
1. Introduction
The anthropogenic use of fossil fuels releases greenhouse gases (GHGs) into the atmosphere, contributing to 
global warming (Solomon et al., 2007; US EPA Environmental Protection Agency, 2010; VijayaVenkataRaman 
et al., 2012). Global climate models (GCMs) suggest that increased GHG emissions could alter precipitation 
patterns, with associated impacts on the reliability and performance of water resource infrastructure. These 
impacts could be particularly acute in urban settings, where even small changes in the intensity and duration of 
precipitation can result in pronounced changes in runoff due to the proliferation of impervious surfaces (Betts 
et al., 2007; Hamlet & Lettenmaier, 1999; Huntington, 2003; Labat et al., 2004). Changes in precipitation patterns 
can also alter urban flood risks (Pfister et al., 2004; Schreider et al., 2000), change the volume and frequency of 
combined sewer overflows (CSOs) (Nie et al., 2009; Semadeni-Davies et al., 2008), and impact the performance 
of the billion dollars green infrastructure (GI) programs implemented in an increasing number of North American 
cities (Gill et al., 2007).

Global warming is very likely to increase precipitation potential due both to acceleration of evaporation and an 
increase in the air holding capacity of the atmosphere (K. E. Trenberth, 2011; Solomon et al., 2007). In theory, a 
one-degree Celsius change in air temperature can bring about a 7% increase in the air's moisture-holding capacity. 
The Clausius-Clapeyron (CC) relationship extends this increase in the air holding capacity to the global scale 
under climate change (Sun et al., 2007; Trenberth & Shea, 2005). The actual relationship between temperature and 
air holding capacity has been investigated using measured climatic data at monthly (King et al., 2014; Trenberth 
& Shea, 2005), daily (Sun et al., 2007; Westra, Alexander, & Zwiers, 2013), and subdaily (G. Lenderink & van 
Meijgaard, 2010; Lenderink & van Meijgaard, 2008) timescales. Researchers have also investigated how changes 
in air temperature alter mean (Allen & Ingram, 2002; K. E. Trenberth, 2011) and extreme (Groisman et al., 2005; 
Kunkel et al., 2013; Meehl et al., 2005; Meehl et al., 2012; Shaw et al., 2011) precipitation amounts, as well as 
event durations (Panthou et al., 2014; Wasko, Sharma, & Johnson, 2015).

At relatively coarse temporal (e.g., decadal, annual, or seasonal) and spatial (e.g., continental or regional) scales, 
GCMs can be used to investigate how different emission scenarios might alter precipitation patterns. Precipi-
tation is, however, the GCM output with the greatest bias relative to observations (Johnson & Sharma, 2009; 
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Kendon et al., 2008). The use of GCM outputs in predicting precipitation at finer temporal (e.g., daily, hourly, 
and subhourly) and spatial scales (e.g., local and mesoscale) is generally considered inappropriate, in large part 
due to the inability of GCMs to accurately simulate precipitation intensity and resolve localized weather patterns 
(Mamalakis et al., 2017; Teutschbein & Seibert, 2013).

At finer temporal and spatial scales, GCM outputs can be dynamically downscaled into regional climate models 
(RCMs) and/or incorporated into stochastic precipitation generators (SPG) (Fowler et al., 2007; Wilks, 2010) in 
different ways. SPGs have been used to incorporate precipitation uncertainty and variability into the evaluation 
of flood risks (Haberlandt et al., 2008), the reliability of rainwater harvesting systems (Basinger et al., 2010), 
and the effectiveness of other water resource decisions (Shamir et al., 2015). In stationary applications, a variety 
of techniques can be employed to generate multiple Markovian sequences of precipitation, for example, ensem-
bles (Wilks & Wilby, 1999). Parametric methods utilize statistical distributions of wet-day rain volumes (Stern 
& Coe, 1984; Wilks, 1998), precipitation arrival time, intensity, duration (Rodriguez-Iturbe et al., 1987, 1988; 
Wasko & Sharma, 2017; Wasko, Pui, et al., 2015), and other rain event characteristics (Heneker et al., 2001). 
Nonparametric methods, by contrast, create synthetic sequences by strategically sampling historical precipita-
tion (Basinger et al., 2010; Lall & Sharma, 1996; Lall et al., 1996; Sharma & Lall, 1999), for example, within a 
moving window to preserve seasonality (Rajagopalan et al., 1996).

In many applications, especially those requiring fine temporal precipitation quantities (e.g., urban stormwa-
ter planning), the direct use of GCM-forecasted precipitation in SPGs is not appropriate since GCMs poorly 
reproduce precipitation event intensity (Johnson & Sharma, 2009, 2012), especially during extreme events (Kim 
et al., 2020). However, GCM forecasts of future annual, seasonal, or monthly precipitation amounts are routinely 
compared to historical precipitation to generate delta change factors (at annual, monthly, or seasonal scales) that 
can be used to modify historical event characteristics. Maimone et al. (2019), for example, developed an SPG 
to stochastically generate future sequences of hourly precipitation for 2080–2100 by inflating historical rainfall 
amounts by factors derived from an analysis of multiple GCM predictions of annual and seasonal precipitation 
for Philadelphia.

