
1.  Introduction
Global ozone levels are recovering due to reductions of CFCs in the stratosphere as the result of the Montreal Proto-
col and its amendments. However, natural impacts from wildfires (Santee et al., 2022; Solomon et al., 2022, 2023; 
Strahan et al., 2022) or from large volcanic eruptions (Stone et al., 2017) can temporarily impact stratospheric 
ozone. The Hunga Tonga-Hunga Ha'apai (HTHH) submarine volcano erupted on 15 January 2022 and increased 
the global stratospheric water burden by ∼10%, setting a record for the modern satellite era and differentiating 
itself from previous major volcanic eruptions (Khaykin et  al., 2022; Millan et  al., 2022; Randel et  al., 2023; 
Vömel et al., 2022). The excess moisture is expected to remain in the stratosphere for several years and could 
exert a substantial impact on the climate system (Jenkins et al., 2023; Li & Newman, 2020; Solomon et al., 2010). 
A moderate amount of sulfur-containing gases, approximately 0.4–0.5 Tg sulfur dioxide (SO2), about 30 times 
lower than the emission from Pinatubo (Carn et al., 2022), was lofted into the stratosphere by the HTHH erup-
tion and quickly converted to sulfate aerosol particles (Zhu et al., 2022). Simulations carried out with the Whole 
Atmosphere Community Climate Model (WACCM), a coupled chemistry-climate model, suggest the excessive 
moisture halves the SO2 lifetime and promotes faster sulfate aerosol formation, resulting in large perturbations to 
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stratospheric aerosol evolution (Zhu et al., 2022). As with the H2O, HTHH aerosols have persisted and dispersed 
in the SH stratosphere; a notable feature is the separation of the H2O and aerosol plumes over time due to sedi-
mentation of the aerosols (Legras et al., 2022).

It is anticipated that the large H2O and aerosol perturbations can impact stratospheric temperatures, circulation and 
chemistry. Substantial stratospheric warming has been observed linked to enhanced aerosols from the eruptions of 
El Chichón and Pinatubo (e.g., Angell, 1997; Labitzke & McCormick, 1992). While there are no precedents for 
the large H2O perturbation in the observational data record, it is expected that increased H2O will radiatively cool 
the stratosphere (e.g., Forster et al., 1999; Sellitto et al., 2022). Changes to stratospheric ozone (and related trace 
species) are also expected from large volcanic eruptions due to enhanced aerosol surface areas for heterogeneous 
chemistry, for example, Hofmann and Solomon (1989). In this paper we aim to document the observed changes in 
stratospheric climate and ozone during 2022 and early 2023, which are identified as large changes from climatology 
based on the past two decades. We furthermore run an ensemble of chemistry-climate model simulations using 
realistic HTHH inputs of H2O and SO2 to quantify impacts on stratospheric climate  and chemistry, and evaluate 
their significance compared to internal variability. We first examine the detailed dispersion and evolution of the H2O 
and aerosol plumes as observed and as simulated with WACCM to quantify the associated transport and radiative 
effects. We then compare modeled effects on circulation and ozone with observed anomalies in 2022. Similar behav-
iors are found in many regards, and these results can be used as fingerprints of HTHH effects on the stratosphere.

2.  Observational Data and Model Experiments
2.1.  Satellite Data

2.1.1.  Microwave Limb Sounder (MLS)

The MLS instrument was launched onboard the EOS Aura satellite in 2004 as part of the “A-Train” satellite 
constellation and has operated continuously since that time in a low-Earth, high-latitude, sun-synchronous orbit. 
The instrument utilizes five broad microwave spectral regions, with centers ranging approximately from 118 to 
2500 GHz, in a limb-viewing configuration to measure various atmospheric properties and constituents, includ-
ing temperature, H2O, O3 and N2O. For this work, version 5.0 of MLS H2O, O3, and temperature data (Livesey 
et al., 2020; Waters et al., 2006) were compiled into daily zonal means at a resolution of 2.5° latitude. The vertical 
resolution of temperature changes with pressure, ∼3–4 km for 100-10 hPa, ∼5–6 km up to 0.01 hPa, and 8–10 km 
above. The vertical resolution of the H2O retrievals is ∼3 km, covering pressure levels 316 hPa to above 1 hPa. 
Anomalies for 2022 are calculated as deviations from the 2004–2021 background, and we especially highlight 
anomalies that are outside of all previous variability.

