File

$$
\text { JUNE } 1990
$$

REPORT OF A MARINE MAMMAL SURVEY OF THE EASTERN TROPICAL PACIFIC ABOARD THE RESEARCH VESSEL McARTHUR JULY 29-DECEMBER 7, 1989

P. Scott Hill
Alan Jackson
Tim Gerrodette

NOAA-TM-NMFS-SWFC-143

NOAA Technical Memorandum NMFS

The National Oceanic and Atmospheric Administration (NOAA), organized in 1970, has evolved into an agency which establishes national policies and manages and conserves our oceanic, coastal, and atmospheric resources. An organizational element within NOAA, the Office of Fisheries is responsible for fisheries policy and the direction of the National Marine Fisheries Service (NMFS).

In addition to its formal publications, the NMFS uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series, however, reflect sound professional work and may be referenced in the formal scientific and technical literature.

REPORT OF A MARINE MAMMAL SURVEY OF THE EASTERN TROPICAL PACIFIC ABOARD THE RESEARCH VESSEL McARTHUR JULY 29-DECEMBER 7, 1989
 P. Scott Hill
 Alan Jackson
 Tim Gerrodette
 National Oceanic and Atmospheric Administration
 National Marine Fisheries Service
 Southwest Fisheries Center
 La Jolla, California 92038

NOAA-TM-NMFS-SWFC-143
U.S. DEPARTMENT OF COMMERCE

Robert A. Mosbacher, Secretary
National Oceanic and Atmospheric Administration
John A. Knauss, Under Secretary for Oceans and Atmospheric
National Marine Fisheries Service
William W. Fox, Jr., Assistant Administrator for Fisheries

CONTENTS

Page
List of Tables ii
List of Figures iii
Survey Objectives 1
Materials and Methods 2
Study Area and Itinerary 2
Scientific Personnel 2
Marine Mammal Species Surveyed 3
Equipment 3
Duty Stations 4
Observer Teams and Rotation 5
Data Collection Procedures 5
Data Analyses 6
Results 7
Summary 8
Acknowledgments 9
Literature Cited 10
Tables 11
Figures 114

LIST OF TABLES

PageTable 1. Sea state conditions measured by the Beaufortscale (from Bowditch, 1966)11
Table 2. Daily searching effort recorded in the eastern tropical Pacific aboard the McArthur during July 29 through December 7, 1989............................ 12
Table 3. Marine mammal sightings, classified by species code, encountered in the eastern tropical Pacific during July 29 through December 7, 1989............ 60
Table 4. Marine mammal school size estimates for each observer, classified by species code, for all sightings encountered in the eastern tropical Pacific during July 29 through December 7, 1989... 99
Table 5. Summary of marine mammal sightings encountered in the eastern tropical Pacific during July 29 through December 7, 1989110
Table 6. Summary of distance searched, large dolphin schools detected, and rates of encountering dolphins by observers aboard the McArthur in the eastern tropical Pacific during July 29 through December 7, 1989112
Page
Figure 1. Tracklines surveyed by the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific. 114
Figure 2. Research ship marine mammal daily effort record 115
Figure 3. Research ship marine mammal sighting record 116
Figure 4. Vertical and horizontal sun position categories 117
Figure 5. Research ship marine mammal sighting record continuation sheet 118
Figure 6. Offshore spotted dolphins detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific 119
Figure 7. Eastern, whitebelly and unidentified spinner dolphins detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific. 120
Figure 8. Common dolphins detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific 121
Figure 9. Striped dolphins detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific 122
Figure 10. Bottlenose dolphins detected from aboard the NOAA Ship MCArthur from July 29 through December 7, 1989, in the eastern tropical Pacific. 123
Figure 11. Risso's dolphins detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific 124
Figure 12. Rough-toothed dolphins detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific 125
Figure 13. Pilot whales detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific 126
Figure 14. Sperm and dwarf sperm whales detected from aboard the NOAA Ship MCArthur from July 29 through December 7, 1989, in the eastern tropical Pacific 127
Figure 15. Unidentified rorquals, Bryde's, blue, humpback and sei whales detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific............ 128Figure 16. Unidentified beaked, Cuvier's beaked,mesoplodon, and bottlenose whales detectedfrom aboard the NOAA Ship McArthur from July29 through December 7, 1989, in the easterntropical Pacific129Figure 17. Killer and false killer whales, Fraser'sdolphins, melon-headed and pygmy killer whalesand Pacific white-sided dolphins detected fromaboard the NOAA Ship McArthur from July 29through December 7, 1989, in the easterntropical Pacific..130
Figure 18. Unidentified dolphins detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific 131
Figure 19. Unidentified small whales, unidentified whales, unidentified large whales and unidentified cetaceans detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropicalPacific132

P. Scott Hill
Alan Jackson
and
Tim Gerrodette

In 1984, as a result of an amendment to the Marine Mammal Protection Act of 1972, the National Marine Fisheries Service (NMFS) was mandated to conduct a research program to monitor trends in the abundance of stocks of dolphins in the eastern tropical Pacific (ETP). These dolphins are killed incidentally during fishing operations by the U. S. purse seine fishery for yellowfin tuna (Thunnus albacares). In 1986, the Southwest Fisheries Center (SWFC) of the NMFS initiated a six-year program to monitor these stocks of dolphins. In the first three years of the program (1986 through 1988), two surveys of marine mammal populations in the ETP were conducted concurrently each year aboard the National Oceanic and Atmospheric Administration vessels David Starr Jordan and McArthur. The surveys lasted 120 days each. In 1989, the fourth pair of surveys was conducted during the same time period and using the same vessels.

In this report, we describe the experimental procedures used during the 1989 surveys and we present summaries of the distance searched and marine mammals encountered from aboard the McArthur (Cruise AR-89-03; SWFC Observer Cruise 1268). A separate report of the David Starr Jordan cruise has been published by Hill et al. (1990). A report of environmental data collected during the survey is reported by Lierheimer et al. (1990).

SURVEY OBJECTIVES

The primary objective of the cruise was to collect information to calculate relative abundance of dolphin species in the ETP that are taken incidentally by the purse seine fishery for yellowfin tuna. Specific objectives were to collect information to:

1. estimate school density, school size, and species composition of each species taken by the fishery;
2. investigate the physical and biological environment of the affected species; and
3. contribute to on-going U.S. and international programs investigating oceanography and ocean-atmosphere interactions in the ETP.

MATERIALS AND METHODS

Study Area and Itinerary

The McArthur traversed predetermined tracklines in the ETP from July 29 through December 7, 1989 (Figure 1), with port calls in Hilo, Hawaii; La Libertad, Ecuador; and Puerto Caldera, Costa Rica. The itinerary of the vessel included four segments or effort legs:

Leg 1.

Departed	San Diego	July 29
Arrived	Hilo	August 26

Leg 2.

Departed	Hilo	August 31
Arrived	La Libertad	September 30

Leg 3.

Departed Arrived

La Libertad Puerto Caldera

October 5
November 3

Leg 4.

Departed Arrived

Puerto Caldera November 8 San Diego December 7

The McArthur also conducted bird censuses on the Archipelago de Colon (Ecuador) and on Isla del Coco (Costa Rica).

Scientific Personnel

Cruise Leaders
Elizabeth Edwards, SWFC
Scott Hill, NOAA Corps, SWFC
Identification Specialists
Scott Benson, SWFC 1-2
Richard LeDuc, SWFC 1-2
Gary Friedrichsen, SWFC 3-4
Scott Sinclair, SWFC 3-4
Observers
James Carretta, SWFC 1-2
James Cotton, SWFC 1-2
Carrie Fried, SWFC 1-2
Richard Rowlett, SWFC 1-2

Sallie Beavers, SWFC 3-4
William Irwin, SWFC 3-4
Susan Kruse, SWFC $\quad 3-4$
Brian Smith, SWFC 3-4
Monica Echegaray, Peru 3

Bird Census Specialists

Donald Roberson, Contractor 1-4
Robin Roberson, Contractor 1-4
Oceanographic data were collected by the McArthur survey department personnel.

Marine Mammal Species Surveyed
During the survey, the observers recorded information on all species of whales and dolphins sighted throughout the cruise. However, encounter rates are presented only for dolphin species.

Equipment
The McArthur, commissioned in 1966, is 53.3 m in length, has a beam of 11.6 m , and has a 3.7 m draft. During the surveys, the vessel maintained a cruising speed of approximately $18.5 \mathrm{~km} / \mathrm{hr}$.

Several pieces of equipment were used to gather data. The geographic position of the vessel was recorded periodically and at the time of a marine mammal sighting using the vessel's Satellite Navigation System (SAT NAV). Marine mammals were detected with port and starboard pedestal mounted 25X Fuginon ${ }^{1}$ binoculars and a variety of hand-held 7-50x binoculars. The glasses were mounted on the upper deck approximately 10.7 m above the sea surface. Surface temperature and salinity, fluorescence (chlorophyll), and temperature-depth profiles were obtained using a thermosalinograph, fluorometer, and expendable bathythermographs (XBTs), respectively. Discrete conductivity and temperature-depth profiles were also obtained using conductivity-temperature-depth (CTD) probes.

The bearing and radial distances of marine mammals from the vessel were calculated using two methods. The first method was the use of estimates of the bearing and radial distance of a school from the vessel, which were recorded by the observers using a 360° graduated washer attached to the base of the 25 X binoculars and graduated reticles enclosed in the right eyepiece of the binoculars.

[^0]The second method utilized the Computer Assisted Sighting Technology (CAST) system which used information from several sensors to measure sighting angles and then to calculate radial distances. A CAMAC ${ }^{1}$ computer collected data from various sources: the vessel's course from the gyroscope; the electronically encoded train angles of the 25 X binoculars; a measurement of the relative motion of the vessel from a pitch-roll sensor; speed from the speed log; and information concerning survey status, such as identification of observers occupying survey positions from data pads located on the flying bridge. An IBM-compatible computer, which was interfaced with the CAMAC, was then used to process information to determine the sighting angle to the cue. Successive sighting angles, recorded as the vessel traveled along the trackline, were used to calculate radial distances. Analyses of CAST data will be presented in a separate report.

A 35 mm F-1 Canon ${ }^{1}$ camera with motor drive was used to photograph animals to aid in stock and species identification. The system included $400 \mathrm{~mm}, 70-210 \mathrm{~mm} z 00 \mathrm{~m}, 50 \mathrm{~mm}$, and 28 mm lenses. Some observers also used personal camera equipment to photograph sightings. Animals were also recorded on 1.27 cm video tape using a Panasonic ${ }^{1}$ VHS recorder and a Panasonic camera equipped with telephoto lens.

Duty Stations
Three duty stations were used during the survey, with observers rotating through each station.

1. Left Binocular - The port-side observer used a 25X binocular, mounted on the port side of the vessel, to scan the ocean for marine mammal sighting cues. The major area of responsibility for this observer was from the midpoint of the trackline to abeam the port side of the vessel and outward to the horizon or to the extent possible with prevailing environmental conditions.
2. Right Binocular - The starboard observer used a 25 X binocular, mounted on the starboard side of the vessel, to search from the midpoint of the trackline to abeam the starboard side of the vessel, and outward to the horizon or to the extent possible with prevailing environmental conditions. Observers in the left and right positions frequently searched up to 10° on the opposite side of the trackline.
3. Recorder - The recorder's duties were to transcribe effort data at regular intervals, to make notes of information pertaining to each sighting, and to search the trackline adjacent to the vessel with hand held binoculars for schools not detected by the observers on the 25 X glasses.

Observer Teams and Rotation
Two teams of three observers each alternately occupied the three duty stations. Each team was on duty for a two-hour shift. During each shift, observers spent approximately equal time occupying each duty station. Teams alternated standing the first watch of the day.

Two of the six observers, one on each team, were experts in identifying marine mammals. Team composition remained constant during the entire survey. Team members rotated between the duty stations and teams rotated on and off duty without interrupting searching effort. Observers aboard the Jordan and McArthur switched vessels after the second leg, allowing school size estimates for all observers to be calibrated with the ship-based helicopter on the Jordan.

Data Collection Procedures

A typical day's searching activity began at sunrise, approximately 0630 hours local time, and ended at sunset, approximately 1830 hours local time. The searching procedure was initiated when observers were occupying the duty stations and a recorder was in place to record information on the Research Vessel Effort Form (Figure 2). Except for approximately two to three hours per night when oceanographic data were collected, the vessel maintained its speed and course between sunset and sunrise to provide wider spatial distribution of searching effort. on approximately two-thirds of the nights, the McArthur was forced to steam at a slightly reduced speed in order to conserve fuel.

