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Abstract We downscale Santa Ana winds (SAWs) from eight global climate models (GCMs) and validate
key aspects of their climatology over the historical period. We then assess SAW evolution and behavior
through the 21st century, paying special attention to changes in their extreme occurrences. All GCMs project
decreases in SAW activity, starting in the early 21st century, which are commensurate with decreases
in the southwestward pressure gradient force that drives these winds. The trend is most pronounced in the
early and late SAW season: fall and spring. It is mainly determined by changes in the frequency of SAW
events, less so by changes in their intensity. The peak of the SAW season (November–December–January) is
least affected by anthropogenic climate change in GCM projections.

Plain Language Summary Dry and gusty Santa Ana winds (SAWs) drive the most catastrophic
wildfires in Southern California. Their sensitivity to the changing climate has been a matter of
uncertainty and debate. We have assessed the response of SAW activity to global warming and describe these
results in detail here. The overall decrease in SAW activity robustly projected by downscaled global
climate models is strongest in the early and late seasons—fall and spring. SAWs are expected to decrease
least at the peak of their season approximately December. Importantly, decreased SAW activity in the future
climate is driven mainly by decreased frequency rather than the peak intensity of these winds. These
results, together with what we know from recent literature about how precipitation is projected to change in
this region, suggest a later wildfire season in the future.

1. Introduction

The wildfire season in coastal Southern California (SoCal: bounded by Southern California's Coast Ranges
from the Transverse Ranges to the north to the Peninsular Ranges to the south) displays a unique seasonal-
ity. While the rest of western North America is mainly susceptible to wildfires during summer, SoCal's fire
season peaks, historically, in the fall (Kolden & Abatzoglou, 2018). This timing results from a climatic coin-
cidence of two seasonal factors: the long dry summer defining this Mediterranean climate regime and the
dry gusty downslope winds, whose season starts in the fall when vegetation is at its seasonal driest. The
Santa Ana winds (SAWs; Guzman‐Morales et al., 2016; Hughes & Hall, 2010; Raphael, 2003), rooted in cold
air masses over the elevated Great Basin, are notorious for fanning California's largest wildfires.
SAW‐fanned wildfires typically rage in the sloping coastal backcountry, with its encroaching wildland‐
urban‐interface (WUI), where the gusty downslope SAWs are strongest (Guzman‐Morales et al., 2016;
Moritz et al., 2010) and ignitions are nearly always human caused (Kolden & Abatzoglou, 2018; Syphard
& Keeley, 2015). While the local impacts of these wildfires are devastating (e.g., Medina, 2017), smoke
blowing toward the densely populated coastal zone exposes much larger and diverse populations to remote
respiratory health impacts (Delfino et al., 2009).

The largest wildfire in SoCal's recorded history, the Thomas Fire, was recently fanned by SAWs and raged
throughmost of December 2017 into January 2018, until the first significant rains of the water year occurred,
causing debris flows from the steep scorched landscape (Boyle, 2018; Oakley et al., 2018). Beyond the dura-
tion and magnitude of this fire, its most unusual feature was its December timing. Following a bone dry fall
and early winter, the vegetation was desiccated in December 2017, allowing successive SAWs to fan the
Thomas Fire. Although SAW activity peaks in December (Guzman‐Morales et al., 2016), the vegetation is
typically no longer as flammable by then as several rain storms would have normally occurred by that late
into the wet season (Westerling et al., 2004). However, while enhancing extreme precipitation, climate
change is projected to decrease the frequency of precipitation events in California (Polade et al., 2014,
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2017), particularly in SoCal and especially in the shoulder seasons of fall and spring (Pierce et al., 2013). This
is expected to result increasingly more often in dry flammable fuels persisting into the peak of the SAW
season, therefore lengthening the wildfire season toward winter (Syphard et al., 2018). This reasoning is
predicated on the assumption of no significant change in future SAW activity. In this work, we examine
the validity of this assumption.