2.1.2.  Ozone Monitor and Profiler Suite Limb Profiler (OMPS-LP)

Aerosol extinction and stratospheric aerosol optical depth (sAOD) data are from the University of Saskatchewan 
(USASK) Ozone Monitor and Profiler Suite Limb Profiler product (Bourassa et al., 2023). These data, derived 
from a tomographic inversion, provide height-resolved aerosol extinction at 745 nm with a tomographic inver-
sion, with a vertical resolution of 1–2 km. The tomographic product improves vertical resolution and reduces 
artifacts from spatially inhomogeneous aerosols. However, the retrieval relies on assumed aerosol size and optical 
properties that may cause biases and large uncertainties during periods of enhanced aerosol.

2.2.  The Fifth Generation of European ReAnalysis (ERA5)

Stratospheric circulations are derived using monthly European Center for Medium-Range Weather Forecasts ERA5 
reanalysis data on model pressure levels (Hersbach et al., 2020). We include analyses of zonal winds, along with 
derived residual mean meridional circulation and Eliassen-Palm (EP) fluxes (Andrews et al., 1987). Anomalies in 
2022 are calculated as deviations from the 2004–2021 climatology. We note that the ERA5 assimilation model did not 
include anomalous stratospheric H2O or aerosols from HTHH, and hence the model is not balanced and likely incor-
porates large assimilation increments. This behavior is shown for a different assimilation model in Coy et al. (2022).

2.3.  WACCM Chemistry-Climate Model Experiments

We use the Community Earth System Model, version 2 (CESM2), with the Whole Atmosphere Community 
Climate Model (WACCM) (Gettelman et al., 2019) as the atmosphere component, to simulate the stratospheric 
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H2O and aerosol enhancements due to the HTHH eruption and evaluate their influence on stratospheric temper-
ature, circulation and ozone chemistry. WACCM has 70 vertical layers extending upward to 140 km with verti-
cal resolution of about 1–1.5 km in the stratosphere. The model is fully coupled to interactive ocean, sea-ice, 
and land models, and is initialized at the beginning of January 2022 using the observed sea-surface tempera-
tures following the procedure described in Richter et al. (2022). The HTHH volcanic H2O (∼150 Tg) and SO2 
(∼0.42 Tg) are injected on 15 January 2022 from ∼20 to 35 km. The SO2 injection is tuned based on comparisons 
between the simulated sulfate aerosol and OMPS Limb Profile aerosol extinction. The H2O injection is tuned 
to mimic the observed MLS water vapor profile. More details can be found in Zhu et al. (2022). To accurately 
simulate the  early plume structure and evolution, WACCM winds and temperatures are nudged to the Goddard 
Earth Observing System (GEOS) Modern-Era Retrospective Analysis for Research and Applications, Version 2 
(MERRA–2) meteorological analysis (Gelaro et al., 2017) throughout January 2022; that is, the model is artifi-
cially constrained a model by adding a forcing term that relaxes its winds and temperatures toward the MERRA2 
data with a 12-hr relaxation time scale. After 1 February 2022 the model is free-running to simulate fully-coupled 
variability including the coupling between changes in composition and radiation. We conducted four sets of 
experiments: the control case without SO2 or H2O (no volcanic forcing); an SO2 only case with only SO2 injection 
(with SO2 converting to sulfate aerosol); an H2O only case with only H2O injection, and the SO2 + H2O case with 
both SO2 and H2O injection, which mimics the total forcing of HTHH eruption. Calculated anomalies are the 
differences between the forcing runs and the control runs. We include 10 ensemble members for each scenario to 
examine internal variability and to better isolate forced behavior. Individual ensemble members differed by the 
last date of the meteorological nudging, in the range from 27 January 2022 to 5 February 2022. Once the nudging 
period ends, the model is free-running.

3.  Results
3.1.  Observed and Simulated Volcanic Plumes

Satellite observations show that the HTHH H2O and aerosol plumes have persisted in the stratosphere and evolved 
throughout 2022 and early 2023 (Figures 1a–1c). The majority of the sulfate aerosol was initially collocated with 
the H2O plume near 24 km (March 2022 in Figure 1a), but has subsequently sedimented to the lower stratosphere 
(Legras et al., 2022; Schoeberl et al., 2022) and dispersed in latitude to span much of the Southern Hemisphere 
(SH) by midwinter (August 2022 in Figure 1b). As a note, it is unclear from the OMPS extinction measurements 

Figure 1.  Observed and simulated H2O and aerosol perturbations after the HTHH eruption. Panels (a–c) show the observed dispersion of the HTHH H2O (colors, 
ppmv) enhancement and aerosol extinction (red contours, 10 −3 km −1) in (a) March, (b) August 2022 and (c) January 2023. The maximum H2O amounts are indicated by 
the number on the top right corner; (d–f) are similar to (a–c) but for WACCM simulations.
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in Figure 1b whether the HTHH aerosols penetrated the Antarctic polar vortex, as the enhanced polar extinc-
tion in OMPS-LP measurements is also due to the formation of polar stratospheric clouds in this season. The 
H2O plume was centered near 25 km and covered 60°S–20°N by August 2022; the H2O anomalies (>4 ppmv 
in Figure 1b and >3 ppmv in Figure 1c) are large compared to the stratospheric background mixing ratio of ∼5 
ppmv. By January 2023, the H2O plume ascended in the tropical stratosphere and spread into the Northern Hemi-
sphere midlatitudes (and over the pole in the SH) while the aerosol layer became weaker and remained over the 
SH lower stratosphere (Schoeberl et al., 2023).

The modeled evolution of the H2O and sulfate aerosol plumes in the SO2 + H2O case are shown in Figure 1d–1f, 
with patterns similar to those observed. Results in Figures 1d–1f are ensemble averages, but there are relatively 
small differences in the evolution of the plumes among the 10 realizations (not shown). The H2O and aerosol 
plumes initially overlap and then separate vertically over time, with latitudinal dispersion similar to the observed 
behavior. The model HTHH aerosol layer in the lower stratosphere extends to polar latitudes near the bottom of 
the polar vortex during winter (Figure 1e), while the H2O plume spreads poleward but is mostly excluded from 
polar latitudes by the stronger jet near 25 km (see discussion in Section 3.3). The magnitude of the model aerosol 
extinction in midwinter is about half as large as measured by OMPS-LP (cf. Figures 1b–1e), which may be related 
to uncertainties in SO2 injection amount and/or the modeled aerosol size distribution and evolution, along with 
uncertainties in the OMPS-LP retrievals.

The HTHH aerosol plume descends over time and disperses meridionally in the SH lower stratosphere. Details 
of the latitudinal distribution of sAOD observed during 2022 by OMPS are shown in Figure 2a, suggesting a 
double-peak sAOD pattern in latitude, with one tropical maximum associated with immediate aerosol formation 
and one midlatitude maximum during SH winter (∼July-September). The double-peak sAOD was also reported 
from observation and model simulation of the 1991 Pinatubo eruption (Long & Stowe, 1994; Quaglia et al., 2023) 
and from the response of sustained SO2 injections under geoengineering (Tilmes et al., 2017). The pattern arises 
as aerosols spread rapidly across the surf zone into the SH midlatitudes during winter, resulting in a lower sAOD 
in between. Then the sAOD accumulates in mid-latitudes as the SH polar vortex constitutes a transport barrier. 
This behavior is qualitatively captured in the WACCM SO2 + H2O model simulations (Figure 2b), although the 
midlatitude sAOD in the model is about half as large as observed. One possible reason is that the model under-
estimates the aerosol particle effective radius compared with that in SAGE III/ISS (Khaykin et al., 2022) due to 
either inadequate model microphysics processes or unconsidered pre-existing particles such as sea salt.

The large perturbations of stratospheric H2O and aerosol have substantial effects on the solar and infrared radia-
tion balances, which in turn influence stratospheric temperatures and circulation. The radiative impacts of H2O 
and aerosol volcanic plumes simulated in WACCM are estimated from the instantaneous radiative heating rates 
(i.e., longwave heating rate plus shortwave heating rate, without dynamical or thermal adjustment) due to volcanic 
plumes, as shown in Figure 3 for August 2022. Specifically, the water vapor and sulfate aerosols from the volcanic 
run are imposed on the no-volcano run, and the shortwave and longwave heating rates are calculated and output 
after one model time step, before any thermal or dynamical feedbacks have occurred. The H2O plume produces a 
localized cooling of order −0.1 K/day that overlaps the plume, while a small heating layer occurs near the bottom 
due to upwelling longwave radiation (Figure 3b). A small net aerosol radiative heating overlaps the aerosol plume 
(Figure 3c), reinforcing the warming below the H2O plume, so that there is a dipole vertical structure of cooling 
above warming for the combined effects (Figure 3a). The calculated forcings are almost completely due to long-
wave effects. Instantaneous radiative heating/cooling rate patterns are similar in other months (not shown), and 
decrease slowly over time as the plumes disperse.

3.2.  Temperature Perturbation

Satellite observations show evidence of systematic stratospheric cooling following the HTHH eruption (Figures 4a 
and 4b). Temperatures near 25 hPa over the SH show cold anomalies in 2022 that are well outside of previous 
variability, beginning one-to-two months after the eruption (Figure 4a). This delay is consistent with a radiative 
response to the increased H2O near this altitude with a radiative time scale of ∼10–20 days (e.g., Hitchcock 
et al., 2010). The vertical structure of the temperature anomalies averaged over 60°S–10°S (Figure 4b) shows 
cooling covering much of the mid-stratosphere throughout 2022, with largest cold anomalies during SH winter 
(June-August) extending to ∼45 km. During these months there are anomalous warm temperatures in the lower 
mesosphere above ∼50 km (Yu et al., 2023, see Section 3.3). Cold anomalies are reduced in 2023.
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The unprecedented evolution of temperatures in 2022 suggests forced changes from the HTHH eruption, but also 
contains components of internal variability. To evaluate the forced signal in the model runs we use ensemble 
simulations of WACCM with and without the volcanic injections. The modeled structure of temperature changes 
in the (H2O + SO2) simulations (Figures 4c and 4d) capture the salient aspects of the observed behavior including 

Figure 2.  Latitude-time plots of the zonal average stratospheric aerosol optical depth at 745 nm in 2022 from (a) OMPS-LP and (b) WACCM ensemble H2O + SO2 
ensemble average. Both panels show total aerosol optical depth, not anomalies.

Figure 3.  August net radiative heating rate (longwave plus shortwave tendencies, colors, unit: K/day) due to (a) both H2O and aerosol plumes, (b) H2O plume only, and 
(c) sulfate aerosol plume only, compared to no-forcing control runs. Red line contours denote the sulfate aerosol mixing ratio in ppbm, and black line contours denote 
the anomalous H2O concentration in ppmv.
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cooling throughout the year over ∼25–30 km and enhanced winter maxima, including warming in the lower 
mesosphere (Figure 4d).

Observed cold temperature anomalies and H2O plume overlap until April and decouple in early SH winter. The 
strongest cooling occurs primarily in midlatitudes centered near 50°S, and do not directly overlap the H2O plume 
as illustrated for August 2022 in Figure 6a (other months are shown in Figure S1 in Supporting Information S1). 
High latitude cold anomalies (in excess of 15  K) occur in combination with warm tropical anomalies, with 
maxima near 23 and 38 km. Part of the tropical and extratropical temperature maxima are related to the phase 
of the Quasi-Biennial Oscillation (QBO) in 2022 (Coy et al., 2022). The see-saw patterns in temperature (oppo-
site sign responses) between high and low latitudes are suggestive of coupling to the hemispheric-scale mean 
meridional circulation (Yulaeva et al., 1994). The strong high latitude temperature anomalies are in balance with 
changes in the stratospheric circulation, as discussed below.

The simulated ensemble average temperature changes in response to the (SO2 + H2O) forcing in August are shown 
in Figure 5b (other months are shown in Figure S2 in Supporting Information S1); they display patterns similar 
to observed behavior (Figure 5a, Figure S1 in Supporting Information S1), although the model winter cooling is 
centered at somewhat higher latitudes (60–70°S). Modeled temperature changes with only SO2 (sulfate aerosol) 
forcing (Figure 5c) have temperature perturbations of similar polarity to the total forcing (tropical warming and 
high latitude cooling), but are weaker and not significant (see also blue lines in Figure 4c). Without H2O injection 
the volcanic aerosol layer is thicker and heats the lower stratosphere over a deeper vertical layer, implying that the 
coupled H2O-aerosol effects have amplified stratospheric cooling in the high latitudes. In contrast, simulations 
with only H2O injection show a very different temperature response (Figure 5d), with weak cooling anomalies in 

