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ABSTRACT

Recent research suggests that surface elevation variability may influence tornado activity, though
separating this effect from reporting biases is difficult to do in observations. Here we employ Bayes’s law
to calculate the empirical joint dependence of tornado probability on population density and elevation
roughness in the vicinity of Arkansas for the period 1955-2015. This approach is based purely on data, exploits
elevation and population information explicitly in the vicinity of each tornado, and enables an explicit test of
the dependence of results on elevation roughness length scale. A simple log-link linear regression fit to this
empirical distribution yields an 11 % decrease in tornado probability per 10-m increase in elevation roughness
at fixed population density for large elevation roughness length scales (15-20 km). This effect increases by at
least a factor of 2 moving toward smaller length scales down to 1 km. The elevation effect exhibits no time
trend, while the population bias effect decreases systematically in time, consistent with the improvement of
reporting practices. Results are robust across time periods and the exclusion of EF1 tornadoes and are
consistent with recent county-level and gridded analyses. This work highlights the need for a deeper physical
understanding of how elevation heterogeneity affects tornadogenesis and also provides the foundation for a
general Bayesian tornado probability model that integrates both meteorological and nonmeteorological
parameters.

1. Introduction research techniques. Historical case study analysis has
demonstrated that tornadoes may form along preferred
terrain orientations such as ridges and valleys (Gallimore
and Lettau 1970), including within large mountain ranges
(Prociv 2012). Topography may enhance tornadogenesis
both directly via vortex stretching in downslope flow and
indirectly by promoting development of the parent con-
vective cell via enhanced mesoscale low-level wind shear
caused by near-surface flow channeling (Homar et al.
2003; LaPenta et al. 2005; Bosart et al. 2006; Schneider
2009; Knupp et al. 2014). Importantly, these case studies
highlight that multiple length scales of elevation vari-
ability may be important. Laboratory experiments and
simulations have demonstrated that surface roughness
heterogeneity associated with variations in land cover
can directly impact the velocity structure of tornado-like
vortices (Lewellen et al. 2008; Natarajan 2011; Lewellen
2014; Bodine et al. 2016) as well as the formation of mul-
tiple vortices (Leslie 1977). More recently, idealized at-
mospheric numerical modeling has demonstrated that
variations in orographic geometry can impose significant
effects on supercell evolution and potentially on tornado
Corresponding author: Daniel R. Chavas, drchavas@gmail.com  evolution as well (Lewellen 2014).

A tornado is a rapidly rotating column of air in contact
with the surface and a cumuliform cloud (Agee 2014).
The latter is typically associated with a rotating, meso-
scale convective storm that forms within a thermody-
namic environment characterized by strong low-level
wind shear and significant convective available potential
energy for low-level air parcels (Thompson et al. 2004;
Grams et al. 2012). Much research attention has been
devoted to improving the understanding and prediction
of tornadoes and their parent storms based on meteo-
rological variables (e.g., Lawson et al. 2018; Allen et al.
2015). Meanwhile, given that a tornado is also in con-
tact with the surface, variations in surface properties,
particularly elevation, may also significantly affect
tornado formation, structure, and evolution. However,
the role of surface heterogeneity in modulating tornado
activity remains poorly understood.

Past work has identified numerous complexities in how
surface heterogeneity affects tornadoes via a variety of
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While tornado—terrain interactions are clearly com-
plex, past work has also sought generalized relation-
ships between tornadoes and elevation variability by
applying statistical methods to historical data. Gallimore
and Lettau (1970) found a reduction in tornado activity
in Arkansas and Wisconsin in low elevation roughness
regions by comparing cross-sectional elevation power
spectra in low- and high-tornado regions, and they further
identified a critical length scale of elevation roughness
of either 1 or 16 km below which this signal emerges.
However, the authors acknowledged at the time that
potential reporting biases may be significant, an effect
that is now widely understood to be large in the histor-
ical record (Doswell and Burgess 1988; Doswell 2007;
Verbout et al. 2006; Elsner et al. 2013). Karpman et al.
(2013) also found a decrease in tornado activity with
increasing topographic variability using a multiplica-
tive point-process model that takes as its topographic
variability parameter the integrated elevation variance
over an approximately 5-km radius, though this study
again does not account for population bias. Population
bias effects were accounted for by Jagger et al. (2015)
and Elsner et al. (2016), who found a similar elevation
roughness effect over the Great Plains by modeling tor-
nado activity conditioned on elevation roughness and
population density using a negative binomial statistical
model fit to tornado, elevation, and population density
data binned either at the county level or on a regular grid.

