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ABSTRACT

To issue early warnings for the public to act, for emergency managers to take preventive actions, and

for water managers to operate their systems cost-effectively, it is necessary to maximize the time horizon

over which streamflow forecasts are skillful. In this work, we assess the value of medium-range ensemble

precipitation forecasts generated with the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National

Weather Service (NWS) in increasing the lead time and skill of streamflow forecasts for five headwater basins

in the upper Trinity River basin in north-central Texas. The HEFS uses ensemble mean precipitation

forecasts from the Global Ensemble Forecast System (GEFS) of the National Centers for Environment

Prediction (NCEP). For comparative evaluation, we verify ensemble streamflow forecasts generated with the

HEFS forced by the GEFS forecast with those forced by the short-range quantitative precipitation forecasts

(QPFs) from the NWS West Gulf River Forecast Center (WGRFC) based on guidance from the NCEP’s

Weather Prediction Center. We also assess the benefits of postprocessing the raw ensemble streamflow

forecasts and evaluate the impact of selected parameters within the HEFS on forecast quality. The results

show that the use of medium-range precipitation forecasts from the GEFS with the HEFS extends the time

horizon for skillful forecasting of mean daily streamflow by 1–3 days for significant events when compared

with using only the 72-h River Forecast Center (RFC) QPF with the HEFS. The HEFS forced by the GEFS

also improves the skill of two-week-ahead biweekly streamflow forecast by about 20% over climatological

forecast for the largest 1% of the observed biweekly flow.

1. Introduction

Accurate forecasting of river flow is not only important

for flood prediction, but also for a range of applications

associated with design, operation, and management of

water resources infrastructure. To issue early warnings

for the public to act, for emergency managers to take

preventive actions, and for water managers to operate

reservoirs and other systems effectively, it is necessary
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to maximize the forecast lead time while properly ac-

counting for the forecast uncertainties. In addition to short-

range forecasting (;1–3 days), medium-range forecasting

(;4–7 days) of streamflow is critical tomeeting a variety of

needs in operational hydrology and water resources man-

agement (Yuan et al. 2014). Whereas some users in the

eastern United States may be interested in river forecasts

with lead times of 3–7 days to manage and mitigate the

potential impacts of flooding (Adams and Ostrowski

2010), those in the western United States may be in-

terested in weekly or longer-period forecasts of inflow

into water supply reservoirs (Georgakakos et al. 2006).

Skillful medium-range forecasting of precipitation

and streamflow is particularly important in areas prone

to extreme events such as floods and droughts. For ex-

ample, in Texas, a severe drought which lasted for four

and a half years since 2011 ended with extreme flooding

from record-breaking rainfall in May 2015 resulting in

at least 28 fatalities (Di Liberto 2015). In such situations,

skillful precipitation and streamflow forecasting can,

with sufficient warning, mitigate downstream flooding by

allowing for preemptive releases of water from the res-

ervoirs and enable more cost-effective management of

water supply and treatment systems such as those oper-

ated by the Tarrant Regional Water District, the Trinity

River Authority, and others in north-central Texas.

Currently, the NationalWeather Service (NWS)West

Gulf River Forecast Center (WGRFC) in Fort Worth,

Texas, uses short-range quantitative precipitation fore-

casts (QPFs) to produce operational river forecasts. The

QPF is single-valued, or deterministic, and may comprise

a forecast horizon of up to 168h based on the National

Centers for Environmental Prediction (NCEP)Weather

Prediction Center’s (WPC) guidance up to 72h and the

Global Forecast System (GFS) output thereafter. In

practice, the forecast horizon is typically limited to 24h

or less with no precipitation assumed thereafter. De-

pending on the specific weather events, however, the

entire 168-h forecast horizon may be used for contin-

gency forecasts (WGRFC 2015). The above practice of

limiting the period of nonzero QPF in single-valued

streamflow forecasting stems from the limited predictive

skill in single-valued QPF, particularly for convective

events. In the southern plains of the United States, the

use of single-valued QPF is likely to produce single-

valued streamflow forecasts with unacceptably large

errors beyond the first 24 h of lead time (Regonda et al.

2013). With such limited predictability, it is not possible,

without risking credibility, to issue skillful single-valued

streamflow forecasts consistently beyond the forecast

horizon of the sum of the lead time of the skillful single-

valued QPF and the hydrologic response time of the

catchment.

Precipitation forecasts of longer accumulations (3 days

or longer), on the other hand, are significantlymore skillful

than those of shorter accumulations (daily or shorter). This

is because for longer accumulations it is not necessary to

predict accurately the granular temporal distributions

of precipitation (Brown et al. 2014a). Even with larger

skill in longer accumulations, however, precipitation

forecasts are in general too uncertain for deterministic

hydrologic forecasting, that is, as a single-valued input

to hydrologic models. If precipitation forecasts are ex-

pressed as ensembles or in probabilistic terms, on the

other hand, one may produce ensemble or probabilistic

hydrologic forecasts that reflect skill present over the

entire forecast horizon with which the users may make

risk-based decisions (Hartman et al. 2007; Demargne

et al. 2014; Seo et al. 2010).

The purpose of this work is to assess the skill of en-

semble precipitation and streamflow forecasts produced

with the NWS Hydrologic Ensemble Forecast Service

(HEFS; Demargne et al. 2014) using precipitation forcing

from the Global Ensemble Forecast System (GEFS) for

improving the quality and lead time of streamflow fore-

casts in north-central Texas. The study area consists of five

headwater basins located upstream of the DFW area in

the upper Trinity River basin in north-central Texas (see

Fig. 1). It is expected that, by utilizing the skill present in

medium-range QPF at lead times beyond the current

FIG. 1. Five headwater catchments in the upper Trinity River

basin in north-central Texas: Jacksboro (JAKT2), Big SandyCreek

near Bridgeport (BRPT2), Denton Creek near Justin (DCJT2),

Clear Creek near Sanger (SGET2), and Elm Fork of the Trinity

River near Gainesville (GLLT2).
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maximum at WGRFC of 3 days, one may extend sig-

nificantly the lead time of skillful hydrologic forecasts, in

particular, of streamflow and soil moisture. It should be

noted that these basins offer an extremely challenging

test for the HEFS in that precipitation is dominated by

convection and hence has very limited predictability,

and that the basins are flashy with extreme variability

including prolonged periods of little to no streamflow.