When a sighting cue (marine mammals, birds, splashes, etc.) was detected, it was determined whether marine mammals were present and if the sighting was appropriate for tracking using the CAST system. Schools that were not tracked included whales, dolphins detected close to the vessel or at distances greater than 5.6 km lateral to the vessel, small schools of dolphins (<15 animals), and schools detected during poor sighting conditions. If tracking was appropriate, the searching effort was terminated and the observer initiated tracking by turning on a switch attached to the binocular stand. With the vessel maintaining course and speed, and with the school in the field of view of the binoculars, the CAST system recorded successive bearings from the vessel to the animals. After approximately 8 minutes the vessel was directed towards the school and the tracking sequence continued for another 8 minutes. When the target was not in the field of view, the switch was turned off until the target was again sighted. The tracking procedure was terminated if the target was lost from view and not resighted, or if the cue was found to be inappropriate for tracking. All marine mammal schools, when possible, were approached to obtain estimates of school size and species composition. The searching mode was
resumed after the vessel returned to its original course and speed and the observers resumed searching for other sighting cues.

During each marine mammal sighting, the recorder collected data necessary to complete Research Vessel Effort and Research Vessel Sighting forms (Figure 3). Definition of each data element is given by Ralston ${ }^{2}$. Criteria for assigning sun position and sea state conditions are given in Figure 4 and Table 1, respectively. Observers recorded bearing and range to the mammals using the 360° washer and reticles etched into the right eyepieces of the 25 power binoculars. The reticle measurements were converted to km using

$$
a=0.003942 \tan (\arctan (45242.52)-0.001088 r),
$$

where a equals radial distance in km and r denotes the number of reticles below the topmost reticle. Values in this equation were calculated by Barlow (per. comm.) using an equation presented by Smith (1982) and data collected during previous research vessel cruises.

Each observer who had a good view of the school independently recorded in his or her logbook high, low and best estimates of school size and a determination of species composition. At no time were the observers allowed to discuss their estimates of school size and species composition. This procedure assured independence and consistency of each observer's data, and will allow individual correction factors to be developed from aerial photographs. On a daily basis, the Cruise Leader (chief of the scientific party on the vessel) collected the individual logbooks and transcribed observer estimates of school size and species composition to complete the Research Vessel Sighting Forms.

However, all available observers did discuss species identification and animal behavior, and a consensus was entered on - the Research Vessel Sighting and Research Vessel Continuation Forms (Figure 5) shortly after the time of a sighting. Species identifications were validated when possible by photographing the school at close range using 35 mm and video cameras.

Data Analyses

Sea state conditions were grouped into "calm" conditions, without whitecaps (Beaufort numbers 0-2), or "rough" conditions, with whitecaps (Beaufort numbers 3-6). The presence of whitecaps was important in searching for sighting cues. Animal splashes could not effectively be used as a sighting cue during rough seas because whitecaps were easily confused with the animal splashes.

[^1]Visibility conditions were classified into "good" and "poor" categories. Poor visibility conditions were recorded when horizontal sun position was 12 and vertical position was 1, 2, or 3 , or when there were clouds together with fog or rain (Holt 1987). All other conditions were good conditions.

The study area was divided into four strata, with the sum of the four strata comprising the total study area (Figure 1). The sum of the three northern most strata (inshore, middle and west) constitutes the northern stratum and represents the range of the northern offshore stock of spotted dolphins (the species most impacted by the purse-seine fishery). Data were analyzed using information by stratum, summed over strata and pooled over strata.

The rate of encountering marine mammal schools was determined as the simple ratio of sightings detected per 1000 km searched. The variance of the encounter rate was calculated as

$$
\operatorname{Var}(n / L)=\left[\Sigma 1_{i}\left[\left(n_{i} / l_{i}\right)-(n / L)\right]^{2}\right] / L(R-1)
$$

where n equals the number of dolphin schools detected in the survey, L equals total thousands of km searched, l_{i} equals thousands of km searched during the ith day, n_{i} equals schools detected during the ith day, and R equals number of days searched.

Encounter rates were calculated for all dolphin schools that were detected during Beaufort states 0 through 6. Rates were calculated for these schools detected in the entire study area and for schools stratified by area, species, individual Beaufort numbers, calm and rough sea conditions, good and poor sun conditions, individual observers, and observer teams.

RESULTS

Data describing each leg of searching effort during the entire survey are summarized in Table 2. Information summarized for each marine mammal sighting encountered during the survey is presented in Table 3. The geographic positions of all schools detected during the survey are presented for each species category (code) in Figures 6 through 19. Observer estimates of school size are presented by species and subspecies in Table 4.

During the entire survey, observers searched $14,753 \mathrm{~km}$ and made 500 marine mammal sightings (Table 5). Dolphins were detected in 276 schools and whales were detected in 202 schools (22 schools contained both dolphins and whales). These included 13 species of dolphins and 17 species of whales.

Searching effort was conducted during Beauforts 0 through 6 conditions. Generally, effort was terminated shortly after the seas and wind attained a force of Beaufort 6, though at times Beaufort 6 conditions were workable. Effort was terminated at the discretion of the team leader and the cruise leader. While operating in the searching mode in the study area (Figure 1), $14,302 \mathrm{~km}$ were searched and 254 dolphin schools were detected. The overall rate of detecting schools in the study area was 17.76 schools/1000 km searched (Table 6).

Searching effort of the McArthur was distributed among all four strata, with the highest percentage of effort (34\%) occurring in the southern area (Table 6). The detection rates in the southern and middle strata were similar. The detection rate was lowest in the western area (Table 6).

Sea conditions in the study area were extremely rough. only 5% of the searching effort was completed in calm seas (Table 6). However, 9% of all schools were detected during calm seas and the rate of detecting schools during calm seas was nearly two times the detection rate during rough seas.

Poor visibility conditions occurred only during 11% of the surveying effort, during which time 11% of the schools were detected (Table 6). It seems that visibility conditions had little effect on sighting dolphin schools as the rates of detecting schools during good conditions and poor conditions were very similar.

The percent of schools detected by individual mammal observers ranged from 4 to 12% (Table 6). Observer \#72, a cruise leader who stood watches for sick observers, had a detection rate of zero (due to rounding). However, his detection rate cannot be justly compared to the other observers due to the limited time spent on the binoculars. The rates of detecting dolphin schools also varied considerably among observers (range of 2.82 to 8.16 schools/1000 km).

The percent of schools detected by teams ranged from 20 to 28% (Table 6). The rate of detecting schools by teams ranged from 15.72 to 20.98 schools $/ 1000 \mathrm{~km}$ searched.

SUMMARY

In this report, we have presented data on dolphin encounter rates, school size, and species composition which meet the primary objectives of the cruise aboard the McArthur. Data on effort and sightings have been summarized. We found that the rate of encountering dolphin schools was higher during calm seas than during rough seas, and the rate during good visibility conditions
was similar to the rate during poor visibility conditions. Detection rates were highest in the southern area and lowest in the western area. Encounter rates among observers and among teams were variable.

ACKNOWLEDGMENTS

The cruise aboard the NOAA Ship McArthur was successfully executed due to the work of many dedicated professionals. Among those contributing to the success of the cruise were the observers who spent many hours collecting the data, the officers and crew of the McArthur who gave their continuous support, and J. Bortniak (Jordan Port Captain) who provided liaison with ship support personnel and the scientists. Special efforts were provided in procurement by B. Engstrand and B. Watkins. Part of the manuscript was typed by C. Ratcliffe and arranged by R. Allen. R. Rasmussen edited the effort and sightings data. We are grateful to I. Barrett, R. Neal, D. DeMaster, R. Holt, and B. Remington for their support during the entire cruise preparation and execution. Finally, special recognition is given to S. Sexton for critical logistical arrangements, technical support, and invaluable insights given to the authors.

IITERATURE CITED

Bowditch, N. 1966. American practical navigator, an epitome of navigation. U. S. Naval Oceanographic Office. H. O. Pub. No. 9. Washington, DC. 1524 pp.

Hill, P. S., A. Jackson, and T. Gerrodette. 1990. Report of a marine mammal survey of eastern tropical Pacific aboard the research vessel David Starr Jordan July 29 - December 7, 1989. NOAA-TM-NMFS-SWFC-142. 143 pp.

Holt, R. S. 1987. Estimating density of dolphin schools in the eastern tropical Pacific ocean by line transect methods. Fish. Bull. U.S. 85(3):419-434.

Lierheimer, L. J., P. C. Fiedler, S. B. Reilly, R. L. Pitman, L. T. Ballance, S. C. Beavers and D. W. Behringer. 1990. Report of ecosystem studies conducted during the 1989 eastern tropical Pacific dolphin survey on the research vessel McArthur. NOAA-TM-NMFS-SWFC-140, 123 pp .

Smith, T. D. 1982. Testing methods of estimating range and bearing to cetaceans aboard the R/V David starr Jordan. NOAA-TM-NMFS-SWFC-20, 20 pp .

Table 1. Sea state conditions measured by the Beaufort scale (from Bowditch, 1966).

Wind force (Beaufort)	Knots	Descriptive	Sea Conditions

3	33	3	3333	33	3	333	3	3	33	3	33	3	3
O－	${ }_{\sim}^{\infty} \stackrel{0}{\sim}$	$\underset{\sim}{ \pm}$	$\underset{\forall}{\Psi} \underset{寸}{\mathcal{F}} \underset{寸}{\mathbb{N}}$	O웅	$\underset{N}{\mathbb{N}}$	$\forall m m$ N N N	$\stackrel{15}{\sim}$	0	8%	$\begin{aligned} & 0 \\ & 10 \end{aligned}$	$\overline{\mathrm{n}} \mathrm{I}$	$\underset{10}{N}$	10
$\stackrel{ }{-}$	大个	$\stackrel{\sim}{*}$		$\varphi \underset{\sim}{\varphi}$	$\underline{6}$	$\mathscr{T} O$	$\stackrel{1}{-}$	$\stackrel{\square}{6}$	\mathscr{T}	$\stackrel{10}{\square}$	$\stackrel{18}{7}$	$\stackrel{1}{5}$	\pm
－	F	－	－－T－	－	－	－－	－	－		－			
Σ	ᄃ	c	EcEc	ع	E	ᄃᄃと	ᄃ	C	ε	E	c	ᄃ	c
$\%$	0	$\stackrel{\circ}{8}$	ONNN NN	$\underline{\square}$	0		$\stackrel{0}{\sim}$	$\stackrel{\rightharpoonup}{*}$	\hat{O}	$\overline{i n}$	$\begin{array}{ll} \text { Nos } \\ \text { MO } \end{array}$	$\stackrel{\square}{\boldsymbol{q}}$	0
$\stackrel{\infty}{\text { N }}$	NN	N		$\begin{aligned} & 0 \\ & \sim \end{aligned}$	$\stackrel{17}{\sim}$	10 in N N	$\stackrel{10}{\sim}$	$\stackrel{10}{\sim}$	$\stackrel{10}{N}$	$\underset{\sim}{*}$	$\underset{N}{N}$	\mathbb{N}	$\underset{\sim}{N}$

 テ

N.