Guzman‐Morales et al. (2016, hereafter GM'16) developed a historical 65‐year catalog of hourly SAWs, vali-
dated them with available observations, analyzed their climatology and variability on different time scales,
and identified potential sources of seasonal predictability. GM'16 detected SAWs purely from wind speed
and direction. Although significant multidecadal variability was observed, this longest available record of
SAWs did not manifest trends attributable to anthropogenic causes.

Two studies directly addressed changes of SAWs in future climate projections. These studies provided
conflicting results. First, Miller and Schlegel (2006) assessed projected climatological monthly changes
of SAW occurrences as detected using large‐scale pressure gradient in two Climate Model
Intercomparison Project, Phase 3 (CMIP3; Meehl et al., 2007) global climate models (GCMs) forced by
low (B1) and high (A2) emission scenarios. Their results suggested a decline of SAW occurrences in
September but a significant increase in December, at the peak of the SAW season, in the last 30 years
of the 21st century relative to the equivalent period of the 20th century. However, large variation in those
results was identified in the early and middle parts of the 21st century between models and emission sce-
narios. The second study by Hughes et al. (2011) used one dynamically downscaled CMIP3‐generation
GCM under the A1B emission scenario to generate a local gap‐flow‐based projection of SAWs. This study
reported an all‐season (October–March) mean decrease of ~20% in the number of annual Santa Ana days
by mid‐21st century, of which only October and February had a statistically significant change. This
anthropogenic change was attributed to the disproportionate warming of the cold pool of air over the
Great Basin relative to that of the coastal marine air mass, attenuating the potential temperature gradient
between the Great Basin and the Pacific Ocean off the coast of California, which is an important thermo-
dynamic mechanism for the formation of SAWs (Hughes & Hall, 2010). Additionally, two related studies,
Yue et al. (2014) and Jin et al. (2015) addressed the SoCal wildfire regime change, explicitly estimating
changes in temperature, precipitation, humidity, and SAWs as climatic drivers for 21st century projec-
tions of increased total burned area. Their results were obtained with different methods applied to differ-
ent sets of GCMs and CMIP experiments, but were only partially due to increased SAW activity in
the fall.

The inconsistencies and incompatibilities in projected SAW trends over the 21st century identified by the
abovementioned studies seem to arise, at least partially, from differences in the approach used to define,
detect, and downscale SAWs as well as from the limited choice of GCMs in some studies. In this work, we
construct future projections of SAWs based on a dynamically trained statistical downscaling of daily winds
over the SoCal domain in a set of eight GCMs. In addition to their prior validation over California, we
validate these GCMs, with respect to their ability to reproduce key features of SAW (sections 3.1 and 3.2).
Using these downscaled GCMs, we provide a description of future SAW behavior focusing on changes
in SAW activity, reflecting changes in frequency, intensity, and seasonality, as well as in extreme SAW
events (section 3.3). We then examine the synoptic cause of projected SAW trends—trends in the pressure
gradient (section 3.3) and conclude by discussing results in the context of SoCal's changing wildfire
regime (section 4).

