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ABSTRACT

To issue early warnings for the public to act, for emergency managers to take preventive actions, and
for water managers to operate their systems cost-effectively, it is necessary to maximize the time horizon
over which streamflow forecasts are skillful. In this work, we assess the value of medium-range ensemble
precipitation forecasts generated with the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National
Weather Service (NWS) in increasing the lead time and skill of streamflow forecasts for five headwater basins
in the upper Trinity River basin in north-central Texas. The HEFS uses ensemble mean precipitation
forecasts from the Global Ensemble Forecast System (GEFS) of the National Centers for Environment
Prediction (NCEP). For comparative evaluation, we verify ensemble streamflow forecasts generated with the
HEFS forced by the GEFS forecast with those forced by the short-range quantitative precipitation forecasts
(QPFs) from the NWS West Gulf River Forecast Center (WGRFC) based on guidance from the NCEP’s
Weather Prediction Center. We also assess the benefits of postprocessing the raw ensemble streamflow
forecasts and evaluate the impact of selected parameters within the HEFS on forecast quality. The results
show that the use of medium-range precipitation forecasts from the GEFS with the HEFS extends the time
horizon for skillful forecasting of mean daily streamflow by 1-3 days for significant events when compared
with using only the 72-h River Forecast Center (RFC) QPF with the HEFS. The HEFS forced by the GEFS
also improves the skill of two-week-ahead biweekly streamflow forecast by about 20% over climatological
forecast for the largest 1% of the observed biweekly flow.

1. Introduction
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for flood prediction, but also for a range of applications
associated with design, operation, and management of
water resources infrastructure. To issue early warnings
for the public to act, for emergency managers to take
preventive actions, and for water managers to operate
reservoirs and other systems effectively, it is necessary
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to maximize the forecast lead time while properly ac-
counting for the forecast uncertainties. In addition to short-
range forecasting (~1-3 days), medium-range forecasting
(~4-7 days) of streamflow is critical to meeting a variety of
needs in operational hydrology and water resources man-
agement (Yuan et al. 2014). Whereas some users in the
eastern United States may be interested in river forecasts
with lead times of 3—7 days to manage and mitigate the
potential impacts of flooding (Adams and Ostrowski
2010), those in the western United States may be in-
terested in weekly or longer-period forecasts of inflow
into water supply reservoirs (Georgakakos et al. 2006).

Skillful medium-range forecasting of precipitation
and streamflow is particularly important in areas prone
to extreme events such as floods and droughts. For ex-
ample, in Texas, a severe drought which lasted for four
and a half years since 2011 ended with extreme flooding
from record-breaking rainfall in May 2015 resulting in
at least 28 fatalities (Di Liberto 2015). In such situations,
skillful precipitation and streamflow forecasting can,
with sufficient warning, mitigate downstream flooding by
allowing for preemptive releases of water from the res-
ervoirs and enable more cost-effective management of
water supply and treatment systems such as those oper-
ated by the Tarrant Regional Water District, the Trinity
River Authority, and others in north-central Texas.

Currently, the National Weather Service (NWS) West
Gulf River Forecast Center (WGRFC) in Fort Worth,
Texas, uses short-range quantitative precipitation fore-
casts (QPFs) to produce operational river forecasts. The
QPF is single-valued, or deterministic, and may comprise
a forecast horizon of up to 168h based on the National
Centers for Environmental Prediction (NCEP) Weather
Prediction Center’s (WPC) guidance up to 72h and the
Global Forecast System (GFS) output thereafter. In
practice, the forecast horizon is typically limited to 24 h
or less with no precipitation assumed thereafter. De-
pending on the specific weather events, however, the
entire 168-h forecast horizon may be used for contin-
gency forecasts (WGRFC 2015). The above practice of
limiting the period of nonzero QPF in single-valued
streamflow forecasting stems from the limited predictive
skill in single-valued QPF, particularly for convective
events. In the southern plains of the United States, the
use of single-valued QPF is likely to produce single-
valued streamflow forecasts with unacceptably large
errors beyond the first 24 h of lead time (Regonda et al.
2013). With such limited predictability, it is not possible,
without risking credibility, to issue skillful single-valued
streamflow forecasts consistently beyond the forecast
horizon of the sum of the lead time of the skillful single-
valued QPF and the hydrologic response time of the
catchment.
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FIG. 1. Five headwater catchments in the upper Trinity River
basin in north-central Texas: Jacksboro (JAKT?2), Big Sandy Creek
near Bridgeport (BRPT2), Denton Creek near Justin (DCJT2),
Clear Creek near Sanger (SGET2), and Elm Fork of the Trinity
River near Gainesville (GLLT2).

Precipitation forecasts of longer accumulations (3 days
or longer), on the other hand, are significantly more skillful
than those of shorter accumulations (daily or shorter). This
is because for longer accumulations it is not necessary to
predict accurately the granular temporal distributions
of precipitation (Brown et al. 2014a). Even with larger
skill in longer accumulations, however, precipitation
forecasts are in general too uncertain for deterministic
hydrologic forecasting, that is, as a single-valued input
to hydrologic models. If precipitation forecasts are ex-
pressed as ensembles or in probabilistic terms, on the
other hand, one may produce ensemble or probabilistic
hydrologic forecasts that reflect skill present over the
entire forecast horizon with which the users may make
risk-based decisions (Hartman et al. 2007; Demargne
et al. 2014; Seo et al. 2010).

The purpose of this work is to assess the skill of en-
semble precipitation and streamflow forecasts produced
with the NWS Hydrologic Ensemble Forecast Service
(HEFS; Demargne et al. 2014) using precipitation forcing
from the Global Ensemble Forecast System (GEFS) for
improving the quality and lead time of streamflow fore-
casts in north-central Texas. The study area consists of five
headwater basins located upstream of the DFW area in
the upper Trinity River basin in north-central Texas (see
Fig. 1). It is expected that, by utilizing the skill present in
medium-range QPF at lead times beyond the current
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maximum at WGRFC of 3 days, one may extend sig-
nificantly the lead time of skillful hydrologic forecasts, in
particular, of streamflow and soil moisture. It should be
noted that these basins offer an extremely challenging
test for the HEFS in that precipitation is dominated by
convection and hence has very limited predictability,
and that the basins are flashy with extreme variability
including prolonged periods of little to no streamflow.