Here we build upon the work of Elsner et al. (2016)
by demonstrating a simpler and more general approach
using Bayes’s law to estimate the joint dependence of
tornado activity on elevation variability and population
density. We apply this method to historical data in the
vicinity of Arkansas. This approach offers three princi-
pal benefits: 1) the complete joint dependence is calcu-
lated directly from the data, in the absence of statistical
modeling assumptions, allowing for direct inspection of
the structure of this dependence; 2) the calculation ex-
ploits information regarding elevation and population
explicitly in the vicinity of each individual historical
tornado; and 3) the methodology uses physical length
scales relative to individual tornado events, enabling a
direct empirical test for the existence of an optimal ele-
vation roughness length scale as well as providing a po-
tential bridge between empirical results and physical
modeling. A simple statistical model is then applied a
posteriori to quantify the magnitude of these conditional
dependencies. Our analysis focuses on Arkansas because
the region possesses a wide range of small-scale elevation
variability in the absence of major mountain ranges that
rise above the boundary layer and thus can substantially
disrupt the large-scale atmospheric flow (Manabe and
Terpstra 1974). Moreover, focusing on a limited area
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minimizes variability in environmental thermodynamic
heterogeneity on climatological time scales, thereby credi-
bly separating nonmeteorological effects (population and
elevation) from meteorological effects associated with
large-scale atmospheric variability. Overall, then, Arkansas
provides an ideal region to search for a statistical sig-
nature of elevation roughness on tornado activity. We
note that such a physical effect, should it exist in nature
and be isolated empirically, ought to be generalizable to
any region that possesses variability in terrain elevation.
Thus, our results need not be specific to Arkansas, and
indeed we compare our results to those of prior analyses
in other regions. Finally, we examine the robustness of
this joint dependence to varying time period, EF rating,
and terrain length scale. The latter tests for the potential
existence of a preferred physical length scale of the effect
of elevation variability on tornadogenesis.

The paper is organized as follows. Section 2 describes
the datasets and Bayes’s law theory and methodology.
Section 3 presents the results for a step-by-step demon-
stration application followed by more general results
testing for robustness. Section 4 provides a summary
and discussion of the significance of this work as well
as avenues of future research.

2. Methodology
a. Data

We combine historical tornadogenesis data within the
domain bounded by 90.2408°-95.2366°W longitude and
32.8134°-37.1342°N latitude, which encompasses the
state of Arkansas, with historical population density
and elevation data within a slightly larger domain boun-
ded by 90°-96°W longitude and 32°-38°N latitude.

Tornadogenesis latitude, longitude, year, and intensity
(EF) rating data are taken from the NOAA Storm Pre-
diction Center database for the period 1955-2015 (https://
www.spc.noaa.gov/wem/#data, accessed 18 March 2016)
(Fig. 1a). This dataset has a range of known and unknown
data reporting and quality biases (Doswell and Burgess
1988; Doswell 2007); nonetheless, it is by far the most
comprehensive database available whose relatively large
sample size lends itself well to empirical analysis. EFO
events have especially large empirical, societal, and
physical reporting biases (Verbout et al. 2006; Agee and
Childs 2014; Tippett et al. 2015) and are thus discarded.
The resulting dataset contains 1991 EF1-5 tornadoes and
855 EF2-5 tornadoes. Population density data at 30-arc-s
resolution (=~0.76km at 35° latitude) are obtained
from version 4 of the Columbia University Gridded
Population of the World dataset (http://sedac.ciesin.
columbia.edu/data/set/gpw-v4-population-density) for the
year 2015, and time-varying population density data at
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FiG. 1. Spatial distributions of (a) tornadogenesis points
(1955-2015); (b) surface elevation (color) and 2015 raw pop-
ulation density (red shading; log scale); and (c) elevation
roughness (ER,) for Lggr = 10km, calculated on uniform
100 X 100 grid as described in section 2. Gray box in (a) de-
marcates tornado domain boundaries.
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30-arc-s resolution are taken from Global Population
Density Grid Time Series Estimates, version 1 (1970-2000)
(http://sedac.ciesin.columbia.edu/data/set/popdynamics-
global-pop-density-time-series-estimates) for years 1970,
1980, 1990, and 2000. Terrain elevation raster data at
7.5-arc-s resolution (~0.19km at 35° latitude) are ob-
tained from the Global Multiresolution Terrain Ele-
vation Data 2010 (GMTED2010) (https://www.usgs.
gov/land-resources/eros/coastal-changes-and-impacts/
gmted2010, downloaded from https://earthexplorer.
usgs.gov/). Terrain and population density datasets are
cropped to the analysis region (Fig. 1b) using the clipper
tool in QGIS, version 2.18 (QGIS 2015). All subsequent
statistical analyses are performed using MATLAB
R2015a. All geographic area and distance calculations
assume a sphere with radius » = 6371.22km.

