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ABSTRACT

Accurate prediction of mixed-phase precipitation remains challenging for numerical weather prediction

models even at high resolution andwith a sophisticated explicitmicrophysics scheme and diagnostic algorithm

to designate the surface precipitation type. Since mixed-phase winter weather precipitation can damage in-

frastructure and produce significant disruptions to air and road travel, incorrect surface precipitation phase

forecasts can have major consequences for local and statewide decision-makers as well as the general public.

Building upon earlier work, this study examines the High-Resolution Rapid Refresh (HRRR)model’s ability

to forecast the surface precipitation phase, with a particular focus on model-predicted vertical temperature

profiles associated with mixed-phase precipitation, using upper-air sounding observations as well as the

Automated Surface Observing Systems (ASOS) and Meteorological Phenomena Identification Near the

Ground (mPING) observations. The analyses concentrate on regions of mixed-phase precipitation from two

winter season events. The results show that when both the observational and model data indicated mixed-

phase precipitation at the surface, the model represents the observed temperature profile well. Overall, cases

where the model predicted rain but the observations indicated mixed-phase precipitation generally show a

model surface temperature bias of ,28C and a vertical temperature profile similar to the sounding obser-

vations. However, the surface temperature bias was ;48C in weather systems involving cold-air damming in

the eastern United States, resulting in an incorrect surface precipitation phase or the duration (areal

coverage) of freezing rain being much shorter (smaller) than the observation. Cases with predicted snow

in regions of observed mixed-phase precipitation present subtle difference in the elevated layer with

temperatures near 08C and the near-surface layer.

1. Introduction

Subtle changes in the vertical structure of cold-season

precipitating weather systems determine the form of

precipitation reaching the ground. Whether precipitation

at the surface is liquid (rain), solid (snow, graupel, ice

pellets), or mixed phase (herein, mixed phase is either a

mixture of both liquid and solid precipitation particles,

solely freezing drizzle, or freezing rain since it forms ice

upon contact with surface objects) significantly influences

the decision-making for air traffic operations and road

weather management. It impacts city operations (e.g.,

school and business closures), and it may cause in-

frastructure damage (e.g., Changnon 2003;Goodwin 2003;

Call 2005, 2010; Grout et al. 2012). Thus, it is essential that

weather forecast models accurately predict precipitation

type or phase reaching the surface both in space and time.

Ikeda et al. (2013) evaluated the ability of the oper-

ational High-Resolution Rapid Refresh (HRRR) fore-

cast model to properly determine the surface precipitation

phase as rain, snow, or mixed phase from the 2010/11

winter season. The study found that the HRRR model

reliably predicted the areal extent of snow and rain com-

pared with Automated Surface Observing Systems

(ASOS; National Weather Service 1998) reports. Qualita-

tively, the agreement was also good in regions of rain–snow

transition and for freezing precipitation when exam-

ining the spatial coverage and temporal consistency versus

observations.Quantitatively speaking, however, themodel

performance was less skillful in regions of mixed-phase

precipitation compared with the rain and snow regions,

pointing out the need for diagnosing potential model

shortcomings in these areas.
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Ikeda et al. (2013) showed that a model bias in surface

temperature was partly responsible for the reduced

prediction skill in the mixed-phase region. In particular,

they found a ;28C warm bias when the model in-

correctly predicted rain in the area of observed mixed-

phase precipitation with the observed temperature near

freezing. In addition, a cold bias of ;28–48C was found

when the model forecasted snow but mixed-phase pre-

cipitation was observed and the temperature was close

to 08C. Another possible reason for forecast errors

suggested by Ikeda et al. (2013), but not yet investigated,

included inaccurate prediction of the thermodynamic

and microphysical vertical structure by the HRRR

model. In the present study, we expand upon the work of

Ikeda et al. (2013) to take a closer look at the HRRR

model’s vertical profiles near mixed-phase precipitation

areas, aiming to understand some of the model features

in these regions and assessing whether the model ade-

quately captured the observed vertical thermodynamic

profiles. Routine upper-air sounding observations were

used to compare with the HRRR model profiles. The

number of cases that could be evaluated is limited by the

availability of sounding data at the right location and

time. Nonetheless, this study provides further insight

into incorrect forecasts of precipitation phase that may

guide model enhancement and development.

Making correct forecasts of mixed-phase precipitation,

freezing rain, and ice pellets is challenging. The thermo-

dynamic conditions in the rain–snow transition regions of

winter storms are continuously changing (from local to

mesoscale), yielding various types of precipitation

(Stewart 1992). The latent heat effect from the melting

and freezing of precipitating particles can further com-

plicate the temperature and humidity profiles near the

rain–snow boundary (e.g., Stewart 1985; Lackmann et al.

2002). Additionally, small differences in the thermody-

namic structure aloft can impact the precipitation form

and type falling to the ground (e.g., Rauber et al. 2001;

Thériault et al. 2010; Sims and Liu 2015; Reeves et al.

2016; Sankaré and Thériault 2016). In particular, the

vertical thermodynamic structures of ice pellets and

freezing rain are so similar that any forecast uncertainty,

which may affect the thickness of an elevated melting

layer and a near-surface refreezing layer, can result in an

incorrect prediction of the surface precipitation type

(Reeves et al. 2014; Reeves et al. 2016). Additionally,

snowflake types and lapse rate aloft can yield differences

in the precipitation phase and/or type reaching the sur-

face as a result of changes in the time required to melt

snow crystals falling through the melting layer and re-

freeze partially melted precipitating particles (Sankaré
and Thériault 2016). The precipitation rate below the

melting layer directly impacts the surface temperature

through cooling effects; yet, the precipitation rate is

influenced by the type of snowflakes found aloft that

continuously evolve in their shape, density, and degree of

riming, and interact with other particles while falling

through atmospheric layers of various temperatures and

moisture levels (e.g., Stewart et al. 2015; Sankaré and

Thériault 2016; Reeves et al. 2016). These challenges

point to the fact that the ability of a forecast model to

represent correctly the thermodynamic conditions aloft

and near the surface is critical for making accurate pre-

cipitation phase forecasts at the surface.