КМ甘

（サナナハに

\％

용

$33 \quad 3 \quad 3$
O～N

$\mp \mp \overline{7}$

Nin in 8
848%

\％\％

ヘ（1） NNNNNNNNNNNNNNNNNNNNNMMNNCNNNNNNNNNNNNNNNNNNNNNNNNAM

¢\％Oㅇ	$\overline{0}$	ヘロロ̄		8	
88888	¢	ヘップ		$\stackrel{1}{8}$	¢88888

$00880080800000000000000-00000000000000000000000 \%{ }^{0}$

3	3333	33	33	33	3	3	33	33	3	3	3333333	3	33
\％		$$	∞	\forall_{0}^{∞}	\pm	$\mathscr{6}$	$\stackrel{\infty}{\sim}$	\bar{m}	م	앙	がロパ웅NN	¢	¢ ${ }_{\text {c }}$
0	$\underset{\sim}{\sim} \underset{\sim}{N}$	$\underset{N}{\sim}$	$\underset{N}{N}$	$\stackrel{M}{N}$	$\stackrel{\sim}{\text { N }}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{N}$	$\begin{gathered} \mathfrak{N} \\ \end{gathered}$	$\stackrel{\text { N }}{\stackrel{\sim}{\top}}$	$\begin{array}{r} \underset{\sim}{N} \end{array}$	 	$\stackrel{10}{\text { ¢ }}$	$\stackrel{10}{\sim}$
工	ᄃᄃエc	c	$c \Omega$	E	ᄃ	Σ	Σ	c	E	E	ᄃᄃェェェエ	c	ᄃ
in	$\operatorname{mon}_{\sim}^{\infty} \underset{\sim}{\infty}$	$\sim \oplus$	∞	$\stackrel{N}{N}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\sim}$	$\underset{\sim}{\sim}$	-n	$\underset{ष}{\bullet}$	$\overline{i n}$	$8 \pm \boxed{O G M N}$	17	$\stackrel{\sim}{\square}$
∞_{0}^{∞}	옹ㅇㅇㅇ	ao	응	은	0	안	$0 \circ$	우	O	은		$=$	

뇽ㄴㅇㅇㅇㅇ 뇽ㅇㅇㅇ

б́

3	33	3	33333	3	3	3	3	3	33333	333	3	3	3	333
$\stackrel{10}{8}$	10π	$\stackrel{N}{m}$	ryw	$\stackrel{\sigma}{\square}$	0	$\underset{\otimes}{\mathbb{N}}$	$\stackrel{\wedge}{\nabla}$	in	$06+6 \pi N$	$\underset{\sim}{\infty} \underset{\square}{\infty}$	$\underset{8}{\alpha N}$	10	\mathbf{N}	$\bigcirc \mathbb{N}$
$\begin{aligned} & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 00 \\ & 0 \mathrm{~m} \end{aligned}$ -7	$\stackrel{\sim}{\square}$		$\begin{aligned} & 0 \\ & \mathbf{n} \\ & \hline \end{aligned}$	$\stackrel{\oplus}{\oplus}$	$\stackrel{\square}{\%}$	O n	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	OQGOQ	OF	\pm	\pm	$\underset{\sim}{N}$	N® N
c	E	[Σ	\underline{L}	L	L	I	$\leq \leq \Sigma \leq \Sigma$	EEI	ε	Σ	■	$\subset \subseteq$
$\stackrel{\infty}{+}$	$\begin{array}{ll} 6 M \\ 10 & 10 \end{array}$	$\stackrel{\square}{*}$	$\begin{aligned} & +\infty-\infty+\infty \\ & \infty \end{aligned}$	$\stackrel{\mathrm{N}}{ }$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & 0 \\ & m \end{aligned}$	$\underset{\sim}{\mathbf{O}}$	$\frac{17}{7}$	$=m \backsim \infty \pm 寸$ In in 1000	$\infty \operatorname{lo}_{0}^{\infty}$	O	$\begin{aligned} & \mathrm{N} \\ & i 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 10 \end{aligned}$	980
∞	∞	0	00000	0	0	\bigcirc	0	0	OOOOTF	$T T$	-	F-	\cdots	$\underset{\sim}{\sim}$

 NÑ
 テNNNํㅇ \dot{O}

סัס̃

テワワ

む	$\stackrel{8}{8}$	$\underline{\square}$	333 -48	in	$\stackrel{3}{+}$
$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{9} \underset{=}{5}$	$\stackrel{\oplus}{ \pm}$	$\stackrel{\oplus}{\square}$
c	E	$=$		c	ᄃ
品	$\stackrel{\text { ¢ }}{ }$	N	윢ㅍ	\％	8
8	\％	\％	888	잉	\％

33	3333
N	の¢¢ำ
$\stackrel{\oplus}{\sim}$	
ᄃ	cese
号品	
No	

毋ூ


```
3 3
```


∞	か～N N N	N		$\begin{aligned} & 6 \\ & 10 \end{aligned}$	$\stackrel{\square}{i}$	$\begin{aligned} & 33 \\ & \text { No } \end{aligned}$	N NTO	$\stackrel{10}{\sim}$	\bigcirc
$\mp{ }^{\infty} \infty$		$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \end{aligned}$		－	－	웅	숭우운	S	송웅
c	cce	E	ェヒエェェை	Σ	c	ᄃ	ceve	c	c¢
$\stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$	$\underset{\sim}{\circ} \underset{\sim}{\circ}$	$\underset{\sim}{\infty}$		$\stackrel{\sim}{\sim}$	$\underset{\sim}{\infty}$	No	－लN	$\underset{\sim}{\infty}$	$\infty \infty$ NNN
ÑO	№	중	Nㅡㅇㅈㅇ̃ㅇ	O	N	ON	Nõo No	N	ONO

 の $\%$
8805 8% ㅈ̃ㅇ § ธัo
 $\bar{\circ} \quad \stackrel{ }{-}$ $\pm=$

 К

 ЯК

series	1 eg	date	speed km/hr	obse left	$\begin{aligned} & \text { ver ce } \\ & \text { right } \end{aligned}$	des rec.	$\begin{aligned} & \text { sun po } \\ & \text { horz. } \end{aligned}$	ition vert.	beauf	$\begin{aligned} & \text { course } \\ & \text { (deg.) } \end{aligned}$		$t+{ }^{p}$	oos	lion	tude	$\mathrm{in}^{\mathrm{km}} \mathrm{leg}$
01	04	890919	19.45	73	55	71			5	092						6.81
01	05	890919	19.45	67	56	07			5	092	02	28	n	105	22 w	1.94
01	06	890919	19.45	67	56	07			5	092						2.92
01	07	890919	19.45	67	56	$\bigcirc 7$			5	092						4.86 3.84
01	08	890919	19.45	67 56	56 07	07 67			5	087 087		27		105	17	3.24
01 01 01	09 10	890919 890919	19.45 19.45	56 56	07 07	67 67				087 087						7.78 5.19
O1	10	890919 890919	19.45 19.45	56 07	67 67	67 56			5	087						12.96
O1	12	890919	19.45	55	71	73			5	087	02	29		105	03 w	14.91
01	13	890919	19.45	71	73	55			5	087	02	29		104	55 w	2.27
02	01	890919	19.45	73	55	71			4	090	02	32	n	104	51 w	11.02
02	02	890919	19.45	67	56	07			4	090	02			104	46 w	2.27
$\stackrel{03}{03}$	01	890919	19.45	56	07	67			4	032	02	38		104	40 w	5.83 8.75
04 04 04	01 02	890919 890919	19.45 19.45	07 55	67 71	$\begin{array}{r}56 \\ 73 \\ \hline 73\end{array}$	05	01	4	O92	02	38		104	31 w	4.86
04	03	890919	19.45	55	71	73			4	092						6.48
04	04	890919	19.45	55	71	73			4	092						1.62
04	05	890919	19.45	71	73	55			4	092						7.45
O4	06	890919	19.45	71	73	55	${ }_{06}^{06}$	01 01	4	O94	02	38	n	104	21 w	3.57
04 04 04	08	890919	19.45 19.45	73	55	71			5	094						6.81
04	09	890919	19.45	73	55	71	06	02	5	094						3.24
04	10	890919	19.45	73	55	71			4	-994	\bigcirc	38		104	12 w	9.72
${ }_{04}$	12	890919 890919	19.45 19.45	56	07	67			4	094	02	38		104	07 w	2.59
04	13	890919	19.45	56	07	67			5	094						2.92
04	14	890919	19.45	56	07	67	${ }^{06}$	${ }^{\circ} \mathrm{O}$	5	-994	02	38		104	03 w	4.21 9.72
04 04 04	15 16	890919 890919	19.45 19.45	55	71	73	06	${ }_{02}$	5	094	02	37		103	58 w	6.48
04	17	890919	19.45	71	73	55	06	03	5	094	02			103		2.59
04	18	890919	19.45	71	73 55	55			4	O944	02			103	53	3.89 6.48
04	20	8890919	19.45 19	73	55	71			4	094	02	37	n	103	48 w	0.32
01	01	890920	19.45	07	67	56			4	090	02			102	37 w	1.62
02	01	890920	19.45	67	56	07			4	090	-2	${ }_{37}^{36}$		102 102 1	33 ${ }^{3} \mathrm{w}$	7. 13
02 02 02	${ }^{02}$	890920	19.45 19.45	67	56	07 07			4	090	02	38	n	102	29 w	0.97
02	04	890920	19.45	73	55	71			4	090	02			102		2.27
03	01	890920	19.45	55	71	73			5	090	02			102 102	$27{ }^{27}{ }^{\text {w }}$	3.89 6.48
04 05 05	${ }_{0} 1$	890920 890920	19.45 19.45	71	71	73 55			4	090		38	n	102	18 w	3.24
05	02	890920	19.45	07	67	56			4	090	02	38	n	102	17 w	12.96
05	03	890920	19.45	67	56	07			4	090						12.96 12.96
05 05	0	${ }_{890920}$	19.45 19	56 73	07 55	67 71			4	080				101	58 w	5.83
${ }_{05}^{05}$	${ }^{05}$	890920	19.45	73	55	71				095	02	39		101	56 w	7.13
05	07	890920	19.45	55	71	73			4	095						7.78
05	08	890920	19.45	55	71	73	$\bigcirc 5$	12	4	095						5.19
05	09	890920	19.45	71	73	55	05	01	4	095				101		3.24
05 05 05	1	890920 890920	19.45 19.45	71 07	73 67	55 56			4	-095	-22	37		101	41 w	9.72 6.48
05	12	890920	19.45	07	67	56			4	090	02	37	n	101	37 w	0.97
05	13	890920	19.45	07	67	56			5	105		37		101	37	4.86

${ }_{0}$	Nัก	「寸		33		－${ }^{33}$	33 \cdots	＇	N	¢ \％OONへN
응		\％\％\％）		号号	\％\％\％\％\％\％	发号	¢\％\％\％	\％	冎	
ᄃ	cs csecie	¢	ccess	55	Eces	E	ce	$=$		¢
$\stackrel{\circ}{0}$	ヘe\％	우N		${ }_{\sim}^{\text {N }}$	－¢ ¢	$\underline{+}$	8\％	8	¢	
§		กั○\％		－̄	－000	－̄	－̄	5	8	888888

 סั กั우 No

orobo

	33333	3	333	3	3333333	3	33333	3	33	33333	
きミ8		ヘ	の坒品	－		$\stackrel{\sim}{\sim}$		－	¢ ${ }_{\text {N }}$		$\stackrel{0}{0}$
		\％	-	${ }_{\infty}^{\infty}$		$\stackrel{\text { ® }}{0}$	¢	呂	－	¢¢	¢0\％
名 ${ }^{\circ}$		${ }^{\circ}$	Won	0		\cdots	いomomos	u	on	ありからい	
\＃180	す885	$\stackrel{ }{\sim}$	\pm ¢ \％	$\stackrel{\square}{+}$		$\stackrel{\sim}{\sim}$	8 8心吅年	将	\％${ }^{8}$	ゼすが只の	
－ 88	88885	$\bar{\circ}$	－500	$\bar{\circ}$		8	凹すすすす	¢	¢ ${ }_{\text {O }}$		毋®\％

 NovN

	¢ヵ	¢	¢¢ल్లM	M		\％	in	¢－${ }_{\sim}^{\infty}$	${ }^{3}$	\mathfrak{n}	¢゙ずす	㚭下逄
	¢ \％	¢ ${ }_{\circ}^{\circ}$	－	\％	－¢ ¢ ¢ ¢	※	\％	¢0¢00\％	\％	\％		
	いぃ	๓ぃ	のぃの	0	めいかの	n	๓	no	ω	n	いいのか	の60
OJONONT	纣	¢ल¢	～Nへべ	$\stackrel{\text {＠}}{ }$		f	0	88%	\％	8	88－\％	为品品
	Nơ	¢\％\％	ס̃õ	\％	ภธ̃õ	\％	O\％	¢0\％80	8	\％	¢¢ㅇㅇ	フ®\％

 500 よิธิ
ペ

 No

OMTめ

3	3	3	3	33	333	33	3	3	3	33	3	33	3
0	$\stackrel{1}{\sim}$	N	$\stackrel{\square}{寸}$	80		\bar{m}	\dot{O}	$\stackrel{\infty}{-}$	$\stackrel{\infty}{\infty}$	OI	9	M8	\div
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { © } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { No } \\ & 000 \\ & \hline 0 \end{aligned}$	$\underset{\sim}{\infty} \underset{\sim}{\infty}$	$\begin{aligned} & \sim \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{N} \\ & \mathbf{O} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & 90 \\ & \infty 0 \\ & 00 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$
15	0	0	ω	00	0 un	00	0	0	0	00	0	00	0
19	10	0	R	$\begin{aligned} & \infty \\ & \boldsymbol{n} \end{aligned}$	$\begin{aligned} & \text { ONA } \\ & 010 \end{aligned}$	$\begin{aligned} & \text { On } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \\ & n \end{aligned}$	in	$\begin{aligned} & 6 \\ & 10 \end{aligned}$	$\begin{aligned} & 105 \\ & 10 \end{aligned}$	In	ザ	\％
\mathfrak{N}	앙	\mathbb{O}	\%	NO	SON	8	N	ㅇ	N	NO	ㅇ	Nㅗㅇ	N