Whether they are parametric or nonparametric, and regardless of whether they are being used to create ensembles 
of historical or future precipitation, SPG sampling procedures typically make a static assumption regarding the 
physical processes causing the formation of precipitation. Such assumptions can be defended under a stationary 
climate, but as the atmosphere warms drivers of precipitation could change. Although the accuracy of precipi-
tation forecasts under climate change could be improved by considering the fundamental physical mechanisms 
of precipitation formation, dynamic simulation of convection processes remains challenging (Westra, Evans, 
et al., 2013).

Precipitation is caused when moist air rises, cools, condenses, and coalesces into droplets that can fall under the 
right conditions (Evans & Westra, 2012; Westra, Evans, et al., 2013). The dynamic relationships between precip-
itation, temperature, and pressure were generalized by Ahrens et al. (2012) who showed that air pressure at the 
ground surface is consistently reduced as air is lifted. At small (e.g., local and/or mesoscale) spatial scales, Hoxit 
et al. (1976) found that surface pressure dropped due to the formation of convective clouds. Ahrens et al. (2012) 
and Visser et  al.  (2020) presented temperature changes associated with the onset of an extreme precipitation 
event in the Australian tropics. These processes vary even at subdaily timescales (Evans & Westra, 2012) with 
“no a priori reason” to assume consistency in a future climate (Westra, Evans, et al., 2013). In Yu et al. (2018), 
we suggest the use of pressure changes as potential predictors of future nonstationary precipitation formation.

In this paper, we present a nonparametric SPG for nonstationary future precipitation. The SPG generates dynamic 
sequences of hourly precipitation using GCM predictions of future Average Monthly Temperature (AMT). The 
algorithm is based on the meteorological relationships between precipitation and temperature involving pres-
sure changes, as originally introduced by Yu et al. (2018). One of the purposes of this study is to demonstrate 
that using pressure changes, SPG algorithms can be used to preserve the physical causality of precipitation in a 
nonstationary generator.

The paper is structured as follows. First, we describe the data sources used and the relationship between hourly 
precipitation and AMT. Next, the stochastic precipitation generation algorithm is introduced, followed by a vali-
dation of the model outputs using pooled gauge data across the Northeast United States as a test case.
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2. Data Sources and Collection
The study focuses on the Northeastern coastal United States: A coastal region extending from Philadelphia to 
Boston characterized by mostly flat terrain (See Figure A1 in Appendix A). Throughout this region, the vertical 
lifting of air is typically associated with frontal precipitation rather than orographic lifting. Over 50 years of 
high-quality, hourly measurements of temperature, precipitation, and sea level air pressure were obtained from the 
National Climate Data Center (NCDC) (formerly the National Center for Environmental Information) at stations 
located at the international airports in New York City (NYC) (station ID: 72503014732 for 1973–2018 and 
99999914732 for 1948–1973), Philadelphia (PHL) (station ID: 72408013739 for 1973–2018 and 99999913739 
for 1941–1973), and Boston (BOS) (station ID: 72509014739 for 1943–2018) (See Figure A1 in Appendix A). 
Since topographic relief and climatic conditions vary little across the region, data from all three cities were 
pooled into one data set. This pooling also increased the overall sample size for all events, especially the extreme 
events that are more likely to be detected with observations from multiple gauges distributed spatially across the 
region (Hayhoe et al., 2008; Hayhoe et al., 2007; Hoerling et al., 2016; Tebaldi et al., 2006).

Projections of future changes to AMT were obtained from the NASA Goddard Institute for Space Studies, Center 
for Climate Systems Research at Columbia University in New York City. Because this research was initiated 
prior to the release of the Coupled Model Intercomparison Project 5 (CMIP5) and the most recent CMIP6, 
neither the Representative Concentration Pathways (RCPs) of CMIP5 nor the Shared Socioeconomic Pathways of 
CMIP6 are referenced explicitly. Instead, the MIROC GCM (Hasumi & Emori, 2008) was selected for this anal-
ysis because its higher relative predicted increases in temperature would yield a more pronounced effect on the 
generated precipitation series. AMT projections under the A2 emission scenario, “a very heterogeneous world,” 
(Nakicenovic et al., 2000) were used due to the regional scale of this study.

Following the procedure described in Yu et al. (2018), the continuous hourly pressure time series were discre-
tized into individual pressure change events (PCEs) associated with fronts or other precipitation-causing systems. 
During the identification of PCEs, daily fluctuations in atmospheric pressure were minimized by defining the 
pressure change as the difference between two pressure readings separated from each other by 24 hr, as shown 
in Equation 1:

∆𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−24 (1)

where 𝐴𝐴 𝐴𝐴𝑡𝑡 is the pressure reading at hour t, and 𝐴𝐴 ∆𝑃𝑃𝑡𝑡 is the pressure change relative to 24 hr prior. PCEs were cate-
gorized as either Increasing (InPCEs) or Decreasing (DePCEs) based on the computed direction of the pressure 
change.

Two important features defining the magnitude of each PCE are the duration and the Cumulative Event Pressure 
Change (CEPC). In the stochastic process described in the next section, these two features will be used as the 
conditions for selecting the subsequent PCE. The CEPC for each PCE is defined per Equation 2:

CEPC =
∑�

�=0
∆�� (2)

where 𝐴𝐴 ∆𝑃𝑃𝑡𝑡 is the 24-hr pressure change relative to hour t in a PCE defined in Equation 1, and d is the duration of 
the PCE. The intensity, duration, and alternate on of DePCEs and InPCEs correspond to the strength and speed 
of the precipitation causing meteorological systems as they move past the recording gauges.

3. Methodology
3.1. Algorithm Design

Yu et al. (2018) used PCEs to describe the relationship between AMT and specific precipitation characteristics, 
including the Probability of Precipitation (POP) and the event Precipitation Depth (PD). PCEs, and especially 
DePCEs, were shown to be associated with the vertical lifting of air and associated condensation, coalescence, 
and precipitation. The analysis also showed that the frequency of PCEs can be represented as a function of AMT, 
suggesting that a synthetic series of future PCEs can be derived from future AMT projections.
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The model uses nonparametric methods to simulate precipitation, making 
it portable to other regions (Basinger et al., 2010). The algorithm samples 
historical PCEs from specific AMT ranges (indexed to GCM outputs) occur-
ring within moving time windows. Since the characteristics of PCEs (e.g., 
type and magnitude), their associated precipitation characteristics (e.g., POP 
and PD), and AMT are statistically and physically related (Yu et al., 2018), a 
synthetic precipitation series can be generated by concatenating precipitation 
event characteristics associated with specific sequences of PCEs. (Additional 
analysis regarding the relationship between POP and PCE is presented in 
Appendix A).

Figures  1 and  2 provide more detail on the procedure used to sample an 
individual PCE based on temperature and time. The overall stochastic algo-
rithm is represented in Equations 3 and 4, where 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴1 is selected from a 
group of candidate PCEs, {PCE}, that could begin at the time 𝐴𝐴 𝐴𝐴0 based on the 
GCM-projected AMT for 𝐴𝐴 𝐴𝐴0 , (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴0 ), and the size of the moving window, 
Win. Specifically, the set {PCE} is selected based on Equation 3.

{���} = � (�0, ���0, Win) (3)

PCE1, the new successive PCE, is selected from within {PCE} but is condi-
tioned on the preceding PCE, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴0 , in the sequence per Equation 4.

���1 = � (���0, {���}) (4)

The moving window has been used to simulate temporally stationary precip-
itation by other researchers using different lengths, such as 60  days by 
(Sharma & Lall, 1999) or 90 days by (B. Rajagopalan & Lall, 1999). The 
decision to use a shorter window (e.g., 30 days) was made in this study to 

better represent seasonality. The seasonal window is further narrowed using temperature, such that only PCEs 
corresponding to a particular time of the year and temperature is selected, creating stability to the algorithm. 
The 6°C window was selected because seasonal shifts of POP for both DePCE and InPCE were detectable in 
this range (Yu et al., 2018). For example, in Figure 2, a day in March with AMT of 9°C can be used to select the 
subsequent PCE. The horizontally and vertically shaded bars, both centered at this data point, graphically depict 
the 30-day, and the 6°C, windows, respectively. The intersection of these two shaded bars defines the set {PCE}, 
described by Equation 3.

Steps 2 and 3 of Figure 1 can be denoted by Equation 4, where the new PCE will be sampled from {PCE} based 
on the condition of the previous one, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴0. In step 2, the PCEs of the same type of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴0 are excluded, ensuring 
that InPCEs are always followed by DePCEs and vice versa. In Step 3, a K Nearest Neighbor (KNN) approach 
(Lall & Sharma, 1996) is employed to select one PCE out of the remaining PCEs from Step 2 to append to the 
synthetic series after ���0 . In this study, “nearest neighbors” are selected from {PCE} based on the magnitude 
of ���0 , defined by the Euclidian distance of the standard scores of CEPC and event duration (Additional details 
provided in Appendix A). Specifically, the candidate PCE in {PCE} whose predecessor's magnitude is closest to 
the magnitude of ���0 will be chosen as the subsequent one to continue the generation.

After the selection of ���1 , the time of interest is advanced from 𝐴𝐴 𝐴𝐴0 to 𝐴𝐴 𝐴𝐴1 by the duration of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴1 (Equation 5). 
Next, 𝐴𝐴 𝐴𝐴1 is used to update the projected AMT, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴1 in Equation 6. For example, if 𝐴𝐴 𝐴𝐴0 is 2054-1-31 10:00 and the 
duration of ���1 is 25 hr, then 𝐴𝐴 𝐴𝐴1 will be 2054-2-1 11:00. 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴1 will be the AMT projected for Feb 2054.

�1 = �0 + duration �� ���1 (5)

���1 = � (�1) (6)

After completing the stochastic process, the corresponding precipitation series of each synthetic PCE is concate-
nated to form the final hourly synthetic precipitation series.

Figure 1. Flow chart of the synthetic precipitation generation algorithm.
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3.2. Two-Step Validation Approach

To validate the approach, the algorithm was used to generate synthetic 
sequences of precipitation for both historic (e.g., 1975–2012) and future 
(e.g., 2035–2099) periods. One hundred realizations of precipitation for each 
of these time periods were generated. The stochastic process is only applied 
to generating the synthetic PCE series using the target AMT as the basis. The 
historic simulations were generated using observed AMT, while the future 
simulations used the climate change AMT projected by Center for Climate 
Systems Research at Columbia University. Precipitation records of each PCE 
based on their observational correspondence are then concatenated into the 
synthetic precipitation series in the order of the generated PCE series. To 
simplify the discussion, the time series of historic precipitation observation 
is referred to as the “Observed” series, the modeled time series of the historic 
period overlapping with the “Observed” is referred to as the “Reanalysis” 
series, and the modeled time series of the future period is referred to as the 
“Forecasted” series.

The validation process involves two steps. In step 1 (described in Section 4.1), 
the Reanalysis series is compared to the pooled precipitation observations 
described above, demonstrating the algorithm's ability to replicate the phys-
ical link between precipitation occurrence and temperature. The goal is to 
demonstrate the model's ability to bracket trends displayed in the historical 
data. This comparison will first depict the relationship between PD and the 
magnitude of pressure change (e.g., CEPC). Next, it will show the impact 
of temperature (e.g., AMT) and the dependence of different seasonal PD 
percentiles on temperature (e.g., AMT). The analysis of PD distributions in 
all the plots in the following sections are displayed in contours while the 
trends of PD are lined up by Loess regression curves (Cleveland et al., 1992) 
are generated to display trends in these relationships.

In Step 2 of the validation process (described in Section 4.2), the forecasted 
series are qualitatively compared to precipitation forecasts made for this 
period by Hayhoe et  al.  (2007). Box plots of seasonal and annual PD for 
2035–2069 and for 2070–2099 are developed for comparison with box plots 
for the same future time slices generated by Hayhoe et al. (2007). This same 
plot is used to discuss the implications of climate change on future precipita-

tion, specifically through a comparison of the Reanalysis series to the Forecasted series. A further breakdown of 
the shifts of distributions and trends of seasonal precipitation of the reanalysis series is presented against pressure 
change (e.g., CEPC) and temperature (e.g., AMT).

4. Results
4.1. Validation Step 1: Comparison of All Series

We note that because the Reanalysis series includes 100 replicates of the historic period, it more clearly presents 
the characteristics of PCE than the pooled observations. To reflect the relationship between precipitation and 
temperature, the results are presented for each of the three series.

The relationships between PD and CEPC embedded in all time periods are shown in Figure 3, with nearly iden-
tical trends evident in all series. Because all dry PCEs lie on the horizontal axis (e.g., PD = 0 mm), the contours 
reflect the density distribution of only the wet-weather PCEs. The contours show a nearly identical distribution of 
PCEs over all three series. On the horizontal axis, 0 hPa separates DePCEs (to the left) and InPCEs (to the right). 
This point on the horizontal axis also corresponds to a point of inflection in the PD trend line. The steeper slope 
of the PD trend line indicates that precipitation is more sensitive to DePCEs than to InPCEs. Among DePCEs, 
PD increases with increasing (negative) CEPC. Among InPCEs, PD decreases with increasing (positive) CEPC. 
These differences are not surprising because increasing pressure tends to be associated with increased atmospheric 

Figure 2. Sample of a two-dimensional moving window, a day in March 
with 9°C average monthly temperature is the time of interest. The horizontal 
shadow area is the 30-day moving window. The vertical shadow area is the 
6°C wide temperature window, centered on 9°C. The pressure change events in 
the intersection are the candidates for sampling the next one.



Water Resources Research

YU ET AL.

10.1029/2022WR033140

6 of 17

stability, indicating less convection, condensation, coalescence, and precipi-
tation. Slight discrepancies in the trend lines are apparent at the left and right 
extremities. The differences between the Reanalysis trend and the Observed 
trend at the extreme DePCEs and InPCEs are likely due to the larger sample 
size of the synthetic series. The impact of climate change is evident through 
the higher trend line for the Forecasted series at the extreme InPCEs. An 
analysis of the associated POP is provided in Appendix A.

As reflected in Figure  4, most of the high wet InPCEs (high end of the 
tiled area) are of mild PD and occur more frequently in low AMT. With 
the spreading occurrence region toward warm AMT in the Forecasted for 
all categories, extreme wet InPCEs will have higher PD under the climate 
change, which agrees with the discrepancy of trend lines observed at the right 
end in Figure 3.

By introducing AMT and precipitation quantity as additional dimensions to 
the validation process, the distribution of PD can be further decomposed, 
as shown in Figure 4. Most precipitation events are categorized as mild PD 
(e.g., 0–20 mm) and, as a result, the distribution of PD is stable in the upper 
plot of Figure  4. Enhanced ensembles in the Reanalysis series provide a 
clearer transition from 5 to 10 mm than in the Observed.

For moderate events that have a smaller sample size, (e.g., PD = 20–60 mm) 
differences in the Observed and Reanalysis series distributions are more 
obvious. The contours of 35 mm retreat from the middle of the plot in the 

Reanalysis compared to the Observed. Only an isolated area located at 20°C and −300 hPa is denoted as >35 mm. 
Under the impacts of climate change in the Forecasted, the 35 mm contour retreats even further while the isolated 
peak area expanded toward low temperature and low CEPC.

Extreme events (e.g., PD > 60 mm) presented in the Observed series are too few and too scattered to discuss. 
In the Reanalysis series, the high DePCEs (low end of the tiled area) for all AMTs have PD > 100 mm. Impacts 
of climate change are evident in the Forecasted series as the region of PD > 100 mm extends to high AMTs. 
This observation is consistent with the projections of more extreme precipitation under climate change that have 
been made by many other researchers (Betts et al., 2007; Hamlet & Lettenmaier, 1999; Huntington, 2003; Labat 
et al., 2004), to be discussed further in the next section.

Additional insights of the dependence between PD and temperature can be derived from PD percentiles separated 
by type of PCEs (Figure 5). While the PD of DePCE is similar across all temperatures, the PD of InPCE generally 
increases with temperature, especially between 25th and 99th percentiles. This relationship could be related to the 
type of precipitations in different seasons. During winter, most weather mechanisms are systematic and the move-
ment of the precipitation region is geographically related to DePCE. Once the shifting to InPCE, precipitation 
will end quickly causing PD of InPCE much lower than that of DePCE. But in summer, there are many localized 
convections that a rainy system generated in a DePCE of small geographic scale has a big chance to move into a 
large scale InPCE area remaining a big portion of PD. Specifically, DePCE is the small center forming precipita-
tion while InPCE is the surrounding contributor of air and humidity. To balance a DePCE, air must move down-
ward in the surrounding region, creating an InPCE. However, the precipitation formation cloud is dynamically 
developed and moves. Given the tributary InPCE area is usually much larger than what can be represented by the 
point-sourced data collected at ground-based stations, precipitation was more difficult to be observed for InPCEs 
than for DePCEs, especially in local systems in summer. In addition to PD, the variance of PD percentiles of 
InPCE expands as the temperature gets warm, indicating that such possibility may get higher at extreme PD. The 
relationship between POP with seasonality and for different PCE types is explored in Appendix A.

4.2. Validation Step 2: Comparison of the Forecasted Series to Forecasts Made by Others

In this section, the SPG algorithm results will be qualitatively compared to other research. After researching nine 
coupled atmosphere-ocean general circulation models (AOGCMs) under different emission scenarios, Hayhoe 
et al. (2007) projected a consistent change of precipitation under global warming across the Northeast United 

Figure 3. The relationship between Precipitation Depth (PD) and Cumulative 
Event Pressure Change (CEPC) of all pressure change events (PCEs) for the 
comparisons of Observed, Reanalysis (for validation), and Forecasted (for 
showing climate change impacts). Since contours indicate the distribution 
of PCEs qualitatively, their corresponding values are not shown. Loess 
regression curves in-dash are shown for each data set to denote the trend of PD 
against CEPC.
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Figure 4. Relationship of Precipitation Depth (PD) against Cumulative Event Pressure Change (CEPC) and Average Monthly Temperature (AMT) in different ranges 
of PD. The color area represents the average PD of rainy pressure change events corresponding to different combinations of CEPC and AMT. Contours and labels 
indicate the local regressions of PD versus CEPC and AMT generated by the locfit function in R. (A: mild precipitation with PD between 0 and 20 mm, (b) moderate 
precipitation with PD between 20 and 60 mm, and (c) extreme precipitation with PD > 60 mm).
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States, with the magnitudes positively correlated to GHG emissions. As shown in Figure 6a, under the A2 emis-
sions scenario, annual temperature and precipitation across the Northeast United States are projected to increase 
by about 2.5°C and 6%, respectively during 2035–2064 and by about 4.5°C and 8% during 2070–2099, respec-
tively. The greatest percent increase in precipitation is expected to occur in winter.

Figure 6b presents a seasonal comparison of temperature and precipitation change between the Observed and the 
Forecasted data sets for the two time slices considered in Hayhoe et al. (2007). AMT projections show a gradual 
increase of about 2°C by 2069 and 5°C by 2099 on average, annually as well as for both summer and winter. The 
modeled change in precipitation reflects a shift that partially aligns with the projections by Hayhoe et al. (2007). 
While annual increases are small and hard to differentiate, winter precipitation will increase more both before 
and after the 2069 breakpoint than Hayhoe et al. (2007). Summer precipitation will decrease by about 5% in the 
two future time slices. These findings qualitatively agree with the projections by Hayhoe et al. (2007), validating 
the results.

Figure 7 provides a closer examination of the seasonal trends of PD relative to CEPC and AMT and reveals more 
information about precipitation changes under climate change by focusing on three time periods, the observed 
period, 2035–2069, and 2070–2099. According to Yu et al. (2018), maximum PCE frequencies occur at 0°C. 
This observation suggests that global warming may promote atmospheric stability, producing more PCEs for 
small CEPCs. This phenomenon can be observed from the upward trend of PCE distributions from the observed 
period to 2035–2069 and to 2070–2099 in Figure 7, especially in winter, spring, and fall. For summer, although 
the upward trend is not pronounced, the portion of PCE distributions (solid lines) <10 mm (dashed lines) shrinks 
from the observed period to 2035–2069 and to 2070–2099, indicating that small PD will be less frequent in the 
climate change impact. This could be due to the reason that the convection system in summer is much more 
intensive than in other seasons and can deplete the amplified moisture-holding in warmer air under the CC rela-
tionship. However, the portion of the rainy PCEs in summer (labeled under the marginal density plot) out of all 
rainy PCEs indicates that the chance of summer precipitation will slightly decrease from 24.7% to 24.6%. Thus, 
even though intensive PD would be favored under warm AMT, the overall summer PD may not increase, agreeing 

Figure 5. Dependence of pressure change event (PCE) type and Precipitation Depth (PD) on Average Monthly Temperature (AMT). The contours represent the 
distributions of PCE in different data sets. Again, since contours indicate the distribution of PCEs qualitatively, their corresponding values are not shown. The 
percentiles of PD illustrate its trend and variances against AMT.
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with Figure 6. In winter, the portion of rainy PCE will increase from 26.1% to 26.7% during 2035%–2069% and 
to 27.3% during 2070–2099. Consequently, an increase in winter PD would occur as Figure 6 shows.

5. Key Findings
The foundations of this algorithm are the relationships between precipitation and AMT using PCE characteristics 
as a medium for interpreting the precipitation mechanism. With the logic that precipitation is subject to its PCE 
characteristics while the PCE occurrence is determined by temperature (AMT → PCE → Precipitation), synthetic 
future precipitation time series were created using AMT as a primary input for generating PCE sequence under 
climate change. It is crucial that the algorithm has a sound physical basis because (a) the physical construct 
should not vary significantly as the climate changes and (b) empirical models may not be valid or accurate when 
extrapolated beyond observed data sets.

Many researchers have endeavored to describe the dependency of precipitation on temperature, such as prior 
and post temperature change to an extreme precipitation event in a tropical area (Visser et al., 2020). As atmos-
pheric instability favors precipitation formation, high CEPC is an indicator for vertical air movement, conden-
sation, and precipitation and as such is representative of the CC relationship. Therefore, extreme events (e.g., 
summer convections and winter blizzards) with intensive precipitation formation mechanisms have the capability 
to deplete the precipitable moisture. The trend is apparent in InPCE as indicated by PD driven percentiles shown 
in Figure 5. As intensive and rainy InPCE are typically contributory to intensive DePCE, the CC relationship is 
an accurate representation of these conditions.

Figure 5 reveals that the PCE type plays an important role. Condensation is favored during DePCEs, the intensity 
of which indicates the forces extracting moisture from the air. This could be a possible explanation for the stable 
distribution of PD over the temperature in Figure 5. At the same time, strong air convection requires the intake 
of air from surrounding regions that are much larger than the rainy zone itself. In other words, a high-intensity 
DePCE is balanced by a high-intensity wide-spreading InPCE. Thus, precipitation during InPCEs usually occurs 

Figure 6. Comparison of temperature and precipitation projections in NE United States in A2 emissions (A from (Hayhoe et al., 2007) and B from the Observed and 
the Forecasted data sets).
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when the observation site is originally outside of the core DePCE area but located on the path of the rainy zone 
movement. Consequently, not all available moistures can be condensed, and this condition is even capped by 
the moisture-holding capacity represented by the shift up of PD distribution for InPCE in Figure 5. The analysis 
also shows that during InPCEs, PD increases above 12°C in Figure 5, likely corresponding with the increased 
frequency of thunderstorms and other severe air convection beginning in spring and agreeing with condensed 
summer PD contours in Figure 7.

The dissimilarities observed in intensive CEPC PD in Figure  3 suggest that extreme PD is likely to become 
more intensive in the future as the temperature warms. Given that summer DePCEs are likely to skew toward 
non-high-intensity events (see Figure 7), intensive DePCEs (−2000 to –300 hPa) that cause extreme precipitation 
are likely to occur less frequently. Accounting for warming, the remaining extreme precipitation associated with 
intensive DePCEs would be benefited from the CC relationship and result in more severe precipitation stress in 
the future.

6. Limitations and Future Efforts
One of the main purposes of this study was to demonstrate the physical soundness of PCE as a medium to 
associate precipitation and temperature. Thus, the study did not include many climate models to obtain a robust 
sample size for analysis and the analysis was not conducted statistically. We believe that the physical phenome-

Figure 7. Seasonal average Precipitation Depth (PD) change versus Cumulative Event Pressure Change (CEPC) and Average Monthly Temperature (AMT) in the 
Observed data set and different projection periods. Solid contours represent the main distribution of pressure change events (PCEs), while the dotted lines show the 
distribution of PD. Again, since contours indicate the distribution of PCEs qualitatively, their corresponding values are not shown. Dotted contours and labels in black 
are in millimeters indicating the local regression of PD versus CEPC and AMT generated by the locfit function in R. The percentage numbers below the marginal 
density plots show the portion of PCEs of each season in a year for different data sets.
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non represented by PCE will be generally found in any climate model but MIROC, the extreme condition, could 
embody it more pronouncedly than other mild models.

Although the results qualitatively agree with other research, the current algorithm resamples observed events 
without altering their volumes or temporal patterns whose changes are expected under global warming (Fadhel 
et al., 2018; Wasko & Sharma, 2015). Although better extrapolation of future precipitation can be made, intro-
ducing scaling parameters, however, may bring bias to the demonstration of this algorithm. Being conservative 
in this study to prove the physical soundness of PCE as the first step, our future work will focus on how to tune 
the model or scaling for extrapolation.

In addition, the hourly time step was not fine enough to reflect the temporal pattern of a precipitation event, 
especially in summer convections. To solve this issue, possible improvements could be the following: (a) using 
new data in more granular temporal scales to embody the patterns of extreme weather events, (b) investigating 
the nexus of temperature, humidity, and pressure in triggering and producing precipitation, and (c) quantifying 
the scaling impact of climate change on the volume and temporal patterns of PCEs, which is the driven force 
of moisture extraction. A recent study has been published for the second option to investigate the associations 
among precipitation, PCE, and absolute humidity using data from Florida, United States. It reveals that the 
pattern of absolute humidity responding to precipitation varies on CEPC and season jointly (Zhang et al., 2022).

In contrast to precipitation, the above improvements can also be applied to drought since InPCE is very likely an 
important indicator of no rain. More importantly, PCE brings the information to preserve the physical concepts 
that hold regardless of location, time, and weather conditions while generating synthetic series. Once weather 
conditions can be classified properly by including PCE with other weather variables, the PCEs observed from a 
larger geographical scale can be gathered to better represent the true concept. The significantly enhanced sample 
size may result in a larger matching range of CEPC for the trend lines in Figure 3 and mitigate the tail discrep-
ancies. Such improvement may support the current nonparametric algorithm for any location and more severe 
projected climate change temperature in the physical system represented by this large geographical area.

7. Summary and Conclusion
A nonparametric stochastic algorithm for generating nonstationary hourly precipitation was developed. The 
semiphysical link between hourly precipitation and Average Monthly Temperature (AMT) was built using PCE. 
Moving windows on both temperature and time were used to identify PCE and associated historical hourly rain-
fall observations that could be used to simulate future changing conditions. A multivariate bootstrapping method 
was employed to reflect the covariance of Cumulative Event Pressure Change (CEPC) and PCE duration in 
a simulation process. This process is a very important finding that provides a sophisticated solution to build 
the relationship between global climate model (GCM) temperature projections on a coarser temporal scale and 
climate characteristics on a finer scale.

After applying GCM AMT projections for the US Northeast until 2099, this algorithm was used to generate 
synthetic PCE ensembles and associated precipitation series qualitatively agreeing with the projections obtained by 
other researchers in terms of seasonal precipitation and extreme precipitation. Precipitation Depth (PD) was found 
to be strongly correlated to PCE. The PCEs can be used to link temperature and precipitation dynamics, presenting 
a more physically plausible concept, in contrast to pure statistical assumptions used by most existing models.

Overall, the analysis suggests the following:

•  Increasing Pressure Change Event (InPCE) PD increases with AMT more significantly than with Decreasing 
Pressure Change Event (DePCE), which could be due to the point sourced data in this study

•  In the NE United States, more frequent mild and lighter precipitation events are likely to occur in the future 
during all seasons

•  Overall, summer precipitation is likely to be reduced, while summer extreme events are likely to become more 
frequent under climate change

•  Winter precipitation is likely to increase

Moreover, because PCEs are more strongly related to precipitation formation than coarser temporal scale temper-
ature (e.g., monthly), this algorithm may represent a reliable method for downscaling precipitation from GCM 
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AMT projections, which are more trustworthy than GCM precipitation projections on their own. Despite being 
nonparametrically structured, PCE could also be further explored as a means of integrating physically plausible 
synthetic future events into time series generated, even through parametric procedures.

In conclusion, this paper demonstrates a means of generating long, continuous, and synthetic precipitation series 
scaled-down from GCM AMT projections. These series could then be used for a variety of climate change model 
applications, such as hydrologic and hydraulic modeling, water resource modeling, and agriculture applications, etc.

Appendix A
A1. Geographic Scope

The model in this study is developed based on historical weather observations from three big cities, Philadelphia, 
New York City, and Boston (See Figure A1), to represent the weather conditions in the Northeastern coastal 
United States.

A2. Dependence of Precipitation on PCE Characteristics

The CEPC magnitude and PCE duration are used in the KNN analysis because of their relationships to the stabil-
ity of air masses. Since a collision of air mass is usually accompanied by pressure change, the PCE duration is 
considered a general indicator of the horizontal stability of the air mass over the weather station (i.e., a short PCE 
indicates a stable air system). Within an air mass, vertical stability is negatively associated with CEPC magnitude. 
For example, the smaller the CEPC, either DePCE or InPCE, the more vertically stable the air mass and vice 
versa. Precipitation is more likely to form in vertically unstable air masses (Ackerman & Knox, 2007; Ackerman 
& Knox, 2015), especially DePCE.

Figure A1. Locations of weather stations in the research area (size of circles indicates the length of available data) New York City (station ID: 72503014732 for 
1973–2018 and 99999914732 for 1948–1973), Philadelphia (station ID: 72408013739 for 1973–2018 and 99999913739 for 1941–1973), and Boston (station ID: 
72509014739 for 1943–2018) from NOAA NCEI (https://www.ncei.noaa.gov/access/search/index).

https://www.ncei.noaa.gov/access/search/index
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For illustration, Figure A2 graphically depicts the relationship between CEPC and PCE duration of all historical 
PCEs. The contours indicate that precipitation is more likely to occur during DePCE, favored by both intensity 
and duration.

To consider both CEPC and duration of the stochastic process, the magnitude of a PCE is defined by Equation A1.

�PCE =
√

(��)2 + (�����)2 (A1)

where 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃 is the magnitude of a PCE; subscript z denotes the z score of the corresponding data set; and 𝐴𝐴 𝐴𝐴𝑧𝑧 and 
𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧 are the z scores of the duration and CEPC of the PCE, respectively. The conversion of the z score helps 

obtain equal weighting for the two features in determining the magnitude of a PCE.

A3. K Nearest Neighbor (KNN) Parameter Selection

In Step 3 of the algorithm (Figure 1), the measure to determine the “nearest neighbors” is calculated by the 
Euclidian distance integrating both CEPC and PCE duration after scaling on the whole population. The value k 
is defined in the following equation suggested by Lall and Sharma (1996) on Page 684.

k =

√

𝑛𝑛 

where n is the number of PCE in {PCE}.

Figure A2. Precipitation dependence on both pressure change event (PCE) duration and Cumulative Event Pressure Change 
(CEPC) (Red: dry PCE and Blue: wet PCE).

Figure A3. Dependence of Probability of Precipitation on Cumulative Event Pressure Change (CEPC). The gray area 
represents the Observed data. All data sets are fitted by Loess regression in different colors separated by two types of pressure 
change event at CEPC = 0 hPa.
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A4. Relationship Between POP and CEPC

In Figure  A3, as the magnitude of CEPC increases, the POP of DePCE climbs from 15% to 100% within 
0–800 hPa, while InPCE POP increases only from 15% to about 50% within 0–1000 hPa. Given the limited 
sample size of extreme InPCE (n = 79 when CEPC >820 hPa in historical data), less confidence is associated 
with the POP beyond 820 hPa. For CEPC < −1000, there are five historical PCE observed in BOS between 1944 
and 1946 without precipitation. But all of them have a sudden air pressure drop about 100 hPa within 1 hr, which 
lead to a heavy bias. Although these events are excluded in the analysis in our model, we treat the POP in this 
range as 100% regardless of the decreasing trend lines. Thus, falling pressure appears to be a better indicator of 
precipitation than increasing pressure.

In Figure A4, the POP in spring for DePCE historically oscillates between 50% and 70% with a low end at around 
19°C. Despite the decrease beyond 15°C, its synthetic trend bears a similar general level. As for InPCE, POP 
remains around 25% for both the Observed and the Forecasted. The Forecasted POP trend on AMT spans a larger 
range than the Observed with a similar pattern after 5°C. This situation could also be found similar in summer 
and fall for both PCE types. Despite similar patterns, the winter POP of both PCE types historically increases 
after 6°C while the Forecasted series remain stable. This indicates that the rain likelihood would be lowered for 
warm winters in the future in this region. Focusing on the low variation parts in the middle-temperature range of 
all seasons, the POPs for both PCE types generally match between the Observed and the Forecasted.

Figure A4. Seasonal dependence of Probability of Precipitation (POP) on Average Monthly Temperature (AMT). The average POP for each AMT from the Observed 
and the Forecasted data sets is differentiated by solid lines and dotted lines. Pressure change event types are colored differently.



Water Resources Research

YU ET AL.

10.1029/2022WR033140

15 of 17

A Glossary of Acronyms
AMT Average Monthly Temperature
AOGCM Atmosphere-ocean general circulation models
BOS Boston
CC Clausius-Clapeyron
CEPC Cumulative Event Pressure Change for a single pressure change event
CMIP5 Coupled Model Intercomparison Project 5
CSO Combined Sewer Overflow
DePCE Decreasing Pressure Change Event
Forecasted The data set of 100 synthetic replications of climate projection of 2035–2099
GCM Global Climate Model
GHG Greenhouse Gas
GI Green Infrastructure
InPCE Increasing Pressure Change Event
KNN K Nearest Neighbor
NCDC National Climate Data Center
NCEI National Center for Environmental Information
NYC New York City
Observed The data set of historical observations
PCE Pressure Change Event
PD Precipitation Depth during a PCE
PHL Philadelphia
POP Probability of Precipitation
RCM Regional Climate Model
RCP Representative Concentration Pathway
SPG Stochastic Precipitation Generator
Reanalysis The data set of 100 synthetic replications of 1975–2012
Win The size of the moving window including both time and AMT dimensions

Data Availability Statement
The data used in this study were obtained from National Center for Environmental Information (NCEI) at https://
www.ncei.noaa.gov/access/search/index.
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