Figure 4.  Temperatures averaged over 60°S–10°S from MLS observations showing persistent anomalous cooling in 2022. (a) Gray lines show time series of MLS 
temperatures at 25 hPa for 2004–2021 while the black line is the climatology. Red/orange lines shows 25 hPa temperature for 2022/2023. (b) Time-height section 
of MLS temperature anomalies (differences from 2004 to 2021 averages). Hatched regions in (b) indicate where the 2022 anomalies are outside the range of all 
variability during 2004–2021. (c) As in (a), but temperatures at 25 hPa simulated in WACCM. Black lines indicate the control cases, blue lines indicate SO2 only 
cases, and red lines indicate the SO2 + H2O cases, respectively (including 10 realizations for each case). (d) Time-height section of WACCM temperature differences 
for the SO2 + H2O minus control ensemble means. Hatched regions indicate where the temperature anomalies are statistically significant at the 95% level according to 
Student's t-test. Note that color bars in (b) and (d) have different ranges.
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the tropics and midlatitudes that overlap the H2O plume. The responses due to the single-forcing H2O and SO2 
perturbations are not additive. Overall, our model sensitivity experiments demonstrate that stratospheric temper-
ature responses change from direct radiative effect in the early stage to much stronger dynamical effect during SH 
winter. Including both H2O and SO2 (sulfate aerosol) forcings is important for realistic simulation of the HTHH 
responses with strong effects only for the combined forcings.

The coupling of stratospheric temperature (polar vortex strength) and planetary wave amplitude is a well-known 
feature of the winter stratosphere, with correlation between wave amplitudes and polar temperature (e.g., Andrews 
et al., 1987; Holton & Mass, 1976; Randel & Newman, 1998). The coupling is evident in Figure 6 as correlations 
of polar temperature versus planetary wave activity (quantified as the vertical component of the Eliassen-Palm 
flux divergence in the lower stratosphere) for our control simulations, showing results for July and August for 
each of the 10 realizations. Figure 6 furthermore shows a systematic shift in temperatures and wave activity in the 
H2O + SO2 forced run with respect to the control runs, with colder temperature and weaker Eliassen-Palm (EP) 
fluxes associated with the HTHH forcing in most cases. We view this shift as a fingerprint of the forced response 
due to the HTHH forcing. While most of the H2O + SO2 ensemble members show relative cold temperatures 
and weak wave fluxes, there is considerable stochastic variability among the realizations, and several realizations 

Figure 5.  Observed and modeled temperature anomalies in August 2022 (color shading, K). (a) MLS observations, calculated as differences between the 2022 and the 
2004–2021 average. (b) WACCM simulated modeled temperature changes in the all-forcing (SO2 + H2O) case minus the no-forcing control runs. (c) Similar to (b), but 
for SO2 only simulations. (d) Similar to (b), but for H2O only simulations. Red line contours denote the sulfate aerosol extinction in 10 −3 km −1, and black line contours 
denote the anomalous H2O concentration in ppmv. Hatched regions denote statistical significance, as in Figure 4.
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(6 out of 10) have temperature anomalies comparable to the observed 2022 
anomalies. We conclude that internal variability in the ensemble model simu-
lations contributes to the low bias in ensemble average temperature anoma-
lies in Figure 4 compared to the observed pattern in 2022 (Yu et al., 2023). 
In spite of this difference in magnitude, the similarity in timing and spatial 
structure of observed and modeled temperature patterns is strongly sugges-
tive of an HTHH attribution for the observed anomalies.