2. Data and Methods
2.1. Downscaling Santa Ana Winds: A Summary

We utilize coarse‐resolution winds fromNational Centers for Environmental Prediction/National Center for
Atmospheric Research Global Reanalysis 1 (R1; Kalnay et al., 1996) and dynamical downscaled winds from
the California Reanalysis Downscaling at 10 km (CaRD10; Kanamaru & Kanamitsu, 2007; Kanamitsu &
Kanamaru, 2007) to train the statistical downscaling of winds to a 10 × 10‐km grid. The mesoscale
CaRD10 product is the explicit dynamical translation of R1 large‐scale circulation via the Regional
Spectral Model (Kanamaru et al., 2005).
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Prior to the statistical downscaling of fine‐resolution winds, we use Canonical Correlation Analysis
(Hotelling, 1935) in its diagnostic mode (Guirguis et al., 2014; Roca & Gershunov, 2004; Schwartz et al.,
2014), to extract the relevant patterns of association (Canonical Correlates, CCs) between coarse‐ (R1) and
fine‐ (CaRD10) resolution winds. Then, we examined the variability explained by the CCs as well as their
resemblance with SoCal wind regimes (Conil & Hall, 2006). Subsequently, the statistical downscaling model
was constructed and optimized based on the prognostic application of Canonical Correlation Analysis
(Alfaro et al., 2006; Barnett & Preisendorfer, 1987; García‐Bustamante et al., 2012; Gershunov & Cayan,
2003) to the R1 (predictor) and CaRD10 (predictand) wind fields.

The dynamically trained statistical downscaling approach, statistical model optimization, downscaled his-
torical daily vector wind fields over SoCal, and their validation are described in detail in supporting informa-
tion sections S1–S4. We refer to this downscaling of R1 winds as R1D. Extending the SAW detection
methodology of GM'16 to daily winds and applying it to wind vectors thus downscaled onto the 10 × 10‐
km CaRD10 grid from R1 is also described in supporting information section S5. We then downscaled daily
winds from historical and RCP8.5 future GCM surface winds regridded to the R1 grid over SoCal and derived
SAWs from them in a similar manner. These local SAWs were summarized regionally as the Santa Ana
Wind Regional Index (SAWRI). SAWRI is the daily mean SAW speed computed over the grid cells within
the SAW domain (GM'16) and therefore is expressed in meters per second. For complete description of local
SAW detection and SAWRI derivation, see GM'16. Unless otherwise stated, although 10 × 10‐km gridded
SAWs are available, in what follows, we quantify Santa Ana wind activity using SAWRI.

2.2. Selection and Validation of GCMs

The eight GCMs (Table S1) were those providing the requisite daily data among the 10 GCMs previously
selected, from a total of 31 CMIP5 GCMs, for their realism in reproducing several key features of the
California climate (Lynn et al., 2015). We then assessed the GCMs' ability to reproduce SAWRI by quantify-
ing its behavior, for example, frequency, intensity, seasonality, timing, and sensitivity to its synoptic driver—
the pressure gradient force (PGF)—over the historical period by comparison to SAWRI derived from R1D
and CaRD10 winds. Table S1 summarizes these validation results for the eight GCMs, which are discussed
in section 3.2. The validation helps us to interpret anthropogenic trends in projected SAW activity. Unless
otherwise stated, SAWActivity is defined as the accumulation of SAWRI over the relevant period in question
(e.g., month, year). We focus on projected changes occurring in two time periods: the first and second halves
of the 21st century, 2000–2049 and 2050–2099, respectively, relative to the last half of the 20th century, 1950–
1999.

2.3. Quantifying SAW Sensitivity to the Synoptic Pressure Gradient Force

We computed daily sea level pressure (SLP) anomalies in the synoptic domain for R1 and GCMdata sets dur-
ing the historical validation period shared by R1 and the GCMs (1950–2005). Associated pressure gradient
force (PGF) fields were derived as the negative of the SLP gradient in the x and y direction:

PGFxy ¼ PGFx þ PGFy ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δp
Δx

2

þ Δp
Δy

2
s

We composited SLP and PGF fields on SAW days as identified by SAWRI in the corresponding R1 and GCM
products (Figure 1). Further, we produced maps of correlations between SAWRI and the PGF evaluated geo-
graphically (Figure S1). The resultant vector correlation at each grid cell in the large‐scale domain is calcu-
lated as the vector sum of the SAWRI correlations with the PGF components in the x and y (Lon and
Lat) directions:

rPGFxy;SAWRI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rPGFx;SAWRI

2 þ rPFGy;SAWRI
2

q

The subregion where rPGFxy, SAWRI values are above the 95th percentile of correlations across the synoptic
domain is continuous, coincides well with SAW geographically, and defines the region of maximum PGF‐
SAW association in all data sets (highlighted in red arrows on Figure S1). The spatial mean correlation in
this subregion is 0.72 in the R1 data set and ranges from 0.65 to 0.92 in GCMs (Figure S1). Daily average
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PGF over this SAW‐relevant subregion (PGFr95) was retrieved for every SAW day in the historical validation
period. We then linearly related SAWRI and PGFr95.

