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B iology is complicated. Nowhere might this be more true
than in aquatic systems. Lakes, especially those in
temperate regions, commonly undergo seasonal dynamics in
the background of constant anthropogenic insult. Among the
ecosystem level responses are cyanobacterial blooms (cHABs),
which render water bodies unusable and potentially toxic.
High-profile interruptions of access to potable water affecting
>400 000 residents of Toledo, OH in 2014 and more than
>2 000 000 residents of Wuxi, China in 2007 highlight this
problem.1 Indeed, global-scale observations report an increase
in the size and frequency of cHABs on six of the seven
continents.” While eutrophication is clearly a primary driving
force, climate change, and invasive species are also factors.
Ultimately, research into the specific drivers of cHABs
continues to provide unclear, and often contradictory
mechanisms of bloom formation: an example of this is the
ongoing debate on the roles of nitrogen and phosphorus as
bloom promoters.3 Meanwhile, cyanobacteria continue to
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dominate large freshwater systems despite decades of nutrient
control, albeit these controls have been largely phosphorus-
focused. There is also tremendous focus on both the
physiology and ecology of key cyanobacteria genera (e.g.,
Microcystis and Planktothrix) which produce the toxic
secondary metabolite microcystin, a compound originally
known as “Fast Death Factor”.! However, despite all efforts
and tremendous progress, the picture remains complicated,
with contradictions, for example, on the roles of pH,
temperature, and viruses in constraining or promoting
cyanobacterial harmful algal blooms or their production of
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Figure 1. Nutrient availability shifts microbiomes. Microcystis aeurginosa NIES-843 cultures started from the same stock were transferred for three
generations to unique nitrogen (N) and phosphorus (P) conditions to determine how the cyanobacterium would respond (Steffen et al. 2014). We
re-examined metatranscriptomes (via Pound et al. 2021, protocols.io, doi: 10.17504/protocols.io.buvbnw2n) to demonstrate shifts in the (A)
community richness (rpoB phylogenies), and (B) functional richness (unique KEGG orthology assignments) of the co-occurring microbiome.
Results demonstrate that only small components of community (4%) and function (15%) remained common after three generations. Note that

« »

unions denoted wit

are for transcripts when phylogeny (<2) and function (<10) were <1%.

toxin(s).” In addition, an important potential cause of
variability in both lab and field experiments is frequently
overlooked: the co-occurring microbes which numerically
represent a majority of the microbial community.

In nature, heterotrophic bacteria persist in fresh waters at
concentrations ranging from 10° to 10° per L of water. Yet in
the laboratory, scientists researching cyanobacteria have
worked for decades to reduce or even remove these microbial
“contaminants” and create axenic cultures. It is clear, however,
that without the presence of microbiomes, processes that occur
in nature, and the relationship cyanobacteria have to these
processes, are limited or halted. A further complication is that
while coculture experiments of bacteria alongside algae may
seem more ecologically relevant, there is no guarantee that the
composition or metabolic activity of microbiomes in laboratory
samples remain representative of what one finds under field
conditions. As an example, we re-examined the efforts of
Steffen et al.” which compared transcripts from Microcystis
aeruginosa NIES-843 cultures in light-limited (control), N-
reduced (with different N sources), and P-reduced conditions
in samples cultivated with an initially identical accompanying
microbiome for three cycles of growth and transfer. Looking
beyond the Microcystis cells, changes in both the identity and
activity of the microbiome in each treatment were unique
(Figure 1). This raises many questions. For example, how do
changing microbiomes influence biogeochemical processes
(carbon and nutrient pools, metabolites, etc.) and con-
sequently the activity of the bloom-causing organism itself?
Are experimental results an indirect or direct result of this co-
occurring community that may share metabolites and afford
protection from environmental stressors, among other
functions? To what degree can a microbe’s microbiome
influence gene expression in the individual or the subsequent
production of compounds in complex natural systems? What
scientists observe as a biological pattern in nature is a
combination of the physics and chemistry at the level of the
individual cell interacting with the physics and chemistry of
every other organism, all within a changing environment.®
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Without acknowledging that cyanobacteria are not alone, we
cannot move forward with a clearer and more comprehensive
understanding of how cyanobacteria blooms are constrained.

We propose a paradigm shift to address the interactions
between ecosystem-threatening freshwater cyanobacteria and
“the others” that coexist. We know that heterotrophic bacteria
are constant companions of algae in lakes around the world”
and may serve to facilitate® or repress’ cyanobacterial growth,
and that bacterial functions during blooms vary in time and
space.'” It is also possible that the metabolic processes of co-
occurring microbes are potentially exchanging primary or
secondary metabolites with cyanobacteria to mollify or amplify
environmental insults. Additionally, it is not just bacteria that
may influence cyanobacteria: viruses'' and fungal chytrids'
may also play a role in both the repression and success of
cyanobacterial blooms.

In summary, we see an urgent need for researchers to report
not only on the toxin-producing phototroph of interest, but
also the diversity (i.e., richness and evenness) of the co-
occurring microbial community during experimental research.
Deep sequencing of rRNA genes and entire metagenomes/
metatranscriptomes has become a standard laboratory and field
tool in microbial ecology."’ The scientific community should
strive to report the identity and function of the entire microbial
consortia present in both laboratory cultures and during field
research efforts. Researchers are encouraged to consider the
functional potential of co-occurring organisms and how these
roles might influence cyanobacterial growth dynamics. More-
over, beyond the scope of their initial project, when researchers
provide data on the identity or function (RNA)/functional
potential (DNA) of a microbiome, they provide informaticians
and modelers an opportunity to address microbiome effects in
subsequent data analyses. The interactions within the micro-
bial consortia, and effects resulting from environmental
impacts are what drive the phenotypes we observe and must
be considered during the interpretation of experiments.
Furthermore, as microbiome analysis tools continue to
improve, including shotgun sequencing efforts, insight into
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the metabolic functions of these microbes will improve our
ability to decipher the underlying drivers of undesirable
cyanobacterial blooms. What remains certain is that future
studies across ecology should no longer ignore the identities
and actions of other members of experimental systems, and
should document shifts in community structure and function
as they occur in laboratory manipulations.
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