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ABSTRACT

Rossby waves, propagating from the midlatitudes toward the tropics, are typically absorbed by critical

latitudes (CLs) in the upper troposphere. However, these waves typically encounter CLs in the lower tro-

posphere first. We study a two-layer linear scattering problem to examine the effects of lower CLs on these

waves. We begin with a review of the simpler barotropic case to orient the reader. We then progress to the

baroclinic case using a two-layer quasigeostrophic model in which there is vertical shear in the mean flow

on which the waves propagate, and in which the incident wave is assumed to be an external-mode Rossby

wave. We use linearized equations and add small damping to remove the critical-latitude singularities. We

consider cases in which either there is only one CL, in the lower layer, or there are CLs in both layers, with the

lower-layer CL encountered first. If there is only a CL in the lower layer, the wave’s response depends on

the sign of the mean potential vorticity gradient at this lower-layer CL: if the PV gradient is positive, then

the CL partially absorbs the wave, as in the barotropic case, while for a negative PV gradient, the CL is a wave

emitter, and can potentially produce overreflection and/or overtransmission. Our numerical results indicate

that overtransmission is by far the dominant response in these cases. When an upper-layer absorbing CL

is encountered, following the lower-layer encounter, one can still see the signature of overtransmission at

the lower-layer CL.

1. Introduction

Rossby waves propagating on a zonal flow provide a

useful theoretical simplification for the study of the fate

of waves produced in midlatitudes and propagating into

the tropics (Karoly and Hoskins 1982). Both the ob-

served transient and stationary eddy momentum fluxes

are poleward on average in the subtropics, a signature

of equatorward propagation, but fall to zero near the

equator, implying that these waves are predominately

absorbed in the tropics. This absorption is understood as

resulting from wave breaking that occurs because of the

presence of a critical latitude (CL) in the upper tropo-

sphere where the zonal mean flow equals the phase

speed of the wave. The work of Webster and Holton

(1982), who examine the propagation of waves into the

equatorial central Pacific where upper-level mean zonal

winds are often westerly, provides observational support

for the importance of the presence or absence of an

upper-tropospheric CL. The phase speed spectra of the

transient eddy momentum fluxes described in Randel

and Held (1991) also support the importance of the

upper-tropospheric CLs.

Yet, as illustrated by the schematic in Fig. 1, waves

with a CL in the upper troposphere in the tropics will

almost invariably first encounter a CL in the lower tro-

posphere in the subtropics, because mean winds become

more westerly with height in the troposphere. One is led

to ask what factors control the wave–mean flow inter-

action at the lower-tropospheric CL. A line of argument

that these should be minor might start with the fact that

these waves have larger amplitudes in the upper tropo-

sphere than in the lower troposphere as measured by

streamfunction amplitude or kinetic energy so that,

in particular, the eddy momentum fluxes are primarily

confined to the upper troposphere. But meridional

particle displacement associated with a linear wave with

streamfunction c and phase speed c is proportional toCorresponding author: Matthew T. Gliatto, mgliatto07@gmail.com
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c/(U 2 c), where U is the mean zonal flow, so these

meridional displacements can be relatively large in

the lower troposphere, which suggests the potential

for lower-tropospheric wave breaking and mean-flow

modification.

Upper-level CL dynamics in the tropics are typically

addressed with barotropic models, motivated in large

part by weak coupling in the vertical in the tropics

(Charney 1963). But this decoupling is not likely to

be fully operative in the subtropics. The simplest

model to begin addressing issues related to the lower-

tropospheric CLs may be the two-layer quasigeostrophic

model, keeping inmind that this model may overestimate

vertical coupling in that it does not account for the in-

crease in the radius of deformation with decreasing

latitude. In this paper, we pose a scattering problem in

the two-layer model, in which we shine a steady external

Rossby wave on a shear zone that produces various

configurations of CLs in the upper and lower layers.

We study only the linear dissipative problem, in which

weak damping removes the singularity at the steady

linear CL. The incident wave is given the external-mode

structure because of its prominence in the observed

stationary wave field and qualitative similarity to tran-

sient eddies as well. In addition, it is horizontally prop-

agating for parameters of interest, whereas the internal

mode of the two-layer model is often horizontally eva-

nescent in the same mean flow.

The classic barotropic Rossby wave CL has been

studied in both linear and nonlinear settings. In most

cases, the steady linear dissipative CL is at least partially

absorbing, with absorption effectively complete if the

flow is smooth enough (Dickinson 1968; Geisler and

Dickinson 1974), but some reflection is possible even in

this linear theory. In fact, significant reflection is possi-

ble even if there is no CL and no classical turning points

(Potter et al. 2013). And the result that the dissipative

CL is absorbing is dependent on the sign of the potential

vorticity (PV) gradient at the CL—the absolute vorticity

gradient in this barotropic case. If the PV gradient at

the CL is negative, the CL becomes an emitter rather

than an absorber. In the simplest one-layer case with

one CL, propagation is possible on only one side of the

CL, the side from which the wave is incident, so trans-

mission is not possible and the emission of wave activity

results in overreflection (Lindzen et al. 1980). Whether

absorbing or emitting in the linear approximation, the

fully nonlinear solution generally results in the PV gra-

dient being mixed away, resulting in perfect reflection.