\bigcirc	980	¢O8\％	ำホ	$\%$

series	1 leg	date	speed $\mathrm{km} / \mathrm{hr}$	$\begin{gathered} \text { obse } \\ \text { leff } \end{gathered}$	right	des rec.	$\begin{aligned} & \text { sun pc } \\ & \text { horz. } \end{aligned}$	ition vert.	beauf no.	$\begin{aligned} & \text { course } \\ & \text { (deg.) } \end{aligned}$	$\begin{array}{r} \text { pos } \\ \text { latitude } \end{array}$	$\begin{aligned} & \text { ittion } \\ & \text { longi tude } \end{aligned}$	$\mathrm{in}^{\mathrm{km}} 1 \mathrm{eg}$
04	01	891008	18.52	45	05	22	12	12	${ }^{---1}$	276	0254 s	09014 w	6.17
04	02	891008	18.52	05	22	45			3	276		-9 ${ }^{1}$	5.86
04	03	891008	18.52	51	01	74			3	276	0253 s	09021	12.35
04 04 04	04 05	891008	18.52	74	51	01				276			12.35
04 04 04	05 06	891008 891008	18.52	01	74	51			3	276			13.58
04	07	891008	18.52	45	05	22			3 3	276 276	0251 s	09044 w	4.94 6.17
04	08	891008	18.52	05	22	45			3	276			
05	01	891008	18.52	01	74	51			3	276	0250 s	09101 w	9.26
05	02	891008	- 18.52	51	01	74			3	276	0250 s	09108 w	5.25
06	01	891008	18.52	51	01	74			3	276	0251 s	09112 w	4.01
01 01 01	01	891009	19.45	45	22	05			3	273	0246 s	09247 w	7.78
01 01 01	${ }_{03} 02$	891009 891009	19.45	22	05	45	06	${ }^{03}$	3	273			5.19
02	01	891009	19.45	${ }_{0} 1$	74	- 51	06	03	$\begin{array}{r}3 \\ 3 \\ \hline\end{array}$	273 273	0248 s	09259 w	1.62 10.05
02 02	02	-891009	19.45	51	01	74			3	273		092.59 w	12.64
02 02 02	03	891009	19.45	74	51	01	06	01	4	273			13.61
02	${ }_{01} 0$	894009	19.45	45	22	05	${ }^{06}$	01	4	273	0247 s	09319 w	2.92
04	01	891009	19.45	22	${ }^{05}$	45 45	${ }_{06} 06$	O O O	4	273 273		093 093 093 25	0.97
04	02	891009	19.45	22	05	45	06	01	4	276	O2 295	-993 27 w	5.55
04 05	O1	891009	19.45	05	45	22	06	01	4	276			6.16
05	02	891009	19.45 19.45 19.45	45 51	22 01	05 74	06 06	01 01 01	3 3	276 276	0249 02 029	${ }_{0}^{093} 32 \mathrm{w}$	9.07
05	03	891009	19.45	74	51	01	12	12	3	276			12.96 12.96
${ }^{65}$	04	891009	19.45	01	74	51	02	12	4	276			11.34
06	01	891009	19.45	22	05	45	12	01	3	276	0248 s	09402 w	3.89
06	02	891009	19.45	22	05	45			3	276			1.62
06	04	891009	19.45	05	45	. 22	12	01	3	276 276	0248	09406	1.30 1.94
07 07	01 02	891009 891009	19.45	45	22	05	12	01	3	276	0246 s	09413 w	7.13
07	03	${ }_{891009} 891009$	19.45 19.45	22 22	05 05 05	45 45	12	01	3 3	276			2.59
07	04	891009	19.45	22	05	45			4	276			1.62 2.92
07 07 07	05	891009	19.45	74	51	01			4	276	0245 s	09422 w	3.57
07	06 07	891009 891009	19.45 19.45	74 74	51 51 51	01	12	02	4	276			1.94
07	08	891009	19.45	01	74	51	11	${ }_{0} 2$	4	296	0244 s	09428 w	9.72
07 07 07	09	891009	19.45	51	01	74	11	02		296		-	9.72
07 07	11	891009	19.45	05	45	22	11	02	5	296	0238 s	094	6.48
\bigcirc	12	891009 891009	19.45 19.45 1	45	22 05	05 45	11	02	5	296			7.13
07	13	891009	19.45	22	05	45	11	${ }_{03}$	5	296			2.27 3.89
$\bigcirc 7$	14	891009	19.45	05	45	22	11	03	4	296	0233 s	09451	6.48
07 08	15	891009	19.45	45	22	05	11	03	4	296			1.30
08 08 08	01 01	891009 891010	19.45 19.45	45 74	22	05	11	03	4	296	0231 s	09456 w	3.24
02	01	891010	19.45	51	74	Of			2	276 280	0237 s 0243 s 0	09631 w 09638 w	7.78 1.30
03	01	891010	19.45	22	45	05			2	280	0245 s	09645 w	4.86
03 03 03	-02	891010	19.45	45	05	22			2	280			2.27
${ }_{04}$	${ }^{0} \mathrm{O}$	8891010	19.82 19.45	45 05	$\begin{array}{r}05 \\ 22 \\ \hline\end{array}$	22 45			2	000	0244 s	09648	0.66
04	02	891010	19.45	51	74	01			2	278	0238 s	09655	2.92

F	333 -ir		N ${ }_{\text {N }}$	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\circ}{\circ}$	ロッワ	N	\％	尔		960	\％	\％
$\stackrel{\text { ® }}{ \pm}$	士さ	上ロํํํํ	$\stackrel{\square}{\square} \stackrel{\square}{7}$	$\stackrel{\oplus}{\square}$	$\stackrel{\square}{\square}$		－	F	단	ミペののの日の	$\stackrel{\text { のo }}{\text { ¢ }}$	$\stackrel{\sim}{\square}$	－
\cdots	いのに	0	ω ¢	\cdots	n	n	\cdots	∞	\cdots		mes	0	\cdots
8	¢¢0\％		S5	$\bar{\circ}$	\％	¢ ¢ \％		\％	\pm		发	$\bar{\circ}$	$\bar{\circ}$
N	¢\％\％	กัÕ̃õ	กั欠		欠̌	กัõo		\％	\％＇		\％\％	§\％	§

 등̃ㅇㅇㅇㅇㅇ

series	1 eg	date	speed $\mathrm{km} / \mathrm{hr}$	$\begin{aligned} & \text { obse } \\ & \text { lef } \end{aligned}$	$\begin{aligned} & \text { rer } \\ & \text { right } \end{aligned}$	des rec.	$\begin{aligned} & \text { sun po } \\ & \text { horz. } \end{aligned}$	sition vert.	beauf no.	$\begin{aligned} & \text { course } \\ & \text { (deg.) } \end{aligned}$	latitude	$\begin{aligned} & \text { tition } \\ & \text { longitude } \end{aligned}$	$\text { in }{ }^{\mathrm{km}} \mathrm{leg}$
06	11	891017	19.45	22	05	45	12	01	5	270			5.51
06	12	891017	19.45	05	45	22	12	01	5	270			1.62
07	01	891017	19.45	05	45	22	12	01	5	270	02015	12039 w	3.24
07	02	891017	19.45	45	22	05	12	01	5	270	0201 s	12041 w	2.92
07	03	891017	19.45	45	22	05	12	01	5	250			0.65
07	04	891017	19.45	45	22	05	11	01	5	290			3.24
07	05	891017	19.45	22	05	45	11	01	5	290			6.16
07	06	891017	19.45	05	45	22	11	01	5	290			5.83
07	07	891017	19.45	51	01	74	11	02	5	290	0158 s	12053 w	10.70
07	08	891017	19.45	74	51	01	11	02	5	290	01565	12058 w	8.75
07	09	891017	19.45	01	74	51	11	02	5	290	0154 s	12102 w	3.89
07	10	891017	19.45	01	74	51	10	02	5	305			6.48
07	11	891017	19.45	45	22	05	10	03	5	290	0151 s	12108	6.48
07	12	891017	19.45	22	05	45	11	03	5	290			1.94
08	01	891017	19.45	22	05	45	11	03	5	290	0150 s	12113 w	2.27
\bigcirc	01 02	891017 891017	19.45 19.45	05 45	45 22	22 05	11	03 03 03	5	290	0149	12114 w	${ }^{6.48}$
$\bigcirc 9$	03	891017	19.45	45	${ }_{22}^{22}$	${ }_{0} 05$	01	${ }_{03}$	4	245	0148 s	12117 w	3.89 1.62
01	01	891019	18.52	22	45	05			5	109	0306 s	11926 w	4.63
01	02	891019	18.52	45	05	22			5	109	03075	11924 w	0.62
02	01	891019	18.52	01	74	51	12	02	5	101			4.01
02	02	891019	18.52	01	74	51	01	02	5	080			6.17
02	03	891019	18.52	51	01	74	01	02	5	080			11.11
02	04	891019	${ }^{18.52}$	74	51	01	01	02	5	080			12.35
02	05	891019	18.52	45	05	22	01	02	5	080	0307	11859	6.17
02	06	891019	18.52	05	22	45	01	02	5	080			6.17
O2	-07	891019	18.52	22	45	05	01	01	5	080			1.54
02 02 02	08 09 09	891019 891019	18.52	22	45	05			5	115			4.63
02	10	891019	18.52 18.52	${ }^{45}$	25 22	22 45	12	01	5	115 115	0306	11850	6.79 5.56
02	11	891019	18.52	22	45	05	12	01	5	115			6.17
02	12	891019	18.52	51	01	74	01	01	5	115	0310 s	11843	12.35
${ }^{02}$	13 01 01	891019 891019	18.52 18.52	74 01 01	51 74	01	12	12	5	115			7.10
04	01	891019	18.52	01	74	51			5	105		11836 11833	2.78
04	02	891019	18.52	45	05	22			5	105	0318 s	11831 w	6.17
04	03	891019	18.52	05	22	45	05	01	5	105			6.48
04	04	891019	18.52	22	45	05	05	01	5	105			5.86
04 04 04	05	891019	18.52	45	05	22	05	01	5	105	0320 s	11823	6.17
04	07	891019	18.52 18.52	22	22 45	45 05	\bigcirc	O	5	105 105			6.17 6.17
04	08	891019	18.52	74	51	01	05	02	5	105	0322 s	11815 w	9.26
04	09	891019	18.52	01	74	51	05	02	5	105	0323 s	11810 w	9.26
04	10	891019	18.52	51	01	74	05	02	5	105	0325 s	11806 w	9.26
O4	11	891019	18.52	45	05	22	05	03	6	105	0326 s	11802 w	6.17
04 01	${ }^{12}$	8	18.52	05	22	$\begin{array}{r}45 \\ \hline 74\end{array}$	05	03	6	105			3.70
01	02	891020	18.52	01	51	74	12	03	5	1	0338 s	11700 w	2.78 0.93
01	03	891020	18.52	01	51	74	01	03	5	080			5.86
01	04	891020	18.52	74	01	51	01	03	5	080	0338 s	11656 w	7.10
O1	05	891020	${ }^{18.52}$	74	01	51			5	101			3.70
01 01 01	-06 07	891020 891020	18.52 18.52	51 51	74 74	01 01 01	01	02	4	101 080	0338	11651 w	5.25 2.16