3.3.  Stratospheric Circulation Response

Because they are in thermal wind balance with the temperature anomalies, 
the zonal mean zonal winds show intensification and equatorward shift of the 
polar vortex throughout the winter (see Figure 7a for August). The simulated 
zonal wind changes also show a strengthening and equatorward shift of the 
winter westerlies in response to the (SO2 + H2O) forcing (Figure 7b), with 
patterns similar to the observed anomalies. As with temperatures, the model 
ensemble mean wind anomalies are only about half as large as observed in 
2022. Reanalysis fields and models show that the strengthened polar vortex 
persists into SH spring (Figures S3 and S4 in Supporting Infor mation S1). 
Figures 7a and 7b also include anomalies in the residual mean meridional 
(Brewer-Dobson) circulation (BDC), highlighting anomalous high latitude 
upwelling and low latitude downwelling that opposes and weakens the normal 

background equator to pole circulation. These results are consistent with the residual circulation anomaly patterns 
discussed in Coy et al. (2022) and the weakened background tropical upward residual circulation in Schoeberl 
et al. (2022). The changes in the BDC are associated with adiabatic cooling/warming in stratosphere/mesosphere, 
and are also consistent with weakened planetary-scale wave forcing in the middle and upper stratosphere. As 
noted above (Figure 5), the SO2 + H2O simulations have planetary wave amplitudes and EP fluxes that are about 
half the size of the control runs, and reanalysis data likewise show weak planetary waves in 2022. We note that the 
vertical out-of-phase temperature changes above ∼50 km observed in winter (Figures 4b–4d) are characteristic 
of dynamically forced effects, consistent with the reductions in stratospheric EP fluxes (Andrews et al., 1987). 
Similar to differences in temperature response (Figure 6), model simulations with only sulfate aerosol forcing or 
only H2O forcing show mostly insignificant circulation changes (Figure S5a in Supporting Information S1) or 
opposite circulation responses (Figure S5b in Supporting Information S1) across 10 ensembles, highlighting the 
importance of combined effects due to sulfate aerosol and H2O enhancements.

Figure 6.  The relationship between temperatures at 60°S, 10 hPa and the 
vertical component of EP flux divergence at 60°S, 74 hPa in the WACCM 
control (blue) and H2O + SO2 (red) simulations. Results are shown for both 
July and August statistics for the 10 realizations in each ensemble.

Figure 7.  Anomalous zonal wind changes in August 2022. Colors show zonal mean zonal wind anomalies in (a) observations from the ERA5 reanalysis data and (b) 
simulations in the all-forcing (SO2 + H2O) WACCM simulations compared to the control runs. Gray contours show the background zonal winds with an interval of 
15 m/s. Colored regions in (a) indicate where the 2022 anomalies are outside the range of all variability during 2004–2021. The vectors depict anomalies in the residual 
mean meridional circulation (BDC) in ERA5 that are outside of two standard deviations. Colored regions and vectors in (b) indicate where anomalies are significant at 
the 95% level.
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3.4.  Midlatitude Stratospheric Ozone Changes

Stratospheric ozone changes after HTHH can be anticipated from both changes in circulation and anomalous 
chemistry from enhanced H2O and aerosols (Hofmann & Solomon, 1989; Lu et al., 2023; Solomon, 1999; Tie 
& Brasseur, 1995; Yook et al., 2022; Zhu et al., 2022). MLS observations show lower stratospheric (LS) ozone 
reductions during winter over the SH midlatitudes and tropics (∼50°S–10°S), which are outside of previous 
variability (Figure 8a). The lower stratospheric midlatitude ozone decreases are accompanied by anomalously 
high values over the equator (Figure 8c), and part of these coupled anomalies are linked to the phase of the 
QBO in 2022 (Schoeberl et al., 2023). We note that midlatitude QBO anomalies in ozone often have an asym-
metric latitude structure with maximum amplitude in the winter hemisphere (Randel et al., 1999), as observed 
here. This QBO influence can be seen in the relatively large spread of midlatitude winter ozone amounts in 
2004–2021 seen in Figure 8a, with individual years typically above or below the long-term mean, but note 
that low values in 2022 extend outside of this background variability. The wintertime SH mid-latitude ozone 
reduction is reproduced in the model (Figures 8b and 8d, below 30 hPa), with similar spatial and temporal 
patterns to those observed, but only about half the anomaly magnitude in the ensemble average. Note the lack 
of strong interannual variations in the individual model realizations in Figure 8b, due to a lack of subtropical 
QBO variability in these idealized model simulations (all 10 realizations are initialized with the same phase 
of the QBO). The large difference in ozone response between MLS and WACCM in the upper stratosphere 
(above 30 hPa, poleward of 60°S) is consistent with the streamfunction anomalies shown in Figure 7, which 
are computed from the values in 2022 minus climatology in MLS and from the 2022 volcano minus no volcano 
simulations in WACCM.