This paper is organized as follows. Section 2 provides

a description of the forecast model and the observational

datasets. The cases examined in this study are briefly

discussed in section 3. Results are presented in section 4,

followed by a summary and concluding remarks in

section 5.

2. Forecast model and observational datasets

a. High-Resolution Rapid Refresh

The study utilizes forecast data generated by the

hourly updating HRRRmodel that is run in real time at

the National Oceanic and Atmospheric Administration/

Earth SystemResearch Laboratory (NOAA/ESRL) (e.g.,

Benjamin et al. 2016a). The HRRR is a cloud-permitting

numerical weather prediction model that builds on the

Advanced Research core of the Weather Research and

Forecasting (WRF) Model (Skamarock et al. 2008) with

3-km horizontal grid spacing and 50 vertical levels whose

domain covers the contiguous United States. The HRRR

model domain is nested within the larger 13-km Rapid

Refresh (RAP; Benjamin et al. 2016a) parent model do-

main. The microphysical scheme used in the HRRR prior

to 2015 was the Thompson et al. (2008) microphysics. In

2015, RAP version 3 and HRRR version 2 became op-

erational at NOAA/ESRL with the aerosol-aware

Thompson and Eidhammer (2014) scheme, as discussed

in Benjamin et al. (2016b).

For each hour, the HRRR model assigns the surface

precipitation type as one or more of rain, snow, ice

pellets, or freezing rain based on a postprocessing rou-

tine in the operational HRRR forecasting system (Ikeda

et al. 2013; Benjamin et al. 2016b). Prior to 2015, the

postprocessing routine examined vertical profiles of

the rain, snow, and graupel mixing ratios fields from

the explicit microphysical scheme and temperature to

classify surface precipitation type as some combination

of rain, snow, ice pellets, and/or freezing rain based on

the diagnostic logic explained in Table 1 of Ikeda et al.

(2013). The diagnostic routine for predicting precipita-

tion type in the HRRR forecasting system has evolved

based on the analyses presented by Ikeda et al. (2013)
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and recent enhancement efforts at ESRL. An upgraded

diagnostic precipitation type (p-type) scheme was im-

plemented into the operational system in late 2015. The

upgraded version of the diagnosis scheme is described in

Benjamin et al. (2016b), and its performance has been

evaluated by Elmore et al. (2015) and Burg et al. (2017).

The cases examined in this study occurred prior to the

implementation of the upgraded p-type diagnostic

scheme; therefore the model dataset of precipitation

types were from the logic described in Table 1 of Ikeda

et al. (2013). Burg et al. (2017) examined a handful of

winter storms comparing the upgraded version to the

previous version of the diagnostic scheme. They have

shown that while there was some improvement to the ice

pellet and snow forecasts, performance was nearly the

same for rain, whose skill was already high, and not

much improvement was seen for freezing rain. Thus, the

results presented herein are likely to remain valid for the

newer precipitation-type algorithm.

Each precipitation type is represented in four separate

dichotomous data fields in the operational HRRR

model dataset (Fig. 1a). More than one type of pre-

cipitation is permitted at a given grid point. For the cases

examined in this study, we took the four precipitation-

type data types and derived three precipitation phase

categories (snow, rain, and mixed phase) to compare

with the surface observations, as in Ikeda et al. (2013).

The operational HRRR model simulates out to 15h

with a data output increment of 1 h. Here, we focus on

validating hourly forecasts of the precipitation phase

with a lead time of 8h against surface observations (dis-

cussed in the following subsection). We choose to eval-

uate only the 8-h forecasts, because Ikeda et al. (2013)

have found the forecast performance of the precipitation

phase to change very little after 4–5-h lead times for cold-

season weather systems that are typically forced by large-

scale synoptic weather systems.

Comparison with routine upper-air soundings was

based on the 8-h forecasts valid at 0000 and 1200 UTC.1

The model profiles were based on their native terrain-

following vertical coordinate system and taking the av-

erage of data values from the four grid cells nearest to a

sounding site.

b. Observational dataset

One-minute ASOS data were used to assess the skill

of the hourly HRRR model forecasts of the surface

FIG. 1. (a)Aflowchart illustrating how snow, rain, andmixed-phase precipitation is assigned

to each model grid cell based on HRRR model forecasts of categorical surface precipitation

types. The operational diagnostic logic used prior to the updates in Benjamin et al. (2016b) is

described in Ikeda et al. (2013). (b)A schematic showing how the observedprecipitation phase

is determined from 1-min ASOS data and mPING data during a 6t-min temporal window,

centered at a model valid time. (c) A spatial neighborhood box of a given width (gray-shaded

area) centered at the closest grid point (red dot) from a surface site (red cross). The model

predictions at every grid point inside the neighborhood box are used for evaluation.

1 In practice, upper-air soundings are launched at ;1100 and

;2300 UTC for reporting the 1200 and 0000 UTC sounding ob-

servations. The results presented herein did not change when

model data valid at 1100 and 2300 UTC were compared to the

sounding observations.
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precipitation phase. The occurrence of snow (solid-

phase particles), rain (liquid-phase particles), unknown

precipitation (UP), or no precipitation (NP) is recor-

ded every minute at over 800 ASOS stations nationwide

using an optical precipitation detection sensor, which

determines particle type depending on its terminal ve-

locity2 (National Weather Service 1998; Wade 2003). UP

is an indication of the occurrence of light precipitation,

such as light snow and drizzle, but the intensity is too low

to determine whether the precipitation is frozen or in

liquid phase. Ice pellets are not identified by the auto-

mated precipitation identifying sensor but are recognized

either as rain, snow, or UP depending on their terminal

velocity. The occurrence of ice pellets can only be con-

firmed if a human observer augments the ASOS reports.

Only a small percentage of sites are manned. To make

data from sites with a human observer consistent with

those from sites without a human observer, human-

augmented data were not used to compute forecast skill

scores; however, they were still examined when non-

augmented ASOS reports seemed erroneous.3

The raw ASOS precipitation-type dataset was care-

fully quality controlled for spatial and temporal con-

sistency first because the ASOS precipitation-type

algorithm may falsely report blowing snow as freezing

rain and has a tendency to identify ice pellets as rain or

UP (National Weather Service 1998). The ASOS icing

sensor (e.g., Ramsay 1997) data, where available, were

checked for the indication of freezing drizzle/rain

(i.e., a rapid decrease in the vibrating probe frequency).