The relevance of the linear or nonlinear picture depends

on the efficiency of other processes that act to restore a

significant gradient in the face of this mixing (Killworth

and McIntyre 1985). We do not discuss the nonlinear

problem here.

In the two-layer model, we also expect the sign of the

PV gradient to be an important parameter in controlling

the character of the lower-layer CL dynamics. But in this

case, we are interested in mean flows in which the

change in sign of the PV gradient in the lower layer

is due to the vertical shear rather than horizontal cur-

vature as in the barotropic case. If the PV gradient

is reversed at the latitude of the lower-layer CL, the

CL should become a wave emitter, as implied by the

two-layer analog of the conservation law from which

barotropic overreflection can be explained. However,

in the two-layer case, there is potential for wave prop-

agation on both sides of the CL, introducing the possi-

bility of overtransmission along with, or instead of,

overreflection. If the curvature is negligible, the sign

of the PV gradient in the lower layer is determined

by whether the shear is subcritical or supercritical,

according to the Phillips (1956) criterion, and as a

shorthand we refer to cases with negative and positive

lower-layer PV gradients as supercritical and sub-

critical, respectively. The PV gradient is always posi-

tive in the upper layer in all of the two-layer cases

examined here.

Lutsko et al. (2017) have recently described the

structure of lower-layer momentum fluxes in the statis-

tically steady state of a two-layer QG model. A role for

the lower-layer critical latitude is evident in the space–

time cospectra. They also find qualitatively similar mo-

mentum flux cospectra in an idealized dry GCM and

in a Southern Hemisphere reanalysis, suggesting that

FIG. 1. Schematic showing a Rossby wave of a given phase speed

c propagating from the midlatitudes toward the tropics. Note that

the critical latitude moves equatorward as height increases, be-

cause the mean flow U becomes more westerly with height. The

waves are absorbed by critical latitudes in the upper troposphere.

This paper examines how they respond to those in the lower tro-

posphere, which they encounter first.
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the two-layer model results have some relevance to the

atmosphere.

The equations that we solve and the solution proce-

dure are described for the barotropic special case in

section 2 in some detail, to help orient readers unfa-

miliar with this Rossby wave scattering framework.

The two-layer equations are described in section 3,

followed by the results from these two-layer computa-

tions in section 4. Of particular interest is to determine

whether or not overtransmission occurs in this ideal-

ized scattering setting. To our knowledge, this possibil-

ity has not been discussed in the literature on Rossby

wave propagation. It does indeed occur, and in the

concluding section we briefly discuss whether over-

transmission has relevance to the patterns seen in

Lutsko et al. and if it has any observable consequences

for the atmosphere.

2. The barotropic case

We describe the previously studied barotropic case in

some detail as an introduction to the Rossby wave

scattering problem. As in Potter et al. (2013) andHalevy

and Peltier (1985), we begin with the nondivergent

barotropic vorticity equation on a b plane, linearized

about a mean wind profile U(y):

›=2c0

›t
1U(y)

›=2c0

›x
1

�
b2

›2U

›y2

�
›c0

›x
5 0, (1)

where c0 is the (perturbation) streamfunction. We con-

sider steady-state solutions of the following form:

c0 5Refc(y)exp[ik(x2 ct)]g . (2)

Plugging this into Eq. (1) yields

›2c

›y2
1V(y)c(y)5 0, (3)

where

V(y)5
b2 ›2U/›y2

U(y)2 c
2 k2. (4)

To illustrate this barotropic problem, we work with a

tanh mean wind profile:

U(y)5
1

2
u*[tanh(ay)1 1], (5)

where U(y), and therefore also V(y), approach constant

values at both asymptotic limits in y. At the southern

limit, Eq. (3) becomes

›2c

›y2
1V2c(y)5 0

(V2 being the value of V at the southern limit), to which

the general solution is

c(y)5Aexp(i‘2y)1Bexp(2i‘2y) . (6)

Likewise, the general solution at the northern limit is

c(y)5Cexp(i‘1y)1Dexp(2i‘1y) . (7)

Here ‘(y)5
ffiffiffiffiffiffiffiffiffiffi
V(y)

p
is the local meridional wavenumber,

‘2 and ‘1 are its limits at negative and positive infinity,

respectively, and A, B, C, and D are complex numbers.

Note that ifV(y) is negative, then ‘(y) will be imaginary,

signifying that the wave is decaying.

We choose to imagine the wave source as being in

the south (although we could have just as well chosen a

wave incident from the north). That is, we imagine the

problem as taking place in the Southern Hemisphere,

with the Rossby wave originating in the Southern

Hemisphere midlatitudes and propagating toward the

tropics. This implies thatD is zero. Furthermore, we are

interested only in the ratio ofB toA and the ratio ofC to

A. B/A is the reflection coefficient, which we denote as

R, and C/A is the transmission coefficient, which we

denote as T. So we have

c2(y)5exp(i‘2y)1Rexp(2i‘2y) , (8)

c1(y)5T exp(i‘1y) , (9)

where c2(y) and c1(y) are the functions of y to which

the solution converges at the southern and northern

limits, respectively.