Figure 8.  Evolution of midlatitude stratospheric ozone after HTHH. (a) Time series of MLS observed ozone (in ppmv) at 35 hPa, 50°S–10°S, showing low ozone 
values in 2022 (red line) compared to other years. Gray lines show time series for 2004–2021, the black line is the climatology, and the orange line shows 35 hPa ozone 
for 2023. (b) Ozone at 35 hPa simulated in WACCM, comparing the control cases (black lines) and the SO2 + H2O cases (red lines). Fractional ozone anomalies (color 
shading, %) from (c) MLS and (d) WACCM simulation in August 2022. Regions of significant changes are hatched, as in Figure 4.
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The evolution of SH midlatitude ozone changes associated with HTHH is highlighted in Figure 9, which shows 
density-weighted ozone anomalies (in DU/km) over 50°–10° S from MLS data and WACCM SO2 + H2O simu-
lations. Observations show strong negative anomalies in the lower stratosphere that maximize during winter, and 
similar but weaker patterns are found in the model ensemble mean. There is a narrow layer of ozone increases 
above the lower level decreases seen in both observations and model in Figures 8a and 8b persisting through 
May 2023. The center or node of this vertical dipole pattern coincides in altitude with the climatological ozone 
maximum near 25 km, so that these ozone changes are consistent with the weakening of the midlatitude BDC 
discussed above. The consistency on the timing of circulation changes and LS ozone losses, which both maximize 
during SH winter (e.g., temperature anomalies in Figure 4 and ozone losses in Figures 8 and 9), is a fingerprint 
of substantial contribution due to changes in transport. This aligns with the conclusion in Santee et al. (2023) 
that no appreciable chemical ozone loss occurred in SH midlatitude. We note that while ozone changes in the 
SO2 + H2O WACCM simulations result from a combination of transport and chemistry effects, it is not simple to 

Figure 9.  Time-height sections of ozone density anomalies (units: DU/km) averaged over 10–50°S, showing results from 
(a) MLS observations and (b) WACCM model simulations (ensemble average SO2 + H2O minus control). Hatched regions 
denote significance, as in Figure 4.
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separate dynamical and chemical contributions in our coupled simulation. Complementary studies using Speci-
fied Dynamics WACCM (SD-WACCM) may help quantify the importance of the different chemical and dynam-
ical processes affecting the midlatitude ozone loss (Zhang et al., 2023).

3.5.  Antarctic Stratospheric Ozone

Anomalous ozone changes during 2022 are also found associated with the Antarctic ozone hole (Figures 10a 
and 10b), where variability is tied to polar stratospheric cloud (PSC) and aerosol amounts together with cold 
temperatures that generate photochemically active chlorine (Solomon et al., 1986; Zhu et al., 2017). In the model, 
springtime polar ozone losses are enhanced by HTHH aerosols that reach the polar stratosphere (red contours in 
Figure 10c), in combination with anomalously cold temperatures from circulation effects that enhance reactive 
chlorine chemistry. The combined effects of SO2 + H2O lead to net losses of ∼15 DU compared to control runs 
amid substantial variability in the polar region (Figure 10d), and comparisons with SO2 only simulations (blue 
lines in Figure 10d) show that most of the polar ozone losses are due to the impact of HTHH aerosols. Time series 
in Figure 9d show that the ozone loss rates accelerate in September, during the formation of the ozone hole. MLS 
observations show a relatively deep ozone hole in October 2022 (Figures 10a and 10b), but differences with 
previous years are only apparent during and after October; this detail is different from the model behavior, where 
differences are already noticeable in September. The bias may come from comparing the anomaly from 2004 
to 2021 climatology versus the anomaly from control runs. We note that, while the HTHH aerosols penetrated 
across the bottom of the polar vortex and provided more surface area to promote heterogenous chemistry in the 
model (Figure 1e), it is unclear if this behavior occurred in the real atmosphere because enhanced polar aerosol 
extinction in the OMPS data (e.g., Figure 1b) could simply reflect the occurrence of polar stratospheric clouds. 
In any case, the observed Antarctic ozone remains near record low levels during SH spring (October-December 