3. Results
3.1. SAW Sensitivity to Synoptic Pressure Patterns

The SLP composite of SAW days from R1 shows a high‐pressure anomaly located over the northeastern
fringes of the Great Basin, centered at the intersection of Nevada, Utah, and Idaho (Figure 1, top left), tradi-
tionally considered the signature large‐scale SLP forcing of SAWs (Abatzoglou et al., 2013; Raphael, 2003;
Sommers, 1978). This SLP anomaly creates a southwestward PGF field over a region that covers most of
California, expanding from the San Francisco Bay Area to Northern Baja California. The average PGFr95
(highlighted in red arrows on Figure 1) during all SAW days amounts to 91 Pa/deg. Deriving downslope
SAWs from large‐scale circulation, that is, PGF, would require consideration of air masses, topography, ver-
tical katabatic acceleration, and friction terms; here, instead, we intend to develop a quantitative relation-
ship between a metric derived from large‐scale SLP anomaly patterns and regionally‐averaged SAWs
based on simplified synoptic‐scale forcing considerations, that is, circulation features that may be affected
by climate change.

All eight models reasonably reproduce a realistic SLP composite anomaly pattern and associated northeast-
erly PGF field over the relevant regional domain, that is, California and Northern Baja California (Figure 1)
during SAW days. The composite SLP anomaly shape variation between GCMs seems responsible for the

Figure 1. Sea level pressure (SLP) and pressure gradient force (PGF) composite anomaly maps during Santa Ana Wind
days. Contour lines delineate SLP anomalies, while gray arrows indicate associated PGF field. Red arrows mark the
region where correlation between PGF and Santa Ana Wind Regional Index is above the 95th percentile as shown in
Figure S1 in the supporting information. NCAR = National Center for Atmospheric Research; NCEP = National Centers
for Environmental Prediction.
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variations in PGF directions over the area of high correlations (r95). Despite these differences, the mean
PGFr95 associated with the SLP anomaly in GCMs is comparable (77.1–95.2 Pa/deg) to that manifest in
R1 (91 Pa/deg).

The pressure gradient force (PGFr95) explains 68% (r = 0.83) of the daily variability of SAWRI in the R1 data
set and between 40% and 67% (0.63 < r < 0.82) in GCMs. The linear fit between SAWRI and PGFr95 is shown
in Figure S2, and the associated correlation coefficients and slopes are summarized in Table S1. The quanti-
tative evaluation of SAWRI sensitivity to PGF in GCMs relative to R1 is further discussed in section 3.2,
whereas the SAWRI versus PGFr95 changes in the 21st century are addressed in section 3.3.