Then, at eachASOS site, the data were assigned as rain,

snow, or mixed-phase precipitation following the clas-

sification scheme of Ikeda et al. (2013; Fig. 1b). Ob-

servations over a temporal window of 66min centered

on the hour were used and classified as mixed phase

when a rain-to-snow or snow-to-rain transition, or

freezing rain, occurred within that time frame. If only

snow was reported, or snow and UP occurred during

the time window but no rain, the more frequently re-

ported of the two was chosen. The assignment of rain

was based on a similar logic as for snow.

Another observational dataset used in this study is

from the Meteorological Phenomena Identification

Near the Ground (mPING) project (Elmore et al. 2014;

Elmore et al. 2015). The mPING database is based

upon a volunteer-reporting system via a smart phone

application or the Internet. The database provides

useful information, especially in regions where ASOS

stations are sparse and the precipitation phase/type is

actively changing. The mPING database provides the

coordinates, time of observation, and precipitation

type as rain, snow, ice pellets, freezing rain, drizzle,

graupel, or hail. More than one type is possible in a

single report (e.g., rain and snow). Some reports spe-

cifically say ‘‘no precipitation’’ before or after a pre-

cipitation event. The precipitation phase was assigned

for mPING reports in the following manner: if only

snow (rain) was reported, then it was put in the solid

(liquid) precipitation phase category. If there was snow

and rain, snow and freezing rain, or ice pellets and rain

(or freezing rain) within a single report, then the ob-

servation was put into the mixed-phase precipitation

category. Reeves (2016) compared ASOS and mPING

datasets and found that mPING’s precipitation-type

reports tend to shift from rain and freezing rain toward

ice pellets at temperatures near freezing, which makes

physical sense; whereas nonaugmented ASOS sites are

incapable of reporting ice pellets. Because of the un-

certainties associated with the mPING data, we calcu-

lated forecast skill scores using ASOS andmPING data

independently as well as combined and found similarly

robust results. The quantitative discussions hereafter

are based on numerical values from the ASOS data

assessment, whereas the mPING data are included in

qualitative considerations since they increase data

density in various case studies.

Evaluation of the vertical structure of model-

predicted thermodynamic features was performed

with the routine radiosonde data collected by the Na-

tional Weather Service at 0000 and 1200 UTC. The

upper-air sounding sites are typically equipped with an

ASOS system (e.g., Reeves et al. 2014, their Fig. 1) or

there is a close-by ASOS site. The observed pre-

cipitation phase corresponding to each sounding site is

based on the collocated or nearby ASOS site. The

surface temperature and precipitation rate observa-

tions that are shown in this study also come from the

ASOS dataset.

3. Case selection

In this study we examine cases from the 2013/14 and

2014/15 winter seasons that represent precipitation

eventswheremixed-phase precipitation or a snow-to-rain

transition (and vice versa) occurred at a sounding site

close to the routine observation time. Also, we focus on

precipitation systems east of the Rocky Mountains, as in

Ikeda et al. (2013). Table 1 summarizes the event

2 For a more detailed discussion of how ASOS determines the

precipitation type, refer to Ikeda et al. (2013).
3 Because ice pellets and freezing rain are infrequently predicted

and overmuch smaller regions than rain and snow, the forecast skill

scores of the precipitation phase (Table 2, section 4a) change very

little even when human-augmented ASOS reports are used to

compute the skill scores.
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designation, day and time, and sounding locations, as well

as observed and predicted precipitation phase examined

in this study, and Fig. 2 shows maps of 8-h precipitation

phase forecasts valid at the time of the observed sound-

ing. The sounding data availability at the right time and

location limits the number of cases, and they are all from

large synoptically-driven precipitation systems. The cases

include precipitation systems that produced a well-

defined mixed-phase precipitation area or prolonged

freezing rain [6 December 2013 (event C), 21 December

2013 (event D), 22 December 2013 (event D), and

12 January 2015 (event E)], freezing rain caused by cold-

air damming to the east of the Appalachian Mountains

[26 November 2013 (event A) and 12 January 2015

(event E)], and a narrow snow–rain transition bound-

ary [27 November 2013 (event A), 14–15 December

2013 (event C), 24 January 2015 (event F), 26 January

2015 (event G), and 22 February 2015 (event H)].

Although the number of events was rather limited,

the storm events studied lasted multiple days and cov-

ered large areas, yielding totals of ;11 000, ;15 000,

and ;2300 of rain, snow, and mixed-phase ASOS

observations, respectively, and ;3200, ;2100, and ;970

mPING hourly observations.

4. Results

a. Model performance skill in determining surface
precipitation phase

In this section we examine the HRRR model’s perfor-

mance skill in predicting the surface precipitation phase.

This was done by applying the evaluationmatrix described

in Ikeda et al. (2013, their Table 2). The results from the

cases examined in this study are compiled in Table 2. The

matrix is built by comparing predictions to ASOS obser-

vations within close spatial proximity following a simple

procedure. First, model predictions from a 24km3 24km

neighborhood box area centered at a grid point closest to

eachASOSobservational site are collected (Fig. 1c). Then,

for each observation–model pair at each evaluation time,

the fraction of area forecasted as snow, rain, and mixed-

phase precipitation, as well as no precipitation, is com-

puted and assigned to the matrix cells of a corresponding

ASOS-observed precipitation phase (Ikeda et al. 2013,

TABLE 1. Day, time (UTC), and location of sounding comparisons. Observed and model surface precipitation phase are also indicated

in the observation andmodel columns, respectively. A unique event identifier (the event column) is assigned to each case examined in this

study and used throughout; the event identifier is based on a letter and number combination.