b. Variable definitions

Annual tornado probability per unit area (hereafter
“tornado probability”’) P(T) [No. yr ! (100km?) '], is
defined as

27,

P(T) = ";A

X100, 1)

where T); corresponds to tornado i in year y, Y is the
number of years (e.g., 61 for 1955-2015), A is the domain
area (e.g., A = 218660 km? for the full domain), and the
factor 100 normalizes the base probability (No. yr ' km™?)
to a constant reference area of 100 km?. This quantity may
be equivalently thought of as a space—time tornado density.

Population density, (Ipop; No. km 2, log2-transformed),
is calculated via simple bilinear interpolation of the raw
data to a point of interest and then taking the base-2
logarithm. The logarithm is applied because this quantity
varies over many orders of magnitude. Moreover, pop-
ulation biases may be expected to scale multiplicatively,
for example, an increase from 1 to 10 people per unit
area is likely more similar to an increase from 1000 to
10000 than from 1000 to 1009.

Elevation roughness (ER; m) is defined as the stan-
dard deviation of all elevation values at radii r =< R; this
quantity is the simplest statistical measure of spatial
variability. The associated length scale of variability is
defined as Lgr = 2R (i.e., circle diameter), and we present
results over the range Lgr € [1, 20] . Length scales smaller
than 1km approach the intrinsic resolution of the terrain
data and thus yield sample sizes too small to calculate a
credible standard deviation. We choose Lgg = 10 km for
demonstration in the analyses below before presenting
final results across the full range of values; the spatial dis-
tribution of this quantity is displayed in Fig. 1c. Impor-
tantly, elevation standard deviation is a physical variable
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with meaningful units that we seek to preserve in our
analysis.

Integral to the Bayes’s law approach described in
the next subsection, population density and elevation
roughness are calculated at locations spread uniformly
within the domain as well as at all tornadogenesis lo-
cations. This yields datasets for both background pop-
ulation density (Ipop,) and elevation roughness (ER})
as well as tornado-centered population density (Ipopr)
and elevation roughness (ER7).

c. Conditional probability analysis: Bayes’s law

We seek to quantify the joint dependence of tornado
probability on elevation roughness and population density,
that is, P(T|ER, lpop). From the definition of conditional
probability, we may write

This probability may be equivalently written as

P(T,ER,lpop) = P(ER, lpop|T)P(T)

3

= P(ER ., Ipop,)P(T), ®
where ER7 and lpop+ denote the elevation roughness
and population density conditioned on a tornado, that
is, in the vicinity of a tornado. Equating the right-hand
sides of Egs. (2) and (3) and rearranging yields an
equation for the conditional probability P(T|ER, lpop)
given by

P(ER,1pop,)

P(T|ER, Ipop) = PER. . Ipop )}P(T ). @)
b’ b

where ER;, and lpop, denote the background elevation
roughness and population density within the domain; this
notation is used on the rhs of Eq. (4) to clearly distinguish
these quantities from their tornado-conditioned coun-
terparts. Equation (4) is simply Bayes’s law applied to
our conditional tornado probability, in which a prior
terrain- and population-independent tornado probability
P(T) is updated with information about elevation rough-
ness and population density to yield a posterior (condi-
tional) tornado probability P(T'|ER, lpop). The Bayesian
update factor is defined in Eq. (4) as the ratio of the joint
probability of elevation roughness and population density
in the vicinity of a tornado to their joint probability any-
where within the domain (i.e., independent of tornado). In
words, Eq. (4) states that the tornado probability increases
relative to some average value P(7) if P(ER7, lpop;) >
P(ER,, lpop,), that is, if the probability of finding a
certain combination of (ERy, lpop,) is higher in the vi-
cinity of a tornado than in general in the entire domain.
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In such a case, the update factor will be greater than one,
and thus P(T|ER, lpop) > P(T).