The HEFS includes the Meteorological Ensemble
Forecast Processor (MEFP; Schaake et al. 2007; Wu
et al. 2008) and the streamflow ensemble postprocessor
(EnsPost; Seo et al. 2006), the two statistical models
that quantify the meteorological input and hydrologic
uncertainties, respectively. Both models generate en-
sembles via conditional stochastic simulation. The
MEFP (NWS 2017a) inputs ensemble mean or single-
valued forcings of precipitation and temperature and
generates precipitation and temperature ensembles which
are used to force the NWS hydrologic models and produce
“raw” streamflow ensembles. The EnsPost (NWS 2017b)
corrects for biases in the raw streamflow ensembles and
models the total hydrologic uncertainty. Saharia (2013)
applied the HEFS to five headwater basins in the upper
Trinity River basin in north-central Texas (see Fig. 1).
He found that the short-range ensemble QPFs gener-
ated with the MEFP forced by the WGRFC single-
valued QPFs, referred to hereafter as the MEFP-RFC
precipitation ensembles, were in general both reliable
and skillful in keeping with similar studies in other areas
(Wu et al. 2011; Brown et al. 2014b). He also found that,
in comparison with using day 1 QPF only, using day 1-3
single-valued QPF significantly increased the skill in
short-range ensemble streamflow forecast. His work
also showed that the addition of day 2-3 QPF increased
the probability of detection (PoD) of the 95th percentile
flow by about 10% for day 3-4 streamflow prediction,
extending the useful lead time by about a day. It was also
found that, for high streamflow thresholds, the addition
of day 2-3 QPF was more important than streamflow
postprocessing, as high flows sensitively depend on the
quality of the precipitation forcing.

In this work, we extend the above study and assess
the skill of medium-range precipitation forecasts in im-
proving the quality and lead time of streamflow forecasts
in north Texas. The precipitation forecasts are gener-
ated with forcing inputs from the GEFS using the MEFP,
referred to hereafter as the MEFP-GEFS precipitation
ensembles, which are compared with the MEFP-RFC
precipitation ensembles. We then assess the skill of the
MEFP-GEFS precipitation and streamflow ensembles,
referred to collectively as the MEFP-GEFS ensembles,
for multiday accumulation periods of up to 30 days, the
impact of streamflow postprocessing with the EnsPost,
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and the impact of selected parameters within the MEFP
and EnsPost on the quality of the MEFP-GEFS en-
sembles. Verification is carried out with the Ensemble
Verification System (EVS; Brown et al. 2010; Brown
2015a) for a large sample of retrospective forecasts, or
hindcasts, produced with the HEFS.

The new and significant contributions of this paper are
as follows: 1) comparative verification of the MEFP-GEFS
ensembles with the MEFP-RFC ensembles, 2) verifica-
tion of the multiday MEFP-GEFS ensembles, 3) assess-
ment of the impact of the EnsPost, and 4) assessment of
the impact of the key parameters in the MEFP and
EnsPost on the quality of the MEFP-GEFS ensembles
for north-central Texas. This paper is organized as fol-
lows. Section 2 describes the methods, including the
hydrologic models, study area, and data used; parameter
estimation; and hindcasting and verification. Section 3
describes the results, including the impact of different
parameter estimation options, precipitation results, and
streamflow results. Section 4 provides the conclusions
and future research recommendations.

2. Methods

In this section, we describe the hydrologic models,
study area, and data used; parameter estimation; and
hindcasting and verification.

a. Hydrologic models, study area, and data used

The HEFS can utilize any hydrologic models avail-
able within the NWS Community Hydrologic Pre-
diction System (CHPS; Roe et al. 2010). In this work,
we used the Sacramento Soil Moisture Accounting
(SAC-SMA) model (Burnash 1995) and unit hydro-
graph (UH; Chow et al. 1988) for the five headwater
basins in the study area (see Fig. 1). The above models
are currently used operationally at the WGRFC, and
hence the results presented in this paper represent
what may be expected from the HEFS in the NWS
operations today.

Recently, the NWS has implemented the National
Water Model (NWM) over the continental United States
(Graziano et al. 2017). It is expected, however, that the
primary guidance for the NWS’s flood watches and
warnings will continue to come from the lumped models
such as the SAC-SMA and UH run at the RFCs within
the foreseeable future as explained below. Whereas
the lumped models have been extensively calibrated
over the years, the NWM is yet to undergo systematic
calibration. Also, the precipitation forcings used at
the RFCs are value-added by human forecasters
(Nelson et al. 2016), whereas those used for the NWM
are not. Last, the RFC forecasters perform extensive
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TABLE 1. Characteristics of the study basins in the upper Trinity River basin.

Characteristics JAKT2 BRPT2 DCIT2 SGET2 GLLT2
Latitude (outlet) 33.29 33.23 33.12 33.34 33.62
Longitude (outlet) —98.08 —97.69 -97.29 -97.18 -97.15
Area (km?) 1769.00 862.47 1036.00 764.05 450.66
Mean annual precipitation (mm) 931.1 980.8 1026.9 1076.9 1083.1
Average streamflow (m>s ™! or cms) 2.48 1.46 2.97 2.92 2.67
Runoff ratio (%) 4.8 5.5 8.8 11.2 17.3
Mean elevation (m) 279 229 197 193 227
Time to peak (h) 24 24 12 12 12

manual data assimilation (DA) to keep the model states
in line with reality (Seo et al. 2009), whereas the NWM’s
DA capability is currently limited to nudging, which
operates more as a postprocessor than DA (D. Gochis
et al. 2017, workshop presentation). One may anticipate
that, as forecasters gain more experience with the
NWM output and the forecast quality improves through
improved forcings, calibration, and DA (Cosgrove et al.
2017), the RFCs will practice some form of multimodel
ensemble forecasting for gauged locations (Georgakakos
et al. 2004). In such a scenario, one may envision the
HEFS evolving to support both the existing lumped
model-based forecasting and the NWM.