Event Day and Time Sounding Site Site ID Observation Model

A1 1200 UTC 26 Nov 2013 Sterling, VA IAD Rain Rain

A2 Greensboro, NC GSO Mix Rain

A3 0000 UTC 27 Nov 2013 Sterling, VA IAD Rain Rain

A4 Greensboro, NC GSO Rain Rain

B1 1200 UTC 6 Dec 2013 Wilmington, OH ILN Mix Mix

B2 Springfield, MO SGF Snow Snow

B3 Little Rock, AR LZK Mix Mix

B4 Fort Worth, TX FWD Mix Mix

C1 1200 UTC 14 Dec 2013 Wilmington, OH ILN Mix Mix

C2 0000 UTC 15 Dec 2013 Washington, DC IAD Rain Rain

C3 Pittsburgh, PA PIT Rain Rain

D1 1200 UTC 21 Dec 2013 Lincoln, IL ILX Mix Mix

D2 Springfield, MO SGF Mix Rain

D3 Norman, OK OUN Mix Mix

D4 0000 UTC 22 Dec 2013 Lincoln, IL ILX Mix Mix

D5 Springfield, MO SGF Rain Rain

D6 Topeka, KS TOP Mix Snow

D7 Detroit, MI DTX Mix Mix

E1 0000 UTC 12 Jan 2015 Lincoln, IL ILX Mix Mix

E2 Wilmington, OH ILN Rain Mix

E3 1200 UTC 12 Jan 2015 Sterling, VA IAD Mix Rain

E4 Roanoke, VA RNK Rain Rain

F1 0000 UTC 24 Jan 2015 Sterling, VA IAD Mix Rain

F2 Roanoke, VA RNK Mix Rain

F3 1200 UTC 24 Jan 2015 Brookhaven, NY OKX Mix Rain

G1 1200 UTC 26 Jan 2015 Sterling, VA IAD Mix Rain

H1 0000 UTC 22 Feb 2015 Brookhaven, NY OKX Snow Snow

H2 Sterling, VA IAD Mix Snow

H3 1200 UTC 22 Feb 2015 Brookhaven, NY OKX Rain Mix
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FIG. 2. (a)–(n) Precipitation phasemaps fromHRRR’s 8-h forecasts for cases evaluated in this study. Each panel

shows the event name, date, and time as seen in Table 1. (o) The upper-air sounding sites listed in Table 1.
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their Table 2). Finally, the sum of the fractions in each

matrix cell (over the duration of a precipitation event

of interest) is computed and normalized by the total

of fractions added across a particular row (i.e., the

ASOS-observed precipitation phase). The best model

performance would be seen by the highest numerical

values falling along a diagonal line in Table 2.

Consistent with Ikeda et al. (2013), the forecast skill for

areas of snow and rain are high, having the largest frac-

tional values in the same precipitation-phase category as

TABLE 2. Evaluation matrix (percent) for the 8-h forecasts from each event examined in this study based on ASOS observations. The

largest value in a row is highlighted in boldface. An ideal performance would mean having the highest values along the diagonal line

(italicized in the first matrix).

HRRR forecast

Event Snow Mixed phase Rain NP No. of observation

A 26–28 Nov 2013

ASOS Snow 75 3 2 20 1124

Mixed phase 15 17 66 2 209

Rain ,1 2 96 2 3123

NP 5 ,1 9 86 14 541

UP 23 2 50 25 1637

B 5–7 Dec 2013

ASOS Snow 86 6 1 7 742

Mixed phase 23 55 11 11 562

Rain ,1 7 85 8 1441

NP 7 1 24 68 12 076

UP 22 7 40 31 1926

C 13–15 Dec 2013

ASOS Snow 92 3 1 4 2670

Mixed phase 30 34 32 4 226

Rain 2 4 89 5 1433

NP 7 ,1 13 79 13 376

UP 43 3 24 30 1967

D 20–24 Dec 2013

ASOS Snow 87 1 1 11 1554

Mixed phase 14 58 22 6 541

Rain ,1 4 92 4 3404

NP 5 1 20 74 18 807

UP 30 5 31 34 3947

E 11–12 Jan 2015

ASOS Snow 92 1 2 5 1131

Mixed phase 14 37 45 4 320

Rain 1 5 90 4 2132

NP 3 1 19 77 20 468

UP 28 5 45 22 1942

F 23–24 Jan 2015

ASOS Snow 86 5 6 3 739

Mixed phase 41 18 37 4 136

Rain 3 3 91 3 2034

NP 4 1 9 86 21 011

UP 16 3 44 37 2005

G 26 Jan 2015

ASOS Snow 94 2 2 2 1056

Mixed phase 41 10 33 16 7

Rain 4 4 86 6 223

NP 4 ,1 5 90 9349

UP 41 2 17 40 757

H 21–22 Feb 2015

ASOS Snow 92 3 2 3 1835

Mixed phase 37 25 34 4 272

Rain 5 6 85 4 902

NP 11 ,1 14 75 11 555

UP 44 3 19 34 1699
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observed, but the model is generally less skillful in the

mixed-phase precipitation areas than the rain and snow

areas. The tendency for lower skill in the mixed-phase

precipitation area is commonly found in schemes that

determine precipitation types (e.g., Reeves et al. 2014;

Reeves et al. 2016). It is important to note that although it

cannot be directly inferred from the evaluation matrix

alone, the spatial extent and general locations of mixed-

phase precipitation predicted by the HRRR forecasts

agreed qualitatively well with the ASOS and mPING

observations, as found in the previous study (Ikeda et al.

2013). This is also a general indication of relatively skillful

surface temperature forecasts and predicted microphys-

ical properties.

Table 2 also indicates that the HRRR model per-

formed well in predicting ASOS-observed mixed-phase

precipitation during events B and D (5–7 and 20–24

December 2013, respectively), having the largest skill

value associated with the correct precipitation phase.

These two cases share common characteristics; they are

from a large-scale synoptic system moving across the

Midwest and toward the East Coast that generated a

swath of well-defined freezing rain area across the

eastern United States (Figs. 2c,f,g). For other cases, the

evaluation matrix reveals that the HRRRmodel tended

to forecast ASOS-observed mixed-phase precipitation

as rain more often than snow when a prediction error

occurred. Cold-air damming cases (events A and E;

Figd. 2a,i) are among such cases. The exceptions are

events G (26 January 2015) and H (21–22 February

2015) when the model predicted snow more often than

rain when theASOSobservations reportedmixed-phase

precipitation. These two cases generated a narrow rain–

snow transition boundary (Figs. 2l–n).