Figure 10.  (a) Fractional ozone anomalies (%) from MLS in October 2022. Hatched regions indicate where the 2022 anomalies are outside the range of all variability 
during 2004–2021. (b) MLS observations of polar cap (82°S–60°S) ozone column over 11–22 km in 2004–2022. (c) Similar to (a) but modeled October ozone changes 
in SO2 + H2O minus control simulations. Hatched regions mark the grid points for which the changes exceed the 95% significance level according to Student's t-test. (d) 
Similar to (b) but corresponding modeled results comparing control, SO2 + H2O and SO2 only simulations.
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in Figure 10b), rivaling other recent years with enhanced polar aerosols due to volcanic eruptions such as the 
Calbuco volcanic eruption in 2015 (purple line in Figure 10b, Solomon et  al., 2016; Stone et  al., 2017; Zhu 
et al., 2018) and smoke from wildfires (blue line in Figure 10b, Australian bush fires in 2020 persisting into 2021; 
Rieger et al., 2021).

4.  Conclusion
Satellite measurements demonstrate persistent perturbations in stratospheric temperatures and circulation follow-
ing the HTHH eruption, including influences on the seasonally-evolving polar vortex, planetary waves and 
Brewer-Dobson circulation. Global chemistry-climate model simulations forced by HTHH inputs can track the 
evolving H2O and aerosol plumes, and the modeled volcanic responses in temperatures and circulation in the SH 
are similar to the time-evolving patterns of the observed behavior. This agreement suggests that the observed strat-
ospheric changes are a fingerprint of the forced global-scale response to the HTHH eruption. Several realizations 
have strong responses in temperature and circulation as large as that observed in 2022, however, the ensemble 
average forced model responses are only about half the magnitude of observed anomalies in 2022. These differ-
ences are likely related to large stochastic variability due to wave-mean flow coupling during SH winter, evident 
in model simulations (Figure 6) and are not negligible compared to the HTHH forcing. Comparison of control 
and HTHH model results (Figure 6) suggests that the HTHH forcing biases pushed the system toward a balance of 
weak wave fluxes and a cold/strong polar vortex, although the dynamical details are not well understood. Sensitiv-
ity experiments further demonstrate that the combined effects of both H2O and SO2 (sulfate aerosol) are important 
in these simulations, as smaller and insignificant changes are found in individual H2O or SO2 forcing experiments.

MLS observations show anomalous low ozone in the SH winter midlatitude lower stratosphere following HTHH; 
although some component of these low values is probably related to the phase of the QBO (as evidenced by 
out-of-phase changes over the equator), the low 2022 values are outside of all previous variability. The WACCM 
SO2 + H2O simulations capture the key spatial and temporal patterns of these midlatitude ozone changes, argu-
ing for an HTHH attribution of the observed low values. Large ozone decreases during 2022 are also found 
associated with the Antarctic ozone hole. While it is not simple to separate ozone changes due to transport and 
chemistry effects in our coupled model simulations, the spatial and temporal fingerprints suggest a dominant 
contribution from transport effects at midlatitudes, and from heterogeneous chemistry in the Antarctic. Future 
studies using models constrained with nudged meteorological fields may help separate the influence of chemis-
try from dynamics. The WACCM simulations show that aerosol transported to the Antarctic lower stratosphere 
combined with a circulation-induced cold polar vortex contributed to low Antarctic ozone levels in the model 
during September-December (i.e., a relatively deep ozone hole). Observed Antarctic ozone levels were rela-
tively low during October-December 2022 (Figure 10b), consistent with the model behavior, although there is 
no evidence of anomalous amounts of reactive Cl species inside the vortex (Manney et al., 2023). The 2022 SH 
ozone losses caused by HTHH are transient effects and should not impact the long-term ozone recovery expected 
from the Montreal Protocol. In addition, the simulations show no significant sea surface temperature change 
between the all-forcing runs and the control runs across 10 ensembles until early 2023 (not shown). However, 
the sustained water vapor enhancement due to HTHH eruption might be expected to affect surface climate in the 
upcoming years. The HTHH eruption provides a remarkable natural experiment for validating a fully coupled 
chemistry-climate model and provides confidence in ensemble forecast simulations, such as those performed 
here.

Data Availability Statement
[Dataset] ERA5 meteorological products are available from the Copernicus Climate Data Store. See ERA5 (2023). 
[Software] CESM2/WACCM6 is an open-source community model, which was developed with support primarily 
from the National Science Foundation. See Gettelman et al. (2019).
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