중웅

$\stackrel{\square}{\circ}$
m
i.
N
$\overline{0} \quad \overline{0}$
ํ. $\quad \circ$

rarrarrarrararrarararrarrarraramomomom ovidicion -

series	1 leg	date	speed $\mathrm{km} / \mathrm{hr}$	$\begin{aligned} & \text { obse } \\ & \text { left } \end{aligned}$	$\begin{aligned} & \text { ruer oc } \\ & \text { right } \end{aligned}$	des rec.	$\begin{aligned} & \text { sum pi } \\ & \text { horz. } \end{aligned}$	sition vert.	beauf no.	$\begin{aligned} & \text { course } \\ & \text { (deg.) } \end{aligned}$	$\begin{array}{r} \text { pos } \\ \text { latitude } \end{array}$	tion langitude	$\text { in }{ }^{\mathrm{km}} \mathrm{leg}$
03	04	891028	19.45	05	22	45			4	064			4.86
о3	05	891028	19.45	05	22	45	06	01	4	064	0242 s	09142 w	1.62
03	06	891028	19.45	22	45	05			4	064			6.48
${ }^{\text {O3 }}$	07	891028	19.45	45	05	22			4	064	0240 s	09139	6.48
03	08	891028	19.45	05	22	45			4	064			3.24
${ }^{\circ 3}$	09	891028	19.45	05	22	45			5	064			1.62
${ }^{03}$	10	891028	19.45	01	51	74			5	064	0239 s	09135 w	6.48
03	11	891028	19.45	74	01	51			4	064			16.20
03	12	891028	19.45	74	01	51	06	02	4	064			1.94
04	01	891028	19.45	51	74	01			4	064	0231 s	09123 w	8.75
04	02	891028	19.45	22	45	05			4	064	0228 s	09120 w	4.21
05	01	891028	19.45	45	05	22			4	064	0226 s	091.16 w	5.51
05	02	891028	19.45	45	05	22	06	O^{3}	4	064			1.30
05	03	891028	19.45	05	22	45	06	03	4	064			6.16
05	04	891028	19.45	22	45	05	06	${ }^{03}$	4	064	0224 s	09112 w	7.13
05	05	891028	19.45	74	01	51	06	${ }^{\circ 3}$	3	064	0222 s	09107 w	7.78
01	01	891029	19.45	45	22	05	01	03	4	066	0148 s	08958 w	6.48
01	02	891029	19.45	22	05	45			4	066	0146 s	08954 w	6.48
01	03	891029	19.45	05	45	22			4	066			0.97
01	04	891029	19.45	05	45	22	01	02	3	066			1.30
01	05	891029	19.45	05	45	22			3	066	0144 s	08951	4.21
01	06	891029	19.45	45	22	$\bigcirc 5$			3	066			5.19
01 01 01	07 08	891029 891029	19.45 19.45	45 01	22 51	05 74	O1	O 2 02	3 3	066 066	0142 s	08947	1.30 2.59
01	09	891029	19.45	01	51	74			3	026			7.13
01	10	891029	19.45	01	51	74			3	026	0138 s	08944 w	3.24
01	11	891029	19.45	74	01	51			3	026			6.16
02	01	891029	19.45	51	74	01	01	01	3	075	0131 s	08947	13.61
02	02	891029	19.45	22	05	45	0.2	01	3	075	0128 s	08941 w	1.62
${ }^{03}$	01	891029	19.45	22	${ }^{45}$	45			3	075	0128 s	08939 w	6. 16
03 03 03	02	891029 891029	19.45 19.45	05 45	45 22	22 05			3 3	075 075			6.81 4.86
${ }_{03}$	04	891029	19.45	45	22	05	02	01	3	075			2.59
03	05	891029	19.45	22	05	45	03	01	3	075	0125 s	08931 w	8.75
${ }^{\circ}$	06	891029	19.45	74	01	51	04	01	3	075	0123 s	08926 w	2.92
04	01	891029	19.45	51	74	01	05	01	3	075	0122 s	08924 w	14.58
05	01	891029	19.45	74	01	22	05	01	3	075			1.30
${ }^{05}$	02	891029	19.45 19.45	05	45	22	06	01	3	075	0116 s	08912 w	6.48
05 05	03	891029 891029	19.45 19.45	45 22	22 05	05 45			3 2	075 075			7.13 1.94
05	05	891029	19.45	22	05	45			3	075			1.94
05	06	891029	19.45	22	05	45			2	075			2.59
05	07	891029	19.45	05	45	22			3	075	0114	08902 w	4.86
06	01	891029	19.45	51	74	01			3	075	0110 s	08854 w	10.70
06	02	891029	19.45	01	51	74			3	075	0109 s	08849 w	7.78
06	03	891029	19.45	01	51	74			4	075	0108 s	08844 w	0.97
01 02 02	01 01 01	891030	19.45	01	74	51	02	${ }^{03}$	3	028	0009 s	08802 w	11.34
02 02 02	${ }_{0} 1$	891030 891030	19.45 19.45	01 72	74 01 1	51 74	02	03	3	-028			4.54 2.92
03	01	891030	19.45	72	01	74	03	02	4	010	0001 n	08758 w	7.78
${ }^{03}$	02	891030	19.45	74	72	01	03	02	5	010			15.23
03 03	O4	891030 891030	19.45 19.45	22 45	45 05	25 22	03 03	02 02	5	10 010	0012 n	08757	5.83 6.48

○○
 !

 8
§ㅈㅇㅇㅇㅇ

人)

	\％	\％\％	\％－	
으ごテワワワワワテニ	\％	－̄o	ロワ	80888으ํ

M

5050		¢ั\%	꾺ō	\%

3	3	3	3	3	33	3	33333	3	3333	3	3	3	3	3	333
－	$\underset{甘}{\oplus}$	His	10.	$\stackrel{19}{7}$	ON	0		$\underset{\sim}{N}$	$\infty N_{\square}^{\infty}$	∞	0	0	109	\bigcirc	$\begin{aligned} & \text { GNO } \\ & \forall 100 \end{aligned}$
$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{1}{0}}$	$\stackrel{\rightharpoonup}{\circ}$	$\begin{aligned} & \text { 송 } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathbf{O} \end{aligned}$	トトNトか 06060 00000	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { o } \\ & \stackrel{0}{0} \end{aligned}$	8	8	8	8	888
un	0	4	0	0	06	\％	のが吅	0	いいいい	0	0	n	0	0	¢ 6
∞	$\stackrel{\sigma}{\infty}$	N	$\stackrel{\llcorner }{\sim}$	$\stackrel{N}{N}$	$\underset{\sim}{\infty}$	$\underset{N}{N}$		ㅇ	$\mathbf{Q}_{\circ}^{\circ}$	$\underset{\infty}{\infty}$	$\underset{N}{\bullet}$	\bar{m}	O	$\stackrel{N}{N}$	$\underset{\sim}{\sim} \underset{\sim}{\sim}$
$\stackrel{ \pm}{0}$	\pm	©	\pm	O		J	OO オ オ O	\pm		8	$\%$	9	\mathfrak{O}	0	\%88

88 ラニニ̃ ios ioisiog テーデッデッギッデ

9ㅇㅇㅇㅇㅇ으응

М甘Т二NMサ以

3	3 33333333	3333	3	3	33	3333	33	3	3	3	33	3
∞		ஸ－¢ ¢	F	N	옹	NㅜN	－	O	เก	$\stackrel{\sim}{\sim}$	¢ ${ }_{\text {H }}^{0}$	5
흔		꾸우웅	\％	\％	¢\％	끄어유유		\bigcirc	\bigcirc	\bigcirc	으응	\bigcirc
\cdots		いいいい	\cdots	0	の呺	๑๓	い	\sim	0	ω	のぃ	0
$\stackrel{8}{\circ}$		¢0¢0응	N	N	－	のップ	± 9	$\stackrel{0}{7}$	$\stackrel{\sim}{\square}$	\bigcirc	${ }_{\sim}^{\infty} \times$	$\stackrel{\square}{\text { m }}$
$\stackrel{8}{8}$		欠ัỡo	\％	\％	¢\％	กัO犬̃O\％	ǑO	$\overline{0}$	5	$\overline{0}$	－5	$\overline{0}$

に

ワーテワワワーテーワ

33	3	3	3333	3333	33	3	3	3	3	3	33	3	3	
158	F	$\stackrel{9}{8}$			\％	N	∞	V	0	15	중앙	\pm	－	\pm
	응	$\stackrel{\text { 앙 }}{ }$	人No우유융	$\begin{aligned} & \text { giggo } \\ & \text { 웅웅 } \end{aligned}$	$\begin{aligned} & \text { 요웅 } \end{aligned}$	안	$\stackrel{\circ}{+}$	운	운			$\stackrel{\sim}{\top}$	$\stackrel{m}{\square}$	$\stackrel{\text { T }}{+}$
00	\cdots	0	ancout	いのいい	no	ω	0	0	ω	ω	06	＝	c	
¢9\％	$\stackrel{\sim}{\sim}$	N			のタ	\％	$\stackrel{\bullet}{\sim}$	\％	－9	N	웅	\pm	\pm	
50	$\bar{\circ}$	$\bar{\circ}$	－5050	8888	88	8	8	8	8	8	88	8	8	8

－¢ㅇㅇㅇ	5	¢OOMM	8	ǑONO\％
ワワワワ	人		8	98980

Q：

$3 \quad 3 \quad 3 \quad 3333$
\square

O
N
N
-
-
-

8	人品	留尔
$\underset{\sim}{\underset{\sim}{N}}$	ヘָツ	$\underset{N}{N}$
＝	c 5	cc
8	운	の－
$\bar{\square}$	〒－	－

3
$\begin{array}{ll}1033 \\ 0 & 33\end{array}$

33

33	333	3	3	33	3
－	in 9 N	\cdots	0	－0）	15
± 0	0 mm	\checkmark	15	187	4
00	000	0	∞	000	∞
\cdots	Now	\bigcirc	\cdots	－	－
－	－	＋	－	－	－
c	EエE	c	c	$L E$	Σ
$\cdots N$	0 O－	19	\cdots	寸N	15
in in	1000	\cdots	0	$\underline{+}$	N
0%	000	0	N	N	N
－ 5	－NN	N	N	N	\cdots

9000%
ภos̃osi
\％

00000000000090000000000000000000000000000
 $00000000000000000000000000000000000_{0}^{*} 000000$
 OONOOOOOOOOOOMONMOOMOOMOOOMNOOOMONOMOOOOO

 rmody

Table 3. (continued)

Table 3. (continued)

Table 3. (continued)

date series		l eg	sight number	sun position		species	COMMON DOLPHIN (DELPHINUS DELPHIS)			longitude	species code:		5	
		beauf.				detecte	d perp.	latitude	proportion		mean school	size est		
yrmody				horz.	vert.	number	by	dist. km)	deg min	deg min	(\% of school)	best	1ow	
890731	01		02	01	09	03	3	67	3.0	2624 n	11643 w	100.0	175.0	142.0
890731	02	о3	02	09	02	4	73	2.1	2613 n	11632 w	100.0			
891206			07			2	99	2.9	3101 n	11636 w	100.0	0.0*	0.0*	

Table 3. (continued)

date yrmody	series	1 leg	sight number	sun position		species:		tings by Sp RN SPINNER ELLA LONGIR	pecies DOLPHIN ROSTRIS)		spe	cies code	10
						beauf.	detected	d perp.	latitude	longitude	proportion	mean scho	ol size est
				horz.	vert.	number	by	dist. (km)	deg min	deg min	(\% of school)	best	low
890803	03	02	04	12	12	3	67	1.4	1717 n	11229 w	100.0	177.0	148.0
890803	04	01	05	01	01	2	07	0.7	1712 n	11231 w		35.0	26.0
890804	05	01	02	01	12	2	55	0.5	1520 n	11505 w	100.0	44.0	37.0 238.0
890805	04	01	03	07	12	2	07	0.2	1333 n	11731 w	100.0	275.0	238.0
890805	08	03	07			3	73	0.2	1258 n	11720 w	41.2	1537.0	1237.0
890806	02	01	01			3	56	0.5	1153 n	11615 w	100.0	102.0	91.0
890806	05	02	02	10	02	4	71	2.2	1147 n	11606 w	6.7	333.0	245.0
890806	06	05	03	12	12	3	55	0.2	1126 n	11533 w	100.0	286.0	256.0
890816	02	01	02	11	02	$\stackrel{3}{5}$	55	1.6	1235 n	12653w	46.0	218.0	182.0 213.0

Table 3. (continued)

	series	1 leg	sight number	sun position		species		tings by Sp EBELLY SPIN nella longir	pecies NER DOLPHI ROSTRIS)		species code: 11		
date						beauf.	detected	d perp.	latitude	longitude	proportion	mean scho	ol size est
yrmody				horz.	vert.	number	by	dist. (km)	deg min	deg min	(\% of school)	best	low
890810	01	01	01			4	07	1.8	0451 n	10948 w	100.0	273.0	225.0
890810	05	0.6	05				07	0.6	0530 n		80.0	273.0	247.0
890817	01	01	01			4	55	5.0	1323 n	12827 w	94.3	197.0	167.0
890817	05	02	05	12	01	4	71	6.5	1348 n	12949 W	100.0	613.0	517.0
890817	06	01	06	01	01	4	07	0.8	1351 n	12954 w	94.7	1100.0	1013.0
890821	02	02	02	05	02	4	55	0.6	1020 n	13912 w	19.8	214.0	196.0
890822	03	04	02	05	12	4	71	2.7	1217 n	14231 w	59.7	322.0	277.0
890904	01	01	01			1	07	0.6	1103 n	14800 w	100.0	98.0	83.0
890904	03	01	02			4	73	1.5	1022 n	14723 w	55.0	498.0	443.0
890904	04	01	03			4	55	4.4	1012 n	14715 w	45.0	265.0	217.0
890904	05	01	04			3	67	0.7	1059 n	14656 w	79.7	908.0	817.0
890904	07	03	06			3	67	0.3	0941 n	14644 w	100.0	57.0	51.0
890909	03	09	03			4	56	0.2	0514 n	13249 w	4.0	890.0	760.0
890910	02	05	06	02	01	5	56	1.7	0637 n	13010 w	49.7	85.0	73.0
890918	01	01	01				56	1.3	0218 n	10837 w	1.7	160.0	140.0
890919	02	02	02			4	67	3.5	0232 n	10445 w	84.3	330.0	240.0
890920	04	01	03			5	71	1.1	0236 n	10222 w	100.0	142.0	103.0
890921	01	05	01			5	55	5.3	0220 n	09947 w	60.0	203.0	167.0
891014	02	02	01			4	01	1.0	0159 s	11017 W	35.0	350.0	264.0
891016	04	04	04	12	12	4	22	1.1	0205 s	11702 w	10.7	1421.0	959.0
891017	01	01	01	06	03	5	45	4.0	O2 02 s	11925 08725	65.0	220.0	182.0
891031 89112	05	01	06 01 01			5	74 74	0.8 3.2	0405 025 025	08725 093 098	6.0 66.7	277.0 283.0	23.0 238.0 238.0
891116	03	03	03			2	05	0.8	0419 s	09727 w	25.0	275.0 27.0	243.0
891117	03	03	06	09	01	4	01	4.0	0323 s	10051 w	89.0	683.0	517.0