3.2. GCMs' Downscaled Performance in Reproducing SAWs

We follow in the footsteps of previous studies that assessed GCM ability to simulate synoptic weather fea-
tures (e.g., Gershunov & Guirguis, 2012; Payne & Magnusdottir, 2015). No GCM can be considered “best”
for realistically capturing all SAW features evaluated here. With respect to total seasonal SAW activity,
CNRM‐CM5, CMCC‐CSM, ACCESS1–0, and HadGEM2‐ES have negative bias, whereas CanESM2,
GDFLCM‐3, HadGEM2‐CC, and MIROC5 yield larger positive bias relative to R1 (Figure S3a). A closer
examination of SAW frequency and wind speed (or intensity, as summarized by SAWRI), which together
define total seasonal SAW activity, allows us to identify sources of bias in seasonal SAW activity for each
GCM. All models overestimate the frequency of SAW days but vary on the sign of intensity error (Figure
S3b and Table S1). CNRM‐CM5 and CMCC‐CSM overestimate frequency and underestimate SAWRI by a
similar degree yielding the closest mean total annual SAW activity and associated interannual variability
compared to R1 (see whiskers on Figure S3a). ACCESS1–0 and HadGEM2‐ES show larger underestimations
of SAWRI (−32% in both cases), corresponding to a larger negative bias in total annual SAW activity. By con-
trast, the positive bias of SAW activity from GDFL‐CM3 and HadGEM2‐CC is dominated by the overestima-
tion of SAW frequency, while intensity errors are remarkably small. Finally, CanESM2 and MIROC display
the least realistic performance with the highest overestimations of SAW frequency and intensity, which
result in the largest positive errors in annual SAW activity.

All GCMs generally reproduce SAW seasonality: monthly SAW activity ramping up through fall, peaking in
winter, and gradually declining by late spring (Figure S3c). All GCMsmanifest no or negligible SAW activity
over summer. ACCESS1–0 and HadGEM2‐ES display the most realistic seasonal cycle with the smallest
monthly SAW activity difference relative to R1D (21 and 18.5 m/s, respectively), estimated as the root
sum of squared differences across all months. By breaking down seasonal total SAW activity, again into fre-
quency and intensity, we observe that the amplitude differences in seasonality are dominated by wind speed
errors (Figure S4d), while deviation in shape is better explained by frequency errors (Figure S4c). This is, for
example, the case for the overestimation of SAW activity in fall for CMCC‐CMS and GDFL‐CM3. According
to R1D, the annual maximum SAW day tends to occur on December 31 ± 29 (1 standard deviation) days
(Figure 3d). CNRM‐CM5, and MIROC5 yield the closest timing falling within two days of what is recorded
historically, but display a larger spread.

In terms of SAWRI sensitivity to daily variations in PGF, HadGEM2‐CC, HadGEM2‐ES, and CanESM2 dis-
play the highest and most realistic correlations, with the PGF explaining between 60% and 67% of the daily
SAWRI variance. Differences in the linear fit slope (Table S1) show that HadGEM2‐CC and GDFL‐CM3
detect the most realistic magnitude of SAWRI response to PGFr95 variability, while HadGEM2‐ES and
ACCESS1–0 have the highest underestimation of the effect of PGF variations on SAWRI (flattest slopes).

In summary, there are no clear winners or losers among the models. Therefore, it is difficult to highlight a
subset of these eight GCMs when we consider projected changes in SAWs. Results of these validation exer-
cises, however, will help interpret elements of projected SAW changes by illuminating individual
model idiosyncrasies.

3.3. Projections of SAWs Through the 21st Century

GCMs project a decrease of total seasonal SAW activity starting during the first half of the 21st century
(Figure S5) and continuing during the last half century, when the reduction of SAW activity is projected
to be −18.5% ± 4.5% (mean change ±1 sd) on seasonal average. Meanwhile, the decrease of extreme SAW
activity (the strongest 10% of events) is about twice as large (−34.3% ± 9.2%); see Figure 2a. The reduction
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of SAW activity is explained by a larger reduction in SAW frequency than that in wind speed, according to
most models (Figure 2b). This is especially true for extreme SAWs, where the reduction in intensity is very
small (−0.81% ± 0.99%) relative to the reduction in frequency (−33.8% ± 9.9%).

In terms of seasonality, reduction of SAW activity is robust across all months and all GCMs (Figure 2c) with
very few exceptions: HadGEM2‐CC, CNRM‐CM5, CMCC‐CMS, and GDFL‐CM3 show increases of SAW
activity in September (+273%), October (+14%), November (+11%), and February (+45%), respectively.
However, the actual SAW activity detected in HadGEM2‐CC in September and in GDFL‐CM3 in
February is severely underestimated compared to the R1D historical record (Figure S3c), inflating any
changes expressed relative to climatology.