The HEFS includes the Meteorological Ensemble

Forecast Processor (MEFP; Schaake et al. 2007; Wu

et al. 2008) and the streamflow ensemble postprocessor

(EnsPost; Seo et al. 2006), the two statistical models

that quantify the meteorological input and hydrologic

uncertainties, respectively. Both models generate en-

sembles via conditional stochastic simulation. The

MEFP (NWS 2017a) inputs ensemble mean or single-

valued forcings of precipitation and temperature and

generates precipitation and temperature ensembles which

are used to force theNWShydrologicmodels and produce

‘‘raw’’ streamflow ensembles. The EnsPost (NWS 2017b)

corrects for biases in the raw streamflow ensembles and

models the total hydrologic uncertainty. Saharia (2013)

applied the HEFS to five headwater basins in the upper

Trinity River basin in north-central Texas (see Fig. 1).

He found that the short-range ensemble QPFs gener-

ated with the MEFP forced by the WGRFC single-

valued QPFs, referred to hereafter as the MEFP-RFC

precipitation ensembles, were in general both reliable

and skillful in keeping with similar studies in other areas

(Wu et al. 2011; Brown et al. 2014b). He also found that,

in comparison with using day 1 QPF only, using day 1–3

single-valued QPF significantly increased the skill in

short-range ensemble streamflow forecast. His work

also showed that the addition of day 2–3 QPF increased

the probability of detection (PoD) of the 95th percentile

flow by about 10% for day 3–4 streamflow prediction,

extending the useful lead time by about a day. It was also

found that, for high streamflow thresholds, the addition

of day 2–3 QPF was more important than streamflow

postprocessing, as high flows sensitively depend on the

quality of the precipitation forcing.

In this work, we extend the above study and assess

the skill of medium-range precipitation forecasts in im-

proving the quality and lead time of streamflow forecasts

in north Texas. The precipitation forecasts are gener-

ated with forcing inputs from the GEFS using the MEFP,

referred to hereafter as the MEFP-GEFS precipitation

ensembles, which are compared with the MEFP-RFC

precipitation ensembles. We then assess the skill of the

MEFP-GEFS precipitation and streamflow ensembles,

referred to collectively as the MEFP-GEFS ensembles,

for multiday accumulation periods of up to 30 days, the

impact of streamflow postprocessing with the EnsPost,

and the impact of selected parameters within the MEFP

and EnsPost on the quality of the MEFP-GEFS en-

sembles. Verification is carried out with the Ensemble

Verification System (EVS; Brown et al. 2010; Brown

2015a) for a large sample of retrospective forecasts, or

hindcasts, produced with the HEFS.

The new and significant contributions of this paper are

as follows: 1) comparative verification of theMEFP-GEFS

ensembles with the MEFP-RFC ensembles, 2) verifica-

tion of the multiday MEFP-GEFS ensembles, 3) assess-

ment of the impact of the EnsPost, and 4) assessment of

the impact of the key parameters in the MEFP and

EnsPost on the quality of the MEFP-GEFS ensembles

for north-central Texas. This paper is organized as fol-

lows. Section 2 describes the methods, including the

hydrologic models, study area, and data used; parameter

estimation; and hindcasting and verification. Section 3

describes the results, including the impact of different

parameter estimation options, precipitation results, and

streamflow results. Section 4 provides the conclusions

and future research recommendations.

2. Methods

In this section, we describe the hydrologic models,

study area, and data used; parameter estimation; and

hindcasting and verification.

a. Hydrologic models, study area, and data used

The HEFS can utilize any hydrologic models avail-

able within the NWS Community Hydrologic Pre-

diction System (CHPS; Roe et al. 2010). In this work,

we used the Sacramento Soil Moisture Accounting

(SAC-SMA) model (Burnash 1995) and unit hydro-

graph (UH; Chow et al. 1988) for the five headwater

basins in the study area (see Fig. 1). The above models

are currently used operationally at the WGRFC, and

hence the results presented in this paper represent

what may be expected from the HEFS in the NWS

operations today.

Recently, the NWS has implemented the National

Water Model (NWM) over the continental United States

(Graziano et al. 2017). It is expected, however, that the

primary guidance for the NWS’s flood watches and

warnings will continue to come from the lumped models

such as the SAC-SMA and UH run at the RFCs within

the foreseeable future as explained below. Whereas

the lumped models have been extensively calibrated

over the years, the NWM is yet to undergo systematic

calibration. Also, the precipitation forcings used at

the RFCs are value-added by human forecasters

(Nelson et al. 2016), whereas those used for the NWM

are not. Last, the RFC forecasters perform extensive
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manual data assimilation (DA) to keep the model states

in line with reality (Seo et al. 2009), whereas the NWM’s

DA capability is currently limited to nudging, which

operates more as a postprocessor than DA (D. Gochis

et al. 2017, workshop presentation). One may anticipate

that, as forecasters gain more experience with the

NWM output and the forecast quality improves through

improved forcings, calibration, and DA (Cosgrove et al.

2017), the RFCs will practice some form of multimodel

ensemble forecasting for gauged locations (Georgakakos

et al. 2004). In such a scenario, one may envision the

HEFS evolving to support both the existing lumped

model-based forecasting and the NWM.