(continued)
00
 000

00000000010000000001000000000000000000000000

 $0000 \stackrel{*}{0} 0 \stackrel{*}{0} 00000000000^{*} 0 \stackrel{*}{*} 000000 \stackrel{*}{0} 000000000000_{0}^{*} 000_{0}^{*} 0$

N	$\stackrel{\square}{0}$	$\overline{0}$	MOOMOOOO	$\overline{0}$	$\overline{0}$	8

ONN O O O O O OOFOO

Mッチォ

Table 3. (continued)

Table 3. (continued)

Table 3. (continued)

(continued)
species: "SHORT-SNOUTED WHITEBELLY"

Table 3.
(continued)

dateyrmody	series	leg	sight number	sun position		Sightings by Species					species code: 21		
						beauf.	detected	d perp.	latitude	longitude	proportion m	mean schoo	size est
				horz.	vert.	number	by	dist.(km)	deg min	deg min	(\% of school)	best	low
890803	05	O8	06	01	02	2	71	1.7	1652 n	11302 w	100.0	27.0	23.0
890910								0.9	$0615 n$	13035 w			
890910 890910	03	05	05 08 8			${ }_{5}^{4}$	73 71	0.2 1.7		13035 w 12948 w	7.5 100.0	24.0 $0.0 *$	20.0 1.0
890913	${ }_{02}$	08	${ }_{02}$	12	01	5	73	1.7	O6432n	12948 129 9	100.0 100.0	O.0*	1.0 7.0
890924			06			4	73	0.3	0110 s	09103 w	100.0	30.0	25.0
890928	01	01	01			5	55	2.2	0519 s	08523 w	100.0	4.0	3.0
890928	02	02	02			5	71	1.0	05165	08519 w	100.0	7.0	5.0
890928	03	02	${ }^{03}$			5	55	0.5	0513 s	08514 w	100.0	15.0	11.0
890928	O8	05	09			4	56	0.8	0442 s	08427 w	100.0	0.0*	3.0
891008	${ }^{\circ} \mathrm{O}$	07	08			3	22	0.5	0254 s	09010 w	100.0	10.0	7.0
891010 891010	07 09	04 02 02	14 16	12	01	3 3	45 05	0.5 0.3	O2 298 s	09731 W 09756 09	100.0 100.0	8.0 6.0	6.0 6.0
891016	03	04	02	06	02	4	45	0.9	$02 \mathrm{O2} \mathrm{~s}$	11628 w	100.0	3.0	3.0
891027	06	02	07	06	02	5	05	0.1	0407 s	09429 w	100.0	4.0	3.0
891029	${ }^{\circ}$	06	03	04	01	3	74	$0: 2$	0123 s	08925 w	100.0	14.0	11.0
891029	${ }^{06}$	01	07			${ }^{3}$	74	0.1	0109 s	08850 w	100.0	2.0	2.0
891031	02	06	02			5	01	1.3	${ }^{03} 35 \mathrm{n}$	08719 w	7.5	8.0	8.0
891031	03	02	03			5	74	0.0	0340 n	08719 w	40.0	5.0	5.0
891113	O4	20 15	${ }_{0}^{06}$	02	02	5	45 22	${ }_{6}^{6.3}$		09425 W	100.0	0.0*	2.0

Table 3. (continued)

Table 3. (continued)

Sightings by SpeciesSpecies$\begin{aligned} & \text { FRASER'S DOLPHIN } \\ & \text { (LAGENODELPHIS HOSEI) }\end{aligned}$													
date yrmody	series		sight number	sun p horz.	$\begin{gathered} \text { osition } \\ \hdashline \text { vert. } \end{gathered}$	beauf. number	detected by	d perp. dist. (km)	latitude deg min	longitude deg min	$\begin{aligned} & \text { proportion } \\ & \text { (\% of school) } \end{aligned}$	mean scho best	$\frac{1 \text { size est }}{\text { low }}$
			10			4	73	0.9	0458 n	13814 w	69.0	160.0	143.0
890920	02	04	02			4	55	1.3	0238 n	10228 w	100.0	263.0	232.0
891015			02				22	1.7	0203 s	11256 w	15.0	507.0	428.0
891017	05	02	-03	06	01	5	${ }^{05}$	0.8	0204 s	11953 w 12140 w	100.0	57.0	475.0
891123	01	14	01	08	01	5	05	1.9	0150 n	12140 w	100.0	570.0	475.0

Table 3. (continued)

							Sight	tings by Sp	pecies				
						species	KILLER (ORCIN	R WHALE NUS ORCA)			spec	cies code:	37
date	series	1 leg	sight	sun p	ition	beauf.	detected	d perp.	latitude	longitude	proportion ma	mean school	size est
yrmody			number	horz.	vert.	number	by	dist. (km)	deg min	deg min	(\% of school)	best	low
890809	04	11	04			4	73	3.0	0427 n	10826	100.0	3.0	3.0
890821	07	01	06	11	02	2	56	0.6	1104 n	14022 w	100.0	5.0	5.0
890905	03	02	03	04	01	5	71	2.5	0746 n	14453 w	100.0	8.0	7.0
890922	03	02	05			4	56	4.3	0116 n	09627 w	100.0	0.0*	2.0
891027	03	01	${ }^{02}$	02	01	4	05	0.8	0422 s	09459 W	100.0	11.0	10.0
891116	02	12	02			4	51	1.0	0422 s	09719 w	100.0	2.0	1.0

est

 low| Sightings by SpeciesSpecies:SPERM WHALE
 (PHYSETER MACROCEPHALUS)\quad species code: 46 | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 890805 | 01 | 03 | 01 | 07 | 03 | 5 | 73 | 0.4 | 1403 n | 11659 w | 100.0 | 2.0 | 2.0 |
| 890811 | ${ }^{06}$ | ${ }^{06}$ | ${ }^{01}$ | | | 5 | 71 56 | 0.0 | 14 06 06 18 18 n | 114323 w | 48.3 | 11.0 | 9.0 |
| 890909 890909 | ${ }^{02}$ | ${ }_{06} 02$ | 05 | 06 | ${ }_{02}$ | 4 | 07 | 0.5 | 0517 n | 13216 w | 100.0 | 1.0 | 1.0 |
| 890916 | 03 | 04 | 04 | 05 | 01 | 5 | 67 | 2.2 | 0233 n | 11307 w | 100.0 | 4.0 | 4.8 |
| 890928 | | | 11 | | | 5 | 56 | 0.3 | 0420 s | 08356 w | 100.0 | 8.0 | 8.8 |
| 890929 | 01 | 01 | 01 | | | 4 | 57 | 2.8 | | O81 089 w | 100.0 | 8.0 | 8.0 |
| 890929 891006 | 06 | 05 | 05 07 | 07 | 01 | 4 | 56 01 | 1.6 2.4 | ${ }_{03}^{02} 82 \mathrm{~s}$ | O83 28 w | 100.0 | 4.0 | 3.0 |
| 891006 | 02 | 02 | 02 | | | 3 | 45 | 2.3 | 0243 s | 08244 w | 100.0 | ${ }^{1.0}$ | 97.0 |
| 891006 | 03 | 05 | ${ }^{06}$ | 06 | 02 | ${ }_{4}^{3}$ | 05 45 | 0.2 0.8 | - 0251 s | O83 21 w | 100.0 | 2.0 | 2.0 |
| 891008 891008 | O5 | 05 | 12 | 06 | 02 | 3 | 01 | 1.1 | 0250 s | 09108 w | 100.0 | 1.0 | 1.0 |
| 891011 | 01 | 07 | 03 | 06 | 02 | 4 | 51 | 5.8 | 0230 s | 10008 w | 100.0 | 9.8 | 7.0 |
| 891020 | 01 | 03 | 01 | 01 | 03 | 5 | 01 01 | 0.7 0.7 | 03
 04
 065
 56 | 116 57 W | 100.0 | 1.0 | 1.0 |
| 891022 | 01 | 02 | 02 | | | 4 | 01 | 1.5 | 0448 s | 11112 w | 100.0 | 5.0 | 4.0 |
| 891026 | | | 01 | | | 6 | 99 | 0.2 | 0610 s | 09849 w | 100.0 | 1.0 | 1.0 |
| 891031 | 02 | 06 | 02 | | | 5 | 01 | 1.3 | 0335 n | 08719 w | 42.5 | 8.0 | 8.0 4.0 |
| 891110 | | 05 | ${ }^{02}$ | | 3 | 4 | 45 01 | 6.3 0.0 | 0840 0817 017 | O89 18 W | 100.0 | 1.0 | 1.0 |
| 891114 | 02 | 01 | ${ }^{02}$ | 10 | 03 | 4 | 51 | 5.8 | 0127 s | 09414 w | 100.0 | 1.0 | 4.0 |
| 891117 | 01 | 12 | 02 | | | 4 | 45 | 7.0 | 0331 s | 10031 w | 100.0 | 13.0 | 11.0 |
| 891117 | 04 | 04 | 07 | 11 11 | ${ }_{0}^{02}$ | 5 4 | 05 01 01 | 1.7 0.2 | | +1010 59 | 100.0 | 0.0* | 1.0 |
| 891120 | 02 | 01 | 02 | | | 2 | 74 | 3.3 | 0051 s | 10923 w | 100.0 | 3.0 | 2.0 |
| 891120 | 04 | 01 | 05 | | | 3 | 74 | 1.3 | 0052 s | 10931 w | 100.0 | 1.0 | 1.0 |

Table 3. (continued)

Table 3. (continued)

Table 3. (continued)

Table 3. (continued)

(continued)
Table 3.

Table 3. (continued)

Sightings by Species													
date	series	1 leg	sight	sun po	ition	beauf.	detected	d perp.	latitude	longitude	proportion m	mean school	size est
yrmody			number	horz.	vert.	number	by	dist. (km)	deg min	deg min	(\% of school)	best	low
890907	03	10	07	06	01	4	71	0.5	0455 n	13841 w	100.0	1.0	1.0
890912	${ }^{02}$	03	${ }^{03}$	11	02	5	71	0. 1			100.0	3.0	3.0
890914 890918	07 06	10 01 01	04 04	05	O3	4 5	73 67	1.5 1.0	0330 02 020	11812 w 10726 w	100.0 100.0	4.0 1.0	4.0 1.0
891009	01	01	01				45	0.2	0246 s	09247 w	100.0	8.0	7.0
891015	07	01	05	11	O3	3	05	0.9	0200 s	11440 w	20.0	5.0	5.0
891017	07	12	08	11	03	5	45	0.3	0150 s	12112 w	100.0	1.0	2.0
891113 891129	03	01	03	08	02	3	01	1.4	0123 n	09418 w	100.0	2.0	2.0
891129	03	11	03				05	1.2	1136 n	12226 w	12.5	4.0	3.0

Table 3. (continued)

Table 3. (continued)

Sightings by Species												
date	series	1 eg	sight	sun position	beauf.	detected	d perp.	latitude	longitude	proportion mear	mean school	size est
yrmody			number	horz. vert.	number	by	dist. (km)	deg min	deg min	(\% of school)	best	1ow
890924			03		4	99	2.6	0116 s	09117 W	100.0	2.0	2.0
890924	01	07	01		4	55	1.6	0114 s	09119 w	100.0	2.0	2.0
890928 891120	07 03	01 01 01	08 04 08		5	73 01	0.2 1.4	O4 515 s	08441 w 10928 w	100.0 100.0	1.0 2.0	1.0 2.0

Table 3. (continued)

(penuṭưos)

