, we see that toward the
southern limit, the amplitude ratio very closely matches
the local external-mode structure, indicative of lack of
mode-mixing, but this computed ratio deviates from the
external-mode ratio as the CL is approached. At the CL,

0.6
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FI1G. 9. The real and imaginary parts of the amplitude ratio ¢s>(y)/1(y)

and the external-mode amplitude ratio vs latitude for the super-
critical case.
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FIG. 10. Momentum flux in the upper layer, lower layer, and their
sum, along with the heat flux, for the supercritical case.

the external-mode amplitude ratio (lower/upper) blows
up to infinity in the subcritical case but approaches zero
in the supercritical case. If there were no mode mixing,
then one might imagine that in the supercritical case,
the wave might propagate only through the upper layer,
and critical layer behavior in the lower layer would be
avoided by the vanishing streamfunction amplitude at
the CL. But the figures clearly show that the actual
amplitude ratio diverges from the external-mode ratio
when we approach the CL, so this prediction is in-
valid, and singular behavior in the limit of vanishing
damping does occur at the CL in both subcritical and
supercritical cases.

In the momentum flux graphs, the quantity that be-
haves most simply, as expected, is the total momentum
flux, which is constant throughout the domain except
for the jump in the vicinity of the CL. The momentum
flux increases with increasing y at the CL for the sub-
critical case and decreases at the CL for the supercritical
case. We also see that in both cases, the lower-layer
momentum flux changes rapidly at the CL while the
upper-layer momentum flux changes gradually; this is
because the heat flux is continuous at the CL, and using
Eq. (30), this means that the jump in the lower-layer PV
flux will cause a jump in the momentum flux only for
the lower layer. The heat flux is negative throughout in
the subcritical case but positive throughout in the su-
percritical case, with significant values in a fairly broad
region around the CL, providing another indication for
the region within which mode mixing occurs.

As discussed in Tung (1979), a Rossby wave in a re-
gion of positive PV gradient in a continuously stratified
fluid will be refracted such that its ray path will approach
a slanted critical line perpendicularly. In a configuration
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in which the critical line slants equatorward with
height, and starting with a horizontal ray path far from
the CL, this implies downward propagation of wave
activity and negative heat flux. We suspect that the
negative heat flux in our subcritical case, in which the
PV gradient is positive in both layers, is the two-layer
analog to this continuous QG behavior. In a super-
critical two-layer model, in contrast, we often think of
the lower-layer PV gradient as analogous to the sur-
face temperature gradient in the continuous theory,
the reversal in sign of which is required for baroclinic
instability if the interior (the upper layer in the two-
layer model) has positive PV gradient. We do not
claim to understand this fully. We suspect that the
continuously stratified analog of the upward heat flux
in our supercritical case would involve movement of
wave activity from the surface reservoir to the interior
reservoir, and not redistribution within the interior
reservoir.

As the theory would predict, both the reflection and
the transmission are considerably larger for the super-
critical case than for the subcritical case. The super-
critical case has overtransmission (although its reflection
is still well below 1). For both cases, the transmission
is much greater than the reflection. Again, the reasons
for this are unclear, although calculations carried out by
the authors but not reported in detail here indicate that
as meridional shear is increased, the ratio of .72 to .7
typically increases.

Finally, we examine a very different case, in which S
varies in latitude, and there is a critical latitude in both
layers. This case is sketched in Fig. 11. We are using the
vertical shear profile of

S(y)= %AS[—tanh(ay) +1]+ S, (33)
where S™ denotes the value of S at the northern limit, S~
the value at the southern limit, and AS the difference
between S~ and S*. We graph the streamfunction am-
plitude in both layers in Fig. 12 and the momentum and
heat fluxes in Fig. 13.

This example is arguably more realistic than the pre-
vious two, thinking of decreasing S as approaching the
tropics, although the potentially important increase in
radius of deformation with decreasing latitude is still
missing in this quasigeostrophic model. There are criti-
cal latitudes in both layers, as is the case in reality. The
values of the parameters were chosen so that the shear is
supercritical at the lower-layer CL. The PV gradient is
positive at the upper-layer CL.

As expected, we find that.7 is virtually 0, as the wave
cannot pass through the upper-layer CL, which com-
pletely absorbs the wave. This can be seen in both
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FI1G. 11. Graph of the mean wind profile for a baroclinic case with
a varying vertical shear 2S(y) and with critical latitudes in both
layers.

Figs. 12 and 13: in Fig. 12, both streamfunctions vanish
past the upper-layer CL, as do all the momentum and
heat fluxes in Fig. 13. Qualitatively, as seen in Fig. 13, the
lower-layer CL has the same effect on the momentum
fluxes (and the heat flux) as it does in Fig. 10. Both the
lower-layer momentum flux and the sum of the two
momentum fluxes jump toward more negative values at
the lower-layer CL, indicating overtransmission. There
is also some reflection in this case, more so than in the
cases examined above.

The overtransmission is modest in this case. The
increase in amplitude of the total momentum flux
across the lower-layer CL is roughly 20%. Therefore,
the solution looks as if it is roughly passing through the
lower-layer CL without being significantly modified.
To this extent, the dominance of the upper-layer CL
on the wave propagation evident in observations is
captured.

We finish with a brief exploration of the conditions
that favor smaller or larger amounts of transmission
across the lower-layer critical latitude. Our results in-
dicate that when the vertical shear toward the southern
(incident) limit is increased, the reflection increases,
while the transmission across the CL increases up to a
point but then begins to decrease. Figure 14 illustrates
this, as we plot the total momentum flux versus lati-
tude for five profiles which differ only in their value
of AS. The third of these profiles, which has AS = 1.2, is
the same profile as in Fig. 13. We see that only one of the
five profiles, the one with the lowest value of AS, is
subcritical at the lower-layer CL; the other four are all
supercritical. And we see that as we increase AS, the
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FIG. 12. Amplitudes of the streamfunctions in both layers, | (y)|
and |y(y)|, vs latitude for the case with varying shear. Here,
u¥=—-15a=05c=-035A5=12,8"=04,k=05,¢ =
0.001, and the gradient of mean PV at lower-layer CL is —0.1769.
The result is .72 = 0.0632 and .7 ~ 0.

reflection increases, while the transmission increases up
until AS = 1.4, after which it decreases sharply: the
profile with the highest AS, AS = 1.6, has the third-
lowest transmission. Other results, which we do not
include here, show that the transmission across the
lower-layer CL tends to be higher when the phase speed
is close to zero, and that other parameters, such as the
meridional shear in the lower layer and the baseline
vertical shear ST, have little effect on the reflection or
transmission. Even for this very idealized setting, the
number of parameters is sufficient that it is difficult to
describe the solutions throughout this parameter space,
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F1G. 13. Momentum flux in the upper layer, lower layer, and
overall, along with the heat flux, for the case with varying shear.
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F1G. 14. Total momentum flux vs latitude for five different pro-
files, which differ only in their value of AS. All other parameters are
as in Figs. 12 and 13.

and more theoretical guidance will be needed to isolate
the parts of this space of most interest.

5. Conclusions

We have examined Rossby wave scattering problems
in a quasigeostrophic two-layer model in the presence of
critical latitudes (CLs), in which the singularity at these
CLs is removed by a small amount of damping. The in-
coming wave in all cases was given the structure of the
external mode of the two-layer system.

When the potential vorticity gradient is negative at
the CL, theory indicates that the CL will act as a wave
emitter. This emission can be realized as either over-
reflection, overtransmission, or a combination of the
two. In all cases examined with a supercritical CL in the
lower layer, we find overtransmission. In a case with a
configuration most qualitatively similar to that found in
the atmosphere, the wave first encounters a supercritical
lower-tropospheric CL before encountering a subcriti-
cal CL in the upper troposphere. In this case, there is
“temporary”’ overtransmission at the lower-layer CL
before the wave is absorbed at the upper-level CL. If this
overtransmission is of modest amplitude, then the solu-
tion gives the appearance of floating through the lower-
layer CL without any CL-like dynamics occurring.

Opvertransmission cannot occur in the barotropic case,
since Rossby waves do not propagate on both sides
of a CL. The two-layer setup described here may be
the simplest system in which to study overtransmission
through a single CL. Interaction between the two layers
is essential. In particular, the upper-layer mean winds
are essential for the propagation characteristics of the
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external Rossby wave, an incident external mode being
a natural way of setting up a useful scattering problem.
We leave open the question of why overtransmission
is ubiquitous in cases with a supercritical lower-layer
CL and how the amplitude of the overtransmission is
controlled.

In their study of the lower-tropospheric momentum
fluxes in a statistically steady state of the quasigeostrophic
two-layer model, Lutsko et al. (2017) describe the space-
time spectra of the eddy momentum flux convergence,
showing that this convergence is concentrated along
the lower-layer CL for each phase speed in the wave
field, especially for relatively long waves (see Fig. 4 of
that paper). The scattering setup and the resulting
overtransmission at the lower-layer CL described here
may provide a plausible physical picture for interpreting
the results in Lutsko et al. (2017). Following the familiar
argument for the upper-layer CL, it may be possible to
think of the wave-mean flow interaction at the lower-
layer CL in terms of a wave excited near the center of
the unstable jet and propagating outward. The wave
cannot be thought of as a Rossby wave confined to the
lower layer since such a disturbance would not propa-
gate (this region is supercritical, so local Rossby wave
propagation would require phase speeds greater than
the mean westerly wind, precluding the existence of a
lower-layer CL). Propagation by external-mode-like
disturbances is possible out of the central supercritical
region of the jet, however, as captured here in our simple
scattering problem, and these could generate the mixing
needed to create eddy fluxes of the sort described in
Lutsko et al. (2017).

The two-layer vertical discretization seems at first
glance to be an extremely crude representation of the
atmosphere, so one could question the relevance of
these results to the atmosphere on that basis alone. But
Lutsko et al. (2017) show that a multilayer idealized
GCM and a Southern Hemisphere reanalysis both show
similar space-time spectra of the lower-tropospheric
eddy momentum fluxes, providing indirect evidence
for the qualitative relevance to the atmosphere of these
scattering calculations.
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