The study area comprises the five headwater catch-

ments in the upper Trinity River basin upstream of the

Dallas–FortWorth (DFW)metroplex (see Fig. 1). From

the drier west to the wetter east, the catchments drain

to the West Fork of the Trinity River near Jacksboro

(JAKT2), Big Sandy Creek near Bridgeport (BRPT2),

Denton Creek near Justin (DCJT2), and Clear Creek

near Sanger (SGET2) and the Elm Fork of the Trinity

River near Gainesville (GLLT2). Figure 1 and Table 1

show the locations and the physiographic and fluvial

characteristics of the basins, respectively. Figures 2a and

2b show the mean daily precipitation and streamflow

for the five catchments. Figure 2a and Table 1 show in-

creasing mean daily precipitation and runoff ratio from

west to east. In Fig. 2b, the substantially reduced stream-

flow in the fall wet season compared to that in the spring

wet season is due to the fact that the very dry summer

tends to deplete soil moisture [see section 3c(2)]. The

DFW area is the largest inland population center and

one of the fastest growing urban areas in the United

States. This region is vulnerable to the impacts of

urbanization and climate change on water sustainabil-

ity due to the warmer climate conditions, rapid land

conversion, high degree of impervious surface, and

dependence on surface water. According to the Texas

Water Development Board (TWDB 2015), more than

95% of the water used in the upper Trinity River basin

is surface water. As such, skillful forecasting of pre-

cipitation and streamflow for these and other headwater

TABLE 1. Characteristics of the study basins in the upper Trinity River basin.

Characteristics JAKT2 BRPT2 DCJT2 SGET2 GLLT2

Latitude (outlet) 33.29 33.23 33.12 33.34 33.62

Longitude (outlet) 298.08 297.69 297.29 297.18 297.15

Area (km2) 1769.00 862.47 1036.00 764.05 450.66

Mean annual precipitation (mm) 931.1 980.8 1026.9 1076.9 1083.1

Average streamflow (m3 s21 or cms) 2.48 1.46 2.97 2.92 2.67

Runoff ratio (%) 4.8 5.5 8.8 11.2 17.3

Mean elevation (m) 279 229 197 193 227

Time to peak (h) 24 24 12 12 12

FIG. 2. (a) Mean daily precipitation (mm) for the five catchments. (b) Mean daily streamflow (m3 s21 or cms)

for the five catchments.
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basins is particularly important for flood warning, water

supply, reservoir operations, water qualitymanagement,

and other applications.

Table 2 shows the data used to generate precipitation

and streamflow hindcasts for the five headwater basins.

The historical mean areal precipitation (MAP) time

series, the historical RFCQPF, and theGEFS reforecast

dataset are used to estimate the MEFP parameters and

to generate ensemble precipitation hindcasts from the

MEFP. The observed mean daily flow (QME) and the

simulated mean daily flow derived from the simulated

instantaneous flow (SQIN) at a 6-h interval are used to

estimate the EnsPost parameters. The GEFS hindcasts

comprise 6-hourly precipitation amounts, issued at

0000 UTC for a forecast horizon of 1–16 days (Hamill

et al. 2013). Because the hydrologic forecasts are issued

at 1200 UTC each day, the first 12 h of the GEFS fore-

cast horizon is curtailed and the precipitation reforecasts

are hence available only up to 15 days into the future for

streamflow hindcasting.

b. Parameter estimation

The MEFP and EnsPost both employ statistical pa-

rameters whose values must be estimated from the his-

torical data. TheMEFP Parameter Estimator (MEFPPE)

models the input uncertainty in forecast precipitation

and produces the MEFP parameters. The EnsPost Pa-

rameter Estimator (EnsPostPE) models the hydrologic

uncertainty in model-simulated streamflow and pro-

duces the EnsPost parameters. The quality of the en-

sembles produced by the MEFP and EnsPost depends

very significantly on the quality of their parameters. It is

therefore very important that the parameters are esti-

mated carefully to maximize the skill in the ensemble

precipitation and streamflow forecasts.

The GEFS already produces ensemble forecasts of

precipitation and temperature along with many other

variables (Hamill et al. 2013). Such ‘‘raw’’ ensemble fore-

casts are, however, generally biased in the mean, spread,

and higher-order moments. In addition, the raw forecast

probabilities cannot currently fully capture the regime-

dependent forecast uncertainties (Wu et al. 2011). Ac-

cordingly, it is generally necessary to remove or reduce

biases in the raw ensemble forecasts by statistical means.

To bias-correct QPFs and to model the uncertainties

associated with them statistically, considerable efforts

have been made in recent years (Gneiting et al. 2007;

Hamill et al. 2008, 2013; Scheuerer andHamill 2015). To

estimate reliably the parameters of statistical processors

such as the MEFP, it is generally necessary to have

historical forecasts and verifying observations over a

long period.

In this work, we use the GEFSv10 (Zhou et al. 2017),

which provides retrospective forecasts over a long pe-

riod to support statistical postprocessing. Even with the

large-sample hindcast dataset, the available sample size

for extreme precipitation events for the specific season

and location of interest may be too small for reliable

estimation of the MEFP parameters. To increase the

sample size, the MEFPPE pools all pairs of forecast and

observed MAP within the user-specified time window.

The window is centered on each Julian day so that the

regression parameters may capture the seasonal varia-

tions. In this estimation process, there is a trade-off to

consider between the sampling uncertainty of theMEFP

parameters (larger window preferred) and their specific-

ity in capturing the seasonal variations (smaller window

preferred).

The MEFP can use multiple sources of forcing fore-

casts over different timehorizons to produce bias-corrected

forcing ensembles that are consistent from short to long

ranges (see Table 3). To utilize in the above process all

available skills present over the entire forecast horizon,

the MEFP employs the so-called canonical events (CEs),

which consist of base and modulation events (Collischonn

et al. 2007; NWS 2017a; Roundy et al. 2015). Though

named ‘‘events,’’ the canonical events are predefined time

windows of varying length over the forecast horizon. For

each event, a regression model is constructed in the bi-

variate normal space (Brown 2015b). Once the model

parameters are estimated for all events, they are ranked

according to the strength of correlation.

There are two types of canonical events, base and

modulation. The base events have an aggregation scale

of 6 h through the first week of the forecast horizon and

have larger time windows of 1 day, 2 days, etc., beyond

the first week (see Fig. 3). There are two types of base

events, fine and coarse. The fine base events consist of

TABLE 2. Datasets used.