We now have enough information to solve for c(y)

numerically. We discretize the domain into n discrete

values of y, each an equal distance Dy apart, evaluating

›2c/›y2 with standard finite differencing. This gives us

n 2 2 equations for n variables. We can differentiate

Eq. (8) to get

›c2

›y
1 i‘2c2 5 2i‘2 exp(i‘2y) (10)

and differentiate Eq. (9) to get

›c1

›y
5 i‘1c1, (11)

thus eliminating R and T for the time being. We then

discretize these boundary conditions to provide the two

additional equations needed. Thus, we have n linear

equations for n variables, and we invert the matrix for

c at each value of y.
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Following Potter et al. (2013), for the barotropic case,

we nondimensionalize with a length scale of 1/k and a

time scale of k/b. This gives us

V(y)5
12 ›2U/›y2

U(y)2 c
2 1 (12)

leaving c as the only parameter in addition to the pa-

rameters describing U(y): u* and a. Given Galilean in-

variance, we could equivalently restrict c to vanish,

adding a constant offset to U(y), without altering the

solutions.

If there is a CL, where U 5 c, this introduces a sin-

gularity to V(y). To avoid this singularity, we consider

a steady dissipative critical layer by adding a small

amount of damping of the form «(y)=2c0 to Eq. (1). We

choose «(y) to have maximum amplitude «0 at the

CL and to decrease to zero a distance of 2.5 non-

dimensional units away from the CL. This choice avoids

the presence of damping near the boundaries, which

creates spatial growth which in turn adversely affects

the robustness of our numerical solution. The inclusion

of the damping term makes V(y) complex valued: it

now becomes

V(y)5
12 ›2U/›y2

U(y)2 c2 i«(y)
2 1 (13)

and so, as is well known, the singularity is avoided.

The momentum flux is given by

u0y0(y)52
1

2
Im

�
›c

›y
c*(y)

�
(14)

while the vorticity flux y0z0 is the convergence of the

momentum flux:

y0z0(y)52
›

›y
(u0y0) . (15)

The linear steady-state enstrophy balance in the

presence of damping expresses the balance between

production due to downgradient vorticity flux and dis-

sipation of enstrophy:

052gy0z0 2 «z02 , (16)

where g is the mean vorticity gradient. Away from the

critical line, the perturbation vorticity remains finite in

the limit «/ 0, implying that the vorticity flux vanishes

and the momentum flux is constant in latitude. Near the

critical line, for small «, the dissipation and the vorticity

flux are both large in a region of width proportional to «,

the amplitude increasing and the width of this region

decreasing with decreasing « in such a way that the flux

approaches a delta function (Dickinson 1969; Lindzen

and Tung 1978; Held 1983). The sign of the delta func-

tion in the vorticity flux, and of the corresponding

jump in the momentum flux, is determined by the re-

quirement in the enstrophy budget that the vorticity

flux be downgradient. If g(yc) . 0, then the momentum

flux will increase as a function of y at the CL, while if

g(yc) , 0, then the momentum flux will decrease at

the CL. For the tanh profile considered, the wave is

evanescent after the CL, so no transmission to large y is

possible.

We define R to be the reflected momentum flux,

normalizing by the momentum flux in the incident wave:

R5 jRj2. We expect partial absorption, R, 1, in the

subcritical case, while in the supercritical case, over-

reflection, R. 1 is expected, as discussed by Lindzen

and Tung (1978). We likewise define T to be the

transmitted momentum flux, normalized by the mo-

mentum flux in the incident wave. But for the tanh

profile, T will always be zero.

Except in the immediate vicinity of the CL, the solu-

tion, including the value of R, should be insensitive to

the value of «0 for small-enough «0. This insensitivity

can be checked by repeating the calculation with dif-

ferent values of «0, taking care to use a sufficiently small

Dy to resolve the rapid variations near the CL. We have

verified that our model is sufficiently insensitive to the

value of «0.

We begin by examining a specific mean wind profile

[see Eq. (5)] and phase speed for the barotropic case,

as shown in Fig. 2. With the phase speed c of 0.8 chosen

for this figure, there is a negative PV gradient at the

CL as the associated profile of 1 2 ›2U/›y2 shows.

Overreflection is obtained, withR5 1:20. Next, for this

profile, we vary the phase speed and plot themomentum

flux at the southern limit, normalized by the incident

flux, as a function of the phase speed. This is shown in

Fig. 3. This profile has a negative PV gradient at the CL

within the range of phase speeds indicated by the two

vertical red dashed lines, and positive PV gradient for all

other c.

We see that for positive PV gradient at the CL, the

reflection can be significant even though the CL must

be partially absorbing. In the flow examined here,

the reflection rises smoothly from near zero to values

comparable to 1 as the phase speed approaches the re-

gion of reversed PV gradient. For these flows, the re-

flection is high because the wave encounters rapid

variations in V(y) before it reaches the CL. And for

nearly all of the range between the two dashed red

lines, where the PV gradient is reversed, the momen-

tum flux at the southern boundary is positive, indicat-

ing overreflection.
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As an aside, it should be noted that if we were to ex-

amine the sech2 profile (under which there would be two

CLs) rather than the tanh profile, then the wave could

propagate through both CLs into another propagating

region, which means that T would be nonzero. This is

consistent with the findings of Yamada and Okamura

(1984) that there is overtransmission for this flow,

T . 1, if the PV gradient is negative at both CLs, a re-

sult that we have confirmed.

3. The baroclinic model

To address the question of the role of lower-tropospheric

CLs,weuse the equations of the two-layer quasigeostrophic

(QG) Phillips model, examining Rossby wave prop-

agation in the presence of vertical shear in the mean

flow. Once again, we need to solve for the stream-

function, which the Phillips model prescribes as

follows:

›q0
j

›t
1U

j

›q0
j

›x
1Q

jy

›c0
j

›x
5 0, (j5 1, 2), (17)

where Qjy and q0
j, the gradient of the zonally averaged

potential vorticity and the perturbation potential vor-

ticity, are given by

q0
j 5=2c0

j 1 (21) j(c0
1 2c0

2)/(2l
2) ,

Q
jy
5b2 ›2U

j
/›y2 2 (21) j(U

1
2U

2
)/(2l2) , (18)

where l is the constant Rossby radius of deforma-

tion, and U1(y) and U2(y) are the mean wind profiles

in the upper and lower layers, respectively. We non-

dimensionalize with the length scale of l and a velocity

scale of bl2, which means b and l can be replaced with 1

in the above equations. We consider a steady-state so-

lution of the following form:

c0
j 5Refc

j
(y)exp[ik(x2 ct)]g, (j5 1, 2) (19)

yielding a pair of differential equations:

›2c
1

›y2
1V

1
(y)c

1
(y)1

1

2
c
2
(y)5 0,

›2c
2

›y2
1V

2
(y)c

2
(y)1

1

2
c
1
(y)5 0, (20)

where

V
1
(y)5

11 c/22 ›2U
1
/›y2 2U

2
(y)/2

U
1
(y)2 c

2 k2,

V
2
(y)5

11 c/22 ›2U
2
/›y2 2U

1
(y)/2

U
2
(y)2 c

2 k2. (21)

The flow we consider is obtained by keeping our previ-

ous wind profile in the lower layer and simply adding a

vertical shear 2S(y) to it in the upper layer:

U
1
(y)5

1

2
u*[tanh(ay)1 1]1 2S(y) ,

U
2
(y)5

1

2
u*[tanh(ay)1 1] . (22)

FIG. 3. Momentum flux at the southern limit as a function of

phase speed c for the mean wind profile shown in Fig. 1. The value

of g(yc) is negative for phase speeds between the two vertical red

dashed lines and is positive for all other c. The phase speed shown

in Fig. 1 is indicated here by the solid black vertical line. Also, «5
0.007 at the CL and Dy 5 0.0075.

FIG. 2. Profiles ofU(y), c, and g(y)5 12 ›2U/›y2 for a barotropic

case, with u*521, a5 1.7, and c 520.8, so that g(yc)520.110.

Also, R5 1:20 and T 5 0.
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Initially, we will take S to be constant. The parameters

are u*, a, S, c, k, and «0.

Once again, the flow is asymptotically constant for

large positive and negative values of y, and the solution

in those regions is the sum of twowaves, the external and

the internal mode. These two modes are distinguished

by their meridional wavenumbers, which are the square

roots of the two eigenvalues of the matrix:

V
1
(y)

1

2

1

2
V

2
(y)

2
6664

3
7775 .

These meridional wavenumbers are given by

‘2ex(y)5
1

2
V

1
(y)1V

2
(y)1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[V

1
(y)2V

2
(y)]2 1 1

q� �
,

‘2in(y)5
1

2
V

1
(y)1V

2
(y)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[V

1
(y)2V

2
(y)]2 1 1

q� �
.

(23)

As before, the meridional wavenumbers are not

always real. For most latitudes in most situations,

‘in(y) will be imaginary, signifying that the internal

mode is evanescent, and for some latitudes in some

situations, ‘ex(y) will also be imaginary, meaning the

external mode is also decaying, rather than propa-

gating. [Note that ‘2ex(y). ‘2in(y) for all y, so if the ex-

ternal mode is decaying, the internal mode must be

as well.]

We are now in a position to solve for the boundary

conditions. ForV1(y),V2(y), ‘ex(y), and ‘in(y), we denote

the northern limit with a superscript plus sign and the

southern limit with a superscript minus sign. At the

southern limit, Eq. (20) becomes

c00
1(y)1V2

1 c1
(y)1

1

2
c
2
(y)5 0,

c00
2(y)1V2

2 c2
(y)1

1

2
c
1
(y)5 0,

to which the general solution is

c
1
(y)5A

1
exp(i‘2exy)1B

1
exp(2i‘2exy)1C

1
exp(i‘2iny)

1D
1
exp(2i‘2iny) ,

c
2
(y)5A

2
exp(i‘2exy)1B

2
exp(2i‘2exy)1C

2
exp(i‘2iny)

1D
2
exp(2i‘2iny) , (24)

in which the coefficients satisfy the ratiosA2/A1 5B2/B1 5
2[(‘2ex)

2 2V2
1 ] and C2/C1 5D2/D1 5 2[(‘2in)

2 2V2
1 ].

Likewise, at the northern limit, the general solution is

c
1
(y)5E

1
exp(i‘1exy)1F

1
exp(2i‘1exy)1G

1
exp(i‘1iny)

1H
1
exp(2i‘1iny) ,

c
2
(y)5E

2
exp(i‘1exy)1F

2
exp(2i‘1exy)1G

2
exp(i‘1iny)

1H
2
exp(2i‘1iny) , (25)

inwhich the coefficients satisfy the ratiosE2/E1 5F2/F1 5
2[(‘1ex)

2 2V1
1 ] and G2/G1 5H2/H1 5 2[(‘1in)

2
2V1

1 ]
As in the barotropic case, we need to specify the

particular scattering problem being posed. We assume

again that the wave is only incident from the south; this

makes the F values and the H values equal to zero. We

also assume that the incident wave consists of only the

external mode, which makes the C values equal to zero.

Finally, as with the barotropic case, we are interested

only in the ratios of the coefficients to A1, so we divide

Eqs. (24) and (25) by A1 to get

c2
1 (y)5 exp(i‘2exy)1R

ex1
exp(2i‘2exy)

1R
in1

exp(2i‘2iny) ,

c2
2 (y)5A

2
exp(i‘2exy)1R

ex2
exp(2i‘2exy)

1R
in2

exp(2i‘2iny) (26)

and

c1
1 (y)5T

ex1
exp(i‘1exy)1T

in1
exp(i‘1iny) ,

c1
2 (y)5T

ex2
exp(i‘1exy)1T

in2
exp(i‘1iny) . (27)

As in the one-layer case, we discretize the domain into

n evenly spaced values of y and use the boundary con-

ditions to complete the specification of the matrix to be

inverted to solve for c1(y) and c2(y).

We also include damping with time scale «0 of po-

tential vorticity to remove the singularity at any CLs. As

before, we take «(y) to be a function of latitude that has

local maxima of «0 at the CLs and that is 0 when y is

more than 2.5 nondimensional units away from any CLs.

We use «0 5 0.001.

In the baroclinic case, Eq. (14) is still true in each

layer. To obtain the analog of Eq. (15) one needs to sum

over the two layers, that is,

2
›

›y

�
�
2

j51

u0
jy

0
j

�
5�

2

j51

y0jq
0
j, (j5 1, 2). (28)

The eddy heat flux, which can be defined in each layer, is

H
j
(y)5 y0j(c

0
1 2c0

2), (j5 1, 2). (29)
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For this two-layer model, H1(y) 5 H2(y), and so we can

refer to just one heat flux H(y). As is well known, the

heat, momentum, and PV fluxes are related by

2
›

›y
(u0

1y
0
1)2

1

2
H(y)5 y01q

0
1(y) ,

2
›

›y
(u0

2y
0
2)1

1

2
H(y)5 y02q

0
2(y) . (30)

The linear steady-state potential enstrophy balance

plays the same role here as does the enstrophy balance

in the barotropic case. In layer j we have

052g
j
y0jq

0
j 2 «q02

j , (31)

where gj is the mean potential vorticity gradient in

layer j:

g
1
(y)5 12

›2U
1

›y2
1 S(y) ,

g
2
(y)5 12

›2U
2

›y2
2 S(y) .

If neither layer has a CL, then the total PV flux

(‘‘total’’ implies the sum over the two layers), or,

equivalently the total momentum flux convergence, is

uniformly 0. The total momentum flux, being the inte-

gral in y of the total PV flux, is constant except in the

immediate vicinity of the CLs, where it changes rapidly.

The sign of gj(ycj) determines whether the total mo-

mentum flux rises or falls at the CL in the jth layer. If

it is positive, then the total momentum flux rises there

with increasing y, while if it is negative, the total mo-

mentum flux falls there. And unlike in the barotropic

case, there can be propagation (nonzero momentum

flux) on both sides of a lower-layer CL. However, after

an upper-layer CL (if there is one), under realistic con-

ditions, the wave will be absorbed and the momentum

flux will fall to zero. [Strictly speaking, the momentum

flux falls to zero after an upper-layer critical latitude

if and only if jV1
1 V

1
2 j. (1/4), but for any realistic com-

binations of the parameters, that will be satisfied.]

If the flow is sufficiently slowly varying, then there will

be negligible mixing of the two vertical modes, so that

the amplitude ratio of the two layers will be well ap-

proximated by that of the external mode:

c
2
(y)

c
1
(y)

5 2[‘2ex(y)2V
1
(y)] . (32)

Departure from this amplitude ratio and the existence

of an eddy heat flux is a sign of mode mixing, since the

vertical phase tilt responsible for the heat flux is not

present if the solution has the vertical structure of the

external mode. Mode mixing is a distinctive feature of

this two-layer scattering problem as compared to the

single-mode barotropic problem.

It is also worth mentioning that on each side of the

CL, one of the two squared meridional wavenumbers

remains finite while the other blows up to 1‘ or 2‘
[neglecting the imaginary parts of V1(y) and V2(y)].

Whether it is the external or internal mode that blows

up on either side is determined by the sign of V2(y)

as it approaches the CL. Whichever mode is finite

on one side of the CL blows up on the other side. The

implication of this is that one mode of the solution re-

mains finite and bounded throughout the domain, but

it switches between the external and internal modes as

it crosses the CL.

We are interested in the ratio of the reflected total

momentum flux at the southern limit to the incident

total momentum flux, and in the ratio of the transmit-

ted total momentum flux at the northern limit to the

incident total momentum flux. Since the reflected

momentum flux is positive and the incident and trans-

mitted momentum fluxes are negative, the former is al-

ways negative and the latter is always positive. The

absolute value of the former is the reflected flux and

is denoted R. The latter is the transmitted flux and is

denoted T .

At the northern limit, we only need to use the

streamfunction to get the momentum flux of transmis-

sion. At the southern limit, we use the streamfunction

and the boundary conditions to solve for the various

coefficients of reflection, from which we can compute

the incident momentum flux and the momentum flux

due to reflection, and knowing those, we can calculate

R and T . When R is greater than 1, it is called over-

reflection, and when T is greater than 1, it is called

overtransmission.

4. Baroclinic results

We begin with the baroclinic case with constant ver-

tical shear, with a critical latitude in only the lower layer.

Such a case is sketched in Fig. 4. We will examine one

subcritical case and one supercritical case, which differ

only in their vertical shear. The values of u*, a, c, and

k were chosen to match the values used in Fig. 2, after

converting from our two-layer to our one-layer non-

dimensionalization. For each of these two baroclinic

cases, we plot the amplitudes of the streamfunctions in

both layers [jc1(y)j and jc2(y)j], the amplitude ratio

[c2(y)/c1(y)], and the momentum flux (in each layer and

the total), all as a function of latitude y. We plot the
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amplitude ratio only up to the critical latitude, and we

plot the external-mode amplitude ratio for comparison.

We also plot the heat flux on the same graph as the

momentum fluxes. For the subcritical case, the stream-

function amplitudes are shown in Fig. 5, the amplitude

ratios in Fig. 6, and the momentum and heat fluxes in

Fig. 7. For the supercritical case, the streamfunction

amplitudes are shown in Fig. 8, the amplitude ratios in

Fig. 9, and the momentum and heat fluxes in Fig. 10.

We find that the reflected and transmitted flux

(normalized by the incident flux), ðR, T Þ, is (0.0014,
0.552) in the subcritical case, and (0.0155, 2.84) in the

supercritical case. As expected, there is a wave sink in

the subcritical case and a source in the supercritical case.

The transmission is totally dominant in both cases, for

reasons that are not clear to us. In particular, the su-

percritical case exhibits overtransmission.

In both sub- and supercritical cases, both upper- and

lower-level streamfunction amplitudes have a sinusoidal

component toward the southern limit, with larger os-

cillations in the supercritical case. These oscillations

are a sign of reflection and of interference between in-

cident and reflected external waves. (The internal mode

is evanescent near both the northern and southern

boundaries.) SinceR has a quadratic dependence on the

reflected wave amplitude, noticeable oscillation can

FIG. 5. Amplitudes of the streamfunctions in both layers, jc1(y)j
and jc2(y)j, vs latitude for the subcritical case. Here, u*520.9,a5
0.5, c520.5, S5 0.85, k5 0.5, «5 0.001, and the gradient of mean

PV at CL is 0.125. The result is R5 0:0014 and T 5 0:552.

FIG. 6. The real and imaginary parts of the amplitude ratio

c2(y)/c1(y) and the external-mode amplitude ratio vs latitude for

the subcritical case.

FIG. 7. Momentum flux in the upper layer, lower layer, and their

sum, along with the heat flux, for the subcritical case.

FIG. 4. Graph of themean wind profiles for a baroclinic case with

constant vertical shear 2S and with a critical latitude in only the

lower layer.
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exist even with R values as small as 0.0014 in the sub-

critical case. The constant value to the north of the shear

zone indicates the constant amplitude of the transmitted

external mode. We also see that for the subcritical case,

the streamfunctions have a greater amplitude before the

CL than after it, while for the supercritical case, the

opposite is true, due to the overtransmission.

In the amplitude ratio graphs, we see that toward the

southern limit, the amplitude ratio very closely matches

the local external-mode structure, indicative of lack of

mode-mixing, but this computed ratio deviates from the

external-mode ratio as the CL is approached. At the CL,

the external-mode amplitude ratio (lower/upper) blows

up to infinity in the subcritical case but approaches zero

in the supercritical case. If there were no mode mixing,

then one might imagine that in the supercritical case,

the wave might propagate only through the upper layer,

and critical layer behavior in the lower layer would be

avoided by the vanishing streamfunction amplitude at

the CL. But the figures clearly show that the actual

amplitude ratio diverges from the external-mode ratio

when we approach the CL, so this prediction is in-

valid, and singular behavior in the limit of vanishing

damping does occur at the CL in both subcritical and

supercritical cases.

In the momentum flux graphs, the quantity that be-

haves most simply, as expected, is the total momentum

flux, which is constant throughout the domain except

for the jump in the vicinity of the CL. The momentum

flux increases with increasing y at the CL for the sub-

critical case and decreases at the CL for the supercritical

case. We also see that in both cases, the lower-layer

momentum flux changes rapidly at the CL while the

upper-layer momentum flux changes gradually; this is

because the heat flux is continuous at the CL, and using

Eq. (30), this means that the jump in the lower-layer PV

flux will cause a jump in the momentum flux only for

the lower layer. The heat flux is negative throughout in

the subcritical case but positive throughout in the su-

percritical case, with significant values in a fairly broad

region around the CL, providing another indication for

the region within which mode mixing occurs.

As discussed in Tung (1979), a Rossby wave in a re-

gion of positive PV gradient in a continuously stratified

fluid will be refracted such that its ray path will approach

a slanted critical line perpendicularly. In a configuration

FIG. 8. Amplitudes of the streamfunctions in both layers, jc1(y)j
and jc2(y)j, vs latitude for the supercritical case. Here, u* 5 20.9,

a5 0.5, c520.5, S5 1.15, k5 0.5, «5 0.001, and the gradient of

mean PV at CL is20.1747. The result isR5 0:0155 and T 5 2:84.

FIG. 9. The real and imaginary parts of the amplitude ratioc2(y)/c1(y)

and the external-mode amplitude ratio vs latitude for the super-

critical case.

FIG. 10. Momentum flux in the upper layer, lower layer, and their

sum, along with the heat flux, for the supercritical case.
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in which the critical line slants equatorward with

height, and starting with a horizontal ray path far from

the CL, this implies downward propagation of wave

activity and negative heat flux. We suspect that the

negative heat flux in our subcritical case, in which the

PV gradient is positive in both layers, is the two-layer

analog to this continuous QG behavior. In a super-

critical two-layer model, in contrast, we often think of

the lower-layer PV gradient as analogous to the sur-

face temperature gradient in the continuous theory,

the reversal in sign of which is required for baroclinic

instability if the interior (the upper layer in the two-

layer model) has positive PV gradient. We do not

claim to understand this fully. We suspect that the

continuously stratified analog of the upward heat flux

in our supercritical case would involve movement of

wave activity from the surface reservoir to the interior

reservoir, and not redistribution within the interior

reservoir.

As the theory would predict, both the reflection and

the transmission are considerably larger for the super-

critical case than for the subcritical case. The super-

critical case has overtransmission (although its reflection

is still well below 1). For both cases, the transmission

is much greater than the reflection. Again, the reasons

for this are unclear, although calculations carried out by

the authors but not reported in detail here indicate that

as meridional shear is increased, the ratio of R to T
typically increases.

Finally, we examine a very different case, in which S

varies in latitude, and there is a critical latitude in both

layers. This case is sketched in Fig. 11. We are using the

vertical shear profile of

S(y)5
1

2
DS[2tanh(ay)1 1]1 S1, (33)

where S1 denotes the value of S at the northern limit, S2

the value at the southern limit, and DS the difference

between S2 and S1. We graph the streamfunction am-

plitude in both layers in Fig. 12 and the momentum and

heat fluxes in Fig. 13.

This example is arguably more realistic than the pre-

vious two, thinking of decreasing S as approaching the

tropics, although the potentially important increase in

radius of deformation with decreasing latitude is still

missing in this quasigeostrophic model. There are criti-

cal latitudes in both layers, as is the case in reality. The

values of the parameters were chosen so that the shear is

supercritical at the lower-layer CL. The PV gradient is

positive at the upper-layer CL.

As expected, we find that T is virtually 0, as the wave

cannot pass through the upper-layer CL, which com-

pletely absorbs the wave. This can be seen in both

Figs. 12 and 13: in Fig. 12, both streamfunctions vanish

past the upper-layer CL, as do all the momentum and

heat fluxes in Fig. 13. Qualitatively, as seen in Fig. 13, the

lower-layer CL has the same effect on the momentum

fluxes (and the heat flux) as it does in Fig. 10. Both the

lower-layer momentum flux and the sum of the two

momentum fluxes jump toward more negative values at

the lower-layer CL, indicating overtransmission. There

is also some reflection in this case, more so than in the

cases examined above.

The overtransmission is modest in this case. The

increase in amplitude of the total momentum flux

across the lower-layer CL is roughly 20%. Therefore,

the solution looks as if it is roughly passing through the

lower-layer CL without being significantly modified.

To this extent, the dominance of the upper-layer CL

on the wave propagation evident in observations is

captured.

We finish with a brief exploration of the conditions

that favor smaller or larger amounts of transmission

across the lower-layer critical latitude. Our results in-

dicate that when the vertical shear toward the southern

(incident) limit is increased, the reflection increases,

while the transmission across the CL increases up to a

point but then begins to decrease. Figure 14 illustrates

this, as we plot the total momentum flux versus lati-

tude for five profiles which differ only in their value

of DS. The third of these profiles, which has DS 5 1.2, is

the same profile as in Fig. 13.We see that only one of the

five profiles, the one with the lowest value of DS, is
subcritical at the lower-layer CL; the other four are all

supercritical. And we see that as we increase DS, the

FIG. 11. Graph of themeanwind profile for a baroclinic case with

a varying vertical shear 2S(y) and with critical latitudes in both

layers.
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reflection increases, while the transmission increases up

until DS 5 1.4, after which it decreases sharply: the

profile with the highest DS, DS 5 1.6, has the third-

lowest transmission. Other results, which we do not

include here, show that the transmission across the

lower-layer CL tends to be higher when the phase speed

is close to zero, and that other parameters, such as the

meridional shear in the lower layer and the baseline

vertical shear S1, have little effect on the reflection or

transmission. Even for this very idealized setting, the

number of parameters is sufficient that it is difficult to

describe the solutions throughout this parameter space,

and more theoretical guidance will be needed to isolate

the parts of this space of most interest.

5. Conclusions

We have examined Rossby wave scattering problems

in a quasigeostrophic two-layer model in the presence of

critical latitudes (CLs), in which the singularity at these

CLs is removed by a small amount of damping. The in-

coming wave in all cases was given the structure of the

external mode of the two-layer system.

When the potential vorticity gradient is negative at

the CL, theory indicates that the CL will act as a wave

emitter. This emission can be realized as either over-

reflection, overtransmission, or a combination of the

two. In all cases examined with a supercritical CL in the

lower layer, we find overtransmission. In a case with a

configuration most qualitatively similar to that found in

the atmosphere, the wave first encounters a supercritical

lower-tropospheric CL before encountering a subcriti-

cal CL in the upper troposphere. In this case, there is

‘‘temporary’’ overtransmission at the lower-layer CL

before the wave is absorbed at the upper-level CL. If this

overtransmission is of modest amplitude, then the solu-

tion gives the appearance of floating through the lower-

layer CL without any CL-like dynamics occurring.

Overtransmission cannot occur in the barotropic case,

since Rossby waves do not propagate on both sides

of a CL. The two-layer setup described here may be

the simplest system in which to study overtransmission

through a single CL. Interaction between the two layers

is essential. In particular, the upper-layer mean winds

are essential for the propagation characteristics of the
FIG. 13. Momentum flux in the upper layer, lower layer, and

overall, along with the heat flux, for the case with varying shear.

FIG. 14. Total momentum flux vs latitude for five different pro-

files, which differ only in their value ofDS. All other parameters are

as in Figs. 12 and 13.

FIG. 12. Amplitudes of the streamfunctions in both layers, jc1(y)j
and jc2(y)j, vs latitude for the case with varying shear. Here,

u* 5 21.5, a 5 0.5, c 5 20.35, DS 5 1.2, S1 5 0.4, k 5 0.5, « 5
0.001, and the gradient of mean PV at lower-layer CL is 20.1769.

The result is R5 0:0632 and T ’ 0.
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external Rossby wave, an incident external mode being

a natural way of setting up a useful scattering problem.

We leave open the question of why overtransmission

is ubiquitous in cases with a supercritical lower-layer

CL and how the amplitude of the overtransmission is

controlled.

In their study of the lower-tropospheric momentum

fluxes in a statistically steady state of the quasigeostrophic

two-layer model, Lutsko et al. (2017) describe the space-

time spectra of the eddy momentum flux convergence,

showing that this convergence is concentrated along

the lower-layer CL for each phase speed in the wave

field, especially for relatively long waves (see Fig. 4 of

that paper). The scattering setup and the resulting

overtransmission at the lower-layer CL described here

may provide a plausible physical picture for interpreting

the results in Lutsko et al. (2017). Following the familiar

argument for the upper-layer CL, it may be possible to

think of the wave–mean flow interaction at the lower-

layer CL in terms of a wave excited near the center of

the unstable jet and propagating outward. The wave

cannot be thought of as a Rossby wave confined to the

lower layer since such a disturbance would not propa-

gate (this region is supercritical, so local Rossby wave

propagation would require phase speeds greater than

the mean westerly wind, precluding the existence of a

lower-layer CL). Propagation by external-mode-like

disturbances is possible out of the central supercritical

region of the jet, however, as captured here in our simple

scattering problem, and these could generate the mixing

needed to create eddy fluxes of the sort described in

Lutsko et al. (2017).

The two-layer vertical discretization seems at first

glance to be an extremely crude representation of the

atmosphere, so one could question the relevance of

these results to the atmosphere on that basis alone. But

Lutsko et al. (2017) show that a multilayer idealized

GCM and a Southern Hemisphere reanalysis both show

similar space–time spectra of the lower-tropospheric

eddy momentum fluxes, providing indirect evidence

for the qualitative relevance to the atmosphere of these

scattering calculations.
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