Below, we will examine the observed and model-

predicted surface temperatures and soundings for three

groups of outcomes: 1) when a correct prediction of

mixed-phase precipitation was made, 2) when rain

was predicted but mixed-phase precipitation was ob-

served or vice versa, and 3) when snow was predicted

FIG. 3. Skew-T diagramswhen both the 8-hmodel forecast and surface observation at a nearby or collocatedASOS site reportedmixed-

phase precipitation at locations and times indicated. Refer to Table 1 and Fig. 2 for radiosonde station names and locations. Temperatures

(solid line) and dewpoint temperatures (dashed line) from the observations are shown in magenta. Those from the HRRR model are in

black. Wind barbs from the observations (purple) and model (black) are also shown. Precipitable water (PWAT) from the model (MOD)

and observations (OBS) are indicated in the top-left corner of each panel.
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but mixed-phase precipitation was observed (refer to

Table 1).

b. Evaluation using temperature profiles and surface
temperatures

Figure 3 shows a comparison of observed and model-

based skew-T diagrams when the HRRR model cor-

rectly predictedmixed-phase precipitation at the surface

when compared with the nearest or collocated ASOS

observation. With the exception of Fig. 3d (event C;

corresponding to Fig. 2d), the cases are observed

freezing rain events. All of these freezing rain episodes

occurred either over a widespread area across the

Midwest or the East Coast over a prolonged time

(events B, D, and E; Figs. 2c,g,h). All model-predicted

and observed profiles present a classical freezing rain

temperature profile (e.g., Stewart 1985; Zerr 1997;

Stewart et al. 2015) characterized by 1) a subfreezing

surface layer, 2) an elevated inversion layer with a maxi-

mum temperature . 08C (i.e., elevated warm layer), and

3) an adjacent layer aloft where the temperature rapidly

cools to ,08C with increasing height and that is at or

nearly saturated with respect to ice. The thickness of the

observed elevated warm layer ranges from ;1100 to

2000m (Table 3), which is a typical thickness seen in

classical freezing rain profiles (Zerr 1997). The model

profiles’ depth of the elevated warm layer is within

;440m of the observed depth and matches very well

(Table 3). The differences in the 08C height at the top

Hmax and bottom Hmin of the elevated warm layer are

between2170 and 320m and between;2190 and 170m,

respectively (Table 3). The vertical resolution of the

HRRR model is as small as ;20m near the surface and

increases up to ;500m near the 700-hPa level, which is

the pressure level close to Hmax in most of the soundings

shown (Fig. 3). The radiosonde data have a similar vertical

resolution. Considering the vertical model levels, the

agreement of the 08C height associated with Hmax and

Hmin between the observation and model is quite im-

pressive. The near-surface air temperature, taken from

the model level closest to the surface, is also close to the

observations, having a bias of ,28C (Table 3).

Figure 4 shows examples of the time evolution of the

ASOS-observed and model-predicted precipitation

phase, observed temperature and dewpoint temperature

(from ASOS), model-predicted temperature, and 1-h

total precipitation comparison from the 5–7 December

2013 and 11–12 January 2015 events (events B and E;

Table 2) for three ASOS and corresponding sounding

sites where the model correctly predicted the surface

precipitation phase at the radiosonde observation time.

There is a cold bias at Dallas, Texas (DFW; see the

appendix for a listing ofASOS station locations), but the

overall temperature trend agrees with the observations,

which is partly the result of a general agreement in the

precipitation trend. The temperature stays steady near

08C in the HRRR results and observations at the other

two locations: Cincinnati, Ohio (CVG), and Coles

County, Illinois (MTO). When freezing rain was re-

ported, the model correctly predicted the predominant

precipitation phase as mixed-phase precipitation in the

neighborhood box area at the ASOS sites shown in the

figure. Overall, the model-predicted freezing rain was

persistent and the areal coverage also agreed well with

the observations in these cases and, thus, produced the

highest values in the mixed-phase category in the eval-

uation matrix for the 5–7 and 20–24 December 2013

events (events B and D; Table 2).

Figure 3d is from a precipitation event where a narrow

rain-to-snow transition boundary moved across the

Wilmington, Ohio (ILN), radiosonde site (event C;

Fig. 2d). Both the observed and model-predicted

TABLE 3. In addition to the event date and time, shown are the model-predicted and observed surface air temperatures Ts at the lowest

observational or model height; the Ts bias, which is taken as the model minus the observations; the heights at the top and bottom

boundaries of the elevated warn layer (where T 5 08C) (Hmax and Hmin, respectively); and the thickness of the warm layer dH for the

freezing rain soundings shown in Fig. 3. The lowest reported height and the model’s lowest vertical level at the sounding site location are

listed in the rightmost column.

Ts (8C) Ts bias

Hmax

(m MSL) Hmin (mMSL) dH (m)

Lowest height

(m MSL)

Date and time Location Model Obs M 2 O Model Obs Model Obs Model Obs Model Obs

1200 UTC 6 Dec 2013 ILN 21.4 22.2 0.8 2928 2609 1635 1461 1293 1148 314 382

LZK 22.0 20.3 21.7 3492 3168 1022 1136 2470 2032 156 173

FWD 24.5 23.5 21.0 3272 3352 1460 1404 1812 1948 191 220

1200 UTC 21 Dec 2013 ILX 21.0 21.5 0.5 2596 2763 761 946 1835 1817 185 210

OUN 21.1 21.1 0 2765 2673 619 714 2146 1959 364 395

0000 UTC 22 Dec 2013 ILX 0.1 0.0 0.1 2622 2442 810 741 1812 1701 185 173

DTX 20.2 0.2 20.4 2276 2165 806 964 1470 1201 316 329

0000 UTC 12 Jan 2015 ILX 21.3 20.5 20.8 2279 2356 1194 1043 1085 1313 185 208
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profiles are representative of the wet snow temperature

profile shown in Stewart et al. (2015, their Fig. 2b). The

aviation routine weather reports (METARs) from ILN

alternately reported snow and rain, and the surface

temperature varied between218 and 18C from;1100 to

1600 UTC 14 December 2013. The METAR observa-

tions are clearly reflected in the ILN skew-T sounding

(Fig. 3d), which shows a weak elevated inversion layer

close to the surface with a temperature and dewpoint

temperature maximum just high enough to initiate

melting. Although the details of themodel profile do not

perfectly trace the observed ILN skew-T sounding, the

model profile nicely captures the overall vertical struc-

ture of the observed dry- and wet-bulb temperatures.