All three probabilities on the right-hand side of
Eq. (4) can be calculated directly from historical data.
The terrain- and population-independent tornado
probability P(T) is calculated by applying Eq. (1) for
all tornadoes in the full domain, that is, the domainwide
mean tornado probability. For terrain- or population-
dependent probabilities, we discretize ER and Ipop into
fixed-width bins of AER = 10m and Alpop = 0.5 begin-
ning at zero for both quantities, which yields a rea-
sonable number of bins in each dimension. We estimate
the joint distribution P(ER,, lpop,) by calculating
(ER, Ipop) on a uniformly spaced 100 X 100 latitude—
longitude grid bounded by our tornadogenesis domain,
yielding a background sample size of 10 000. This grid is
used in lieu of direct calculation using the raw pop-
ulation density dataset grid (720 X 720) to reduce
computational costs while still maintaining a suffi-
ciently large sample size to properly define the dis-
tribution. Similarly, we estimate the joint distribution
P(ER7, lpop;) by calculating (ER, lpop) at all torna-
dogenesis points in our dataset.

Marginal probabilities are calculated for the general
case as

n{x, € [¥,x¥*")}

P, = 2= 5)
and for the tornado-centered case as
n{x.. € [¥,¥*1)}
Px,)= —I——"—— (6)

N k)

where x represents ER or Ipop, n{x € [¥/, ¥*1)} is the
number of points whose value falls within the jth inter-
val bounded by x’ and ¥'*/, and N is the full sample size
of points (10000 for background; total number of torna-
does for tornado centered). Similarly, joint probabilities
are calculated for the general case as

n{x,, € ..y, € (6.0}

P(x, . x,,) = N @)
and for the tornado-centered case as
n{x, ;€ [0, x, € [}
P(x, ;. x, )= —F N = . (8)

where x; and x, represent ER and Ipop.

Combining these probabilities according to Eq. (4)
yields an empirical estimate of P(T|ER, lpop). How-
ever, we note that the essence of this analysis lies in an
understanding of the joint dependence of the Bayesian up-
date factor; this factor is simply mapped into probability
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space via multiplication by a constant mean tornado
probability P(7) that is specific to the given geographic
domain and time period.

d. Statistical modeling

Finally, we quantify the magnitude of the depen-
dence of tornado probability on both elevation rough-
ness and population density by fitting a generalized
linear model (GLM; Nelder and Baker 2004) with a
bivariate log-link response function (also known as
Poisson regression) to our calculated conditional prob-
abilities, that is,

In[P(T|ER,Ipop)] =B, + B ER + BipoplPOP + £, 9)

where Bgg and By, are the regression coefficients to el-
evation roughness and population density, respectively; B,
is a constant; and ¢ is the model residual error. Thus, this
model yields P(T|ER, Ipop) = cePrRER ProplPoP | where ¢
is a constant. The log-link response function is chosen
because tornado probability is a nonnegative quantity
and thus standard linear regression is inappropriate.
We emphasize that the form of the statistical model is
not fundamental to the result; here we choose as simple
a model as possible whose outcome is easy to interpret.
The best fit is determined via linear least squares fit of
In[P(T|ER, lpop)] to the data using MATLAB function
glmfit. In fitting the model, we exclude (ER,, lpop,)
bins with bin sample size less than five in the back-
ground joint distribution; for very small bin sample
sizes, the Bayesian update factor is very sensitive to a
small changes in tornado count (e.g., from 0 to 1).
This choice ensures that the results of the statistical
model fit apply to a reasonably common range of values
of (ERy, Ipop,).

For each analysis, we perform a 1000-member boot-
strap ensemble in which we redo the full analysis using
1000 resamples of the tornado dataset and its associated
tornado-centered covariate values (ER7, lpop;). We
then define the best estimate of each coefficient as the
median of their respective bootstrapped distributions,
and we define the 5%-95% confidence band for our
model coefficients as the Sth and 95th percentiles of the
distribution. Bootstrapping is both flexible and robust,
as it makes no assumptions about the nature of the input
or output distributions and permits asymmetric confi-
dence bands (Mooney et al. 1993).