The GCM ensemble suggests that November, December, and January are projected to experience the smal-
lest decreases in SAW activity, in that order. Specifically, the following changes are projected (given as the
GCM ensemble mean ±1 sd):−5% ± 10% and−13% ± 11% for the first and second halves of the 21st century,
respectively, in November; −4% ± 8% and −11% ± 8% in December, and −12% ± 5% and −18% ± 5% in
January. Greater changes are projected for the tails of the SAW season, when, by the second half of the

Figure 2. Future projection of Santa Ana Wind (SAW) features. Changes are for the last half of the 21st century
(2045–2099) and are relative to the base historical period (1950–1999). (a) Percentage change of total seasonal SAW activity
for all SAW days (left) and extreme SAW days (right). (b) Percentage change of wind speed and frequency for all SAW
days (left) and extremes SAW days (right). (c) Percentage change of the SAW run seasonality. Thick black line
shows the global climate model ensemble mean and gray envelopes delineate ±1 standard deviation. Thick red line
corresponds to the all global climate models mean change of extreme SAWs. (d) Timing of maximum annual SAW day.
Changes for both the first and last halves of the 21st century are included in panel (d).
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century, the average reduction reaches −32 ± 24% (October) and −32% ±
14% (March) with a larger decrease in early season (September–October)
compared to late season (March–May). For extreme SAWs, we find amore
pronounced decrease overall with similar proportional distribution across
the season, that is, smallest decreases around the peak season in
November and December (−25%) with greater decreases early and late
in the season (Figure 2c). Our results are in general agreement with those
of Hughes et al. (2011) who showed a stronger decrease in SAW frequency
at the shoulders of their season (October and February) and an insignifi-
cant increase in January.

We find no agreement among GCMs regarding changes in mean timing of
annual maximum SAW day (Figure 2d), where the annual maximum
SAW day refers to the day with the highest regional wind speed of the sea-
son as given by SAWRI. GCMs do not show consistent model‐to‐model
changes toward a specific time of the season or consistent within‐model
tendency for the first and last half of the 21st century. It is noteworthy,
however; that the strength of themaximum annual SAWday shows a very
modest average decrease (−1.7% ± 2.9% and−5.4% ± 2.2%, during the first
and second halves of the century, respectively, (GCM ensemble mean ±1
sd) consistent with smaller wind speed reductions projected for extreme
SAWs as compared with average SAWs.

Lastly, for all GCMs, except CanESM2, the projected decrease in SAWRI is
associated with a decrease of PGFr95 regardless of the specific SAWRI‐

PGFr95 sensitivity (Figure 3). SAW‐associated PGF is not projected to clearly decrease in that model, while
SAW activity slightly decreases regardless. The other GCMs show a remarkable consistency in the cause
of projected decreases in SAW activity.

4. Discussion and Conclusions

In general, we found the ability of downscaled GCMs to represent SAWs to be reasonable overall, but some
models displayed serious problems with specific features of SAWs. Nonetheless, the agreement between
models on projected SAW changes was rather striking. We note that our study was limited to wind speed
and direction only. The other salient features of SAWs—humidity and temperature—were not considered
here. For winds, however, our results provide a consistent picture that provides important nuance
heretofore unavailable.

