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ABSTRACT

Recent research suggests that surface elevation variability may influence tornado activity, though

separating this effect from reporting biases is difficult to do in observations. Here we employ Bayes’s law

to calculate the empirical joint dependence of tornado probability on population density and elevation

roughness in the vicinity ofArkansas for the period 1955–2015. This approach is based purely on data, exploits

elevation and population information explicitly in the vicinity of each tornado, and enables an explicit test of

the dependence of results on elevation roughness length scale. A simple log-link linear regression fit to this

empirical distribution yields an 11% decrease in tornado probability per 10-m increase in elevation roughness

at fixed population density for large elevation roughness length scales (15–20 km). This effect increases by at

least a factor of 2 moving toward smaller length scales down to 1 km. The elevation effect exhibits no time

trend, while the population bias effect decreases systematically in time, consistent with the improvement of

reporting practices. Results are robust across time periods and the exclusion of EF1 tornadoes and are

consistent with recent county-level and gridded analyses. This work highlights the need for a deeper physical

understanding of how elevation heterogeneity affects tornadogenesis and also provides the foundation for a

general Bayesian tornado probability model that integrates both meteorological and nonmeteorological

parameters.

1. Introduction

A tornado is a rapidly rotating column of air in contact

with the surface and a cumuliform cloud (Agee 2014).

The latter is typically associated with a rotating, meso-

scale convective storm that forms within a thermody-

namic environment characterized by strong low-level

wind shear and significant convective available potential

energy for low-level air parcels (Thompson et al. 2004;

Grams et al. 2012). Much research attention has been

devoted to improving the understanding and prediction

of tornadoes and their parent storms based on meteo-

rological variables (e.g., Lawson et al. 2018; Allen et al.

2015). Meanwhile, given that a tornado is also in con-

tact with the surface, variations in surface properties,

particularly elevation, may also significantly affect

tornado formation, structure, and evolution. However,

the role of surface heterogeneity in modulating tornado

activity remains poorly understood.

Past work has identified numerous complexities in how

surface heterogeneity affects tornadoes via a variety of

research techniques. Historical case study analysis has

demonstrated that tornadoes may form along preferred

terrain orientations such as ridges and valleys (Gallimore

and Lettau 1970), including within large mountain ranges

(Prociv 2012). Topography may enhance tornadogenesis

both directly via vortex stretching in downslope flow and

indirectly by promoting development of the parent con-

vective cell via enhanced mesoscale low-level wind shear

caused by near-surface flow channeling (Homar et al.

2003; LaPenta et al. 2005; Bosart et al. 2006; Schneider

2009; Knupp et al. 2014). Importantly, these case studies

highlight that multiple length scales of elevation vari-

ability may be important. Laboratory experiments and

simulations have demonstrated that surface roughness

heterogeneity associated with variations in land cover

can directly impact the velocity structure of tornado-like

vortices (Lewellen et al. 2008; Natarajan 2011; Lewellen

2014; Bodine et al. 2016) as well as the formation of mul-

tiple vortices (Leslie 1977). More recently, idealized at-

mospheric numerical modeling has demonstrated that

variations in orographic geometry can impose significant

effects on supercell evolution and potentially on tornado

evolution as well (Lewellen 2014).Corresponding author: Daniel R. Chavas, drchavas@gmail.com
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While tornado–terrain interactions are clearly com-

plex, past work has also sought generalized relation-

ships between tornadoes and elevation variability by

applying statistical methods to historical data. Gallimore

and Lettau (1970) found a reduction in tornado activity

in Arkansas and Wisconsin in low elevation roughness

regions by comparing cross-sectional elevation power

spectra in low- and high-tornado regions, and they further

identified a critical length scale of elevation roughness

of either 1 or 16 km below which this signal emerges.

However, the authors acknowledged at the time that

potential reporting biases may be significant, an effect

that is now widely understood to be large in the histor-

ical record (Doswell and Burgess 1988; Doswell 2007;

Verbout et al. 2006; Elsner et al. 2013). Karpman et al.

(2013) also found a decrease in tornado activity with

increasing topographic variability using a multiplica-

tive point-process model that takes as its topographic

variability parameter the integrated elevation variance

over an approximately 5-km radius, though this study

again does not account for population bias. Population

bias effects were accounted for by Jagger et al. (2015)

and Elsner et al. (2016), who found a similar elevation

roughness effect over the Great Plains by modeling tor-

nado activity conditioned on elevation roughness and

population density using a negative binomial statistical

model fit to tornado, elevation, and population density

data binned either at the county level or on a regular grid.

Here we build upon the work of Elsner et al. (2016)

by demonstrating a simpler and more general approach

using Bayes’s law to estimate the joint dependence of

tornado activity on elevation variability and population

density. We apply this method to historical data in the

vicinity of Arkansas. This approach offers three princi-

pal benefits: 1) the complete joint dependence is calcu-

lated directly from the data, in the absence of statistical

modeling assumptions, allowing for direct inspection of

the structure of this dependence; 2) the calculation ex-

ploits information regarding elevation and population

explicitly in the vicinity of each individual historical

tornado; and 3) the methodology uses physical length

scales relative to individual tornado events, enabling a

direct empirical test for the existence of an optimal ele-

vation roughness length scale as well as providing a po-

tential bridge between empirical results and physical

modeling. A simple statistical model is then applied a

posteriori to quantify the magnitude of these conditional

dependencies. Our analysis focuses on Arkansas because

the region possesses a wide range of small-scale elevation

variability in the absence of major mountain ranges that

rise above the boundary layer and thus can substantially

disrupt the large-scale atmospheric flow (Manabe and

Terpstra 1974). Moreover, focusing on a limited area

minimizes variability in environmental thermodynamic

heterogeneity on climatological time scales, thereby credi-

bly separating nonmeteorological effects (population and

elevation) from meteorological effects associated with

large-scale atmospheric variability. Overall, then,Arkansas

provides an ideal region to search for a statistical sig-

nature of elevation roughness on tornado activity. We

note that such a physical effect, should it exist in nature

and be isolated empirically, ought to be generalizable to

any region that possesses variability in terrain elevation.

Thus, our results need not be specific to Arkansas, and

indeed we compare our results to those of prior analyses

in other regions. Finally, we examine the robustness of

this joint dependence to varying time period, EF rating,

and terrain length scale. The latter tests for the potential

existence of a preferred physical length scale of the effect

of elevation variability on tornadogenesis.

The paper is organized as follows. Section 2 describes

the datasets and Bayes’s law theory and methodology.

Section 3 presents the results for a step-by-step demon-

stration application followed by more general results

testing for robustness. Section 4 provides a summary

and discussion of the significance of this work as well

as avenues of future research.

2. Methodology

a. Data

We combine historical tornadogenesis data within the

domain bounded by 90.24088–95.23668W longitude and

32.81348–37.13428N latitude, which encompasses the

state of Arkansas, with historical population density

and elevation data within a slightly larger domain boun-

ded by 908–968W longitude and 328–388N latitude.

Tornadogenesis latitude, longitude, year, and intensity

(EF) rating data are taken from the NOAA Storm Pre-

dictionCenter database for the period 1955–2015 (https://

www.spc.noaa.gov/wcm/#data, accessed 18 March 2016)

(Fig. 1a). This dataset has a range of known and unknown

data reporting and quality biases (Doswell and Burgess

1988; Doswell 2007); nonetheless, it is by far the most

comprehensive database available whose relatively large

sample size lends itself well to empirical analysis. EF0

events have especially large empirical, societal, and

physical reporting biases (Verbout et al. 2006; Agee and

Childs 2014; Tippett et al. 2015) and are thus discarded.

The resulting dataset contains 1991 EF1–5 tornadoes and

855 EF2–5 tornadoes. Population density data at 30-arc-s

resolution (’0.76 km at 358 latitude) are obtained

from version 4 of the Columbia University Gridded

Population of the World dataset (http://sedac.ciesin.

columbia.edu/data/set/gpw-v4-population-density) for the

year 2015, and time-varying population density data at
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30-arc-s resolution are taken from Global Population

DensityGridTime Series Estimates, version 1 (1970–2000)

(http://sedac.ciesin.columbia.edu/data/set/popdynamics-

global-pop-density-time-series-estimates) for years 1970,

1980, 1990, and 2000. Terrain elevation raster data at

7.5-arc-s resolution (’0.19 km at 358 latitude) are ob-

tained from the Global Multiresolution Terrain Ele-

vation Data 2010 (GMTED2010) (https://www.usgs.

gov/land-resources/eros/coastal-changes-and-impacts/

gmted2010, downloaded from https://earthexplorer.

usgs.gov/). Terrain and population density datasets are

cropped to the analysis region (Fig. 1b) using the clipper

tool in QGIS, version 2.18 (QGIS 2015). All subsequent

statistical analyses are performed using MATLAB

R2015a. All geographic area and distance calculations

assume a sphere with radius r 5 6371.22km.

b. Variable definitions

Annual tornado probability per unit area (hereafter

‘‘tornado probability’’) P(T) [No. yr21 (100 km2)21], is

defined as

P(T)5

�
i,y
T
yi

YA
3 100, (1)

where Tyi corresponds to tornado i in year y, Y is the

number of years (e.g., 61 for 1955–2015),A is the domain

area (e.g.,A5 218 660km2 for the full domain), and the

factor 100 normalizes the base probability (No. yr21 km22)

to a constant reference area of 100km2. This quantity may

be equivalently thought of as a space–time tornadodensity.

Population density, (lpop; No. km22, log2-transformed),

is calculated via simple bilinear interpolation of the raw

data to a point of interest and then taking the base-2

logarithm. The logarithm is applied because this quantity

varies over many orders of magnitude. Moreover, pop-

ulation biases may be expected to scale multiplicatively,

for example, an increase from 1 to 10 people per unit

area is likely more similar to an increase from 1000 to

10 000 than from 1000 to 1009.

Elevation roughness (ER; m) is defined as the stan-

dard deviation of all elevation values at radii r# R; this

quantity is the simplest statistical measure of spatial

variability. The associated length scale of variability is

defined asLER5 2R (i.e., circle diameter), and we present

results over the rangeLER 2 [1, 20] . Length scales smaller

than 1km approach the intrinsic resolution of the terrain

data and thus yield sample sizes too small to calculate a

credible standard deviation.We chooseLER5 10km for

demonstration in the analyses below before presenting

final results across the full range of values; the spatial dis-

tribution of this quantity is displayed in Fig. 1c. Impor-

tantly, elevation standard deviation is a physical variable

FIG. 1. Spatial distributions of (a) tornadogenesis points

(1955–2015); (b) surface elevation (color) and 2015 raw pop-

ulation density (red shading; log scale); and (c) elevation

roughness (ERb) for LER 5 10 km, calculated on uniform

100 3 100 grid as described in section 2. Gray box in (a) de-

marcates tornado domain boundaries.
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with meaningful units that we seek to preserve in our

analysis.

Integral to the Bayes’s law approach described in

the next subsection, population density and elevation

roughness are calculated at locations spread uniformly

within the domain as well as at all tornadogenesis lo-

cations. This yields datasets for both background pop-

ulation density (lpopb) and elevation roughness (ERb)

as well as tornado-centered population density (lpopT)

and elevation roughness (ERT).

c. Conditional probability analysis: Bayes’s law

We seek to quantify the joint dependence of tornado

probability on elevation roughness and population density,

that is,P(TjER, lpop). From the definition of conditional

probability, we may write

P(T, ER, lpop)5P(TjER, lpop)P(ER, lpop). (2)

This probability may be equivalently written as

P(T, ER, lpop)5P(ER, lpopjT)P(T)
5P(ER

T
, lpop

T
)P(T) ,

(3)

where ERT and lpopT denote the elevation roughness

and population density conditioned on a tornado, that

is, in the vicinity of a tornado. Equating the right-hand

sides of Eqs. (2) and (3) and rearranging yields an

equation for the conditional probability P(TjER, lpop)

given by

P(TjER, lpop)5

"
P(ER

T
, lpop

T
)

P(ER
b
, lpop

b
)

#
P(T) , (4)

where ERb and lpopb denote the background elevation

roughness and population density within the domain; this

notation is used on the rhs of Eq. (4) to clearly distinguish

these quantities from their tornado-conditioned coun-

terparts. Equation (4) is simply Bayes’s law applied to

our conditional tornado probability, in which a prior

terrain- and population-independent tornado probability

P(T) is updated with information about elevation rough-

ness and population density to yield a posterior (condi-

tional) tornado probability P(TjER, lpop). The Bayesian

update factor is defined in Eq. (4) as the ratio of the joint

probability of elevation roughness and population density

in the vicinity of a tornado to their joint probability any-

where within the domain (i.e., independent of tornado). In

words, Eq. (4) states that the tornado probability increases

relative to some average value P(T) if P(ERT , lpopT).
P(ERb, lpopb), that is, if the probability of finding a

certain combination of (ER0, lpop0) is higher in the vi-

cinity of a tornado than in general in the entire domain.