Name Period of record Description Source

RFC QPF Jan 2005 to Dec 2014 6-hourly single-valued precipitation forecast WGRFC

MAP Oct 1959 to Dec 2015 6-hourly observed mean areal precipitation WGRFC

QME Oct 1959 to Dec 2015 Observed mean daily streamflow USGS via WGRFC

GEFS Jan 1985 to Dec 2015 Ensemble mean precipitation forecast from GEFS NWS

SQIN Oct 1959 to Dec 2015 Simulated streamflow at 6-h interval WGRFC
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6-hourly time windows up to the first 120h in the fore-

cast horizon and 12-hourly or larger windows beyond

the 120 h. The coarse base events consist of two 6-hourly

time windows up to 12h of forecast horizon, 12-hourly

time windows between 12 and 120 h, and 24-hourly or

larger windows beyond the 120 h. By design, these

events, or time windows, do not overlap with one an-

other. The modulation events are defined at time scales

larger than (e.g., integer multiples of) the base events

and may overlap with the base events (see Fig. 3). The

purpose of the modulation events is to capture the joint

distribution between the forecasts and observations at

multiple temporal scales of aggregation. For example,

with a 6-h scale alone, it is difficult to utilize skill that

may be present at larger scales due to the high di-

mensionality of the multivariate probability distribution

(Collischonn et al. 2007). One may therefore view the

combined use of the base and modulation events in the

MEFP as a form of multiscale nonlinear regression. A

similar approach has also been used in postprocessing

of raw streamflow ensembles using multiscale bias

correction (S. K. Regonda and D.-J. Seo 2008, poster

presentation).

In the conditional simulation process of the MEFP,

the regression models are run for all canonical events in

the ascending order of the strength of correlation. The

base events typically have time windows that tend to

increase with lead time whereas the modulation events

have time windows that are aggregates of the base

events. For operational use, the canonical events should

be defined according to theweather and climate patterns

of the forecast region. As such, hindcasting and verifi-

cation studies are generally necessary to determine their

optimal specification (NWS 2017a).

The purpose of the EnsPost is to correct for biases in

streamflow simulation, that is, streamflow modeled with

observed, as opposed to forecast, forcing, and to account

for the total hydrologic uncertainty therein. The EnsPost

uses an autoregressive-1 model with a single exoge-

nous variable, or ARX(1,1), in the bivariate normal

space (Seo et al. 2006). To account for seasonality, the

EnsPostPE supports estimation of the EnsPost param-

eters at different time scales, such as monthly, seasonal

(spring, summer, fall, and winter), semiannual (wet and

dry), or annual. The EnsPost parameters are estimated

with historical pairs of simulated and observed stream-

flow on a user-defined time scale. As the seasonal scale

increases, the sample size increases but potentially at the

expense of not being able to capture the seasonal vari-

ations in streamflow. As with the sampling window in the

MEFPPE, there is a trade-off to consider between the

sampling uncertainty of the EnsPost parameters and

their specificity in capturing the seasonal variations. In

this work, we assess the impact of the choices of the

sampling window and the canonical events in the MEFP

and the time scale of seasonal stratification in the

EnsPost on the quality of the MEFP-GEFS ensembles.

c. Hindcasting and verification

To assess the comparative skill of medium-range

ensemble precipitation and streamflow forecasts, we

designed and carried out a set of hindcasting experiments

using the HEFS as depicted in Fig. 4. The MEFP-RFC

and MEFP-GEFS ensembles were generated every day

for the 10- and 31-yr periods of 2005–14 and 1985–2015,

respectively. In this process, each hindcast is reinitialized

every day in the hindcast horizon with the soil moisture

states valid for that day as obtained from the SAC-SMA

forced by MAP and climatological mean areal potential

evapotranspiration following a warmup period of

1960–84. Whereas the GEFS reforecast is available

from 1985, the RFC QPF has been archived only since

2005. The above 10-yr period hence represents the

largest common period of record between the two

forcing QPF datasets. For reference climatological

forecasts, we generated the so-called resampled cli-

matological ensembles of precipitation and streamflow

by using climatological ensemble mean as the forcing

input for the MEFP and using the resulting climatolog-

ical precipitation ensembles to generate streamflow en-

sembles (Brown et al. 2014a). The ensemble forecasts

comprise 55 ensemble members corresponding to the

number of historical years for observed precipitation for

the Schaake Shuffle (Clark et al. 2004) used in theMEFP.

To assess the impact of selected MEFP and EnsPost

parameters on forecast quality, we examined the skill

of the ensemble hindcasts generated by the MEFP and

EnsPost using the six different sets of theMEFPPE- and

TABLE 3. Forecasts used in MEFPPE (NWS 2017b).

Forecast horizon Forecast Source

Short range Single-valued QPF (;3 days) RFC, NCEP WPC

Single-valued QPF (;5 days) NCEP WPC

Medium range Ensemble mean from GEFS (;15 days) NCEP EMC

Long range Time-lagged ensemble mean from CFSv2 (;9 months) NCEP EMC

Climatology (;1 year) Historical observations
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FIG. 3. Definition of canonical events used.
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EnsPostPE-estimated parameters (see Table 4). The

parameters examined are the sampling window and ca-

nonical events for the MEFPPE and the time scale of

seasonal stratification for the EnsPostPE. We then car-

ried out hindcasting experiments using the six cases

and verified the resulting ensemble precipitation and

streamflow hindcasts. For comparative verification of

theMEFP-GEFS ensembles versus theMEFP-RFC, the

period of record available is only 10 years. To reduce

sampling uncertainty, we pooled the hindcasts for the

five study basins. Such pooling is not a significant issue

for precipitation because the basins share very similar

MAP climatology (see Table 1, Fig. 2a). For streamflow,

however, variations in catchment size, physiography,

anthropogenic effects, and the quality of modeling

may produce significantly different results for different

catchments. If the model simulation is particularly poor

for some basin due to, for example, large timing errors, it

is likely to skew the pooled results. As such, we exam-

ined the above attributes and the catchment-specific

verification results to assess their comparability for pool-

ing. Because the verification is carried out for different

percentile-based thresholds of the observed flow, it is

particularly important to examine how the thresholds

for the pooled results may compare with those for the

individual basins.