- ε
Table

(pənuтquo八) $\cdot \varepsilon$ əтqe山

(continued)
Sightings by Species
species: UNIDENTIFIED SMALL WHALE longitude proportion mean school size est

$000000000000000000000^{* 000000}$

010000000000000000000000000

 ○O耳

 -
-OMmNLTOOQRONTOOKHOMNmmFmo OO-OOOO-ON-OOOMOOOONONO+OOO
 number

${ }_{0}^{\infty}$

(continued)

Table 3. (continued)

date series		leg	sight number	sun position		$\begin{aligned} & \text { Sightings by Species } \\ & \text { species: UNIDENTIFIED CETACEAN } \end{aligned}$				longitude deg min	spec	cies code:	96	
		beauf. detected number by				d perp. dist. (km)	latitude deg min	proportion	mean school		size est			
yrmody					horz			vert.	(\% of school)		best	low		
890805	03	01		02				55	0.1	1338 n	11726 w	100.0	4.0	3.0
890905	01	14	01	12	12	4	56			14504 w			3.0 1.0 3	
890918	-8	03	O8					0.3	02 0285 025	10716 w 09041 w	100.0 100.0	$\stackrel{1.0}{0.0}$	3.0 3.0	
89.1008 891027	-04	05 01	10 12		,	3 4	01 74	0.7	0354	09409 w	100.0	5.0	6.0	

Table 3. (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{Sightings by Species
species: UNIDENTIFIED WHALE Species code}

\hline date \& series \& 1 l \& sight \& sun \& ition \& beauf. \& detected \& perp. \& latitude \& longitude \& proportion \& mean school \& ize est

\hline yrmody \& \& \& number \& horz. \& vert. \& number \& by \& dist. (km) \& deg min \& deg min \& (\% of school) \&) best \& low

\hline 890821 \& 01 \& 02 \& 01 \& 05 \& 03 \& 4 \& 55 \& 4.1 \& $1013 n$ \& 13902 w \& 100.0 \& 1.0 \& 1.0

\hline 890907 \& 01 \& 07 \& 01 \& 11 \& 02 \& 4 \& 67 \& 2.4 \& 0510 n \& 13944 w \& 100.0 \& 1.0 \&

\hline 890907 \& 01 \& 07 \& 02 \& 11 \& 02 \& 4 \& 07 \& 7.9 \& 0509 n \& 13940 w \& 100.0 \& 1.0 \& 1.0

\hline 890912 \& \& \& 01 \& \& \& 5 \& 56 \& 0.9 \& 0525 n \& 12537 w \& 100.0 \& 0.0* \& 3.0

\hline 890918 \& \& \& 07 \& \& \& 5 \& 07 \& 0.2 \& $0221 n$ \& 10722 w \& 100.0 \& 2.0
1.0 \& 2.0
1.0

\hline 890918 \& 03 \& 04 \& 03 \& 12 \& 01 \& 5 \& 07 \& 0.3 \& 0217 n \& 10813 w
10724 w \& 100.0
100.0 \& 1.0 \& 1.0
1.0

\hline 890918 \& 07 \& 01 \& 05 \& \& \& 4 \& 67
99 \& 2.0
0.3 \& 02
04
048

0 \& | 10724 |
| :--- |
| 084 |
| 126 | \& 100.0

100.0 \& 1.0
$0.0 *$ \& 1.0
2.0

\hline 890928
891011 \& 05 \& 01 \& 10
09 \& \& \& 4
3 \& 99 \& 0.3
1.5 \& 0438
0219
029 \& 084
10144 w
104 \& 100.0
100.0 \& 1.0 \& 2.0
1.0

\hline 891012 \& 03 \& 07 \& 05 \& 06 \& 01 \& 4 \& 22 \& 2.8 \& 0217 s \& 10402 w \& 100.0 \& 1.0 \& 1.0

\hline 891012 \& 03 \& 22 \& 07 \& 11 \& о3 \& \& 74 \& 1.0 \& 0208 s \& 10505 w \& 100.0 \& 1.0 \& 1.0

\hline 891015 \& 02 \& 05 \& 03 \& \& \& 3 \& 51 \& 5.4 \& $\mathrm{O}^{2} 201 \mathrm{~s}$ \& 11308
11758 \& 100.0 \& 2.0
5.0 \&

\hline 891016
891020 \& 06
02 \& 12
02 \& 05
03
03 \& 11
01 \& 03
01
03 \& 4
5 \& 51
51 \& 0.6
1.5 \& 02
03
032
32 \& 11758 w
11618 w \& 100.0
100.0 \& 5.0
2.0 \& 3.0
2.0

\hline 891022 \& \& \& 04 \& \& \& 5 \& 99 \& - 11 \& 0452 s \& 11055 w \& 100.0 \& 1.0 \& 1.0

\hline 891027 \& 05 \& 06 \& 05 \& \& \& 5 \& 22 \& 2.5 \& ${ }^{04} 095$ \& 09436 w \& 100.0 \& 1.0
0.0

2.0. \&

\hline 891027
891028 \& 06
02
02 \& 05
03
03 \& 09
03 \& 06
01 \& 02
02
02 \& 5
4 \& 22
51 \& 2.5
2.0 \& 04
0304
03
08 \& 09421 w
09228 w \& 100.0
100.0 \& 0.0*
2.0 \& 2.0
2.0

\hline 891028 \& 03 \& 12 \& 05 \& 06 \& 02 \& \& 74 \& 3.8 \& 0233 s \& 09124 w \& 100.0 \& 1.0 \& 1.0

\hline 891029 \& 04 \& 01 \& 04 \& 05 \& 01 \& 3 \& 51 \& 3.7 \& 0120 s \& 08920 w \& 100.0 \& \&

\hline 891115
891115 \& 02
03 \& 01
05 \& 02
06 \& 09 \& 03 \& 4 \& 45 \& 7.7
7.5 \& [0429 s \& 094
094
094
41 \& 100.0
100.0 \& 1.0 \& 1.0
1.0

\hline 8891116 \& 03 \& 05 \& ${ }_{05}^{06}$ \& \& \& ${ }_{4}^{4}$ \& 45
22 \& 7.4 \& 04 20 s \& 09742 w \& 100.0 \& 0.0* \& 1.0

\hline
\end{tabular}

Table 4. Marine mammal school size estimates for each observer, classified by species code, for all sightings encountered in the eastern tropical Pacific during July - September (Part A) and October - December (Part B), 1989.
A: Sightings encountered July through September, 1989.

$\stackrel{8}{-}$

Table 4A. (continued)

			obs	7	obs 55		obs 56		obs 67		obs 71		obs 73	
	date	sight no.	best est.	pet	best est.	pct	best est.	pet	best est.	pct	best est.	pct	best est.	pct
species	$\begin{aligned} & 10: \text { EAS } \\ & 890816 \end{aligned}$	$\begin{gathered} \text { ERN SPI } \\ 02 \end{gathered}$	NNER DOL	LPHIN	275	40					170	60	210	38
species	11: WHITEBELLY SPINNER DOLPHIN													
	890810	01	120	100			250	100	450	100				
	890810	05	125	85			320	95	375	60				
	890817	01			350	95					90	98	150	90
	890817	05			650	100					440	100	750	100
	890817	06	250	90			1700	99	1350	95				
	890821	02	45	20	350	25	220	15	350	20			105	19
	890822	02			375	50					240	65	350	64
	890904	01	45	100			135	100	115	100				
	890904	02			550	40					295	65	650	60
	890904	03			400	25					270	50	125	60
	890904	04	225	70	1200	75	1200	88	1700	75	400	85	725	85
	890904	06	25	100	55	100	60	100	110	100			35	100
	890909	03	220	5			1000	2	1450	5				
	890910	06	50	15	90	60							115	74
	890918	01					200	2	225	3				
	890919	02	65	90			400	70	525	93				
	890920	03			160	100					180	100	85	100
	890921	01			300	60			200	60	110	60		
species	13: STRIPED DOLPHIN													
	890731	03			225	100					200	100	140	100
	890801	01									100	1	100	2
	890801	02	35	100	65	100	100	100	125	100	75	100	85	100
-	890801	04			2	100					2	100	2	100
	890802	04	8	100	17	100					15	100	20	100
	890802	06	25	100	20	100					25	100	40	100
	890802	08					20	100						
	890803	02			70	100				100	50	100	115	100
	890803	03	22	100	45	100	40	100	70					
	890804	01	23	100			70	100					45	83
	890805	04	15	100			55	100	80	100			45	100
	890805	05			40	100	45	100	75	100	13	100	25	100
	890805	06	20	100			30	100	55	100				
	890809	03	65	100			130	100	260	100			70	100
	890811	01	25	100			70	100	150	100	30	100	40	100
	890817	03	20	100			40	100	47	100				
	890819	02			40	100					17	100	30	100
	890819	03	45	100	60	100	60	100					30	100
	8890819	04			17	70	115		130	100	23	70	28	57
	890824	01			40	100		100			15	100	22	100
	890909	01	22	100			85	100	75	100				
	890913	03	10	100			25	100	50	100				
	890913	05	55	100			150	100	400	100			120	100
	890913	06	12	100			35	100	40	100				
	890916	02			400	100					160	100	110	100

Table 4A. (continued)

Table 4A. (continued)

888
\&
∞N
N

0	80
-	®

\bar{m}

\& \sim ~ ๓∞

O8\%	$\stackrel{\text { ¢ }}{ }$	88	88	88
mon	8	-	mr	

\rightarrow m-
으 요 융

m@ m

 -
 $\stackrel{8}{8}$

$$
\circ 0
$$

$$
\circ
$$

$$
0 \quad-
$$

8
$\stackrel{8}{-}$

$$
\begin{aligned}
& \stackrel{\circ}{-} \\
& -
\end{aligned}
$$

ㅇ 88 응 $\stackrel{8}{8}$
*

species 36: SHORT-FINNED PILOT WHALE 8

으응

[^2]8
0

$\begin{array}{ll}8 & 888 \\ \mathrm{~N} & \text { लम- } \\ & \end{array}$

$$
\begin{array}{cc}
\text { species } & 37: \quad \text { KILLER WHALE } \\
890809 & 04
\end{array}
$$

Table 4A. (continued)

date	obs 7			obs 55		obs 56		obs 67		obs 71		obs 73	
	$\begin{gathered} \text { sight } \\ \text { no. } \end{gathered}$	best est.	pct	best est.	pet	best est.	pct	best est.	pet	best est.	pet	best est.	pct

(${ }^{450}{ }^{100}$

-¢	8\%8\%	요응
m		

Table 4B．（continued）

		Obs	1	obs	5	obs	22	Obs	45	obs	51	Obs 74	
date	sight no．	best est．	pet	best est．	pet	best est．	pet	best est．	pct	best est．	pet	best est．	pct

8\％\％
8
무ํํㅑ ํ
8
8
8
8
88

8융 웅

4888
888
$\stackrel{\square}{-}$
ํํํํํํํ
ตำ
125

\circ－

$\stackrel{\circ}{\circ}$
$\cong \infty$

－88ํํ요
요 8

品

¢8\％	ハNOガN
＝	ベップ8゚
品 	
${ }_{\text {2 }}^{4}$	
¢	
\％	

Table 4B. (continued)

8	운
0	n

8	8	-	¢	8	88%	888	\%8\%
$\stackrel{18}{\infty}$	r	$\stackrel{\sim}{\sim}$	$\stackrel{\text { m }}{0}$	N	กN®	¢ncor.	웅N
8	8	9)		\%	888	-
$\frac{0}{7}$	N	8	V		앙	gra	\cdots

5	100	6	100	6	100
4	100				3
4	100				
4					100

8	N	g	\cdots
용	O	$\stackrel{\square}{\sim}$	$\begin{aligned} & \text { N } \\ & \text { O} \end{aligned}$
8	ก		
9	$\stackrel{\sim}{\infty}$		

(5 100
Table 4B. (continued)

		obs	1	obs	5	Obs	22	obs	45	obs	51	obs	74
date	sight no.	best est.	pct	best est.	pet								

Table 4B. (continued)

Table 4B. (continued)

		obs	1	obs	5	obs	22	obs	45	obs	51	obs	74
date	sight no.	best est.	pct	best est.	pet								

$$
\begin{aligned}
& E \\
& E \\
& =
\end{aligned}
$$

Summary of marine mammal sightings encountered in the eastern 7. 1989.

$$
\begin{array}{llll}
50.29(46) & 237.92(45) & 184.75(45) \\
17.43(& 3
\end{array} \quad 53.48(2) \quad 31.72(2)
$$

$$
(o z) \varepsilon \varepsilon \cdot \mathrm{sz} \quad(61) 6 t \cdot \mathrm{sz} \quad(\tau \tau) 8 L \cdot b t
$$

$$
(\angle \quad) \angle 1 \cdot 8 \quad(\angle \quad) Z 6 \cdot 6 \quad(\angle) 6 L \cdot 9
$$

$$
\begin{aligned}
& \text { species name } \\
& \text { (scientific name) }
\end{aligned}
$$ during July 29 through December