In such a case, the update factor will be greater than one,

and thus P(TjER, lpop).P(T).

All three probabilities on the right-hand side of

Eq. (4) can be calculated directly from historical data.

The terrain- and population-independent tornado

probability P(T) is calculated by applying Eq. (1) for

all tornadoes in the full domain, that is, the domainwide

mean tornado probability. For terrain- or population-

dependent probabilities, we discretize ER and lpop into

fixed-width bins of DER5 10m and Dlpop5 0:5 begin-

ning at zero for both quantities, which yields a rea-

sonable number of bins in each dimension. We estimate

the joint distribution P(ERb, lpopb) by calculating

(ER, lpop) on a uniformly spaced 100 3 100 latitude–

longitude grid bounded by our tornadogenesis domain,

yielding a background sample size of 10 000. This grid is

used in lieu of direct calculation using the raw pop-

ulation density dataset grid (720 3 720) to reduce

computational costs while still maintaining a suffi-

ciently large sample size to properly define the dis-

tribution. Similarly, we estimate the joint distribution

P(ERT , lpopT) by calculating (ER, lpop) at all torna-

dogenesis points in our dataset.

Marginal probabilities are calculated for the general

case as

P(x
b
)5

nfx
b
2 [xj, xj11)g
N

, (5)

and for the tornado-centered case as

P(x
T
)5

nfx
T
2 [xj, xj11)g
N

, (6)

where x represents ER or lpop, nfx 2 [xj, xj11)g is the

number of points whose value falls within the jth inter-

val bounded by xj and xj11, and N is the full sample size

of points (10000 for background; total number of torna-

does for tornado centered). Similarly, joint probabilities

are calculated for the general case as

P(x
1,b
, x

2,b
)5

nfx
1,b

2 [xj1, x
j11
1 ), x

2,b
2 [xj2, x

j11
2 )g

N
, (7)

and for the tornado-centered case as

P(x
1,T

, x
2,T

)5
nfx

1,T
2 [xj1, x

j11
1 ), x

2,T
2 [xj2, x

j11
2 )g

N
, (8)

where x1 and x2 represent ER and lpop.

Combining these probabilities according to Eq. (4)

yields an empirical estimate of P(TjER, lpop). How-

ever, we note that the essence of this analysis lies in an

understanding of the joint dependence of the Bayesian up-

date factor; this factor is simply mapped into probability

404 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 58

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 07:12 PM UTC



space via multiplication by a constant mean tornado

probability P(T) that is specific to the given geographic

domain and time period.

d. Statistical modeling

Finally, we quantify the magnitude of the depen-

dence of tornado probability on both elevation rough-

ness and population density by fitting a generalized

linear model (GLM; Nelder and Baker 2004) with a

bivariate log-link response function (also known as

Poisson regression) to our calculated conditional prob-

abilities, that is,

ln[P(TjER, lpop)]5b
0
1b

ER
ER1b

lpop
lpop1 « , (9)

where bER and blpop are the regression coefficients to el-

evation roughness and population density, respectively; b0

is a constant; and « is the model residual error. Thus, this

model yields P(TjER, lpop)5 cebERER1blpoplpop, where c

is a constant. The log-link response function is chosen

because tornado probability is a nonnegative quantity

and thus standard linear regression is inappropriate.

We emphasize that the form of the statistical model is

not fundamental to the result; here we choose as simple

a model as possible whose outcome is easy to interpret.

The best fit is determined via linear least squares fit of

ln[P(TjER, lpop)] to the data using MATLAB function

glmfit. In fitting the model, we exclude (ERb, lpopb)

bins with bin sample size less than five in the back-

ground joint distribution; for very small bin sample

sizes, the Bayesian update factor is very sensitive to a

small changes in tornado count (e.g., from 0 to 1).

This choice ensures that the results of the statistical

model fit apply to a reasonably common range of values

of (ERb, lpopb).

For each analysis, we perform a 1000-member boot-

strap ensemble in which we redo the full analysis using

1000 resamples of the tornado dataset and its associated

tornado-centered covariate values (ERT , lpopT). We

then define the best estimate of each coefficient as the

median of their respective bootstrapped distributions,

and we define the 5%–95% confidence band for our

model coefficients as the 5th and 95th percentiles of the

distribution. Bootstrapping is both flexible and robust,

as it makes no assumptions about the nature of the input

or output distributions and permits asymmetric confi-

dence bands (Mooney et al. 1993).

3. Results

a. Demonstration application

We begin with a step-by-step demonstration ap-

plication for the case of all EF11 tornadoes for the

full period 1955–2015 with calculation length scale

LER 5 10 km.

1) AVERAGE TORNADO PROBABILITY: P(T)

For period lengthY5 61 years, 1991 EF11 tornadoes,

and domain areaA5 218 660 km2, Eq. (1) yields P(T)5
0.0149 yr21 (100km2)21. This translates to approximately

1.49 tornadoes per 18 3 18 latitude–longitude box annually
within this latitude band.

2) MARGINAL PROBABILITY DISTRIBUTIONS:
P(ERb), P(lpopb), P(ERT), P(lpopT)

Prior to calculating the update factor probabilities of

Eq. (4), it is instructive to first quantify marginal proba-

bility distributions for elevation roughness and population

density and compare the general case to that centered on a

tornado. Note that these probabilities are intrinsic to

the joint probabilities of Eq. (4) via the definition of

conditional probability, for example, P(ERb, lpopb)5
P(ERjlpopb)P(lpopb).

All four marginal probability distributions are shown

in Fig. 2. The distribution of ERT is shifted toward

lower values relative to that of ERb, indicating a pref-

erence for tornadoes to form in the presence of smaller

elevation roughness relative to the background distri-

bution. Meanwhile, the distribution of lpopT is shifted

toward higher values relative to that of lpopb, indicat-

ing the population bias associated with increased

likelihood that a tornado will be observed or its in-

tensity properly quantified in regions with higher pop-

ulation density relative to the background distribution.

While this offers initial intuitive insight, the two quan-

tities are correlated and thus separating the indepen-

dent effects of each necessitates analysis of their joint

probability.

3) JOINT PROBABILITY DISTRIBUTIONS:
P(ERb, lpopb) and P(ERT, lpopT)

The distributions of joint probabilities P(ERb, lpopb)

and P(ERT, lpopT) are displayed in Fig. 3. The joint

distribution of P(ERb, lpopb) (Fig. 3a) indicates that

land most frequently possesses a combination of rela-

tively low elevation roughness and moderate population

density, as might be expected based on the marginal

distributions of Fig. 2. Importantly, though, a wide range

of (ERb, lpopb) values exist in our domain, including low

ERb at high lpopb and vice versa, thereby offering hope

of statistically separating the terrain signal from that

associated with population density bias. Meanwhile, the

distribution of P(ERT, lpopT) appears to shift toward

lower ERb and higher lpopb values (Fig. 3b); the sig-

nificance of this shift is directly manifest in the update

factor distribution analyzed next.
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4) FINAL CONDITIONAL PROBABILITY:
P(TjER, lpop)

Distributions of theBayesian update factor, defined as

the ratio of the joint probabilities presented in Fig. 3,

and the final conditional probability P(TjER, lpop) cal-

culated byEq. (4) are both shown in Fig. 4. Recall that the

final conditional probability distribution is given simply

by the product of the update factor and the average tor-

nado probability in the domain. An update factor value

larger than 1 indicatesP(TjER, lpop).P(T), and a value

smaller than 1 indicates P(TjER, lpop),P(T).

A broad reduction in tornado probability is evident

moving toward both lower population density and higher

elevation roughness. This may be interpreted alternatively

as a decrease in tornado probability with increasing

FIG. 2. Probability distributions of (a) ERb (blue) and ERT (red) for LER 5 10 km and of (b) lpopb (blue) and lpopT (red).