Overall, GCMs agree on the gradual decrease in SAW activity, particularly in the shoulder seasons of fall and
spring. The decrease in SAW activity is least pronounced during the winter peak of the SAW season. This
decrease, which appears to be gradual, that is, monotonic during the first and second halves of the 21st cen-
tury, but not yet clearly evident in the 20th century, is driven by a decreased PGF that is associated with
SAWs. This result is generally consistent with the conclusion of Hughes et al. (2011), who project decreased
SAW frequency as a result of the greater warming projected over the Great Basin compared to that over the
northeastern Pacific Ocean. We further find that the decrease in SAW activity is driven most strongly and
consistently by decreased frequency of SAWs, particularly in the shoulder seasons. Projected intensity, that
is, wind speed, also tends to decrease consistently, but to a much lesser degree. This is especially true for
extreme SAWs, whose frequency is projected to decrease strongly (by 34 ± 10%, i.e., mean ±1 sd) by the last
half of the 21st century, but whose intensity is hardly projected to change.

A robust result that is salient for the timing of the wildfire season is that the SAW season is narrowing
around its natural peak in December, when changes in SAW activity are projected to be minimal (−4% ±
8% and −11% ± 8%, for the first and second halves of the 21st century, respectively). November and
January SAWs are also projected to become somewhat less active: by −5% ± 10% and −13% ± 11% in
November, and by −12% ± 5% and −18% ± 5% in January. The strongest decreases in SAW activity are pro-
jected for the early SAW season (68% and 30%, respectively, on ensemble average for September and October
in the second half of the century) and for the late season (35% in April and 50% in May). The expectation,

Figure 3. Santa Ana wind sensitivity to changes in pressure gradient force.
Crosses are differences with respect to R1D historical mean (black cross at
the origin). Full and empty circles denote changes projected for the first and
second halves of the 21st century, respectively. SAWRI = Santa Ana Wind
Regional Index.
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therefore, is that climate change may result in a weakening contribution of SAWs to the traditional SoCal
wildfire season's October peak. However, we may expect an increase in late‐season, November–
December–January, wildfires given the projected minimum decrease of SAW activity during this traditional
peak of the SAW season and the independent projection of decreased fall precipitation (Pierce et al., 2013;
Swain et al., 2018). Importantly, the intensity of extreme SAWs during the peak of the SAW season is not
really expected to diminish. The slightly diminished SAWs (mainly in their frequency) in December, for
example, will still tend to be stronger and more frequent in the late 21st century compared to historical
SAWs in October, the historical peak of the wildfire season. In other words, the projected precipitation
regime and SAW changes suggest a tendency for migration of the SoCal wildfire season peak from
October toward December. Similar projected changes in precipitation and SAW regimes likely reflect the
influence of poleward expanding subtropical subsidence (Previdi & Liepert, 2007; Quan et al., 2014), which
pushes synoptic activity—that drives both precipitation and SAWs—poleward, particularly in the
shoulder seasons.

In light of these projections, the largest wildfire in SoCal history (Thomas Fire) occurring in December 2017
and fanned by back‐to‐back SAW events is likely a harbinger of wildfire seasonality we would expect to
experience more often in the future. In December, back‐to‐back SAWs are most probable providing oppor-
tunities for wildfires to burn longer and bigger. In the future, the probability of back‐to‐back events will
diminish somewhat, but will still remain much stronger in December than it ever was in October or even
November. The higher year‐to‐year precipitation volatility (Polade et al., 2014) translates into higher
probability of extremely wet winters followed by extremely dry winters (Swain et al., 2018) and additionally
suggests a boost to the availability of dry fuels, bolstering the later peak in future wildfire activity, that is,
nudging the extremes of future later fires to be more intense and, therefore, more extensive. On the other
hand, the progressively less frequent SAWs in early to middle fall (September–October) would result in less
fuel desiccation via SAWs themselves, which remains to be quantified. Obviously, the above expectations
about anthropogenically driven changes in future wildfire activity need to be evaluated in a more robust
framework involving precipitation and SAW projections including humidity and temperature, in addition
to projected ecosystem changes, as well as population and wildland‐urban‐interface dynamics, all as
comprehensive inputs into wildfire risk models. Such comprehensive models could then be used to test
our hypotheses about the future of wildfire seasonality and dynamics in SoCal as well as to begin assessing
future impacts of wildfires on society.
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