Figure 5 shows the empirical cumulative distribution

functions (CDFs) of observed mean daily flow for the

five catchments. For clarity, only the tails above the

probability levels less than or equal to 90% are shown.

Note that the CDFs are very similar among the four

basins of DCJT2, GLLT2, JAKT2, and SGET2 but the

CDF for BRPT2 is significantly different. The pooled

CDF (in black) shows that the percentile thresholds

based on pooling are representative of the four basins

but not of BRPT2. Because the streamflow at BRPT2 is

smaller than the flows at other catchments for the same

level of exceedance probability (see also Fig. 2b), the

pooled verification results reflect the BRPT2 ensembles at

higher thresholds than its own. The consequence is that the

pooled results underrepresent the skill in the BRPT2 en-

sembles, and that themarginal gains are likely to be slightly

underestimated in the quality of streamflowensembles due

to the MEFP-GEFS versus the MEFP-RFC and due to

the EnsPost versus without the EnsPost.

The resulting large-sample ensemble precipitation

and raw and postprocessed streamflow hindcasts were

verified using the EVS (Brown et al. 2010). The EVS

includes a comprehensive set of metrics for verification

FIG. 4. Ensemble hindcasting and verification process using the HEFS.

TABLE 4. List of cases examined.

MEFPPE EnsPostPE

Case No. CE No.a
Sampling

window (days)

Seasonal

stratification

1 1 61b Monthly

2 1 61b Semiannualc

3 1 91 Monthly

4 2 91 Monthly

5 3 91 Monthly

6 4 91 Monthly

a See Fig. 3 for definition of CEs.
b Default value recommended by NWS.
cWet season: Mar, Apr, May, Jun, Sep, and Oct; dry season: Jan,

Feb, Jul, Aug, Nov, and Dec.
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of both single-valued and ensemble forecasts. To verify

ensemble forecasts, we used the reliability diagram,

the mean continuous ranked probability score (CRPS),

and the relative operating characteristic (ROC), among

others, to examine reliability, overall skill and dis-

crimination (Jolliffe and Stephenson 2003;Wilks 2006),

respectively. The area under the curve (AUC) repre-

sents the area under the ROC curve as calculated via

direct integration of the empirical ROC curves (Green

and Swets 1966). The ROC measures the ability of

a forecasting system to correctly predict the occur-

rence of an event, expressed as the PoD, while avoiding

too many incorrect forecasts when it does not occur,

expressed as the probability of false detection (PoFD;

Mason and Graham 2002; Wilks 2006). Hence, the

ROC measures forecast’s ability to discriminate an

event as defined by the user from a nonevent (Demargne

et al. 2010). For a particular exceedance probabil-

ity threshold d, the empirical PoD and PoFD are

given by

PoD 5
�
n

i50

I
Xi

F
Xi
(q).djY

i
.q

h i

�
n

i50

I
Yi
(Y

i
.q)

and (1)

PoFD 5
�
n

i50

I
Xi

F
Xi
(q). djY

i
# q

h i

�
n

i50

I
Yi
(Y

i
# q)

. (2)

where n denotes the number of pairs of the probabilistic

forecastYi and the verifying observationXi; I( ) denotes the

indicator functionof the variable subscriptedwhichmaps to

unity if the outcome parenthesized is realized and to zero if

not; q denotes the conditioning threshold for the variable

being verified; and FXi
(q), FYi

(q) denote the ith observed

and forecast probabilities that the variable being verified

exceeds q, respectively. The ROC plots the PoD versus the

PoFD for all possible values of the threshold d in [0, 1]. The

ROC for a perfect forecast connects (0, 0), (0, 1), and (1, 1)

on the PoFD–PoD plane, and that for a skill-less forecast

connects (0, 0) and (1, 1). TheAUC for a perfect forecast is

hence 1 and that for a skill-less forecast is 0.5.

Because the ROC is made of the PoD and PoFD, it is

possible to compare directly the PoD among multiple

ensemble forecasts at a user-defined level of the PoFD as

well as between the ensemble and single-valued forecasts

at the level of the PoFD of the single-valued forecast. In

this work, we translate the increase or decrease in the

ROC score (RS), which is related to the AUC via RS 5
(AUC 2 0.5)/0.5, to an increase or decrease in the PoD

given the user-acceptable level of the PoFD. Such trans-

lation allows for a straightforward comparison between

single-valued and ensemble forecasts and therefore pro-

vides an effective means to communicating with water

managers on the use of ensemble forecasts. Some decision-

makers, including forecasters and emergency managers,

may prefer a lower PoFD at the expense of a lower PoD

whereas others may prefer a higher PoD even if it may

increase the PoFD.

The CRPS represents the integral squared difference

between the CDF of the predicted variable FY(q), and

that of the verifying observed variable FX(q) (i.e., a step

function):

CRPS5

ð
[F

Y
(q)2F

X
(q)]2 dq . (3)

The mean CRPS reflects the overall quality of the

probabilistic forecast (the smaller themean CRPS is, the

better) and, similarly to the Brier score (Wilks 2006), is

decomposed into reliability, resolution, and uncertainty

(Hersbach 2000). The mean continuous ranked proba-

bility skill score (CRPSS) measures this skill relative to

climatology (1 means perfect, 0 means skill-less):

CRPSS 5
CRPS

clim
2CRPS

CRPS
clim

. (4)

3. Results

In this section, we present the results in three parts:

1) the impact of different parameter options, 2) the

FIG. 5. Empirical CDFs (upper tail only) of observed mean daily

flow for the five catchments.
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precipitation results, and 3) the streamflow results. The

results focus on comparative verification of the MEFP-

GEFS ensembles relative to theMEFP-RFC ensembles,

and verification of the MEFP-GEFS ensembles over a

range of temporal scales of aggregation. Resampled

climatology was used beyond day 3 for the MEFP-RFC

ensembles and beyond Day 15 for the MEFP-GEFS

ensembles, respectively. For comparative verification of

theMEFP-GEFS ensembles versus theMEFP-RFC, we

pooled the hindcasts for the five study basins to reduce

sampling uncertainty. For verification of theMEFP-GEFS

ensembles, the sample size is much larger and hence we

present selected catchment-specific results as well. Be-

cause of space limitations, it is not possible to present

results for different thresholds of precipitation and

streamflow. For the main results, we focus on the 99th

percentiles of the verifying observed precipitation or

streamflow which represent the largest thresholds be-

fore sampling uncertainty makes interpretation difficult.

The above thresholds are of the largest impact and hence

interest for water management in the study area and

offer a rather challenging test for the HEFS given the

limited hydrometeorological and hydrologic predictability

in the region.

a. Impact of different parameter estimation options

To arrive at the MEFP and EnsPost parameters used

in the hindcasting experiments, we assessed the impact

of different parameter estimation options (see Table 4)

in the MEFPPE and EnsPostPE. Here we present the

precipitation and streamflow results together so that one

may easily assess the impact of any changes in the skill of

precipitation ensembles on that of streamflow ensem-

bles. The assessment is based on the 31-yr MEFP-GEFS

hindcasts.

Comparison between the 61- and 91-day sampling

windows in MEFPPE, case 1 versus case 3, indicates

that the differences are negligible in precipitation or

streamflow hindcasts with or without the EnsPost. The

above lack of sensitivity suggests that the 31-yr period

of the GEFS record is sufficiently long for calibration of

the MEFP with a sampling window of 61 days, which is

the HEFS default.

The verification results for the different combinations

of the canonical events show that the combination of

coarse base events and no modulation events (case 3)

improves the mean CRPSS by about 5% for day 1 and

10% for days 2–5 over the combination of fine base

events and no modulation events (case 5). No gain was

observed for days 6–8 because the temporal aggregation

scheme in the canonical event definitions is the same

over this part of the forecast horizon (see Fig. 3). From

day 9, however, the gain reappears due to the larger

temporal aggregation in the canonical event definitions

used in the coarse event set (48 vs 24 h). The above

findings indicate that a coarse base event layer produces

marginally more skillful daily precipitation hindcasts.

The above gain, however, is too small to translate into

improved skill in raw or postprocessed streamflow

hindcasts.

Figure 6a shows the percent increase in mean

CRPSS of the MEFP-GEFS ensemble hindcasts for

daily precipitation due to adding the five layers of the

modulation events shown in Fig. 3 versus using the

fine base events only. The figure shows that the skill

improvement in precipitation hindcasts ranges from

8% to 23% for the 75th percentile threshold and from

14% to 34% for thresholds of the 95th percentile or

higher up to day 8 of forecast lead time. Figure 6b

shows the percent increase in mean CRPSS of raw

streamflow ensembles forced by the precipitation

ensembles associated with Fig. 6a in reference to

FIG. 6. (a) Percent increase in CRPSS of MEFP daily pre-

cipitation ensemble hindcasts due to the addition of five layers of

modulation events (see Fig. 3 and Table 4) vs using the fine base

events only. (b) As in (a), but for mean daily raw streamflow

hindcasts.
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those associated with using the fine base events only.

Similar verification was carried out for the postprocessed

streamflow forecasts with similar results. Figure 6b

indicates that the use of the modulation events im-

proves the skill in the raw and postprocessed stream-

flow hindcasts well beyond day 5 and that the improvement

is up to 15% and 10% for the raw and postprocessed

streamflow forecasts up to 8 days of lead time, re-

spectively. The above findings indicate that the benefits

of including modulation events are greater for larger

precipitation and streamflow thresholds. We also

evaluated adding only two layers of modulation events

instead of five, that is, case 6 versus case 4. Compared to

the skill improvement with five layers of modulation

events, skill in precipitation improved only up to day 3

and decreases afterward with two layers only. The gain

in skill in the raw and postprocessed streamflow hind-

casts was also smaller, with only two layers of modu-

lation events than with five. The findings indicate that

adding a larger number of layers of modulation events

generally improves skill in the MEFP ensemble pre-

cipitation forecasts as well as in the raw and postprocessed

streamflow forecasts.

Comparisons between the monthly and semiannual

scales of seasonal stratification, that is, case 1 versus

case 2, indicate that, in the mean CRPSS sense, the

monthly EnsPost parameters produce more skillful

streamflow forecasts than the semiannual, and that

the monthly parameters improve skill by up to 10%.

That monthly stratification performs better than the

semiannual may not be seen as surprising given the

dependent nature of this validation. The previous

hindcasting and verification experiments (Wu et al.

2010; Brown et al. 2014a,b) suggest, however, that the

difference between dependent and independent val-

idation is not very significant for the HEFS ensembles.

Given the above, it is seen that monthly stratification is

preferred for the EnsPost if the period of record is

55 years or longer. The above finding, however, is not

expected to hold in the presence of nonstationarity

for which additional research is needed. Based on

the above, we used case 4 in Table 4, which employs five

layers of modulations events, for the results presented

below.

b. Precipitation results

This subsection presents the verification results for

ensemble precipitation forecasts. The comparative verifi-

cation of theMEFP-GEFS ensembles versus theMEFP-

RFC is for the 10-yr period of 2005–14. The verification

of multiday MEFP-GEFS ensembles is for the 31-yr

period of 1985–2015. All precipitation results are based

on pooling over all five basins.

1) MEFP-GEFS VERSUS MEFP-RFC ENSEMBLE

FORECAST OF DAILY PRECIPITATION

Figure 7 shows the AUC for the MEFP-GEFS and

MEFP-RFC precipitation ensemble forecasts at the

99th percentile of daily precipitation of 38.4mm. In all

ROC-related results in this paper, an event is defined

as precipitation or streamflow exceeding the indicated

threshold. Figure 7 shows that, for days 4 and 5, the

MEFP-GEFS forecast has substantial discriminatory

skill, which cannot be utilized effectively in the current

single-valued forecast process. At the 97.5th percentile

of 22.6mm, the marginal gain in AUC by the MEFP-

GEFS forecast over the MEFP-RFC is larger and ex-

tends to Day 7. At the 90th and 95th percentiles of 5.2

and 13.2mm, respectively, the AUC is generally larger

than that at the 97.5th percentile for both the MEFP-

RFC andMEFP-GEFS forecasts. At the 75th percentile

of 0.2mm, however, the opposite is observed. The

above observations indicate that in the study area

both the MEFP-RFC and MEFP-GEFS forecasts of

daily precipitation are most skillful in discriminating

light (,5.2mm) from significant (.13.2mm) amounts.

2) MEFP-GEFS ENSEMBLE FORECAST OF

MULTIDAY PRECIPITATION

Reservoir management in the study area requires in-

flow predictions over a wide range of temporal scales of

FIG. 7. AUCs for MEFP-RFC and MEFP-GEFS daily pre-

cipitation hindcasts with the 99th percentile (38.4mm) of observed

precipitation as the threshold.
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aggregation. Because most of the predictive skill for

precipitation is within the first two weeks or so of lead

time in the study area, we focus here on verification of

the MEFP-GEFS ensembles at aggregation periods of

1, 3, 5, 7, 14, and 30 days. Figure 8 shows the mean

CRPSS of the MEFP-GEFS precipitation ensembles

for all aggregation periods for the wet (March, April,

May, June, September, October) and dry (January,

February, July, August, November, December) seasons

conditional on the verifying observation exceeding

the 99th percentile. For reference forecast, resampled

climatology is used. The figure indicates that the

MEFP-GEFS ensemble forecasts for significant ac-

cumulations of 1-, 3-, 5-, and 7-day precipitation have

mean CRPSS greater than 0.2 for lead times of up to

about 3, 5, 7, and 8 days for the wet season and up to

about 5, 7.5, 8.5 and 11 days for the dry season, re-

spectively. A mean CRPSS of 0.2 corresponds to a

20% reduction in mean CRPS over climatological

ensemble forecast (i.e., the reference forecast) and

hence represents a significant skill. The above results

indicate that there exists very significant skill in the

MEFP-GEFS precipitation ensemble forecasts of up

to about 14-day accumulations.

c. Streamflow results

Here we present the verification results for ensemble

streamflow forecasts in two subsections that corre-

spond to those for ensemble precipitation forecasts

presented above.

1) MEFP-GEFS VERSUS MEFP-RFC ENSEMBLE

FORECAST OF MEAN DAILY FLOW

Figure 9 shows the AUCs of raw and postprocessed

ensemble streamflow hindcasts conditional on the

verifying observed flow exceeding the 99th percentile

threshold of 31.6 cms. At an AUC of 0.66, the MEFP-

GEFS streamflow ensembles extend the forecast lead

time only with postprocessing by about 1.5 days at this

threshold. For the conditioning threshold of the 97.5th

percentile of 14.2 cms, the increase in lead time is over a

day without postprocessing and over 2.5 days with

postprocessing at the same level of AUC. An AUC of

0.66 corresponds to the discriminatory skill of Day-2

MEFP-RFC streamflow ensemble forecast at the 99th

percentile. Recall that the WGRFC routinely uses 3-day-

ahead QPF in their operations. As such, the above level of

AUC represents a skill level that may safely be considered

useful for operational forecasting and provides a strin-

gent reference for the assessment of the quality of the

MEFP-GEFS streamflow ensembles andEnsPost. It was

FIG. 8. Mean CRPSSs of the MEFP-GEFS precipitation ensem-

bles for aggregation periods of 1, 3, 5, 7, 14, and 30 days for the (top)

wet (March, April, May, June, September, October) and (bottom)

dry (January, February, July, August, November, December) sea-

sons conditional on the verifying observation exceeding the 99th

percentile.

FIG. 9. AUCs of MEFP-RFC-forced and MEFP-GEFS-

forced raw and postprocessed ensemble streamflow hindcasts

for a threshold of the 99th percentile (31.6 cms) of observed

mean daily flow.
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observed that the AUCs peak when conditioned on the

75th percentile threshold of 0.3 cms and tend to decrease

as the threshold increases or decreases. In general, the

lower the conditioning threshold is, the larger the ben-

efit from the EnsPost is, a reflection of the fact that low

flow conditions tend to persist strongly. Examination of

the basin-specific results indicates that the improvement

in skill due to the EnsPost is relatively small for JAKT2

and SGET2 whether forced by the RFC QPF or the

GEFS ensemble mean. The largest contributing factor to

the reduced performance for these catchments is themore

pronounced no-flow conditions in the dry season, which is

not modeled with the current version of the EnsPost.

For flood forecasting, the PoD is a very important

measure of forecast quality as it directly relates to the

quality of warnings. Figure 10a shows the PoD at a

PoFD of 5% for the MEFP-RFC and MEFP-GEFS

streamflow ensembles at the 99th percentile threshold.

Figure 10b shows the corresponding increase or decrease

in the PoD at the same PoFD due to using the MEFP-

GEFS ensembles relative to using the MEFP-RFC

ensembles at the 99th percentile threshold. The benefit

of the EnsPost is readily seen in Fig. 10a. Figure 10b

shows that the MEFP-GEFS ensembles increase the

PoD by close to 10% or more at the 99th percentile

threshold for day 5–8 forecasts, a very significant im-

provement given the relatively modest PoD levels seen in

Fig. 10a.While the evaluation above was carried out using

the RFC QPF and GEFS ensemble mean separately to

discern the value of each QPF source, in practice one

would use both QPF sources in the MEFP to generate

precipitation ensemble forecasts that are more skillful

than using only a single source (see Tables 2 and 3).

2) MEFP-GEFS ENSEMBLE FORECAST OF

MULTIDAY FLOW

Figure 11 shows the mean CRPSS of the MEFP-GEFS

streamflow ensemble forecasts with and without the

EnsPost for aggregation periods of 1, 3, 5, 7, 14, and

30 days for the wet and dry seasons conditional on the

verifying observation exceeding the 99th percentile.

Figure 11 is based on pooling all five basins together.

The positive impact of the EnsPost is readily seen.