FIG. 3. Joint probability distributions (a) P(ERb, lpopb), and (b) P(ERT, lpopT), corresponding to the denominator and numerator,

respectively, of the Bayesian update factor in Eq. (4) for LER 5 10 km. Boxes indicate bins containing at least one valid data point.
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elevation roughness conditioned on (i.e., controlling for)

population density. The effect appears consistent over

the full range of population density, though it is most

readily visible at intermediate population density where

elevation roughness varies significantly within a given

population density bin. We emphasize that these results

arise purely from data; no statistical models have yet been

applied. Fitting the log-link GLM model given by Eq. (9)

to the data shown in Fig. 4 yields best-fit coefficient values

of bER 520:013m21 {5%–95% confidence interval (CI)

of [20.017, 20.010]} and blpop 510:19 (5%–95% CI of

[10.17, 10.21]).

5) INTERPRETATION

Finally, we seek a basic quantitative interpretation of

our elevation roughness coefficient bER. Taking the

partial derivative of Eq. (9) with respect to ER yields

b
ER

5
›fln[P(TjER, lpop)]g

›(ER)

5
1

P(TjER, lpop)

›[P(TjER, lpop)]

›(ER)
, (10)

where bER is the fractional sensitivity of P(TjER, lpop)

to varying ER, and 100bER is the percentage rate of

change (%m21) at fixed population density. Thus,

bER 520:013m21 translates to a 13% decrease in tor-

nado probability for every 10m increase in elevation

roughness.

Similarly, wemay quantitatively interpret our population

density coefficient blpop as

b
lpop

5
›fln[P(TjER, lpop)]g

›(lpop)

5
›fln[P(TjER, lpop)]g

›[ln(pop)]
3 ln(2) , (11)

where pop is the raw population density and we have

transformed the base-2 logarithm to a natural logarithm

using the change of base equation, log2(x)5 ln(x)/ln(2).

The term blpop is the percentage rate of change of

P(TjER, lpop) per percentage change in population

density at fixed elevation roughness. Thus, blpop 510:19

translates to a 1.9% increase in tornado probability for

every 10% increase in raw population density. This

translates to a 19% increase per doubling of population

density, a result that is also evident by retaining the

base-2 logarithm in the denominator of Eq. (11), which

represents a percentage change per doubling of the raw

population density.

b. General analysis

We now examine the sensitivity of our coefficients

to calculate length scale, time period, and the exclu-

sion of EF1 tornadoes. Figure 5 displays bER (Fig. 5a)

and blpop (Fig. 5b) calculated for LER 2 [1, 20] km us-

ing tornado data for the full period 1955–2015, as well

as for successive 21-yr overlapping periods 1955–75,

FIG. 4. Distributions of (a) Bayesian update factor and (b) P(TjER, lpop), from Eq. (4) for LER 5 10 km. Bins with sample size less

than 5 in P(ERb, lpopb) are masked out (gray). Zero values in (a) are displayed in darkest blue. The domain-mean tornado probability is

P(T) 5 0.0149 yr21 (100 km2)21.
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1965–85, 1975–95, 1985–2005, and 1995–2015. Identical

analyses using only EF2–5 tornado data are also provided

(Figs. 5c,d).

First, for the full-period (1955–2015) analysis, the best-fit

values and 5%–95% confidence interval are consistently

negative for bER and positive for blpop, indicating that

the qualitative finding of our demonstration example is

robust for varying LER. More specifically, jbERj remains

nearly constant at approximately 0.011 for LER $ 14km

and increases with decreasing LER at first slowly for

LER 2 [6, 14] km and then more rapidly for LER , 6km,

reaching bER 520:024m21 for LER 5 2 km followed

by a particularly strong increase to bER 520:051m21 for

LER 5 1 km. Meanwhile, blpop remains nearly constant

across all values of LER.

Second, results are robust to the chosen time period

within the historical record. Interestingly, there is no

systematic time trend in bER, whereas there is a clear

systematic decrease in blpop moving closer to present.

The decrease in blpop is indicative of a decreasing pop-

ulation bias with time as reporting practices improve, in-

cluding the introduction of radar in the early 1990s and

dramatic growth in storm chasing; this result matches that

of Elsner et al. (2013).Meanwhile, the lack of time trend in

bER is desirable given that the elevation roughness effect is

physical and elevation is nearly fixed during the period

of interest, as was found in Elsner et al. (2016). Taken to-

gether, these results lend further confidence in the credi-

bility of our analysis to separate the elevation roughness

effect from a time-varying population bias effect.

Third, all of the above findings appear to be robust

to the exclusion of EF1 tornadoes. Best-fit values of

both coefficients are quantitatively similar to the origi-

nal case; confidence intervals are now wider because of

the significantly reduced tornado sample size.

Finally, the above analysis uses a static 2015 population

density dataset. Thus, we further test the extent to which

accounting for changes in population density with time

affect these results. We perform the prior analysis for

successive 21-yr overlapping periods 1960–80, 1970–90,

1980–2000, and 1990–2010, each centered on decennial

population data for 1970–2000. Figure 6 displays the re-

sults, which are quantitatively similar to that shown in

Fig. 5. This result indicates that these conclusions are not

very sensitive to the details of changes in population den-

sity with time. This is perhaps a reflection of the fact that

we analyze the logarithm of population density, which

requires exponential changes in its spatial distribution to

induce significant variations.

Overall, these results indicate that the negative effect

of elevation roughness on tornadogenesis appears to be

strongest at small length scales, consistent with the work

of Gallimore and Lettau (1970). The resolution of our

terrain data limits our capacity to confidently test even

smaller length scales below 1km. Moreover, the as-

ymptote for large LER to an 11% decrease in tornado

probability for every 10-m increase in elevation rough-

ness is comparable to that found in previous studies in

the Great Plains. Specifically, Jagger et al. (2015) found

an 18% decrease per 10m for EF11 tornadoes over the

FIG. 5. Coefficients of the log-linked linear model fit to the empirical estimate of P(TjER, lpop) as a function of

calculation length scale LER: (a) elevation roughness coefficient bER and (b) population density coefficient blpop.

(c),(d) As in (a) and (b), respectively, but for EF2–5 tornadoes. Result are shown for full 1955–2015 period (black) and

successive 21-yr periods (color), with 5%–95% confidence intervals (shaded and dashed) calculated from 1000-member

bootstrap ensembles. Number of EF1 and EF2 tornadoes in each period also shown in the legend as (EF1/EF2).
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period 1970–2013 using county-level data, which im-

plicitly averages data over the relatively large length scales

associated with county boundaries. Elsner et al. (2016)

found a 26% decrease per 10m for EF11 tornadoes over

the period 1955–2014 using gridded data with horizontal

resolution of approximately 23 km; with EF0 events

included, this sensitivity decreased slowly from 23% at

23-km resolution to 17% at 6-km resolution (cf. their

Table 1). Meanwhile, the population bias effect in each

study was 13% and 12% (EF01) per doubling, respec-

tively. Thus, our results are qualitatively similar though

yield a somewhat smaller elevation roughness effect

and larger population bias, each by approximately a factor

of 2. Further discussion is provided below.

4. Discussion and conclusions

This work combines historical tornado, population

density, and digital elevation model datasets to quantify

the independent effects of varying elevation roughness

and population density on the probability of tornado-

genesis. Our analysis employs Bayes’s law to calculate

the probability of tornadogenesis conditioned jointly

on elevation roughness (elevation standard deviation)

and population density (log2-transformed). This approach

provides the most general empirical estimation of this

joint conditional probability in the absence of statistical

modeling assumptions, enabling direct inspection of the

complete structure of the joint dependence. Moreover,

it makes explicit use of elevation roughness and pop-

ulation information in the vicinity of individual tornado

events. The latter is additionally important for testing

the length-scale dependence of elevation roughness in

the immediate vicinity of potential tornado formation.

The resulting probability distribution exhibits a system-

atic increase in tornado probability at higher population

density and lower elevation roughness. To obtain a specific

quantitative measure of these conditional dependencies, a

simple bivariate log-link linear model is fit to the dis-

tribution data to yield mean regression coefficients for

each quantity. Results indicate that tornado probability,

conditioned on population density, decreases by 11% per

10-m increase in elevation roughness over relatively large

length scales (15–20km), and this effect increases by at

least a factor of 2 moving toward smaller length scales of

1–5km. Finally, the elevation roughness effect is found to

remain nearly constant with time, whereas the population

bias effect decreases with time, consistent with a trend to-

ward improved reporting practices. These results are robust

to varying time period and exclusion of EF1 tornadoes.

Our results are consistent with previous research on the

topic using county-level or gridded data, including a neg-

ative effect of elevation roughness on tornadogenesis at

fixed population density (Jagger et al. 2015; Elsner et al.

2016), a decrease in population density bias with time

(Elsner et al. 2013), and no time trend in elevation

roughness effect (Elsner et al. 2016). Our results for large

LER yield a smaller elevation roughness effect and larger

population bias than these prior studies, eachby roughly a

factor of 2. The reasons for this difference are unclear,

though it may be associated with real differences in visi-

bility and surface vegetation between Arkansas and the

Great Plains as well as with differences in statistical

correlations of elevation roughness and population density

between the regions thatmight plausibly yield an empirical

trade-off between the two effects. Importantly, though, our

novel method identifies an enhancement in the elevation

roughness effect at smaller elevation roughness length

FIG. 6. As in Fig. 5, but using population density data for the midpoint year of successive 21-yr periods (legend).
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scale down to 1km, in linewith early research byGallimore

and Lettau (1970). Estimation of this scale-dependent

effect in the immediate vicinity of individual tornado-

genesis points is unique to our methodology, as it is not

quantifiable from county-level or coarse-grid data.

Our results in conjunction with the aforementioned

studies suggest that local surface elevation variability

likely has a real physical effect on tornado formation.

We emphasize that this variability is small-scale in that

it exerts a minimal impact on the large-scale flow (as

opposed to, for example, a major mountain range). More-

over, the magnitude of this terrain effect is empirically

large enough to have significant effects on tornado ac-

tivity and perhaps its impacts on society. However, we

currently lack a physical understanding of the pathways

through which small-scale surface elevation variability af-

fects tornado formation,whichmay include the vortex scale

(e.g., direct vortex breakdown), the storm scale (evolution

of convective storm structure and organization), and/or

details of the mesoscale thermodynamic environment in

which parent storms develop. This work has identified

an enhanced elevation roughness effect on tornado-

genesis at small length scales that are perhaps com-

parable to those of the horizontal scale of a tornado,

which may suggest a direct effect of elevation vari-

ability on the vortex itself; deeper evaluation of this

hypothesis is needed.

There are a number of caveats associated with our

analysis. First and foremost, while we have attempted

to account for key confounding factors (population,

EF1, time period) in the historical tornado record

and test for robustness, we are nonetheless reliant on

this database and all of its known and unknown defi-

ciencies. Indeed, there may exist other biases in the his-

torical dataset, such as proximity to interstate highways

(Blair and Lunde 2010), not captured by population den-

sity that warrant closer examination. Additionally, de-

tails at scales finer than the resolutions of our elevation

and population datasets may yet be important but can-

not be captured here. Finally, the extent to which our

results can be generalized to much higher elevation

roughness values is unclear, nor is it obvious that el-

evation standard deviation is necessarily the most

important measure of elevation roughness relevant to

tornado formation.

Following from these caveats, there are myriad ave-

nues for future work. First and foremost, with the recent

emergence of tornado-scale physical modeling, ide-

alized physical modeling experiments of small-scale

surface elevation variability could yield insight into

the pathways by which surface variability affects torna-

dogenesis in the vein of Lewellen (2014). This could

include both detailed understanding of these pathways

and how such effects vary across different patterns of

elevation variability as well as its magnitude, from gentle

hills to mountain ranges. Second, this methodology could

be applied to other regions of the country to further test

the robustness of our results. Third, a comprehensive

apples-to-apples comparison across the range of meth-

odologies used in this and prior studies would help

explain quantitative differences in elevation roughness

effects and population density biases, as well as other

nonpopulation biases not yet accounted for in the

literature. Fourth, this approach could be viably ap-

plied to a radar-based tornadic signature database whose

objective event database would be considered more

reliable albeit with a much smaller sample size. Fifth,

this work has assumed that the effect of terrain elevation

variability is isotropic; consideration of the orientation

of terrain relative to tornado path may yield additional

empirical insight into the tornado–terrain interaction

problem. Similarly, the effect of surface roughness as-

sociated with land cover (e.g., lakes, forest, farmland)

has not been explored. Finally, this Bayesian framework

may be readily extended to incorporate meteorological

parameters in addition to the nonmeteorological pa-

rameters analyzed here. Doing so could yield a more

general, population-adjusted Bayesian tornado proba-

bility model useful for real-world prediction at any time

scale, from climatological to subseasonal to daily.
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