FIG. 4. ASOS and HRRRmodel precipitation phase at (a) DFW near FWD and (b) CVG near ILN on 6 Dec

2013 (event B) and (c) MTO near ILX on 11 Jan 2015 (event E). For (a)–(c), the color-coded vertical lines in the

top panels show the observed precipitation phase in increments of 6min (white space indicates missing data),

while colored squares represent the observations on the hour with the 66-min temporal window taken into

account (M is for missing data). The second panels show the percent of the neighborhood area covered with

model-predicted snow (light blue), rain (light gray), and mixed-phase precipitation (pink) based on the 8-h

forecasts at theASOS site; dark gray indicates no precipitation. The third panels showASOS surface temperature

T, dewpoint temperature Td, and model-predicted surface temperature from 8-h forecasts. The bottom panels

show the 1-h precipitation amounts (mm).
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The model-predicted surface temperature stayed nearly

constant at 08C when mixed-phase precipitation was

reported (not shown).

The skew-T soundings when the HRRR model in-

dicated rain but ASOS observations reported mixed-

phase precipitation or vice versa are shown in Fig. 5.

Figures 5a–f are from a long period of freezing rain

over a broad area or area of cold-air damming (eventsA,

D, E, and F; Fig. 2a,f,h–k); while Figs. 5g–h are from a

narrow rain–snow transition zone passing the sounding

site over a short period of time (eventsG andH; Figs. 2l–n).

Except for Figs. 5c,h, the model predicted rain when

mixed-phase precipitation was observed at correspond-

ing ASOS sites (Table 1). Most of the model tempera-

ture profiles closely follow the upper-air observations, as

in Fig. 3. When a sharp, near-surface inversion layer is

present in the observed soundings (i.e., an indication of

freezing rain), the model also predicts a surface in-

version layer in general. The precipitation phase fore-

cast error is due to a surface temperature bias (mostly a

warm bias in the cases examined), which may be partly

related to some temporal lag in the precipitation phase

transition. However, in many of the cases evaluated in

this study, the forecast was very close to the observed

results. As an example, Fig. 6a depicts a time evolution

of precipitation phase and temperature at Washington

Dulles International Airport, Sterling, Virginia (IAD),

associated with the skew-T sounding comparison shown

in Fig. 5g—one of the cases with a narrow rain–snow

boundary (event G; 26 January 2015). According to the

ASOS observations, the surface temperature started to

decreasewith an onset of precipitation at;0900UTC and

rapidly dropped to ;08C at ;1200 UTC after a peak in

precipitation (i.e., due to evaporative cooling). Around

this time, ASOS reported a rain–snow mixture, and the

transition from rain to snow occurred over less than 1h. A

similar temporal evolution was seen from the model-

predicted surface temperature, precipitation rate, and

precipitation phase (i.e., a gradual increase in the fraction

ofmixed-phaseprecipitationbetween1200 and1800UTC),

but the evolution lagged the observations by several

hours. As a result, the surface precipitation phase from

the model was rain instead of freezing rain for the

1200 UTC sounding comparison. Note that both the

model-predicted rain and snow mixing ratio in the

lowest model level were nonzero at 1200 UTC, but the

snow–rain ratio was lower (likely because of the above-

freezing temperature environment) than the threshold

implemented in the HRRR’s precipitation-type algo-

rithm and, thus, designated rain at this location.

A precipitation phase transition occurred twice at

Brookhaven, New York (OKX), on 22 February 2015

(event H). The skew-T sounding shown in Fig. 5h is

associated with the second phase change. Although the

precipitation phase forecast (mixed phase) did not agree

with the observation (rain) at the time of the skew-T

observations, the time history plot for a nearby site

shows that the phase change timing was very well

represented by the model based on the temporal trend

of the precipitation phase distribution in the neigh-

borhood box (Fig. 6b). The first phase change occurring

at ;0500 UTC is also closely predicted by the model.

The ASOS-observed and HRRR-predicted tempera-

tures agree very well before 1400 UTC.

The prediction errors in the precipitation phase at

Springfield, Missouri (SGF), at 1200 UTC 21 December

2013 (event D; Figs. 5b and 6c) and at ILN at 0000 UTC

12 January 2015 (event E; Figs. 5c and 6d) are due to a

very small temperature bias at the surface: a warm bias

of ,18C at SGF and a cold bias of ,2.08C at ILN. Ad-

ditionally, both of the sites were near the edge of the

predicted mixed-phase precipitation area at this time

(as depicted by the precipitation phase evolution in

Figs. 6c,d and 2c,h), implying that the forecast was al-

most correct. At these sites, the predicted and observed

precipitation trends also agree well.

Freezing rain episodes from the 26 November 2013

(event A) and 12 January 2015 (event E) cases at

Greensboro, North Carolina (GSO), and IAD, respec-

tively (Figs. 5a,d), involved cold-air damming (e.g., Bell

and Bosart 1988; Rackley and Knox 2016) east of the

Appalachian Mountains, which led to a long-lasting

widespread freezing rain episode (lasting .3h at many

surrounding ASOS sites). Figure 7a shows time history

plots for GSO on 26 November 2013. The temperature

bias at this location at;1200UTC is almost negligible, and

the temperature trend is similar to the observations, except

that the period of steady cold surface air (;08C) is slightly
shorter in the model forecast than the observations. Per-

haps this is related to the precipitation rate difference be-

tween the forecast and the observations (Fig. 7a, bottom);

the observed temperature decreased to 08C, associated
with an increase in precipitation intensity at ;1100 UTC,

and stayed ;08C until the precipitation rate started to

decrease after 1800 UTC, while the corresponding in-

crease and decrease of the precipitation rate in the model

do not quite match in time. However, the forecast was not

far off from the observations. Note that 8-h forecasts are

shown here and, perhaps, a shorter forecast length may

yield different results. During the period of steady cold

surface air, the fraction of the predicted precipitation

phase indicated mixed-phase precipitation within the

neighborhood box area at this site (Fig. 7a, second panel).

A 2D map of the model-predicted precipitation phase

valid at 1200UTC26November 2013 (time corresponding

to Fig. 5a) shows a patch of mixed precipitation in western
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Virginia and North Carolina (Fig. 7c), revealing that cold-

air damming was indeed in the forecast. Inspection of

hourly forecasts throughout the event suggests that a

similar warm bias in this area led to spatial coverage that

was not always as widespread and the period of freezing

rain not as steady as observed by ASOS and mPING.

A more significant warm bias in the areas of cold-air

dammingwas found for the 12 January 2015 case (eventE;

FIG. 5. As in Fig. 3, but for cases where the observations reportedmixed-phase precipitation but theHRRR forecast

indicated rain or vice versa.
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Figs. 5d, 7b, and 7d). A 2D map of the precipitation

phase for this case (Fig. 7d) shows that the model-

predicted area of mixed-phase precipitation does not

extend southward enough into Virginia. A warm bias

as large as 48C was found at locations where freezing

rain was observed by ASOS and mPING. The pre-

cipitation rate at IAD after 1200 UTC is higher in the

observations than the forecast, which may have led to

FIG. 6. As in Fig. 4, but for (a) IAD on 26 Jan 2015, (b) Islip, NY (ISP) near OKX on 21–22 Feb 2015, (c) SGF on 21 Dec 2013, and

(d) ILN on 11–12 Jan 2015.
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the longer period of time that the surface temperature

stayed ;08C. For both of these cases the evaluation

matrix (Table 2) shows the largest value in the rain

category when mixed-phase precipitation was ob-

served, which is attributed to the warm bias in cold-air

damming regions during these long and widespread

freezing rain episodes.

Similarly, the incorrect precipitation phase pre-

diction at the surface on 24 January 2015 (event F,

Figs. 5e–f) was from a warm bias in the surface

FIG. 7. As in Fig. 4, but for (a) GSO on 26Nov 2013 and (b) IAD on 12 Jan 2015. (c),(d)Model-predicted precipitation phase (color-filled

areas) overlaid with ASOS (circles) and mPING (triangles) observations valid at the indicated times. Figures 5a,d are skew-T sounding

comparisons corresponding to (c) and (d), respectively. Locations of the GSO and IAD soundings and ASOS sites are indicated.
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temperature. This freezing rain episode occurred

while a strong low pressure system moved northward

over the mid-Atlantic states and into the upper

Northeast (Figs. 2j–k). The transition from rain to snow

occurred over a short period at;0000 UTC 24 January

2015 at IAD (Fig. 5e) associated with a weakly defined

transition zone similar to the 26 January 2015 case at

IAD (event G; Fig. 6a). The temperature profile clearly

indicated a warm bias (38C) at the surface. In this case,

there was also a warm bias aloft in a near-isothermal

layer (;880–730 hPa), where the model and observa-

tion both exhibit a temperature close to 08C, just above
the shallow near-surface inversion layer. Although the

bias was only ;0.58C in this layer, this likely contrib-

uted to altering the precipitation type reaching the

surface.

The 24 January 2015 case (event F) also involved a

pool of cold air (;08C), in a confined area in western

Virginia to the east of the Appalachian Mountains

after a passage of the rain–snow transition boundary.

However, because of a warm bias the forecast did not

represent the cold-air damming well. This is reflected

in the disagreement in the lower-altitude profile

structure between the model and the Roanoke, Vir-

ginia (RNK), skew-T sounding (Fig. 5f). The surface

inversion is much weaker and the upper layer above

the inversion layer is colder in the model than in the

observations, implying very different microphysical

processes.

Figure 8 shows two skew-T soundings where the

model predicted snow but mixed-phase precipitation

was observed at the surface by ASOS. Characteristic

features of the observed temperature profiles are well

represented by the HRRR model in both cases, al-

though the vertical temperature gradient of the elevated

temperature inversion layer near the surface in the

forecast profile is not as large as the observations at IAD

at 0000 UTC 22 February 2015 (Fig. 8b).

Factors that contributed to the incorrect precipitation

phase prediction at the surface at 0000UTC 22December

2013 (event D; Fig. 8a) were a cold bias in surface

temperature (Fig. 9a, second panel), which may be

related to a higher precipitation rate in the forecast

before 0300 UTC, and a cold bias in the elevated warm

layer (above ;850 hPa). The 2D map of the pre-

cipitation phase forecast at the time of the Topeka,

Kansas (TOP), skew-T sounding reveals that TOP was

close to the area of widespread freezing rain [Fig. 9c;

surface observations are marked with red circles

(ASOS) or triangles (mPING) where freezing rain

was reported]. The maximum temperature observed

in this elevated warm layer is 1.88C. The elevated layer

with ;08C temperature is likely not deep enough to

melt all snow particles completely but is deep enough

to produce wet snowflakes and a rain–snow mixture.

METARs at TOP indeed indicate light freezing rain

between 2158 UTC 21 December 2013 and 0128 UTC the

following day. However, the model’s inversion layer

does not go beyond the 08C isotherm, causing differing

microphysical species in the near-surface layer. None-

theless, the forecast model very nicely predicts the

vertical structure of such a critical phase-transitional

region of the storm system.

Precipitation phase changed from snow to mixed-

phase precipitation after 2300 UTC 21 February 2015

near Washington (event H; Figs. 8b, 9b, and 9d). Be-

ginning ;2300 UTC, mPING data included a few re-

ports of a rain–ice pellet mixture and freezing rain

among the dominant snow–ice pellet reports in the

area between IAD and Washington’s Ronald Reagan

International Airport (DCA). Soon after 0010 UTC,

freezing rain observations in the mPING reports be-

came more dominant than the snow–ice pellet reports.