"LONG-SNOUTED WHI TEBELLY"

 UNIDENTIFIED DOLPHIN
means of school size estimates
low $/(n) \quad$ high $/(n) \quad$ best $/(n)$

$$
\begin{array}{cccccc}
311.90(& 2) & 433.62(& 2) & 372.98(& 2) \\
10.00(& 1) & 16.00(& 1) & 11.00(& 1) \\
10.39(& 7) & 20.27(& 6) & 14.02(& 6) \\
11.79(31) & 18.87(27) & 15.13(& 27)
\end{array}
$$

$$
\begin{aligned}
& \text { G } \\
& \stackrel{n}{\sim} \\
& \stackrel{\text { H }}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { N } \\
& \underset{\sim}{\infty} \\
& \dot{0}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{N} \\
& \underset{\sim}{\infty} \\
& \dot{N}
\end{aligned}
$$

$$
\begin{gathered}
\underset{\sim}{\mathcal{H}} \\
\underset{\sim}{N} \\
\underset{\sim}{-}
\end{gathered}
$$

$$
\underset{\infty}{\infty}=
$$

$$
\%
$$

N

$$
\begin{aligned}
& \sigma \\
& \underset{\sim}{\infty} \\
& \underset{\sim}{\infty} \\
& \hdashline
\end{aligned}
$$

$$
\underset{\sim}{N}
$$

$$
-\infty \underset{\sim}{\sim} \omega \omega \underset{\sim}{m}-\omega-\omega \underset{\sim}{\infty} \sim 0+0 \underset{\sim}{N}
$$

$$
N-\underset{\omega}{\infty} \omega \underset{N}{N}-\omega-\omega \underset{\sim}{\infty}
$$

$$
\begin{aligned}
& \text { epos } \\
& \text { se!pe }
\end{aligned}
$$

				$\underset{\substack{100 \\ \text { and } \\ 20 \\ 10 \\ 40}}{10}$			
	${ }^{185695}$	${ }^{5} 5$	${ }_{231}^{23}$	\%	$\underset{\substack{33.01 \\ 16,98}}{ }$		${ }_{96}^{17}$
$\underset{\substack{\text { visidinitity conditione } \\ \text { foor }}}{\substack{\text { cor }}}$		${ }^{38}$	${ }_{\text {226 }}^{226}$	${ }^{81}$	${ }_{\text {l7, }}^{77.85}$		${ }_{6}^{6}$

	Distance Searched (km)	Percent Distance Searched	Number Schools Detected	Percent Schools Detected	Detection Rate (Schools/ 1000 km)	S.E. Detection Rate	Number ${ }^{2}$ Days Searched
Teams ${ }^{3}$							
Team 1	3879	27	70	28	18.05	7.75	51
Team 2	3883	27	65	26	16.74	6.36	49
Team 3	3193	22	67	26	20.98	14.04	44
Team 4	3307	23	52	20	15.72	5.20	46
${ }^{1}$ Numbers may not add precisely due to rounding.							
${ }^{2}$ Day included in tally of searching effort if variable occurred during any part of the day.							
${ }^{\omega}{ }^{3}$ Team 1 members were observers $1,51,74$; Team 2 members were observers 5,22,45; Te observers 55,71,73; and Team 4 members were observers 7,56,67. 39 km of trackline when either both or neither of the team leaders were on duty and is not used for							

Figure 1. Tracklines surveyed by the NOAA Ship MCArthur from July 29 through

SERIES	LEG7	START OF LEG									END OF LEG TIME	$\begin{gathered} \text { COMPASS } \\ \text { COURSE } \\ { }^{\circ} \mathrm{T} \end{gathered}$	VESSELSPEEDKTS \& 10th:	POSITION: ONE OR MORE PER SERIES				OBSERVER POSITION				
		TIME	SURFACE TEMP. of \& 10ths			14 ORZ. SUN	VERT. SUN	WIND DIR. OT	$\begin{gathered} \text { SWELL } \\ \text { DIR. } \\ \text { OT } \\ \hline \end{gathered}$	SWELL HEIGHT FT.				latitude	$\frac{N}{S}$	LONGITUDE	$\frac{E}{W}$	LEFT BINO.	$\begin{aligned} & \text { RIGHT } \\ & \text { BINO. } \end{aligned}$	REC.		
	1	1	16			1	1	1	11	1	11	1	16	111		1.1		1	1	1		
	1	1	1.1			1	1	11	1.1	1	11.1	1	1.	1		111		1	1	1		
	1	1	1			1	1	1	11	4	11	1	1	1_1		111		1.	1	1		
	1	1	$1+$			1	1	1	1	1	11	1	1.1	111		1×1		1	1	1		
	1	1	1			1	1	1.1	1	4	11	1	$1+$			111		1	1	1		
	1	1	1.			1	1	11	1	1	1	1	$1+1$	1		1 1		1	1	1		
1		1	1			1	1	11	1	1	11	1.1	11	11		$1 ـ 1$		1	1	1		
	1	1	1.1			1	1	1.1	1.1	1	111	1	11	111		111		1	1	1		
1	1	11	1.			1	1	1	11	1	1	1	1.1	1.1		$1 \ldots$		1	1	1		
	1	1	11			1	1	1	1	1	L	1	1.	11.1		1.1		1	1	1		
L	1	1	11			1.	1	1	1	${ }_{4}$	1.1	1	1	11.1		1-1.		1.	1	1		
	1	1	11			1	1	1	1	4	1.1	1	$1+$	1		C_L		1.	1	1		
	1	11	11			1	1	1	1	ϕ	111	1	$1+$	$1 \ldots$		1 l		1.	1	1		
1	1	1	1.1			1	1	1	11	1	1.1	1	1.1	1-1		1 L		1	1	1		
	1	1.1	14			1	1	1	11	1	1 L 1	1	1.4	111		111		1	1	1		
11	13		19	22	23	24	26	28	31	34	36	40	43	46	50	1	56	57	59	61	63	64

$\frac{\text { FOG/RAIN CODES }}{\text { NO FOG OR RAIN }}=1 \quad$ NOTES:
: Himbinatio
ar
ЭONVHO OL ヨna sang $937=6$ ENDING COUES IN OBSERVER POSITIONS

RESEARCH SHIP
 MARINE MAMMAL
 SIGHTING RECORD

TIME	SIGHTING CUE				ENVIR. COND. AT CUE SURF TEMP HORZ VERT				POSITION AT TIME OF CUE					TIME M.M. SIGHTED	$\left\lvert\, \begin{aligned} & \frac{a}{\underline{U}} \\ & \frac{Y}{N} \\ & N \end{aligned}\right.$	OBSERVER POSITIONS LEFT RIGHT			
11			L	1		1	1	L	1		1			11		1	1	1	1
		24		28		32	5	37		43		49	50				58	60	62

OBSERVER 1

OBS.	SChOOL SIZE ESTIMATE				CARD	SPECIES PROPORTIONS							
CODE	BEST	HIGH	LOW		\#	\%	CODE	\%	CODE	\%	CODE	\%	CODE
1	1	1	1		$\begin{array}{ll} 0 & 2 \\ & 1 \end{array}$		1	1	1	L	1	1	1
64		70	74	77	17	19	22	24	27	29	32	34	37
S, P			$\mathrm{S}_{1} \mathrm{P}^{\text {d }}{ }^{2}$				${ }^{P} 1^{3}$				4		

OBSERVER 2

OBSERVER 3

OBSERVER 4

OBSERVER 5

OBSERVER 6

Figure 3. Research ship marine mammal sighting record.

HORIZONTAL SUN POSITION
Figure 4. Vertical and horizontal sun position categories.

Figure 5. Research ship sighting continuation record.

SIGHTING SUMMARY

LIST ALL DIAGNOSTIC FEATURES OBSERVED (INCLUDING ESTIMATED BODY LENGTH)
SKETCH FEATURES OF ANIMALS SIGHTED

Figure 6. Offshore spotted dolphins (+) detected from board the NOAA Ship
McArthur from July 29 through December 7,1989 , in the eastern tropical Pacific.

Figure 7. Eastern (+), whitebelly (0 , and unidentified (∇) spinner dolphins
detected from aboard the NOAA Ship McArthur from July 29 through December 7,
1989 , in the eastern tropical Pacific.

Figure 8 Common dolphins (+) detected from aboard the NOAA Ship McArthur from
July 29 through December 7, 1989, in the eastern tropical Pacific.

Figure 9 Striped dolphins (+) detected from aboard the NOAA Ship McArthur from
July 29 through December 7, 1989, in the eastern tropical Pacific.

Figure 10. Bottlenose dolphins (+) detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical pacific.

Figure 11. Risso's dolphins (+) detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific.

Figure 12. Rough-toothed dolphins $(+)$ detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific.

Figure 13 Pilot whales ${ }^{(+)}$detected from aboard the NOAA Ship MCArthur from
July 29 through December 7,1989 , in the eastern tropical Pacific.

Figure 14. Sperm (+) and dwarf sperm (O) whales detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical

Figure 15. Unidentified rorquals ($(+)$, Bryde's (0), blue (∇), humpback ($*$) and
sei (() whales detected from aboard the NOAA Ship McArthur from July 29 through
December 7 , 1989, in the eastern tropical Pacific.

Figure 16. Unidentified beaked (+), Cuvier's beaked (0), mesoplodon (∇), and through December 7, 1989, in the eastern tropical Pacific.

Figure 17. Killer (+) and false killer (O) whales, Fraser's dolphins (∇),
melon-headed (\square) and pygmy killer ($*$) whales and pacific white-sided (Δ) dolphins detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific.

Figure 18. Unidentified dolphins (+) detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific.

Figure 19. Unidentified small whales (+), unidentified whales (O), unidentified large whales (∇) and unidentified cetaceans (\square) detected from aboard the NOAA Ship McArthur from July 29 through December 7, 1989, in the eastern tropical Pacific.

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price. Microfiche copies cost $\$ 4.50$. Recent issues of NOAA Technical Memorandums from the NMFS Southwest Fisheries Center are listed below:

NOAA-TM-NMFS-SWFC- 133 The 1987-88 demersal fish surveys off Central California ($34^{\circ} 30^{\circ} \mathrm{N}$ to $36^{\circ} 30^{\prime} \mathrm{N}$)
J.L. BUTLER, C.A. KIMBRELL, W.C. FLERX and R.D. METHOT (July 1989)

134 The First 25 Years.
LILLIAN L. VLYMEN
(September 1989)
135 Censuses and interatoll movements of the Hawaiian monk seal on Laysan Island, 1985.
B.L. BECKER, R.J. MORROW, and J.K. LEIALOHA (September 1989)

136 Summary of the 1987 U.S. tuna/porpoise observer data.
A.R. JACKSON
(October 1989)
137 Biomass-based models and harvesting policies for Washington-Oregon-California rockfish stocks with correlated recruitment patterns
J.E. HIGHTOWER
(April 1990)
138 Effects of including in mortality estimates, dolphins categorized as either injured or of undetermined status.
C.W. OLIVER and E.F. EDWARDS
(May 1990)
139 Report of ecosystem studies conducted during the 1989 eastern tropical Pacific dolphin survey on the research vessel David Starr Jordan. L.J. LIERHEIMER, P.C. FIEDLER, S.B. REILLY, R.L. PITMAN, L.T. BALLANCE, S.C. BEAVERS, G.G. THOMAS and D.W. BEHRINGER (May 1990)

140 Report of ecosystem studies conducted during the 1989 eastern tropical Pacific dolphin survey on the research vessel McArthur. L.J. LIERHEIMER, P.C. FIEDLER, S.B. REILLY, R.L. PITMAN, L.T. BALLANCE, S.C. BEAVERS and D.W. BEHRINGER (May 1990)

141 Ichthyoplankton and station data for California cooperative oceanic fisheries investigations survey cruises in 1984. E.G. STEVENS, R.L. CHARTER, H.G. MOSER and C.A. MEYER (May 1990)

142 Report of a marine mammal survey of the eastern tropical Pacific aboard the research vessel David Starr Jordan July 29-December 7, 1989.
P.S. HILL, A. JACKSON and T. GERRODETTE (June 1990)

[^0]: ${ }^{1}$ Reference to trade name does not imply endorsement by the NMFS .

[^1]: ${ }^{2}$ Ralston, F. Ms. Usage procedures and coding notes for research vessel sighting and effort records. Southwest Fisheries Center. P.O. Box 271, La Jolla, CA. 92038.

[^2]:

