
1. Introduction
The Northwest Atlantic Shelf Region (NAS) is a pronounced western boundary current margin that receives 
significant influences from the Gulf Stream on the ocean side, while experiencing the cumulative impacts of 
terrestrial inputs from small-to-medium size rivers, saltmarshes, and groundwater on the landward side (Cai 
et al., 2020; Fennel et al., 2019; Najjar et al., 2018; Wang et al., 2013). The region has been the location of dramatic 
shifts in climate indicators over the last century, such as accelerated warming and heatwaves (Chen et al., 2014; 
Forsyth et  al.,  2015; Gawarkiewicz et  al.,  2019; Mills et  al.,  2013; Perez et  al.,  2021; Pershing et  al.,  2015; 
Schlegel et al., 2021), rapid sea-level rise (Piecuch et al., 2018; Sallenger et al., 2012), and the increasing direct 
and indirect influences from the Gulf Stream as a result of changes in its meanders and interaction with the 
shelf (Andres, 2016; Gangopadhyay et al., 2019; Gawarkiewicz et al., 2018; Monim, 2017). This region is also 
potentially more vulnerable to ocean acidification due to naturally low pH and calcium carbonate saturation state 
(Gledhill et al., 2015; Siedlecki et al., 2021; Wang et al., 2013, 2017; Wanninkhof et al., 2015). Various anthro-
pogenic and natural drivers, such as riverine inputs, warming, eutrophication, and changes in circulation, also 
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mean square errors (RMSE) between 15.4–23.7 (μmol kg −1) and TA with r 2 between 0.986–0.983 and 
RMSE between 9.0–10.4 (μmol kg −1) on an unseen test data set that was not used in training the models. 
Cross-validation analysis revealed that all models were insensitive to the choice of training data and had good 
generalization performance on unseen data. Uncertainty in DIC and TA were low (coefficients of variation 
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and ocean acidification. However, the lack of observations on seawater carbonate chemistry makes it difficult 
to assess the impacts of ocean acidification on the region. We address this information gap by developing three 
different machine learning models to predict carbonate system parameters from more readily available field 
and satellite data. The models predicted carbonate system parameters with high accuracy and good precision. 
Compared with other models of carbonate chemistry variables for this region, a larger data set with full 
seasonal and vertical coverage of the water column and a more complex model architecture resulted in a robust 
model with low error and uncertainty across all four seasons as well as in surface and subsurface waters. The 
reconstructed distributions of carbonate chemistry fields on U.S. northeast coast based on one of the models 
were consistent with observations. We anticipate that the distinct versions of the model will allow for a wide 
range of different applications based on the predictor variables that are available.
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contribute to the complexity of coastal acidification in the region (Rheuban et al., 2019; Salisbury et al., 2008; 
Salisbury & Jönsson, 2018; Siedlecki et al., 2021; Wallace et al., 2014; Wang et al., 2013).

These drivers potentially have significant impacts on carbonate chemistry as well as CO2 and other inorganic 
carbon fluxes over a wide range of spatial and temporal scales in this region. However, the existing observa-
tional data of the full carbonate system are still mostly limited to sporadic seasonal cruises over the last three 
decades, and there are large data gaps in many locations even in the most extensively sampled seasons (Fennel 
et al., 2019; Pousse et al., 2022). Despite improved data collection on surface pCO2 through ships of opportunity 
(e.g., Bakker et al., 2016; Chen et al., 2019; Signorini et al., 2013), other carbonate parameters and subsurface 
carbonate chemistry are poorly sampled. Only in the recent decade, with the emergence of ocean acidification as 
a potential threat to marine ecosystems, has there been a concerted effort to expand water sampling programs to 
include regular sampling of subsurface carbonate chemistry. However, the current observing programs still have 
a seasonal coverage in their designs, all with limited spatial coverages. These limitations make it difficult to eval-
uate the impacts of regional short-term (e.g., meso-scale and Gulf Stream eddies) and long-term (e.g., interannual 
and decadal scales) climate-related changes on water-column carbonate chemistry.

This study serves to address this critical data gap by developing a neural network model to predict regional 
carbonate chemistry from more readily available hydrographic and satellite data. A number of other studies have 
successfully developed empirical predictions of carbonate chemistry variables using methods that vary from rela-
tively simple to significantly more complex and range from regionally specific algorithms to global assessments. 
The most common strategy for predicting carbonate chemistry variables is a multi-linear regression approach, 
either predicting dissolved inorganic carbon (DIC) and/or total alkalinity (TA) and calculating the carbonate 
chemistry variable of interest (e.g., pH, saturation state, pCO2), or directly predicting variable of interest (e.g., 
Alin et al., 2012; Bostock et al., 2013; Carter et al., 2018, 2021; Davis et al., 2018; Evans et al., 2013; Hales 
et al., 2012; Juranek et al., 2009; Kim et al., 2015; Lee et al., 2006; McGarry et al., 2021; Millero et al., 1998; 
Turk et al., 2017; Vance et al., 2022; Velo et al., 2013; Williams et al., 2016). More recently, some studies have 
incorporated machine learning techniques such as neural networks or random forest regression (Bittig et al., 2018; 
Broullon et al., 2019; Chen et al., 2019; Fourrier et al., 2020; Li, Bellerby, Ge, et al., 2020; Li, Bellerby, Wallhead, 
et al., 2020; Lohrenz et al., 2018; McNeil & Sasse, 2016; Sasse et al., 2013; Sauzède et al., 2017; Velo et al., 2013; 
Xu et al., 2020). Using both approaches, these empirical predictions have been quite successful at reproducing the 
variables of interest with consistently low errors reporting RMSE less than 20 μmol kg −1 for DIC and/or TA, and 
often less than 10 μmol kg −1 with high r 2 values (e.g., r 2 > 0.82 and often >0.93).

However, many of these studies are not appropriate for use on the NAS. Regional algorithms developed for 
other areas, for example, the North Pacific (e.g., Alin et al., 2012; Davis et al., 2018; Hales et al., 2012; Juranek 
et al., 2011; Kim et al., 2015), Southern Ocean (Bostock et al., 2013; Williams et al., 2016), Gulf of Alaska 
(Evans et al., 2013), Mediterranean Sea (Fourrier et al., 2020), East China Sea (Li, Bellerby, Ge, et al., 2020; Li, 
Bellerby, Wallhead, et al., 2020), Gulf of Mexico (Chen et al., 2019; Lohrenz et al., 2018), and the North Atlantic 
(McGarry et al., 2021; Turk et al., 2017; Xu et al., 2020), may inherently incorporate drivers or relationships that 
are inconsistent with those in this study region or predict different variables than those of interest for this study. 
For example, salinity is generally a strong indicator of seawater total alkalinity as it reflects mixing of different 
water masses (Li et al., 2022; Rheuban et al., 2019; Wang et al., 2017), but salinity-alkalinity relationships may 
differ significantly by region if the underlying carbonate chemistry of the mixing endmembers vary (e.g., Lee 
et al., 2006). In fact, McGarry et al. (2021) found that regionally specific algorithms perform poorly when used 
outside of their original study area. Published global approaches are also not appropriate for the goals of this 
study, as many globally developed algorithms focus on data from the open ocean and selectively exclude data 
from nearshore waters with depth <200 m, exclude data from surface waters altogether, or report poor perfor-
mance and caution against using those algorithms for surface waters (Bittig et al., 2018; Broullon et al., 2019; 
Carter et al., 2018, 2021). Indeed, Fourrier et al. (2020) found that two global neural network models were unable 
to predict nutrient and carbonate system variables in the Mediterranean Sea with a high degree of accuracy, and 
thus developed a regional neural network model based on the architecture of the global approaches.

In this study, we develop neural network models to predict DIC and TA in the NAS region using a combination 
of in situ hydrographic observations and satellite remote sensing data. To illustrate a use case, we use one of the 
models to reconstruct water-column DIC and TA, from which we estimate pH and aragonite saturation state (ΩA) 
as relevant ecosystem indicators of potential impacts of ocean and coastal acidification on key sensitive shellfish 
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species. Finally, the reconstructed fields are used to explore modern (2013–2019) spatial and seasonal trends in 
surface and bottom water carbonate chemistry.

2. Materials and Methods
2.1. Field and Satellite Data

The neural network models use a combination of hydrographic observations and satellite data as input varia-
bles. Bottle measurements for the study region were obtained from several sources. The main source of data for 
this analysis is from Coastal Ocean Data Analysis Product in North America (CODAP-NA, Jiang et al., 2021). 
This data product compiles carbonate and nutrient chemistry from cruises that sampled the North American 
coastline—including the NAS region—and has undergone a rigorous quality control and quality assurance 
process. Additional data sources include the turnover cruises for the Ocean Observatories Initiative (OOI) Pioneer 
Array (Northeast Shelf, NES, data from https://alfresco.oceanobservatories.org), located south of Martha's Vine-
yard, Massachusetts, as well as samples collected during sampling cruises for the Northeast Shelf Long Term 
Ecological Research site, found in the same region as the NES Pioneer Array. Data with questionable or bad 
quality control flags were excluded from the analysis, and the combined data set includes 4350 DIC and 4151 
and TA measurements and the corresponding observations of temperature, salinity, dissolved oxygen, and sample 
depth for the period 2003–2018 (Figure 1a). The compiled bottle data included all four seasons (Figure 1b) and 
spatial coverage throughout the region (Figure 2).

AVISO daily absolute dynamic topography (ADT) data with a resolution of 0.25° for the period 1993–2020 
were downloaded from Copernicus Marine and Environment Monitoring Service (CMEMS, https://marine.
copernicus.eu/). High resolution (0.01°) daily sea surface temperature (SST) data for the period 2002–2020 were 
obtained from NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC, https://podaac.
jpl.nasa.gov). Daily surface chlorophyll (Chl) and diffuse attenuation coefficient at 490 nm (KD490) data with 
a resolution of 4 km for the period 1997–2020 were downloaded from NASA's Goddard Space Flight Center 
(https://oceancolor.gsfc.nasa.gov). These products contain merged data from the SeaWiFS and MODIS missions. 
Annual atmospheric xCO2 measurements in Mauna Loa, Hawaii, were downloaded from NOAA's Global Moni-
toring Laboratory Mauna Loa CO2 records (Tans & Keeling, 2021).

Satellite observations were extracted at the times and locations of bottle stations by matching the dates of the bottle 
stations and satellite images and extracting the satellite image value at the sample location using bilinear interpo-
lation. Atmospheric xCO2 was also extracted for the dates of bottle stations. The extracted atmospheric xCO2 and 
satellite data were then merged with the bottle data to produce a final data set containing temperature (degrees 
Celsius), salinity (PSU), dissolved oxygen (μmol kg −1), sample depth (meters), atmospheric xCO2 (ppmv), ADT 
(meters), SST (degrees Celsius), Chl (mg m −3), KD490 (m −1), DIC (μmol kg −1), and TA (μmol kg −1).

2.2. Model Development

The neural network models used in this study consist of multiple layers of interconnected nodes also known as 
multi-layer perceptrons (MLP, Bishop, 1995). MLPs map the relationship between input variables and dependent 
output variables by minimizing the mean squared error (MSE) between the predicted and observed values of the 
output variables. This minimization is done through an iterative optimization method (back-propagation) that 
adjusts the node weights in the direction in which the loss function is decreasing most rapidly. Neural networks 
can accurately capture complex nonlinear relationships and interaction effects without making assumptions about 
the form of the true function, and therefore can be described as universal approximators (Hornik et al., 1989; 
Marzban, 2009). Neural networks have been successfully used to estimate carbonate chemistry variables (pCO2, 
pH, DIC and TA) at regional (Fourrier et al., 2020; Landschutzer et al., 2013; Li, Bellerby, Ge, et al., 2020) and 
global scales (Bittig et al., 2018; Broullon et al., 2019; Laruelle et al., 2017; Sauzède et al., 2017).

Carbonate system variability on the NAS is controlled by thermodynamic processes, biological activities, phys-
ical circulation and mixing, and air-sea exchange, with each varying across different spatial and temporal scales 
(Cai et al., 2020; Gledhill et al., 2015; Siedlecki et al., 2021; Wang et al., 2013). In the neural network models, 
temperature and salinity represent the effects of thermodynamic processes (CO2 solubility and dissociation). 
These variables are also good indicators of water masses and therefore contain information related to physical 
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circulation and mixing as well. Dissolved oxygen, Chl and KD490 are strongly associated with photosynthesis 
and respiration and are good proxies for biological metabolism. Satellite ADT and SST include information 
related to circulation patterns and mixing processes, while depth is a proxy for variations in physical and bioge-
ochemical processes related to vertical environmental gradients. Atmospheric xCO2 accounts for the effect of 
rising atmospheric CO2 concentrations on air-sea exchange, and thus potential DIC increase due to anthropo-
genic CO2 invasion. In a neural network, the combination of linear transformations and a non-linear activation 
function allows it to capture complex interactions between features. Thus, the model is able to use the infor-
mation provided by the satellite data on surface processes in conjunction with sample depth and other in situ 
observations to learn relationships between the different input variables and estimate DIC and TA at specific 
depths. Many studies that use neural networks to predict carbonate chemistry in the ocean include geographical 

Figure 1. Frequency distribution of bottle dissolved inorganic carbon (DIC) and total alkalinity (TALK) samples (a, b) and data from the World Ocean Database 
(WOD, measured via CTD and autonomous floats) (c, d) data by year and season.
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coordinates (latitude, longitude) and time as input variables (Bittig et al., 2018; Li, Bellerby, Ge, et al., 2020; 
Sasse et al., 2013; Sauzède et al., 2017; Zeng et al., 2014). Doing so makes the neural network more of a mapping 
or interpolation tool as it is able to learn the spatial-temporal patterns in the distribution of the data. In this study, 
we use a more mechanistic approach and only include predictor variables that directly affect or are proxies for 
processes that impact DIC and TA.

Prior to doing any model fitting, the merged bottle and satellite data set was split via a stratified random sampling 
approach into “training” (75%) and “test” (25%) datasets. The data set was stratified by season to ensure that both 
the training and testing data sets contained similar seasonal distributions of data. The “training” data set was used to 
train and tune the neural network models while the “test” data set was used to evaluate the accuracy of the models 
on unseen data. The “test” data set was not used at all during the training of the models, and serves as a completely 
independent data set for evaluation of the model's performance. We performed a 5-fold cross-validation analysis to 
assess how sensitive the models are to the choice of training data set and how well they generalize to new or unseen 
data. In this procedure, the merged bottle and satellite data set was randomly split into 5 sets of (approximately) 
equal size called folds, and a series of models was trained using each one of the folds as the test set and the remaining 
folds as the training set. Accuracy was computed for each model on the corresponding test set, producing a series 
of (5) accuracy estimates. The obtained range of accuracies provided information on the sensitivity of the model to 
changes in the training data set and how well we can expect the model to perform when applied to new data. Model 
accuracy was quantified using the coefficient of determination (r 2) and the root mean squared error (RMSE). We 

Figure 2. Spatial distribution of bottle data by season.
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defined the overall error in the model output as the combination of the measurement error for the input variables 
and the output data as well as the model error as in Sauzède et al.  (2017). Measurement error for temperature, 
salinity, dissolved oxygen, atmospheric xCO2, DIC, and TA were 0.06°C, 0.007 PSU, 3.4 μmol kg −1, 0.07 ppm, 
2.4 μmol kg −1, and 5 μmol kg −1, respectively (Jiang et al., 2021; Zhao & Tans, 2006). Measurement errors for ADT, 
KD490, and SST were 0.026 m (Pujol et al., 2023), 2.1 m −1 (calculated from data from Seegers et al., 2018, accessed 
via SeaBASS for this study region, https://seabass.gsfc.nasa.gov/search#val), and 0.6°C (Martin et al., 2012).

Neural networks are sensitive to the scaling and distribution of the input variables. Therefore, the satellite Chl 
and KD490 were log-transformed to account for their log-normal distribution. The diffuse attenuation coefficient 
at 490 nm (KD490) indicates how strongly visible light in the blue to green region of the spectrum is attenuated 
within the water column. This parameter is related to the presence of scattering particles in the water column, 
either organic or inorganic, and thus is an indicator of water turbidity. KD490 was highly correlated with Chl 
(r = 1), and these two variables provided very similar information on water quality to the model. Preliminary 
testing showed that including both KD490 and Chl as input variables did not improve the accuracy of the DIC and 
TA predictions significantly and that using either KD490 or Chl provided very similar results. Thus, we opted for 
a simpler model including only KD490 instead of both KD490 and Chl.

As part of the model development, we experimented with different neural network layouts, activation functions 
and parameter values (learning rate). For this procedure, the training set was further subdivided into a second 
training set and a validation set. The different model configurations were trained using the second training set and 
evaluated on the validation set. The model configuration that provided the best results consists of an input layer 
corresponding to the predictor variables, two fully connected hidden layers with 256 nodes each and the output 
layer corresponding to the predicted variable (DIC and TA). For the activation function we used the Leaky Recti-
fied Linear Unit, or Leaky ReLU. This activation function is based on the Rectified Linear Unit (ReLU), but it 
modifies the function to allow small negative values (instead of zero) when the input is negative. The learning rate 
parameter determines the amount by which the neural network node weights are updated during training and was 
set to 0.01. We used a Batch Normalization layer before each hidden layer and the output layer. Batch Normaliza-
tion normalizes, re-centers and re-scales the inputs (Ioffe & Szegedy, 2015). It provides built-in standardization 
of the input variables when included before the first hidden layer in the neural network, and significantly speeds 
up the training process by allowing us to use higher learning rates. Separate models were created for estimating 
DIC and TA. For the final model, part of the training set (20%) was used as a validation set during model training. 
The learning curves (Figure 3) revealed that the models converged quickly and did not overfit the data.

Our main goal in this study was to produce a model that can predict seawater carbonate chemistry from more 
readily available data so that we can reduce the sparseness of carbonate system observations in the NAS region. 
Dissolved oxygen measurements are relatively scarce in CTD, glider and autonomous float data, and satellite 
observations only became available in the late 1970s. This significantly limits the usefulness of a model that uses 
these variables as predictors. Therefore, we developed three versions of the neural network models for DIC and 
TA. In the first version (Model 1), we used all available variables as predictors (temperature, salinity, dissolved 
oxygen, sample depth, atmospheric xCO2, ADT, SST and KD490). In the second version (Model 2), we excluded 
dissolved oxygen from the input variables, and in the third version (Model 3) we excluded dissolved oxygen 
and  satellite data (ADT, SST and KD490) from the predictor variables. Model 2 allowed the use of a substantially 
larger fraction of the available field data, significantly increasing spatial and temporal coverage, while Model 3 
would allow a user to extend an analysis to include earlier time periods, before the satellite era.

To evaluate the uncertainty in the models' estimates of DIC and TA, we trained an ensemble (one for each model 
version) of 100 models on the training data set and used the model ensembles to make predictions on the test 
data set. Within each ensemble, the models' node weights were randomly initialized, thereby producing distinct 
models, and DIC and TA were calculated for the test set using each of the models within the ensemble. Standard 
deviations for DIC and TA estimates from each model version were computed using the corresponding model 
ensemble's predictions on the test data set. We used the median standard deviations for DIC and TA in each 
ensemble as a metric for the uncertainty in the model predictions.

2.3. Reconstruction of Carbonate Chemistry Fields

To reconstruct the distribution of carbonate chemistry fields, we compiled a data set of hydrographic observa-
tions from CTDs and autonomous floats for the NAS region using data from NOAA's World Ocean Database 

https://seabass.gsfc.nasa.gov/search
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(WOD) for the period 2002–2018 (Figure 1c). The compiled data set provided good spatial coverage in all four 
seasons (Figure  4), although observations were more abundant in the Summer and Fall months (Figure  1d). 
Atmospheric xCO2 and satellite data were extracted for the dates and locations of field observations, applying 
the same procedure used for the bottle data. Most of the compiled hydrographic observations did not include 
dissolved oxygen measurements. Thus, we applied Model 2 to the merged data set of hydrographic and satellite 
observations to estimate DIC and TA so that we could use all available hydrographic data. Total pH and arag-
onite saturation state (ΩA) were computed from the obtained DIC and TA estimates (with in situ temperature, 
salinity, and pressure) using PyCO2SYS (https://pyco2sys.readthedocs.io/en/latest/, Humpheries et  al.,  2021). 
Carbonic acid dissociation coefficients K1 and K2 from Lueker et al., 2000, sulfate dissociation constant KSO4 
from Dickson (1990), total borate concentration from Lee et al.  (2010), and HF dissociation coefficient KHF 
from Perez and Fraga (1987) were used in carbonate system calculations. Estimates of surface and near bottom 
temperature, salinity, DIC, TA, pH and ΩA were obtained by averaging the data in the top 5 m and extracting the 
deepest value from each cast, respectively. The extracted data were used to generate seasonal maps of surface 
and near bottom temperature, salinity, DIC, TA, pH and ΩA by grouping the data by season and remapping them 
into a regular grid with 1/8-degree resolution encompassing the NAS region using inverse distance weighted 
interpolation with a radius of 100 km.

3. Results and Discussion
The model including all predictor variables (Model 1) fitted the data remarkably well with r 2  =  0.963 and 
RMSE = 15.4 μmol kg −1 for DIC and r 2 = 0.986 and RMSE = 9.0 μmol kg −1 for TA predictions on the test data 

Figure 3. Neural network loss function (MSE) on the training and validation sets as a function of the training interaction (epoch) for the different model versions.

https://pyco2sys.readthedocs.io/en/latest/
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set. The 5-fold cross-validation analysis produced r 2 values in the range 0.955–0.968 with a mean r 2 = 0.961 for 
DIC and 0.981–0.989 with a mean r 2 = 0.986 for TA, indicating low sensitivity to the choice of training data set 
and good generalization performance on new data. Removing dissolved oxygen as a predictor (Model 2) results 
in a small increase in model error with r 2 = 0.944 and RMSE = 19.1 μmol kg −1 for DIC and r 2 = 0.985 and 
RMSE = 9.7 μmol kg −1 for TA predictions on the test data set. 5-fold cross-validation shows r 2 values between 
0.931 and 0.951 (mean r 2 = 0.943) and 0.975 and 0.986 (mean r 2 = 0.983) for DIC and TA, respectively, indi-
cating good generalization performance for Model 2 as well. The model excluding dissolved oxygen and satellite 
data as predictors (Model 3) has higher error than the previous two models, but it still is a good predictor of DIC 
and TA with r 2 = 0.913 and RMSE = 23.9 μmol kg −1 for DIC and r 2 = 0.983 and RMSE = 10.4 μmol kg −1 for TA 
on the test data set. The r 2 values obtained in the 5-fold cross-validation analysis range between 0.899 and 0.914 
(mean r 2 = 0.904) for DIC and 0.973 and 0.983 for TA, also denoting low sensitivity to changes in the training 
data set and low error when predicting DIC and TA from unseen data (Figure 5, Table 1). Comparison of the r 2 
and RMSE values for DIC and TA (Table 1) revealed that the model error for TA was very similar in all three 
versions of the NN models, as TA was strongly correlated with salinity, largely reflects mixing of different water 
masses, and is significantly less affected by the other variables. Model error for DIC decreased with the inclusion 
of dissolved oxygen and satellite data as predictors, which improved the neural network model performance by 
incorporating information on biogeochemical processes in addition to physical oceanography. We anticipate that 
model performance could be further improved with the inclusion of additional indicators of biogeochemical 

Figure 4. Spatial distribution of compiled CTD and autonomous float data by season.
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processes, for example, nitrate, phosphate, or net community productivity, among others (Fourrier et al., 2020; 
Sauzède et  al.,  2017). However, the differences between the different model versions were relatively small 
(Tables 1 and 2) and all three models predict DIC and TA in the NAS region with low overall error.

The frequency distributions of standard deviations for the ensemble model predictions showed that the uncertainty 
in TA estimates also remains relatively unchanged in the different model versions (Figure 6b, Table 3). The median 
standard deviation values for TA estimates in all three model versions were very low (2.85–3.11 μmol kg −1) and 

very close to each other (Table 3). The uncertainty in DIC estimates differed 
among model versions (Figure 6a and Table 3), with standard deviations that 
were generally higher in Models 2 and 3 compared to Model 1 (Figure 6a). 
Nevertheless, the uncertainty from the distribution of standard deviations in 
DIC estimates from all three model versions was still very low with coeffi-
cients of variation between 0.1% and 1%. The greater variability in the uncer-
tainty of DIC estimates compared to TA between the different model versions 
is consistent with the idea that TA is mainly driven by physical mixing that 
can be predicted by variations in salinity while DIC is a function of many 
other factors, and the neural network models have more difficulty learning 
and accurately predicting these relationships.

Despite the somewhat limited availability of discrete carbonate system obser-
vations in both space and time in this region, the neural network model still 

Figure 5. Predicted versus observed dissolved inorganic carbon (DIC) and total alkalinity (TA) values in the test set for the different model versions.

DIC TA

r 2 RMSE RMSE final r 2 RMSE RMSE final

Model 1 0.963 15.4 16.7 0.986 9.0 11.1

Model 2 0.944 19.1 19.9 0.985 9.7 11.2

Model 3 0.913 23.9 24.5 0.983 10.4 11.8

Note. RMSE values are in μmol kg −1. RMSE final shows the overall error 
including measurement and model error.

Table 1 
r 2 and RMSE Values for the Different Versions of the Neural Network 
Models on the Test Data Set
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performed well in predicting unseen data in the test set (Table 1). Both model 
residuals and absolute errors for DIC and TA were uncorrelated with any of 
the predictor variables (p > 0.1 for all predictors, data not shown), indicating 
high predictive capabilities throughout the water column, and under all envi-
ronmental conditions tested. The underlying data also included observations 
from all four seasons, and when subsetting the test set into seasonal data, the 
models also performed well. For both DIC and TA, model RMSE values for 
the test set were consistent across all four seasons (Table 4), and consistent 
with the overall RMSE for the entire test set, supporting the neural network's 
ability to learn the underlying physical and biogeochemical processes driving 
the carbonate system in this region through the proxy variables chosen as 
predictors. RMSE for winter data was slightly higher in Model 3, the model 
with the fewest predictor variables, but this time period also has the fewest 
observational data available.

3.1. Use Case: Seasonal Climatology of the Carbonate System

In this example, we provide a use-case of the neural network model output as a tool to interpolate and fill signif-
icant observational data gaps. This use case serves to assess both the seasonality of regional carbonate chemistry 
and also is a test as to whether our model output is consistent with previous studies. Discrete observations of 
carbonate chemistry variables (i.e., DIC, TA, pH, pCO2, and aragonite saturation state) are very sparse both 
spatially and temporally (see Section 1—Introduction, and Figures 1 and 2), while hydrographic CTD data (e.g., 
temperature, salinity, and depth), and dissolved oxygen sensor data along with satellite observations are much 
more frequently measured due to the logistical differences in sample collection and analysis. This is particularly 
evident in subsurface waters and at depth, where observations are even more sparse than in surface waters, as 
ships of opportunity with underway pCO2 systems have significantly increased the observational capability in 
recent decades. These sparse observations at depth make it particularly difficult to evaluate the full extent of 
seasonal variation in seawater carbonate chemistry, carbon cycling and benthic or midwater ecosystem or habitat 
characteristics with respect to pH or calcium carbonate saturation state. Here, we examine the climatological 
mean conditions of physical parameters (salinity and temperature) and the neural network-generated carbonate 
parameters at the sea surface and bottom, which showed seasonal progression and large spatial gradients on the 
Northwest Atlantic Shelf (Figures 7 and 8).

3.1.1. Surface

Wintertime had the lowest temperature but relatively high salinity among the four seasons (Figure 7). The latitudi-
nal gradients of surface temperature and salinity were relatively weak in winter but their cross-shelf gradients were 

DIC TA

Best r 2 Worst r 2 Mean r 2 Best r 2 Worst r 2 Mean r 2

Model 1 0.968 0.955 0.961 0.989 0.981 0.986

Model 2 0.951 0.931 0.943 0.986 0.975 0.983

Model 3 0.914 0.899 0.904 0.983 0.973 0.980

Table 2 
Best, Worst, and Mean r 2 Values From the Cross-Validation Analysis for the 
Different Versions of the Neural Network Model

Figure 6. Frequency distributions of standard deviations (μmol kg −1) values for the different model ensembles' dissolved 
inorganic carbon (DIC) and total alkalinity (TA) predictions on the test data set (a and b). Each model ensemble corresponds 
to a different model version. The blue, red, and green vertical dashed lines indicate the median standard deviation values for 
DIC and TA, respectively.
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clearly visible in the Southern New England (SNE) shelf and the Mid-Atlantic 
Bight (MAB), which reflects the shelfbreak frontal exchange between low 
temperature, low salinity shelf water and high temperature, high salinity 
slope water that receives influences from the Gulf Stream (Gangopadhyay 
et al., 2019; Gawarkiewicz et al., 2012; Lentz, 2008; Zhang et al., 2011). The 
southern end of the MAB had the highest temperature and salinity in winter, 
which is consistent with the area as the exit point where shelf water mixes 
with the Gulf Stream (Biscaye et al., 1994; Lentz, 2008; Vlahos et al., 2002; 
Wang et al., 2013). By spring, surface temperature is slightly elevated across 
the region, while its latitudinal and cross-shelf gradients are still not well 
developed. Surface salinity was overall lower than winter values across the 
region, especially along the coastline, reflecting freshwater inputs during the 
spring freshet. In summer, a strong latitudinal gradient of surface temperature 
developed with the high values of >20°C across the shelf in the southern part 
of the region, while the low values (∼10–15°C) occur in much of the Gulf of 

Maine. Summer had the lowest surface salinity among the four seasons, and its across-shelf gradient is relatively 
weak. The gradients of temperature and salinity across the shelfbreak front in summer seem to be less developed 
than winter and spring. By fall, surface water in much of the region was cooling, and the latitudinal gradient of 
surface temperature started to weaken. Surface salinity in fall started to increase from its summer values, and a 
strong cross-shelf gradient and a shelfbreak frontal gradient developed, especially in the middle part of the region.

The climatological surface TA field closely followed the distribution of salinity in all four seasons, which is 
indicative of its mostly conservative nature, a finding that has been widely documented in previous studies (e.g., 
Cai et al., 2010; McGarry et al., 2021; Wang et al., 2013, 2017). The TA gradients across the shelfbreak in the 
SNE shelf and the MAB were more pronounced in winter and fall, while such a feature was weak in summer-
time. Winter generally had the highest TA values at the surface among the seasons, whereas they were lowest 
in summer. The latitudinal gradients of TA at the surface were not as clear as the cross-shelf gradients for most 
seasons, except in summer, when the TA values of surface water was generally lower inthe middle and southern 
parts of the MAB than most of the Gulf of Maine, which may be driven by low salinity and low alkalinity inputs 
from a few mid-size rivers in the area (i.e., Hudson River, Delaware River, and Chesapeake Bay).

The surface DIC distribution, however, was negatively correlated with that of surface temperature, likely reflect-
ing that the solubility pump of CO2 plays a role in shaping the DIC distribution in the region. Winter had the 
highest surface DIC values among the seasons, followed by spring, corresponding to the annual peak of the 
solubility pump when the biological pump is relatively weak. The cross-shelf and shelfbreak frontal gradients 
of DIC were weaker than those observed for surface TA for all seasons. The latitudinal gradient was largely 
unclear in winter and spring, while the DIC concentration of surface water was lower in the MAB than the 
Gulf of Maine in summer and fall. Again, this was likely associated with more seasonal freshwater inputs in the 
MAB. DIC concentrations at the surface were relatively low in summer and fall compared to winter and spring, 
corresponding to the seasonal high and low rates of the biological pump. The seasonal DIC distribution at the 
surface reflected a combination of the effects from physical processes (e.g., riverine inputs and shelfbreak frontal 

Model 1 Model 2 Model 3

DIC std Min 2.703 4.199 4.342

Max 17.416 18.542 20.846

Median 4.640 6.164 6.473

TA std Min 1.816 1.989 1.726

Max 17.167 14.577 17.335

Median 2.957 3.112 2.853

Note. Values are in μmol kg −1.

Table 3 
Standard Deviation for Different Model Versions Estimated From the Model 
Ensembles on the Test Data Set

Model 1 Model 2 Model 3

DIC TA DIC TA DIC TA

DJF 13.6 (49) 11.3 (50) 23.6 (57) 13.8 (57) 25.6 (57) 12.6 (57)

MAM 12.8 (99) 8.8 (97) 19.0 (133) 9.9 (125) 19.0 (133) 9.3 (125)

JJA 15.6 (726) 7.5 (681) 19.3 (772) 8.4 (726) 25.1 (772) 9.6 (726)

SON 16.6 (119) 14.1 (122) 15.6 (126) 13.3 (130) 19.5 (126) 13.9 (130)

Note. Units are in μmol kg −1 and number of observations are shown in parentheses. Seasons have been split into winter 
(December, January, February—DJF), spring (March, April, May—MAM), summer (June, July, August—JJA), and fall 
(September, October, November—SON).

Table 4 
Seasonal RMSE From the Test Set for Each Model Version for DIC and TA
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exchange), the solubility pump, and biogeochemical processes (e.g., seasonal changes in the biological pump) in 
the region.

The surface pH in the region exhibited seasonal features observed in the surface DIC and TA distributions, but 
their correlations were complex and reflected more factors that control pH seasonality and its spatial distribu-
tion compared to DIC and TA. For example, cross-shelf and shelfbreak frontal gradients of surface pH were 

Figure 7. Seasonal distributions of surface temperature, salinity, dissolved inorganic carbon (DIC), total alkalinity (TA), pH 
and aragonite saturation state (Ω) reconstructed from World Ocean Database (WOD) data. DIC and TA were estimated by 
using Model 2 on the merged data set of hydrographic and satellite observations. Total pH and ΩA were computed from the 
DIC and TA estimates plus in situ temperature, salinity, and pressure using PyCO2SYS (Humpheries et al., 2021).
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pronounced, which were similar to that of surface TA. Winter and spring had higher surface pH values than 
summer and fall, corresponding to the seasonality of surface DIC, which bears physical (e.g., mixing and 
freshwater inputs), thermal (solubility) and biogeochemical imprints. Heating and cooling have two distinct 
effects on pH: (a) changes due to carbonate equilibria and (b) through the solubility of CO2. The two processes, 
however, have the opposite effects on pH values, and as such, the pH distribution responds to the thermal effect in 

Figure 8. Seasonal distributions of bottom temperature, salinity, dissolved inorganic carbon (DIC), total alkalinity (TA), 
pH and aragonite saturation state (Ω) reconstructed from World Ocean Database (WOD) data. DIC and TA were estimated 
by using Model 2 on the merged data set of hydrographic and satellite observations. Total pH and aragonite saturation state 
were computed from the DIC and TA estimates plus in situ temperature, salinity, and pressure using PyCO2SYS (Humpheries 
et al., 2021).
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a more complex way compared to DIC, which is affected by only the solubility of CO2 during heating or cooling. 
On the other hand, the surface distribution of aragonite saturation states was largely negatively correlated with 
that of surface DIC, highlighting that the variability in surface DIC plays a major role in controlling the varia-
bility of aragonite saturation states. For example, the sources and sinks of DIC (e.g., respiration, photosynthesis, 
air-sea CO2 exchange and upwelling of high CO2 water) mainly affected the distribution of aragonite saturation 
states at the surface, a finding that is consistent with the previous studies (Cai et al., 2020; Wang et al., 2017). 
Interestingly, seasonal highs (summer and fall) and lows (winter and spring) of ΩA at the surface were the oppo-
site of the seasonality of surface pH and TA, highlighting the decoupling effects on ΩA and pH from physical and 
biogeochemical processes.

3.1.2. Bottom

Generally cooler and saltier, the distributions of salinity and temperature varied less spatially (cross-shelf and 
latitudinal) and seasonally compared to the surface distributions (Figure 8). The correlations between physical 
(salinity and temperature) and carbonate parameters, as well as among carbonate parameters, were similar to 
surface conditions. One major feature that was distinct from the surface is that there was consistently high salinity 
bottom water across all seasons in the deep basins of the Gulf of Maine, which originated from the slope water 
of the Gulf Stream (Siedlecki et al., 2021; Townsend et al., 2010). This bottom water DIC and TA concentrations 
were consistently high across all seasons. Accumulation of respired carbon from surface production may further 
elevate bottom water DIC in these basins but would likely have a limited effect on the TA signature since respira-
tion does not strongly influence TA. These conditions resulted in consistent low pH (mostly 7.8–7.9) and low ΩA 
(mostly <1.5) across all seasons in the deep bottom water of the Gulf of Maine.

In the other parts of the NAS, the seasonality of DIC, TA, pH and ΩA in bottom water was also less pronounced 
than their surface distributions. Except for bottom water in the Gulf of Maine, the latitudinal gradients of these 
parameters were less clear, but the cross-shelf gradients were more pronounced compared to those at the surface. 
The shelfbreak frontal gradient was clearly visible across all seasons for DIC, TA, and pH, highlighting the signif-
icant impacts of the frontal exchange on the carbonate system at depth, which is consistent with previous transects 
during cruises in the region (e.g., Wang et  al.,  2013; Wright-Fairbanks et  al.,  2020). The consistent gradient 
across all four seasons suggests previous observations of this feature are likely representative of a consistent 
pattern occurring throughout the year. One striking feature is that most of the bottom water has a ΩA value less 
than 1.5, except the southern tip of the region, and some nearshore and mid-shelf water of the MAB in fall. This 
finding suggests bottom water in the region likely experiences episodic aragonite undersaturation as a result of 
high-CO2 events, such as accumulation of respired surface blooms and high CO2 water intrusion from upwelling 
of subsurface slope water.

3.2. Comparison With Similar Studies

Although a number of other studies have developed predictive models of carbonate system variables from more 
readily available measurements (see Introduction), it was necessary to complete this regional assessment in order 
to accurately predict conditions in the NAS region. Our results are directly comparable to, and consistent with, 
two regional studies that also focused on the NAS, McGarry et al. (2021), and Li et al. (2022). Similar to this 
study, McGarry et al. (2021) developed multiple models using different sets of predictor variables with increasing 
model complexity, and Li et al. (2022) developed separate models for different regions with slightly different 
water mass characteristics. Both used a multi-linear regression (MLR) approach that incorporated the predic-
tors temperature, salinity, dissolved oxygen, and/or nitrate concentration. Both studies also found that models 
that incorporated proxies for biogeochemical drivers performed better than those that only included physical 
mixing. The predictability of their models was generally high, achieving an r 2 and RMSE of 0.86–0.98 and 
5.9–22.3 μmol kg −1 for DIC and 0.956–0.976 and 6.6–10.9 μmol kg −1for TA, respectively, depending on model 
choice.

Our assessment differs from both studies in several ways. First, the model architecture differs. Linear regression 
models can be very powerful with high-dimensional data but can only generate linear functions, which may 
limit their ability to predict complex, non-linear systems. Second, our input data set includes more than 4.5-fold 
more observations for training the models (n = 3,262 for DIC and n = 3,113 for TA vs. 599 and 529, 777 for 
this study vs. McGarry et al. (2021) or Li et al. (2022), respectively), and more independent data for evaluating 
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the performance of the models (n = 1,088 for DIC and n = 1,038 for TA vs. 741 and 204, 208, for this study and 
McGarry et al. (2021) or Li et al. (2022), respectively). Third, although the majority of the observational data 
used in this study were collected during summer months, our data compilation includes observations from all 
four seasons (Figure 1) that are incorporated into both the training and testing datasets. The use of a data set with 
full seasonal coverage that captured more of the variability in the carbonate system in this region, in combination 
with a model architecture that can capture complex, non-linear systems resulted in a predictive model with high 
accuracy and precision across all four seasons. Indeed, McGarry et al. (2021) and Li et al. (2022) report signifi-
cantly worse model performance on observations from outside of the summer season for which their model was 
calibrated. Fourth, the input variables, while similar between the two approaches, represent proxies for slightly 
different processes; for example, in this study, we included the additional proxies for mesoscale and submesos-
cale variability (e.g., ADT and high-resolution SST) and air-sea CO2 flux (e.g., atmospheric xCO2) such that the 
neural network may be able to better learn the complex drivers of the carbonate system in this region.

Finally, this analysis includes data from throughout the water column, while both McGarry and Li's models 
predict carbonate chemistry for only subsurface waters, focusing on depths greater than 15 and 20 m for McGarry 
and Li, respectively. The neural networks described in this study have between 68,353 (Model 1) and 67,329 
(Model 3) trainable parameters that are optimized during the fitting process. As such, a single neural network 
model can be trained to predict DIC or TA throughout the water column. Indeed, for all three models, model 
residuals and RMSE on the test set were similar in surface (depth <15 m) and subsurface waters (depth ≥15 m) 
for both DIC and TA (Figure 9, Table 5), although for surface conditions, RMSE was slightly higher in both 

Figure 9. Observed dissolved inorganic carbon (DIC, a, b, c) and total alkalinity (TA, d, e, f) minus predicted DIC and TA from the test set for model 1 (a, d), model 2 
(b, e), and model 3 (c, f). Data have been split into surface (depth <15 m) and subsurface (depth ≥15 m) layers. Vertical lines are the medians for each distribution.
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parameters. Consistent with other metrics of model performance, Model 3 
(hydrographic data only) showed the largest deviation in median residual for 
DIC when comparing surface and subsurface waters (−9.4 vs. 2.7 μmol kg −1, 
respectively). Both metrics are consistent with the overall observations of 
model performance: increasing model complexity improved the models' 
abilities to predict carbonate system parameters, specifically by incorporat-
ing features that were relevant proxies for biogeochemical processes, which 
may be more important predictors in surface waters than at depth. When 
compared to McGarry et al. (2021) and Li et al. (2022), our neural network 
models achieved modest improvements in RMSE for predicted DIC and TA 
on the test set for summer, subsurface waters (Table 6) when compared to 
models with similar predictor variables. Here, we note that we found slightly 
higher RMSE values than McGarry et al. (2021) and Li et al. (2022) did for 
their evaluation data when applying their models to our carbonate chemis-
try data set because the underlying data sets we use are different. McGarry 
and Li report RMSE for a single cruise, while this comparison was made 
on a subset of the test data set, and includes data from 14 different cruises 

spanning 2007–2018. Additionally, the neural network models provide DIC and TA estimates for the full water 
column and all four seasons in the NAS region, while McGarry et al. (2021)'s and Li et al. (2022)'s MLR models 
are restricted to subsurface waters in the summer months. This makes the neural network models applicable to a 
much wider range of data, as illustrated in our use case (Section 3.1). A significant advantage of the MLR models 
is that they allow for relatively straightforward and interpretable inference from the model's coefficients. For 
example, the MLR approach provides context for the relative importance of each predictor variable, which can 
give indications of the strength of the underlying drivers for which that variable is a proxy. A similar assessment 
is more difficult with the neural network described here due to the complexity of the network's architecture.

3.3. Potential Applications of Different Model Versions & Future Work

In this study, we developed three different versions of the neural network model to predict carbonate chemistry 
variables from more readily available hydrographic and satellite data. Each model version has a different utility–
here we describe a single use-case of one of the model versions, Model 2, to generate seasonal and spatially 
explicit estimates of modern-day surface and bottom water conditions. In this case, we chose Model 2 due to the 

lack of co-located oxygen data with many of the CTD casts obtained from 
the World Ocean Database but the availability of satellite observations. Addi-
tionally, given the strongly regional nature of the underlying data set and this 
algorithm development, we recommend that these algorithms only be used in 
the Northwest Atlantic region. This framework would likely be applicable in 
other regions, but users may need to develop their own regional algorithms 
trained on data collected in their region of interest.

Other versions of the neural network models could be useful in different 
contexts. For example, Model 1, which has the lowest error and predicts the 
carbonate system variables with the highest accuracy, should be used when 
all predictors are available and input data are of high quality. This model 
is likely to be increasingly useful in the near future as observational plat-
forms such as the OOI or IOOS programs or other coastal observing sensor 
arrays become more readily available in this region and produce high quality 
biogeochemical data outputs. With inputs that reflect both short and longer 
timescale physical (e.g., temperature and salinity vs. ADT and atmospheric 
xCO2, respectively) and biogeochemical processes (e.g., dissolved oxygen 
vs. KD490, respectively), Model 1 may also be useful for both geospatial 
and time series analyses, such as long-term trends in surface pCO2 or air-sea 
exchange. Such an analysis would also benefit from comparison of the 
neural network model output to other databases such as the Surface Ocean 
CO2 Atlas (SOCAT), which is beyond the scope of this study. Model 3, the 

Model type

DIC TA

ReferencesRMSE (μmol kg − 1)

Model 1 (>15 m) 14.2 (530) 5.9 (485) This study

DIC II, TA V 16.9 (530) 7.9 (485) McGarry et al. (2021)

Model 1 (>20 m) 12.9 (489) 5.9 (452) This study

MAB (>20 m) 16.0 (530) — Li et al. (2022)

Model 2 (>15 m) 18.6 (534) 6.3 (505) This study

Model 3 (>15 m) 23.5 (534) 7.5 (505) This study

DIC I, TA IV 33.4 (534) 7.7 (505) McGarry et al. (2021)

Note. We compare models II and V (DIC and TA, respectively) from 
McGarry et al. (2021) and the Mid-Atlantic Bight subregion for DIC from Li 
et al. (2022) to Model 1 in this study, and we compare models I and IV (DIC 
and TA, respectively) from McGarry et al. (2021) to Models 2 and 3 in this 
study. The number of samples used to estimate RMSE is given in parentheses.

Table 6 
Model RMSE Between Predicted and Observed Dissolved Inorganic Carbon 
(DIC) and Total Alkalinity (TA) for the Test Set, Focusing on Subsurface 
Conditions for Observations During Summertime Compared to McGarry 
et al. (2021) and Li et al. (2022)

DIC TA

<15 m ≥15 m <15 m ≥15 m

Median Residual (μmol kg −1)

 Model 1 0.7 −1.1 −0.6 1.1

 Model 2 −3.4 −0.4 0.8 −1.1

 Model 3 −9.4 2.7 −0.5 1.0

RMSE (μmol kg −1)

 Model 1 18.4 14.0 11.0 8.0

 Model 2 20.3 18.5 12.5 8.1

 Model 3 25.9 22.9 13.0 8.9

Table 5 
Median Model Residual and RMSE for the Test Set for DIC and TA for 
Surface and Subsurface Waters
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simplest version presented here, which includes only hydrographic variables as predictors along with water depth 
and atmospheric xCO2, also has significant potential utility. One use case for this model might be to investigate 
changes in historical carbonate chemistry, as observational data in this region from the World Ocean Database 
have reasonably good coverage dating back before the satellite era to the mid-twentieth century. Similar to other 
studies that empirically model carbonate system variables (e.g., a suggested use case in Carter et al., 2018, 2021), 
any of the three models may also be useful to generate a second carbonate system predictor variable for use with 
underway pCO2 data, or to quantify pH for comparison and quality control of observational platforms.

Data Availability Statement
All data used in this analysis are available in public data repositories, and no login is required for access. The 
CODAP-NA data set can be found at the following link: https://doi.org/10.5194/essd-13-2777-2021. All data 
from the OOI Coastal Pioneer Array NES can be found on https://alfresco.oceanobservatories.org/. Samples 
were used from cruises Pioneer 1–11 (Ocean Observatories Initiative, 2015, 2016, 2019a, 2019b, 2019c, 2019
d, 2019e, 2020a, 2020b, 2020c, 2021a, 2021b), references and links to each cruise data set can be found in the 
reference list in this manuscript. Data from the NES-LTER are available at: https://www.ncei.noaa.gov/archive/
accession/0278969 (Wang et al., 2023). All data analysis and model code can be found at https://doi.org/10.5281/
zenodo.8018245 (Lima, 2023).
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