At IAD, freezing rain and a snow–ice pellet mixture

was reported until 0015 UTC, then ice pellets together

with freezing rain were reported until 0306 UTC, and

FIG. 8. As in Fig. 3, but for cases where the observations indicated mixed-phase precipitation but the HRRR

forecast called for snow.
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then simply freezing rain until 0344 UTC followed by

rain. Although Fig. 9d shows IAD’s mixed-phase ob-

servations surrounded by mPING reports of snow at

0000 UTC 22 February 2015, all mPING reports from

this region changed to mixed phase by 0100 UTC. A

well-defined cold layer (refreezing layer) below the

elevated inversion layer in the observed skew-T sounding

(Fig. 8b) corresponds well with these precipitation-type

reports. The model clearly shows snow in this region,

and the rain–snow transition zone is well south of IAD

at 0000 UTC. Unfortunately, the model data are

missing between 0100 and 0300 UTC, preventing us

from verifying the location of the phase change

boundary during this time period (which likely took

FIG. 9. As in Fig. 4, but at (a) TOP on 22 Dec 2013 and (b) IAD on 22 Feb 2015. (c),(d) As in Figs. 7c,d, but corresponding to the skew-T

sounding comparisons shown in Figs. 8a,b.
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place according to the temperature trend seen in

Fig. 9b). However, examination of a 2D map of pre-

dicted precipitation phase and observations for later

times indicates that the model’s phase transition zone

lagged behind the phase transition zone observed by

ASOS and mPING as the storm system propagated

northward along the Eastern Seaboard. The high value

in the evaluation matrix (Table 2) associated with

snow forecasts when mixed-phase precipitation was

reported by ASOS is clearly the result of such a tem-

poral lag. Based on all of the cases evaluated, such an

obvious/significant temporal lag in the phase transition

was not systematically found in other cases.

5. Summary and concluding remarks

A numerical weather prediction model’s ability to

capture properly precipitation-phase transitions at the

surface is clearly associated with its skill in correctly

representing the thermodynamic profile aloft and mi-

crophysical processes (e.g., melting, refreezing). The

present study expanded upon the earlier work of Ikeda

et al. (2013), which revealed relatively lower perfor-

mance skill of the HRRR model for mixed-phase pre-

cipitation compared with snow and rain. In this study,

routine upper-air sounding observations along with

ASOS and mPING surface data in mixed-phase pre-

cipitation regions were used to compare the model

profiles against to investigate possible reasons for

precipitation-phase forecast errors for 14 cases from the

2013/14 and 2014/15 winter seasons.

When both the observational and model data in-

dicated mixed-phase precipitation at the surface, the

HRRR model represented the observed temperature

profile well. In particular, characteristic features of a

freezing rain profile, including the depth, height, and

maximum temperature of an elevated inversion layer, as

well as the depth of a subfreezing surface layer, agreed

well with the observations.

Cases when the HRRR model predicted rain but the

observations indicated mixed-phase precipitation were

generally associated with a warm surface temperature

bias. Yet the vertical structure of the temperature profile

from the model was still representative of the observed

soundings. The surface temperature for these cases was

near 08C, and the bias was usually less than 28C. The
time evolution of predicted and ASOS-observed pre-

cipitation phase and temperature showed close agree-

ment in temperature trend and phase change (although a

temporal lag was present in some cases), demonstrating

that the model mostly agreed with the observations.

The surface temperatures from the HRRR model

forecasts were too warm yielding precipitation phase

errors in the examined cases with thin cold-air layers

related to cold-air damming, which produced long-

lasting and widespread freezing rain in the eastern

United States. For a few of the examined cases, the

predicted precipitation phase maps showed a region of

mixed-phase precipitation associated with the cold-air

damming and observed mixed-phase region; however,

the spatial extent was smaller and the temporal duration

was shorter than the observations. For these cases, the

evaluation matrix indicated a strong trend in mis-

classifying the observed mixed-phase precipitation as

rain, and while the model temperature and dewpoint

profiles closely followed the observations aloft, the

surface subfreezing layer wasmissing or had a significant

warm bias. The warm bias in surface temperature was as

large as 48C and was much larger than the ‘‘close call’’

cases mentioned above. This is perhaps partly related to

the HRRR model not having enough evaporative

cooling from precipitation (in terms of strength and

duration) based on the time history comparison of the

observed and predicted precipitation rates among other

possible reasons that were not fully investigated in

this study.

Among the 14 cases, only two skew-T soundings cor-

responded to occasions when the ASOS observation

indicated mixed-phase precipitation but the model

forecast was snow. Model profiles from these cases

showed a very good level of agreement with the obser-

vations except at vertical levels having temperatures

close to the 08C isotherm, just above the near-surface

inversion layer. In particular, because of the cold tem-

perature bias at those levels, the particles did not go

through a melting process and resulted in a mismatch in

the surface precipitation phase.

The results presented in this study certainly do not

cover all of the possible reasons for misclassifications of

mixed-phase precipitation, which likely involves further

model sensitivity tests to explore. The precipitation

phase predicted by the HRRR may also be sensitive to

the representativeness ofmesoscale features and/ormodel

initialization. The cases examined are limited by the

availability of routine upper-air sounding data coinciding

with mixed-phase precipitation events; therefore, a robust

statistical evaluation could not be performed. Moreover,

the prediction skill difference between ice pellets and

freezing rain or ice pellets and snow, which impacts

ground icing, was not addressed, because ASOS does not

explicitly identify ice pellets (except at sites with human

observers). Additionally, the cases examined in this study

were only from the eastern United States, and the model

performance for other parts of the United States where

mixed-phase precipitation occurs is possibly different.

For example, the northern Cascade region is frequently
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impacted by freezing drizzle/rain and ice pellets

(Bernstein 2000). Nevertheless, the current results reveal

that the HRRR model is able to represent the overall

vertical thermodynamic structure in the mixed-phase

precipitation regions involving areas of a rain–snow

transition and freezing rain, and that a proper forecast of

the surface/near-surface temperature is critical for accu-

rately depicting the precipitation phase.
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APPENDIX

Upper-Air Sounding Site IDs and Locations That
Appear in This Study

DTX Detroit, Michigan

FWD Fort Worth, Texas

GSO Greensboro, North Carolina

IAD Sterling, Virginia

ILN Wilmington, Ohio

ILX Lincoln, Illinois

LZK Little Rock, Arkansas

OKX Brookhaven, New York

OUN Norman, Oklahoma

PIT Pittsburgh, Pennsylvania

RNK Roanoke, Virginia

SGF Springfield, Missouri

TOP Topeka, Kansas
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