The study area comprises the five headwater catch-
ments in the upper Trinity River basin upstream of the
Dallas-Fort Worth (DFW) metroplex (see Fig. 1). From
the drier west to the wetter east, the catchments drain
to the West Fork of the Trinity River near Jacksboro
(JAKT?2), Big Sandy Creek near Bridgeport (BRPT2),
Denton Creek near Justin (DCJT2), and Clear Creek
near Sanger (SGET2) and the Elm Fork of the Trinity

z

DCJT2
SGET2
GLLT2

MEAN DAILY PRECIPITATION (MM)
2
!

A Wwn =

2 4 6 8 10 12

MONTH

River near Gainesville (GLLT?2). Figure 1 and Table 1
show the locations and the physiographic and fluvial
characteristics of the basins, respectively. Figures 2a and
2b show the mean daily precipitation and streamflow
for the five catchments. Figure 2a and Table 1 show in-
creasing mean daily precipitation and runoff ratio from
west to east. In Fig. 2b, the substantially reduced stream-
flow in the fall wet season compared to that in the spring
wet season is due to the fact that the very dry summer
tends to deplete soil moisture [see section 3¢(2)]. The
DFW area is the largest inland population center and
one of the fastest growing urban areas in the United
States. This region is vulnerable to the impacts of
urbanization and climate change on water sustainabil-
ity due to the warmer climate conditions, rapid land
conversion, high degree of impervious surface, and
dependence on surface water. According to the Texas
Water Development Board (TWDB 2015), more than
95% of the water used in the upper Trinity River basin
is surface water. As such, skillful forecasting of pre-
cipitation and streamflow for these and other headwater
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FIG. 2. (a) Mean daily precipitation (mm) for the five catchments. (b) Mean daily streamflow (m®s ™! or cms)
for the five catchments.
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TABLE 2. Datasets used.

Name Period of record Description Source
RFC QPF Jan 2005 to Dec 2014 6-hourly single-valued precipitation forecast WGRFC
MAP Oct 1959 to Dec 2015 6-hourly observed mean areal precipitation WGRFC
QME Oct 1959 to Dec 2015 Observed mean daily streamflow USGS via WGRFC
GEFS Jan 1985 to Dec 2015 Ensemble mean precipitation forecast from GEFS NWS
SQIN Oct 1959 to Dec 2015 Simulated streamflow at 6-h interval WGRFC

basins is particularly important for flood warning, water
supply, reservoir operations, water quality management,
and other applications.

Table 2 shows the data used to generate precipitation
and streamflow hindcasts for the five headwater basins.
The historical mean areal precipitation (MAP) time
series, the historical RFC QPF, and the GEFS reforecast
dataset are used to estimate the MEFP parameters and
to generate ensemble precipitation hindcasts from the
MEFP. The observed mean daily flow (QME) and the
simulated mean daily flow derived from the simulated
instantaneous flow (SQIN) at a 6-h interval are used to
estimate the EnsPost parameters. The GEFS hindcasts
comprise 6-hourly precipitation amounts, issued at
0000 UTC for a forecast horizon of 1-16 days (Hamill
et al. 2013). Because the hydrologic forecasts are issued
at 1200 UTC each day, the first 12h of the GEFS fore-
cast horizon is curtailed and the precipitation reforecasts
are hence available only up to 15 days into the future for
streamflow hindcasting.

b. Parameter estimation

The MEFP and EnsPost both employ statistical pa-
rameters whose values must be estimated from the his-
torical data. The MEFP Parameter Estimator (MEFPPE)
models the input uncertainty in forecast precipitation
and produces the MEFP parameters. The EnsPost Pa-
rameter Estimator (EnsPostPE) models the hydrologic
uncertainty in model-simulated streamflow and pro-
duces the EnsPost parameters. The quality of the en-
sembles produced by the MEFP and EnsPost depends
very significantly on the quality of their parameters. It is
therefore very important that the parameters are esti-
mated carefully to maximize the skill in the ensemble
precipitation and streamflow forecasts.

The GEFS already produces ensemble forecasts of
precipitation and temperature along with many other
variables (Hamill et al. 2013). Such “‘raw” ensemble fore-
casts are, however, generally biased in the mean, spread,
and higher-order moments. In addition, the raw forecast
probabilities cannot currently fully capture the regime-
dependent forecast uncertainties (Wu et al. 2011). Ac-
cordingly, it is generally necessary to remove or reduce
biases in the raw ensemble forecasts by statistical means.
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To bias-correct QPFs and to model the uncertainties
associated with them statistically, considerable efforts
have been made in recent years (Gneiting et al. 2007;
Hamill et al. 2008, 2013; Scheuerer and Hamill 2015). To
estimate reliably the parameters of statistical processors
such as the MEFP, it is generally necessary to have
historical forecasts and verifying observations over a
long period.

In this work, we use the GEFSv10 (Zhou et al. 2017),
which provides retrospective forecasts over a long pe-
riod to support statistical postprocessing. Even with the
large-sample hindcast dataset, the available sample size
for extreme precipitation events for the specific season
and location of interest may be too small for reliable
estimation of the MEFP parameters. To increase the
sample size, the MEFPPE pools all pairs of forecast and
observed MAP within the user-specified time window.
The window is centered on each Julian day so that the
regression parameters may capture the seasonal varia-
tions. In this estimation process, there is a trade-off to
consider between the sampling uncertainty of the MEFP
parameters (larger window preferred) and their specific-
ity in capturing the seasonal variations (smaller window
preferred).

The MEFP can use multiple sources of forcing fore-
casts over different time horizons to produce bias-corrected
forcing ensembles that are consistent from short to long
ranges (see Table 3). To utilize in the above process all
available skills present over the entire forecast horizon,
the MEFP employs the so-called canonical events (CEs),
which consist of base and modulation events (Collischonn
et al. 2007; NWS 2017a; Roundy et al. 2015). Though
named “events,” the canonical events are predefined time
windows of varying length over the forecast horizon. For
each event, a regression model is constructed in the bi-
variate normal space (Brown 2015b). Once the model
parameters are estimated for all events, they are ranked
according to the strength of correlation.

There are two types of canonical events, base and
modulation. The base events have an aggregation scale
of 6 h through the first week of the forecast horizon and
have larger time windows of 1 day, 2 days, etc., beyond
the first week (see Fig. 3). There are two types of base
events, fine and coarse. The fine base events consist of
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TABLE 3. Forecasts used in MEFPPE (NWS 2017b).
Forecast horizon Forecast Source
Short range Single-valued QPF (~3 days) RFC, NCEP WPC
Single-valued QPF (~5 days) NCEP WPC
Medium range Ensemble mean from GEFS (~15 days) NCEP EMC
Long range Time-lagged ensemble mean from CFSv2 (~9 months) NCEP EMC

Climatology (~1 year)

Historical observations

6-hourly time windows up to the first 120 h in the fore-
cast horizon and 12-hourly or larger windows beyond
the 120 h. The coarse base events consist of two 6-hourly
time windows up to 12 h of forecast horizon, 12-hourly
time windows between 12 and 120h, and 24-hourly or
larger windows beyond the 120h. By design, these
events, or time windows, do not overlap with one an-
other. The modulation events are defined at time scales
larger than (e.g., integer multiples of) the base events
and may overlap with the base events (see Fig. 3). The
purpose of the modulation events is to capture the joint
distribution between the forecasts and observations at
multiple temporal scales of aggregation. For example,
with a 6-h scale alone, it is difficult to utilize skill that
may be present at larger scales due to the high di-
mensionality of the multivariate probability distribution
(Collischonn et al. 2007). One may therefore view the
combined use of the base and modulation events in the
MEFP as a form of multiscale nonlinear regression. A
similar approach has also been used in postprocessing
of raw streamflow ensembles using multiscale bias
correction (S. K. Regonda and D.-J. Seo 2008, poster
presentation).

In the conditional simulation process of the MEFP,
the regression models are run for all canonical events in
the ascending order of the strength of correlation. The
base events typically have time windows that tend to
increase with lead time whereas the modulation events
have time windows that are aggregates of the base
events. For operational use, the canonical events should
be defined according to the weather and climate patterns
of the forecast region. As such, hindcasting and verifi-
cation studies are generally necessary to determine their
optimal specification (NWS 2017a).

The purpose of the EnsPost is to correct for biases in
streamflow simulation, that is, streamflow modeled with
observed, as opposed to forecast, forcing, and to account
for the total hydrologic uncertainty therein. The EnsPost
uses an autoregressive-1 model with a single exoge-
nous variable, or ARX(1,1), in the bivariate normal
space (Seo et al. 2006). To account for seasonality, the
EnsPostPE supports estimation of the EnsPost param-
eters at different time scales, such as monthly, seasonal
(spring, summer, fall, and winter), semiannual (wet and
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dry), or annual. The EnsPost parameters are estimated
with historical pairs of simulated and observed stream-
flow on a user-defined time scale. As the seasonal scale
increases, the sample size increases but potentially at the
expense of not being able to capture the seasonal vari-
ations in streamflow. As with the sampling window in the
MEFPPE, there is a trade-off to consider between the
sampling uncertainty of the EnsPost parameters and
their specificity in capturing the seasonal variations. In
this work, we assess the impact of the choices of the
sampling window and the canonical events in the MEFP
and the time scale of seasonal stratification in the
EnsPost on the quality of the MEFP-GEFS ensembles.

¢. Hindcasting and verification

To assess the comparative skill of medium-range
ensemble precipitation and streamflow forecasts, we
designed and carried out a set of hindcasting experiments
using the HEFS as depicted in Fig. 4. The MEFP-RFC
and MEFP-GEFS ensembles were generated every day
for the 10- and 31-yr periods of 2005-14 and 1985-2015,
respectively. In this process, each hindcast is reinitialized
every day in the hindcast horizon with the soil moisture
states valid for that day as obtained from the SAC-SMA
forced by MAP and climatological mean areal potential
evapotranspiration following a warmup period of
1960-84. Whereas the GEFS reforecast is available
from 1985, the RFC QPF has been archived only since
2005. The above 10-yr period hence represents the
largest common period of record between the two
forcing QPF datasets. For reference climatological
forecasts, we generated the so-called resampled cli-
matological ensembles of precipitation and streamflow
by using climatological ensemble mean as the forcing
input for the MEFP and using the resulting climatolog-
ical precipitation ensembles to generate streamflow en-
sembles (Brown et al. 2014a). The ensemble forecasts
comprise 55 ensemble members corresponding to the
number of historical years for observed precipitation for
the Schaake Shuffle (Clark et al. 2004) used in the MEFP.

To assess the impact of selected MEFP and EnsPost
parameters on forecast quality, we examined the skill
of the ensemble hindcasts generated by the MEFP and
EnsPost using the six different sets of the MEFPPE- and
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Lead CE1* CE2 CE3* CE4
time Base Base Modulation Base Base Modulation
(hour)
6 1 1 1 1
12 2 2 1 2 2 1
18 3 3 3 3
24 4 4 4
30 4 5 5 5
36 6 6 6
42 5 7 2 4 7 7 2 4
48 8 8 8
54 6 9 9 9
60 10 3 7 10 10 3
66 7 11 11 11
72 12 12 12
78 3 13 13 13
84 14 14 14
90 9 15 3 10 15 15 3
96 16 16 16
102 10 17 17 17
108 18 18 18
114 11 19 6 ? 19 19 6 ?
120 20 20 20
126
132
133 12 21 21 21
144
150 8 7
156
162 13 22 22 22
168
174
180
136 14 23 12 | 14 21 23 23 10
192
198 11 9
204
210 24 24 24
216
222 15
228
234 25 25 25
240
246 13 11
252
258 26 16 20 26 26 13
264
270 16
276
%0 27 27 27
288
294 15 12
300
306 28 19 28 28
312
318
324
330 17 29 18 29 29 15
336
30 17 14
348
354 30 30 30
360

* Include no modulation events.

FIG. 3. Definition of canonical events used.
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FIG. 4. Ensemble hindcasting and

EnsPostPE-estimated parameters (see Table 4). The
parameters examined are the sampling window and ca-
nonical events for the MEFPPE and the time scale of
seasonal stratification for the EnsPostPE. We then car-
ried out hindcasting experiments using the six cases
and verified the resulting ensemble precipitation and
streamflow hindcasts. For comparative verification of
the MEFP-GEFS ensembles versus the MEFP-RFC, the
period of record available is only 10 years. To reduce
sampling uncertainty, we pooled the hindcasts for the
five study basins. Such pooling is not a significant issue
for precipitation because the basins share very similar
MAP climatology (see Table 1, Fig. 2a). For streamflow,
however, variations in catchment size, physiography,
anthropogenic effects, and the quality of modeling
may produce significantly different results for different
catchments. If the model simulation is particularly poor
for some basin due to, for example, large timing errors, it
is likely to skew the pooled results. As such, we exam-
ined the above attributes and the catchment-specific
verification results to assess their comparability for pool-
ing. Because the verification is carried out for different
percentile-based thresholds of the observed flow, it is
particularly important to examine how the thresholds
for the pooled results may compare with those for the
individual basins.

Figure 5 shows the empirical cumulative distribution
functions (CDFs) of observed mean daily flow for the
five catchments. For clarity, only the tails above the
probability levels less than or equal to 90% are shown.
Note that the CDFs are very similar among the four
basins of DCJT2, GLLT2, JAKT2, and SGET2 but the
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verification process using the HEFS.

CDF for BRPT?2 is significantly different. The pooled
CDF (in black) shows that the percentile thresholds
based on pooling are representative of the four basins
but not of BRPT2. Because the streamflow at BRPT2 is
smaller than the flows at other catchments for the same
level of exceedance probability (see also Fig. 2b), the
pooled verification results reflect the BRPT2 ensembles at
higher thresholds than its own. The consequence is that the
pooled results underrepresent the skill in the BRPT2 en-
sembles, and that the marginal gains are likely to be slightly
underestimated in the quality of streamflow ensembles due
to the MEFP-GEFS versus the MEFP-RFC and due to
the EnsPost versus without the EnsPost.

The resulting large-sample ensemble precipitation
and raw and postprocessed streamflow hindcasts were
verified using the EVS (Brown et al. 2010). The EVS
includes a comprehensive set of metrics for verification

TABLE 4. List of cases examined.

MEFPPE EnsPostPE
Sampling Seasonal

Case No. CE No.? window (days) stratification
1 1 61° Monthly

2 1 61° Semiannual®
3 1 91 Monthly
4 2 91 Monthly
5 3 91 Monthly
6 4 91 Monthly

#See Fig. 3 for definition of CEs.

® Default value recommended by NWS.

¢ Wet season: Mar, Apr, May, Jun, Sep, and Oct; dry season: Jan,
Feb, Jul, Aug, Nov, and Dec.
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FIG. 5. Empirical CDFs (upper tail only) of observed mean daily
flow for the five catchments.

of both single-valued and ensemble forecasts. To verify
ensemble forecasts, we used the reliability diagram,
the mean continuous ranked probability score (CRPS),
and the relative operating characteristic (ROC), among
others, to examine reliability, overall skill and dis-
crimination (Jolliffe and Stephenson 2003; Wilks 2006),
respectively. The area under the curve (AUC) repre-
sents the area under the ROC curve as calculated via
direct integration of the empirical ROC curves (Green
and Swets 1966). The ROC measures the ability of
a forecasting system to correctly predict the occur-
rence of an event, expressed as the PoD, while avoiding
too many incorrect forecasts when it does not occur,
expressed as the probability of false detection (PoFD;
Mason and Graham 2002; Wilks 2006). Hence, the
ROC measures forecast’s ability to discriminate an
event as defined by the user from a nonevent (Demargne
et al. 2010). For a particular exceedance probabil-
ity threshold d, the empirical PoD and PoFD are
given by

M=

Iy [Fe(@)>dY,>q]

PoD = =0~ — and 1)
;)Iyi(Yi > q)
Y1, [Fy(@)>dlY,=q]
PoFD = =2 ) Q)

n
z 1, (Y, =q)
=0 !
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where n denotes the number of pairs of the probabilistic
forecast Y; and the verifying observation Xj; I( ) denotes the
indicator function of the variable subscripted which maps to
unity if the outcome parenthesized is realized and to zero if
not; g denotes the conditioning threshold for the variable
being verified; and Fyx.(q), Fy,(q) denote the ith observed
and forecast probabilities that the variable being verified
exceeds g, respectively. The ROC plots the PoD versus the
PoFD for all possible values of the threshold d in [0, 1]. The
ROC for a perfect forecast connects (0, 0), (0, 1), and (1, 1)
on the POFD-PoD plane, and that for a skill-less forecast
connects (0,0) and (1, 1). The AUC for a perfect forecast is
hence 1 and that for a skill-less forecast is 0.5.

Because the ROC is made of the PoD and PoFD, it is
possible to compare directly the PoD among multiple
ensemble forecasts at a user-defined level of the PoFD as
well as between the ensemble and single-valued forecasts
at the level of the PoFD of the single-valued forecast. In
this work, we translate the increase or decrease in the
ROC score (RS), which is related to the AUC via RS =
(AUC — 0.5)/0.5, to an increase or decrease in the PoD
given the user-acceptable level of the PoFD. Such trans-
lation allows for a straightforward comparison between
single-valued and ensemble forecasts and therefore pro-
vides an effective means to communicating with water
managers on the use of ensemble forecasts. Some decision-
makers, including forecasters and emergency managers,
may prefer a lower PoFD at the expense of a lower PoD
whereas others may prefer a higher PoD even if it may
increase the PoFD.

The CRPS represents the integral squared difference
between the CDF of the predicted variable Fy(q), and
that of the verifying observed variable Fx(q) (i.e., a step
function):

CRPS = j [F,(q) — F (@)} dg. 3)

The mean CRPS reflects the overall quality of the
probabilistic forecast (the smaller the mean CRPS is, the
better) and, similarly to the Brier score (Wilks 20006), is
decomposed into reliability, resolution, and uncertainty
(Hersbach 2000). The mean continuous ranked proba-
bility skill score (CRPSS) measures this skill relative to
climatology (1 means perfect, 0 means skill-less):

CRPS,, — CRPS
CRPS '

CRPSS = (4)

clim

3. Results

In this section, we present the results in three parts:
1) the impact of different parameter options, 2) the
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precipitation results, and 3) the streamflow results. The
results focus on comparative verification of the MEFP-
GEFS ensembles relative to the MEFP-RFC ensembles,
and verification of the MEFP-GEFS ensembles over a
range of temporal scales of aggregation. Resampled
climatology was used beyond day 3 for the MEFP-RFC
ensembles and beyond Day 15 for the MEFP-GEFS
ensembles, respectively. For comparative verification of
the MEFP-GEFS ensembles versus the MEFP-RFC, we
pooled the hindcasts for the five study basins to reduce
sampling uncertainty. For verification of the MEFP-GEFS
ensembles, the sample size is much larger and hence we
present selected catchment-specific results as well. Be-
cause of space limitations, it is not possible to present
results for different thresholds of precipitation and
streamflow. For the main results, we focus on the 99th
percentiles of the verifying observed precipitation or
streamflow which represent the largest thresholds be-
fore sampling uncertainty makes interpretation difficult.
The above thresholds are of the largest impact and hence
interest for water management in the study area and
offer a rather challenging test for the HEFS given the
limited hydrometeorological and hydrologic predictability
in the region.

a. Impact of different parameter estimation options

To arrive at the MEFP and EnsPost parameters used
in the hindcasting experiments, we assessed the impact
of different parameter estimation options (see Table 4)
in the MEFPPE and EnsPostPE. Here we present the
precipitation and streamflow results together so that one
may easily assess the impact of any changes in the skill of
precipitation ensembles on that of streamflow ensem-
bles. The assessment is based on the 31-yr MEFP-GEFS
hindcasts.

Comparison between the 61- and 91-day sampling
windows in MEFPPE, case 1 versus case 3, indicates
that the differences are negligible in precipitation or
streamflow hindcasts with or without the EnsPost. The
above lack of sensitivity suggests that the 31-yr period
of the GEFS record is sufficiently long for calibration of
the MEFP with a sampling window of 61 days, which is
the HEFS default.

The verification results for the different combinations
of the canonical events show that the combination of
coarse base events and no modulation events (case 3)
improves the mean CRPSS by about 5% for day 1 and
10% for days 2-5 over the combination of fine base
events and no modulation events (case 5). No gain was
observed for days 6-8 because the temporal aggregation
scheme in the canonical event definitions is the same
over this part of the forecast horizon (see Fig. 3). From
day 9, however, the gain reappears due to the larger
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FIG. 6. (a) Percent increase in CRPSS of MEFP daily pre-
cipitation ensemble hindcasts due to the addition of five layers of
modulation events (see Fig. 3 and Table 4) vs using the fine base

events only. (b) As in (a), but for mean daily raw streamflow
hindcasts.

temporal aggregation in the canonical event definitions
used in the coarse event set (48 vs 24h). The above
findings indicate that a coarse base event layer produces
marginally more skillful daily precipitation hindcasts.
The above gain, however, is too small to translate into
improved skill in raw or postprocessed streamflow
hindcasts.

Figure 6a shows the percent increase in mean
CRPSS of the MEFP-GEFS ensemble hindcasts for
daily precipitation due to adding the five layers of the
modulation events shown in Fig. 3 versus using the
fine base events only. The figure shows that the skill
improvement in precipitation hindcasts ranges from
8% to23% for the 75th percentile threshold and from
14% to 34% for thresholds of the 95th percentile or
higher up to day 8 of forecast lead time. Figure 6b
shows the percent increase in mean CRPSS of raw
streamflow ensembles forced by the precipitation
ensembles associated with Fig. 6a in reference to
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those associated with using the fine base events only.
Similar verification was carried out for the postprocessed
streamflow forecasts with similar results. Figure 6b
indicates that the use of the modulation events im-
proves the skill in the raw and postprocessed stream-
flow hindcasts well beyond day 5 and that the improvement
is up to 15% and 10% for the raw and postprocessed
streamflow forecasts up to 8 days of lead time, re-
spectively. The above findings indicate that the benefits
of including modulation events are greater for larger
precipitation and streamflow thresholds. We also
evaluated adding only two layers of modulation events
instead of five, that is, case 6 versus case 4. Compared to
the skill improvement with five layers of modulation
events, skill in precipitation improved only up to day 3
and decreases afterward with two layers only. The gain
in skill in the raw and postprocessed streamflow hind-
casts was also smaller, with only two layers of modu-
lation events than with five. The findings indicate that
adding a larger number of layers of modulation events
generally improves skill in the MEFP ensemble pre-
cipitation forecasts as well as in the raw and postprocessed
streamflow forecasts.

Comparisons between the monthly and semiannual
scales of seasonal stratification, that is, case 1 versus
case 2, indicate that, in the mean CRPSS sense, the
monthly EnsPost parameters produce more skillful
streamflow forecasts than the semiannual, and that
the monthly parameters improve skill by up to 10%.
That monthly stratification performs better than the
semiannual may not be seen as surprising given the
dependent nature of this validation. The previous
hindcasting and verification experiments (Wu et al.
2010; Brown et al. 2014a,b) suggest, however, that the
difference between dependent and independent val-
idation is not very significant for the HEFS ensembles.
Given the above, it is seen that monthly stratification is
preferred for the EnsPost if the period of record is
55 years or longer. The above finding, however, is not
expected to hold in the presence of nonstationarity
for which additional research is needed. Based on
the above, we used case 4 in Table 4, which employs five
layers of modulations events, for the results presented
below.

b. Precipitation results

This subsection presents the verification results for
ensemble precipitation forecasts. The comparative verifi-
cation of the MEFP-GEFS ensembles versus the MEFP-
RFC s for the 10-yr period of 2005-14. The verification
of multiday MEFP-GEFS ensembles is for the 31-yr
period of 1985-2015. All precipitation results are based
on pooling over all five basins.
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Fi1G. 7. AUCs for MEFP-RFC and MEFP-GEFS daily pre-
cipitation hindcasts with the 99th percentile (38.4 mm) of observed
precipitation as the threshold.

1) MEFP-GEFS VERSUS MEFP-RFC ENSEMBLE
FORECAST OF DAILY PRECIPITATION

Figure 7 shows the AUC for the MEFP-GEFS and
MEFP-RFC precipitation ensemble forecasts at the
99th percentile of daily precipitation of 38.4 mm. In all
ROC-related results in this paper, an event is defined
as precipitation or streamflow exceeding the indicated
threshold. Figure 7 shows that, for days 4 and 5, the
MEFP-GEFS forecast has substantial discriminatory
skill, which cannot be utilized effectively in the current
single-valued forecast process. At the 97.5th percentile
of 22.6 mm, the marginal gain in AUC by the MEFP-
GEFS forecast over the MEFP-RFC is larger and ex-
tends to Day 7. At the 90th and 95th percentiles of 5.2
and 13.2mm, respectively, the AUC is generally larger
than that at the 97.5th percentile for both the MEFP-
RFC and MEFP-GEFS forecasts. At the 75th percentile
of 0.2mm, however, the opposite is observed. The
above observations indicate that in the study area
both the MEFP-RFC and MEFP-GEFS forecasts of
daily precipitation are most skillful in discriminating
light (<5.2mm) from significant (>>13.2 mm) amounts.

2) MEFP-GEFS ENSEMBLE FORECAST OF
MULTIDAY PRECIPITATION

Reservoir management in the study area requires in-
flow predictions over a wide range of temporal scales of
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FIG. 8. Mean CRPSSs of the MEFP-GEFS precipitation ensem-
bles for aggregation periods of 1, 3, 5, 7, 14, and 30 days for the (top)
wet (March, April, May, June, September, October) and (bottom)
dry (January, February, July, August, November, December) sea-
sons conditional on the verifying observation exceeding the 99th
percentile.

aggregation. Because most of the predictive skill for
precipitation is within the first two weeks or so of lead
time in the study area, we focus here on verification of
the MEFP-GEFS ensembles at aggregation periods of
1, 3, 5, 7, 14, and 30 days. Figure 8 shows the mean
CRPSS of the MEFP-GEFS precipitation ensembles
for all aggregation periods for the wet (March, April,
May, June, September, October) and dry (January,
February, July, August, November, December) seasons
conditional on the verifying observation exceeding
the 99th percentile. For reference forecast, resampled
climatology is used. The figure indicates that the
MEFP-GEFS ensemble forecasts for significant ac-
cumulations of 1-, 3-, 5-, and 7-day precipitation have
mean CRPSS greater than 0.2 for lead times of up to
about 3, 5, 7, and 8 days for the wet season and up to
about 5, 7.5, 8.5 and 11 days for the dry season, re-
spectively. A mean CRPSS of 0.2 corresponds to a
20% reduction in mean CRPS over climatological
ensemble forecast (i.e., the reference forecast) and
hence represents a significant skill. The above results
indicate that there exists very significant skill in the
MEFP-GEFS precipitation ensemble forecasts of up
to about 14-day accumulations.
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forced raw and postprocessed ensemble streamflow hindcasts
for a threshold of the 99th percentile (31.6 cms) of observed
mean daily flow.

c. Streamflow results

Here we present the verification results for ensemble
streamflow forecasts in two subsections that corre-
spond to those for ensemble precipitation forecasts
presented above.

1) MEFP-GEFS VERSUS MEFP-RFC ENSEMBLE
FORECAST OF MEAN DAILY FLOW

Figure 9 shows the AUCs of raw and postprocessed
ensemble streamflow hindcasts conditional on the
verifying observed flow exceeding the 99th percentile
threshold of 31.6cms. At an AUC of 0.66, the MEFP-
GEFS streamflow ensembles extend the forecast lead
time only with postprocessing by about 1.5 days at this
threshold. For the conditioning threshold of the 97.5th
percentile of 14.2 cms, the increase in lead time is over a
day without postprocessing and over 2.5 days with
postprocessing at the same level of AUC. An AUC of
0.66 corresponds to the discriminatory skill of Day-2
MEFP-RFC streamflow ensemble forecast at the 99th
percentile. Recall that the WGRFC routinely uses 3-day-
ahead QPF in their operations. As such, the above level of
AUC represents a skill level that may safely be considered
useful for operational forecasting and provides a strin-
gent reference for the assessment of the quality of the
MEFP-GEFS streamflow ensembles and EnsPost. It was
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observed that the AUCs peak when conditioned on the
75th percentile threshold of 0.3 cms and tend to decrease
as the threshold increases or decreases. In general, the
lower the conditioning threshold is, the larger the ben-
efit from the EnsPost is, a reflection of the fact that low
flow conditions tend to persist strongly. Examination of
the basin-specific results indicates that the improvement
in skill due to the EnsPost is relatively small for JAKT2
and SGET2 whether forced by the RFC QPF or the
GEFS ensemble mean. The largest contributing factor to
the reduced performance for these catchments is the more
pronounced no-flow conditions in the dry season, which is
not modeled with the current version of the EnsPost.
For flood forecasting, the PoD is a very important
measure of forecast quality as it directly relates to the
quality of warnings. Figure 10a shows the PoD at a
PoFD of 5% for the MEFP-RFC and MEFP-GEFS
streamflow ensembles at the 99th percentile threshold.
Figure 10b shows the corresponding increase or decrease
in the PoD at the same PoFD due to using the MEFP-
GEFS ensembles relative to using the MEFP-RFC
ensembles at the 99th percentile threshold. The benefit
of the EnsPost is readily seen in Fig. 10a. Figure 10b
shows that the MEFP-GEFS ensembles increase the
PoD by close to 10% or more at the 99th percentile
threshold for day 5-8 forecasts, a very significant im-
provement given the relatively modest PoD levels seen in
Fig. 10a. While the evaluation above was carried out using
the RFC QPF and GEFS ensemble mean separately to
discern the value of each QPF source, in practice one
would use both QPF sources in the MEFP to generate
precipitation ensemble forecasts that are more skillful
than using only a single source (see Tables 2 and 3).

2) MEFP-GEFS ENSEMBLE FORECAST OF
MULTIDAY FLOW

Figure 11 shows the mean CRPSS of the MEFP-GEFS
streamflow ensemble forecasts with and without the
EnsPost for aggregation periods of 1, 3, 5, 7, 14, and
30 days for the wet and dry seasons conditional on the
verifying observation exceeding the 99th percentile.
Figure 11 is based on pooling all five basins together.
The positive impact of the EnsPost is readily seen.
Figure 12 shows the 90% (between 5% and 95% ) Monte
Carlo intervals for mean CRPSS for SGET2, which in-
dicates that the improvement due to the EnsPost is
statistically significant. The catchment-specific results
without the EnsPost are similar among all five catch-
ments, but those with the EnsPost show significant dif-
ferences with Fig. 11 for DCJT2 and JAKT2, for which
the EnsPost provides larger and smaller improvement
than the pooled results, respectively. The reduced posi-
tive impact of the EnsPost for JAKT?2 is due to the
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FIG. 10. (a) PoD at a PoFD of 5% of the MEFP-RFC and MEFP-
GEEFS streamflow ensembles for a threshold of the 99th percentile
of observed mean daily flow. (b) Increase or decrease in the PoD at
5% PoFD by the MEFP-GEFS ensembles over the MEFP-RFC for
a threshold of the 99th percentile of observed mean daily flow.

significantly longer periods of no flow compared to the
other catchments. As with the precipitation results, we
also use mean CRPSS of 0.2 as a reference skill level for
streamflow ensembles. Note that, because climatologi-
cal streamflow ensemble forecasts are generally very
skillful for short lead times owing to the memory of
the hydrologic initial conditions, the above-referenced
CRPSS represents a significantly larger absolute skill
than that for precipitation ensemble forecasts. Figure 11
shows that the mean CRPSS of accumulations of 1- and
7-day accumulated streamflow ensemble forecasts ap-
proach or exceed 0.2 for short lead times even without
the EnsPost, and that, with the EnsPost, the mean CRPSS
of all streamflow ensemble forecasts approach or exceed
0.2 except those of 30-day accumulation. The above results
indicate that the HEFS ensemble streamflow forecasts of
up to 14-day accumulation have very significant skill which
cannot be effectively utilized in the current single-valued
forecast process.
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FIG. 11. Mean CRPSSs of the MEFP-GEFS streamflow ensemble forecasts with and without the EnsPost for all aggregation periods for

the wet and dry seasons conditional on the verifying observation exceeding the 99th percentile.

Finally, Fig. 13 shows the monthly variation of the
average mean CRPSS for day 1-15 forecasts versus the
average monthly soil water depth simulated by SAC-
SMA with observed precipitation forcing for SGET?2 for
all ranges of verifying observed flow. The figure in-
dicates that, without the EnsPost, the MEFP-GEFS
streamflow ensemble forecast provides larger improve-
ment over climatological forecast in the fall wet months
than in the spring wet months, due presumably to more
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skillful precipitation forecast in the cool season (Brown
et al. 2014b), but offers little improvement in the dry
summer months where very low soil moisture conditions
persist. The EnsPost significantly improves skill not only
in the wet spring and fall months but also in the winter dry
season owing to the relatively wet soil moisture condi-
tions. In the hydrologically very dry summer months
of August and September, however, the EnsPost pro-
vides little improvement because climatology-forced
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FIG. 12. The 90% (between 5% and 95%) Monte Carlo in-
tervals for mean CRPSS of daily streamflow hindcasts for SGET2
conditional on the verifying observation exceeding the 99th
percentile.

streamflow ensembles are able to capture baseflow or
no-flow conditions just as well.

4. Conclusions and future research
recommendations

For emergency and water management, it is necessary
to maximize forecast lead time while properly account-
ing for forecast uncertainties. In this work, we assess
the skill of medium-range ensemble precipitation and
streamflow forecasts generated with the HEFS de-
veloped by the NWS in extending the lead time and skill
of operational streamflow forecasts.

The main conclusions of this work are as follows. The
use of medium-range precipitation forecasts from the
GEFS with the HEFS extends the time horizon for
skillful forecasting of mean daily streamflow by 1-3 days
for significant events when compared with using only
the 72-h RFC QPF with the HEFS. For forecasting of
multiday flow, the time horizon is extended significantly
further. The GEFS-forced ensemble hindcasts of bi-
weekly streamflow generated with the HEFS have mean
CRPSS (reference forecast is resampled climatology) of
about 0.2 for two-week-ahead prediction of observed
flow of 99th percentile or larger. Without the EnsPost,
however, the skill is considerably lower. The examina-
tion of the sensitivity of ensemble quality to the choice
of the canonical events in the MEFP suggests that the
use of the modulation events, which are associated
with larger time scales than the base events, significantly
improves the predictive skill in ensemble precipitation
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F1G. 13. Monthly variations of the average mean CRPSS for day
1-15 forecasts with and without the EnsPost vs the average
monthly soil water depth simulated by SAC-SMA for SGET2
for all ranges of verifying observed flow.

and streamflow forecasts. The results indicate that by
employing modulation events in the MEFP the HEFS is
able to capture at least partly the multiscale forecast skill
in the GEFS and translate it into skill in streamflow
forecasting. The overall findings strongly suggest that
the operationalization of the HEFS in the region and
elsewhere is expected to provide skillful medium-range
ensemble precipitation and streamflow forecasts for
high-impact events, particularly at multiday scales for a
wide range of applications.

The main recommendations for future research are as
follows. Most basins in the study area have significant
periods of little or no flow during the dry season. To
account for streamflow intermittency, improvement in
the EnsPost is necessary. Implicit in the current statis-
tical modeling of the HEFS is an assumption of statio-
narity, that is, the statistical relationships do not change
materially over time and hence the past is a guide to the
present and future (Brown et al. 2014a; NWS 2017a,b).
Purely statistical techniques for modeling hydrologic
and input uncertainties may have limited potency in
the study area due to possible nonstationarities in the
hydrologic and hydrometeorological processes arising
from urbanization and climate change (Nazari et al.
2016; Norouzi 2016; Norouzi et al. 2018, manuscript
submitted to Stochastic Environ. Res. Risk Assess.).
To model predictive hydrologic uncertainty under
nonstationarity and to allow parsimonious stochastic
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modeling, more physically based approaches such as
DA (Liu et al. 2012; Seo et al. 2014) are necessary.
Parsimony in stochastic modeling is also necessary
given that data-intensive modeling of probability dis-
tributions may not be viable under nonstationarity in
many parts of the country.
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