Figure 12 shows the 90% (between 5% and 95%)Monte

Carlo intervals for mean CRPSS for SGET2, which in-

dicates that the improvement due to the EnsPost is

statistically significant. The catchment-specific results

without the EnsPost are similar among all five catch-

ments, but those with the EnsPost show significant dif-

ferences with Fig. 11 for DCJT2 and JAKT2, for which

the EnsPost provides larger and smaller improvement

than the pooled results, respectively. The reduced posi-

tive impact of the EnsPost for JAKT2 is due to the

significantly longer periods of no flow compared to the

other catchments. As with the precipitation results, we

also use mean CRPSS of 0.2 as a reference skill level for

streamflow ensembles. Note that, because climatologi-

cal streamflow ensemble forecasts are generally very

skillful for short lead times owing to the memory of

the hydrologic initial conditions, the above-referenced

CRPSS represents a significantly larger absolute skill

than that for precipitation ensemble forecasts. Figure 11

shows that the mean CRPSS of accumulations of 1- and

7-day accumulated streamflow ensemble forecasts ap-

proach or exceed 0.2 for short lead times even without

the EnsPost, and that, with the EnsPost, the mean CRPSS

of all streamflow ensemble forecasts approach or exceed

0.2 except those of 30-day accumulation. The above results

indicate that the HEFS ensemble streamflow forecasts of

up to 14-day accumulation have very significant skill which

cannot be effectively utilized in the current single-valued

forecast process.

FIG. 10. (a) PoD at a PoFDof 5%of theMEFP-RFC andMEFP-

GEFS streamflow ensembles for a threshold of the 99th percentile

of observedmean daily flow. (b) Increase or decrease in the PoD at

5%PoFDby theMEFP-GEFS ensembles over theMEFP-RFC for

a threshold of the 99th percentile of observed mean daily flow.
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Finally, Fig. 13 shows the monthly variation of the

average mean CRPSS for day 1–15 forecasts versus the

average monthly soil water depth simulated by SAC-

SMAwith observed precipitation forcing for SGET2 for

all ranges of verifying observed flow. The figure in-

dicates that, without the EnsPost, the MEFP-GEFS

streamflow ensemble forecast provides larger improve-

ment over climatological forecast in the fall wet months

than in the spring wet months, due presumably to more

skillful precipitation forecast in the cool season (Brown

et al. 2014b), but offers little improvement in the dry

summer months where very low soil moisture conditions

persist. The EnsPost significantly improves skill not only

in the wet spring and fallmonths but also in the winter dry

season owing to the relatively wet soil moisture condi-

tions. In the hydrologically very dry summer months

of August and September, however, the EnsPost pro-

vides little improvement because climatology-forced

FIG. 11. Mean CRPSSs of the MEFP-GEFS streamflow ensemble forecasts with and without the EnsPost for all aggregation periods for

the wet and dry seasons conditional on the verifying observation exceeding the 99th percentile.
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streamflow ensembles are able to capture baseflow or

no-flow conditions just as well.

4. Conclusions and future research
recommendations

For emergency and water management, it is necessary

to maximize forecast lead time while properly account-

ing for forecast uncertainties. In this work, we assess

the skill of medium-range ensemble precipitation and

streamflow forecasts generated with the HEFS de-

veloped by the NWS in extending the lead time and skill

of operational streamflow forecasts.

The main conclusions of this work are as follows. The

use of medium-range precipitation forecasts from the

GEFS with the HEFS extends the time horizon for

skillful forecasting of mean daily streamflow by 1–3 days

for significant events when compared with using only

the 72-h RFC QPF with the HEFS. For forecasting of

multiday flow, the time horizon is extended significantly

further. The GEFS-forced ensemble hindcasts of bi-

weekly streamflow generated with the HEFS have mean

CRPSS (reference forecast is resampled climatology) of

about 0.2 for two-week-ahead prediction of observed

flow of 99th percentile or larger. Without the EnsPost,

however, the skill is considerably lower. The examina-

tion of the sensitivity of ensemble quality to the choice

of the canonical events in the MEFP suggests that the

use of the modulation events, which are associated

with larger time scales than the base events, significantly

improves the predictive skill in ensemble precipitation

and streamflow forecasts. The results indicate that by

employing modulation events in the MEFP the HEFS is

able to capture at least partly themultiscale forecast skill

in the GEFS and translate it into skill in streamflow

forecasting. The overall findings strongly suggest that

the operationalization of the HEFS in the region and

elsewhere is expected to provide skillful medium-range

ensemble precipitation and streamflow forecasts for

high-impact events, particularly at multiday scales for a

wide range of applications.

The main recommendations for future research are as

follows. Most basins in the study area have significant

periods of little or no flow during the dry season. To

account for streamflow intermittency, improvement in

the EnsPost is necessary. Implicit in the current statis-

tical modeling of the HEFS is an assumption of statio-

narity, that is, the statistical relationships do not change

materially over time and hence the past is a guide to the

present and future (Brown et al. 2014a; NWS 2017a,b).

Purely statistical techniques for modeling hydrologic

and input uncertainties may have limited potency in

the study area due to possible nonstationarities in the

hydrologic and hydrometeorological processes arising

from urbanization and climate change (Nazari et al.

2016; Norouzi 2016; Norouzi et al. 2018, manuscript

submitted to Stochastic Environ. Res. Risk Assess.).

To model predictive hydrologic uncertainty under

nonstationarity and to allow parsimonious stochastic

FIG. 12. The 90% (between 5% and 95%) Monte Carlo in-

tervals for mean CRPSS of daily streamflow hindcasts for SGET2

conditional on the verifying observation exceeding the 99th

percentile.
FIG. 13. Monthly variations of the average mean CRPSS for day

1–15 forecasts with and without the EnsPost vs the average

monthly soil water depth simulated by SAC-SMA for SGET2

for all ranges of verifying observed flow.
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modeling, more physically based approaches such as

DA (Liu et al. 2012; Seo et al. 2014) are necessary.

Parsimony in stochastic modeling is also necessary

given that data-intensive modeling of probability dis-

tributions may not be viable under nonstationarity in

many parts of the country.
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