3. Results
a. Demonstration application

We begin with a step-by-step demonstration ap-
plication for the case of all EF1+ tornadoes for the
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full period 1955-2015 with calculation length scale
LER = 10km.

1) AVERAGE TORNADO PROBABILITY: P(T)

For period length Y = 61 years, 1991 EF1+ tornadoes,
and domain area A = 218660 km?, Eq. (1) yields P(T) =
0.0149yr~' (100km?®) ", This translates to approximately
1.49 tornadoes per 1° X 1° latitude—longitude box annually
within this latitude band.

2) MARGINAL PROBABILITY DISTRIBUTIONS:
P(ER,), P(Ipop,), P(ER7), P(Ipopy)

Prior to calculating the update factor probabilities of
Eq. (4), it is instructive to first quantify marginal proba-
bility distributions for elevation roughness and population
density and compare the general case to that centered on a
tornado. Note that these probabilities are intrinsic to
the joint probabilities of Eq. (4) via the definition of
conditional probability, for example, P(ER;, Ipop,) =
P(ER|Ipop,)P(Ipop,).

All four marginal probability distributions are shown
in Fig. 2. The distribution of ER7 is shifted toward
lower values relative to that of ER,, indicating a pref-
erence for tornadoes to form in the presence of smaller
elevation roughness relative to the background distri-
bution. Meanwhile, the distribution of lpop7 is shifted
toward higher values relative to that of lpop,, indicat-
ing the population bias associated with increased
likelihood that a tornado will be observed or its in-
tensity properly quantified in regions with higher pop-
ulation density relative to the background distribution.
While this offers initial intuitive insight, the two quan-
tities are correlated and thus separating the indepen-
dent effects of each necessitates analysis of their joint
probability.

3) JOINT PROBABILITY DISTRIBUTIONS:
P(ERy, Ipop,) and P(ER7, Ipop)

The distributions of joint probabilities P(ER,, Ipop,)
and P(ERy, lpop7) are displayed in Fig. 3. The joint
distribution of P(ER,, lpop;) (Fig. 3a) indicates that
land most frequently possesses a combination of rela-
tively low elevation roughness and moderate population
density, as might be expected based on the marginal
distributions of Fig. 2. Importantly, though, a wide range
of (ER,, Ipop;,) values exist in our domain, including low
ER, at high lpop, and vice versa, thereby offering hope
of statistically separating the terrain signal from that
associated with population density bias. Meanwhile, the
distribution of P(ER7, lpopr) appears to shift toward
lower ER,, and higher Ipop, values (Fig. 3b); the sig-
nificance of this shift is directly manifest in the update
factor distribution analyzed next.



406 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 58
04 r T T T r T T T T T T T T T T T T T
[ 1P(ER;) (general) 0.1 | CZ1P(lpops) (general)
- [ |P(ER7) (tornado-centered) " | [ |P(lpopr) (tornado-centered)
0.35 B sl
(@ |l (b)
0.07 I _-“__
025 F _
0.06 - I
z [ z
B o2} 3 _
8 Soost 1[H
=% = (=% -—_
0.15F 0.04 | L
0.03 | ] I
041F . L |
0.0z | |
005F
0.01 |
% 20 a0 120 140 160 180 % 18 16 44 42 0 8 &6 4 2 0 2 4 6 8 10 12

80 100
ER [m] Ipop [persons km2] (log2)

FIG. 2. Probability distributions of (a) ER; (blue) and ER7 (red) for Lgg = 10km and of (b) Ipop, (blue) and lpop7 (red).

4) FINAL CONDITIONAL PROBABILITY:
P(T|ER, Ipop)

Distributions of the Bayesian update factor, defined as
the ratio of the joint probabilities presented in Fig. 3,
and the final conditional probability P(T'|ER, lpop) cal-
culated by Eq. (4) are both shown in Fig. 4. Recall that the

by the product of the update factor and the average tor-
nado probability in the domain. An update factor value
larger than 1 indicates P(T|ER, lpop) > P(T), and a value
smaller than 1 indicates P(T|ER, lpop) < P(T).

A broad reduction in tornado probability is evident
moving toward both lower population density and higher
elevation roughness. This may be interpreted alternatively

final conditional probability distribution is given simply as a decrease in tornado probability with increasing
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FIG. 3. Joint probability distributions (a) P(ER,, Ipop,), and (b) P(ER~7, Ipopr), corresponding to the denominator and numerator,
respectively, of the Bayesian update factor in Eq. (4) for Lgr = 10 km. Boxes indicate bins containing at least one valid data point.
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P(T) = 0.0149 yr ' (100km?) .

elevation roughness conditioned on (i.e., controlling for)
population density. The effect appears consistent over
the full range of population density, though it is most
readily visible at intermediate population density where
elevation roughness varies significantly within a given
population density bin. We emphasize that these results
arise purely from data; no statistical models have yet been
applied. Fitting the log-link GLM model given by Eq. (9)
to the data shown in Fig. 4 yields best-fit coefficient values
of Bgr = —0.013m™! {5%—-95% confidence interval (CI)
of [-0.017, —0.010]} and By,,, = +0.19 (§%-95% CI of
[+0.17, +0.21]).

5) INTERPRETATION

Finally, we seek a basic quantitative interpretation of
our elevation roughness coefficient Bgr. Taking the
partial derivative of Eq. (9) with respect to ER yields

_ o{In[P(T|ER,Ipop)]}
B a(ER)

ER

1

_ o[P(T|ER, Ipop)]
P(TIER, Ipop)

9(ER) ’

(10)

where By is the fractional sensitivity of P(T|ER, lpop)
to varying ER, and 1008y is the percentage rate of
change (% m™ ') at fixed population density. Thus,
Ber = —0.013m™! translates to a 13% decrease in tor-
nado probability for every 10m increase in elevation
roughness.

Brought to you by NOAA Central

Similarly, we may quantitatively interpret our population
density coefficient B, as

_ d{In[P(T|ER,lpop)]}
d(Ipop)

B Ipop

_ d{In[P(T|ER, Ipop)]}
d[In(pop)]

X In(2), (11)
where pop is the raw population density and we have
transformed the base-2 logarithm to a natural logarithm
using the change of base equation, log,(x) = In(x)/In(2).
The term B, is the percentage rate of change of
P(T|ER, lpop) per percentage change in population
density at fixed elevation roughness. Thus, B,,, = +0.19
translates to a 1.9% increase in tornado probability for
every 10% increase in raw population density. This
translates to a 19% increase per doubling of population
density, a result that is also evident by retaining the
base-2 logarithm in the denominator of Eq. (11), which
represents a percentage change per doubling of the raw
population density.

b. General analysis

We now examine the sensitivity of our coefficients
to calculate length scale, time period, and the exclu-
sion of EF1 tornadoes. Figure 5 displays Bgg (Fig. 5a)
and B, (Fig. 5b) calculated for Lgg € [1, 20] km us-
ing tornado data for the full period 1955-2015, as well
as for successive 21-yr overlapping periods 1955-75,
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FI1G. 5. Coefficients of the log-linked linear model fit to the empirical estimate of P(7|ER, Ipop) as a function of
calculation length scale Lgg: (a) elevation roughness coefficient Bgr and (b) population density coefficient Bipop.
(c),(d) Asin (a) and (b), respectively, but for EF2-5 tornadoes. Result are shown for full 1955-2015 period (black) and
successive 21-yr periods (color), with 5%-95% confidence intervals (shaded and dashed) calculated from 1000-member
bootstrap ensembles. Number of EF1 and EF2 tornadoes in each period also shown in the legend as (EF1/EF2).

1965-85, 1975-95, 1985-2005, and 1995-2015. Identical
analyses using only EF2-5 tornado data are also provided
(Figs. 5¢,d).

First, for the full-period (1955-2015) analysis, the best-fit
values and 5%-95% confidence interval are consistently
negative for Bgr and positive for B, indicating that
the qualitative finding of our demonstration example is
robust for varying Lgr. More specifically, |Bggr| remains
nearly constant at approximately 0.011 for Lggr = 14km
and increases with decreasing Lgg at first slowly for
Lgr € [6, 14]km and then more rapidly for Lgg < 6km,
reaching Bgr = —0.024m™! for Lgg = 2km followed
by a particularly strong increase to B8gg = —0.051m ™! for
Lgr = 1km. Meanwhile, B,,,, remains nearly constant
across all values of Lgg.

Second, results are robust to the chosen time period
within the historical record. Interestingly, there is no
systematic time trend in Bgg, Whereas there is a clear
systematic decrease in fy,,, moving closer to present.
The decrease in B, is indicative of a decreasing pop-
ulation bias with time as reporting practices improve, in-
cluding the introduction of radar in the early 1990s and
dramatic growth in storm chasing; this result matches that
of Elsner et al. (2013). Meanwhile, the lack of time trend in
Bger 1s desirable given that the elevation roughness effect is
physical and elevation is nearly fixed during the period
of interest, as was found in Elsner et al. (2016). Taken to-
gether, these results lend further confidence in the credi-
bility of our analysis to separate the elevation roughness
effect from a time-varying population bias effect.
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Third, all of the above findings appear to be robust
to the exclusion of EF1 tornadoes. Best-fit values of
both coefficients are quantitatively similar to the origi-
nal case; confidence intervals are now wider because of
the significantly reduced tornado sample size.

Finally, the above analysis uses a static 2015 population
density dataset. Thus, we further test the extent to which
accounting for changes in population density with time
affect these results. We perform the prior analysis for
successive 21-yr overlapping periods 1960-80, 1970-90,
1980-2000, and 1990-2010, each centered on decennial
population data for 1970-2000. Figure 6 displays the re-
sults, which are quantitatively similar to that shown in
Fig. 5. This result indicates that these conclusions are not
very sensitive to the details of changes in population den-
sity with time. This is perhaps a reflection of the fact that
we analyze the logarithm of population density, which
requires exponential changes in its spatial distribution to
induce significant variations.

Overall, these results indicate that the negative effect
of elevation roughness on tornadogenesis appears to be
strongest at small length scales, consistent with the work
of Gallimore and Lettau (1970). The resolution of our
terrain data limits our capacity to confidently test even
smaller length scales below 1km. Moreover, the as-
ymptote for large Lgr to an 11% decrease in tornado
probability for every 10-m increase in elevation rough-
ness is comparable to that found in previous studies in
the Great Plains. Specifically, Jagger et al. (2015) found
an 18% decrease per 10 m for EF1+ tornadoes over the
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FIG. 6. As in Fig. 5, but using population density data for the midpoint year of successive 21-yr periods (legend).

period 1970-2013 using county-level data, which im-
plicitly averages data over the relatively large length scales
associated with county boundaries. Elsner et al. (2016)
found a 26 % decrease per 10m for EF1+ tornadoes over
the period 19552014 using gridded data with horizontal
resolution of approximately 23 km; with EF0O events
included, this sensitivity decreased slowly from 23% at
23-km resolution to 17% at 6-km resolution (cf. their
Table 1). Meanwhile, the population bias effect in each
study was 13% and 12% (EF0+) per doubling, respec-
tively. Thus, our results are qualitatively similar though
yield a somewhat smaller elevation roughness effect
and larger population bias, each by approximately a factor
of 2. Further discussion is provided below.

4. Discussion and conclusions

This work combines historical tornado, population
density, and digital elevation model datasets to quantify
the independent effects of varying elevation roughness
and population density on the probability of tornado-
genesis. Our analysis employs Bayes’s law to calculate
the probability of tornadogenesis conditioned jointly
on elevation roughness (elevation standard deviation)
and population density (log2-transformed). This approach
provides the most general empirical estimation of this
joint conditional probability in the absence of statistical
modeling assumptions, enabling direct inspection of the
complete structure of the joint dependence. Moreover,
it makes explicit use of elevation roughness and pop-
ulation information in the vicinity of individual tornado
events. The latter is additionally important for testing
the length-scale dependence of elevation roughness in
the immediate vicinity of potential tornado formation.
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The resulting probability distribution exhibits a system-
atic increase in tornado probability at higher population
density and lower elevation roughness. To obtain a specific
quantitative measure of these conditional dependencies, a
simple bivariate log-link linear model is fit to the dis-
tribution data to yield mean regression coefficients for
each quantity. Results indicate that tornado probability,
conditioned on population density, decreases by 11% per
10-m increase in elevation roughness over relatively large
length scales (15-20km), and this effect increases by at
least a factor of 2 moving toward smaller length scales of
1-5km. Finally, the elevation roughness effect is found to
remain nearly constant with time, whereas the population
bias effect decreases with time, consistent with a trend to-
ward improved reporting practices. These results are robust
to varying time period and exclusion of EF1 tornadoes.

Our results are consistent with previous research on the
topic using county-level or gridded data, including a neg-
ative effect of elevation roughness on tornadogenesis at
fixed population density (Jagger et al. 2015; Elsner et al.
2016), a decrease in population density bias with time
(Elsner et al. 2013), and no time trend in elevation
roughness effect (Elsner et al. 2016). Our results for large
Lgr yield a smaller elevation roughness effect and larger
population bias than these prior studies, each by roughly a
factor of 2. The reasons for this difference are unclear,
though it may be associated with real differences in visi-
bility and surface vegetation between Arkansas and the
Great Plains as well as with differences in statistical
correlations of elevation roughness and population density
between the regions that might plausibly yield an empirical
trade-off between the two effects. Importantly, though, our
novel method identifies an enhancement in the elevation
roughness effect at smaller elevation roughness length
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scale down to 1 km, in line with early research by Gallimore
and Lettau (1970). Estimation of this scale-dependent
effect in the immediate vicinity of individual tornado-
genesis points is unique to our methodology, as it is not
quantifiable from county-level or coarse-grid data.

Our results in conjunction with the aforementioned
studies suggest that local surface elevation variability
likely has a real physical effect on tornado formation.
We emphasize that this variability is small-scale in that
it exerts a minimal impact on the large-scale flow (as
opposed to, for example, a major mountain range). More-
over, the magnitude of this terrain effect is empirically
large enough to have significant effects on tornado ac-
tivity and perhaps its impacts on society. However, we
currently lack a physical understanding of the pathways
through which small-scale surface elevation variability af-
fects tornado formation, which may include the vortex scale
(e.g., direct vortex breakdown), the storm scale (evolution
of convective storm structure and organization), and/or
details of the mesoscale thermodynamic environment in
which parent storms develop. This work has identified
an enhanced elevation roughness effect on tornado-
genesis at small length scales that are perhaps com-
parable to those of the horizontal scale of a tornado,
which may suggest a direct effect of elevation vari-
ability on the vortex itself; deeper evaluation of this
hypothesis is needed.

There are a number of caveats associated with our
analysis. First and foremost, while we have attempted
to account for key confounding factors (population,
EF1, time period) in the historical tornado record
and test for robustness, we are nonetheless reliant on
this database and all of its known and unknown defi-
ciencies. Indeed, there may exist other biases in the his-
torical dataset, such as proximity to interstate highways
(Blair and Lunde 2010), not captured by population den-
sity that warrant closer examination. Additionally, de-
tails at scales finer than the resolutions of our elevation
and population datasets may yet be important but can-
not be captured here. Finally, the extent to which our
results can be generalized to much higher elevation
roughness values is unclear, nor is it obvious that el-
evation standard deviation is necessarily the most
important measure of elevation roughness relevant to
tornado formation.

Following from these caveats, there are myriad ave-
nues for future work. First and foremost, with the recent
emergence of tornado-scale physical modeling, ide-
alized physical modeling experiments of small-scale
surface elevation variability could yield insight into
the pathways by which surface variability affects torna-
dogenesis in the vein of Lewellen (2014). This could
include both detailed understanding of these pathways
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and how such effects vary across different patterns of
elevation variability as well as its magnitude, from gentle
hills to mountain ranges. Second, this methodology could
be applied to other regions of the country to further test
the robustness of our results. Third, a comprehensive
apples-to-apples comparison across the range of meth-
odologies used in this and prior studies would help
explain quantitative differences in elevation roughness
effects and population density biases, as well as other
nonpopulation biases not yet accounted for in the
literature. Fourth, this approach could be viably ap-
plied to a radar-based tornadic signature database whose
objective event database would be considered more
reliable albeit with a much smaller sample size. Fifth,
this work has assumed that the effect of terrain elevation
variability is isotropic; consideration of the orientation
of terrain relative to tornado path may yield additional
empirical insight into the tornado-terrain interaction
problem. Similarly, the effect of surface roughness as-
sociated with land cover (e.g., lakes, forest, farmland)
has not been explored. Finally, this Bayesian framework
may be readily extended to incorporate meteorological
parameters in addition to the nonmeteorological pa-
rameters analyzed here. Doing so could yield a more
general, population-adjusted Bayesian tornado proba-
bility model useful for real-world prediction at any time
scale, from climatological to subseasonal to daily.
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