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ABSTRACT

The response of the North Atlantic meridional overturning circulation (MOC) to wind stress forcing is
investigated from an observational standpoint, using four time series of overturning transports below and
relative to 1000 m, overlapping by 3.6 yr. These time series are derived from four mooring arrays located on
the western boundary of the North Atlantic: the RAPID Western Atlantic Variability Experiment (WAVE)
array (42.58N), the Woods Hole Oceanographic Institution Line W array (39 8N), RAPIDÐMOC/MOCHA
(26.58N), and the Meridional Overturning Variability Experiment (MOVE) array (16 8N). Using modal de-
compositions of the analytic cross-correlation between transports and wind stress, the basin-scale wind stress
is shown to signiÞcantly drive the MOC coherently at four latitudes, on the time scales available for this study.
The dominant mode of covariance is interpreted as rapid barotropic oceanic adjustments to wind stress
forcing, eventually forming two counterrotating Ekman overturning cells centered on the tropics and sub-
tropical gyre. A second mode of covariance appears related to patterns of wind stress and wind stress curl
associated with the North Atlantic Oscillation, spinning anomalous horizontal circulations that likely interact
with topography to form overturning cells.

1. Introduction

The Atlantic meridional overturning circulation
(MOC) is the primary driver of poleward heat transport
by the ocean. At subtropical latitudes, it is responsible

for about 70% of the poleward ocean heat transport and
25% of the combined ocean and atmosphere poleward
heat transport (Ganachaud and Wunsch 2000). Nu-
merical models suggest that over the twenty-Þrst cen-
tury, the MOC will reduce in strength ( Vellinga and
Woods 2002) with associated reduction in the northward
heat transport (Johns et al. 2011). Our ability to properly
simulate, or accurately observe, a climatic trend in MOC
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records is impaired by our incomplete understanding of
the origins of MOC variability.

The MOC in numerical models varies on a broad
range of time scales, from decadal scales (Delworth
et al. 1993, 2012) to interannual scales (Biastoch et al.
2008; Köhl and Stammer 2008; Zhao and Johns 2014a)
and to annual (seasonal) and shorter scales (Hirschi
et al. 2007; Blaker et al. 2012; Zhao and Johns 2014b).
At Þrst, processes on different time scales could be
expected to linearly superpose, but numerical simula-
tions suggest that intrinsic interannual variability of the
MOC can spontaneously appear under climatological
atmospheric forcing (Grégorio et al. 2015). A decade of
continuous observations has conÞrmed that the Atlan-
tic MOC at 26 8N exhibits broadband variability
(McCarthy et al. 2015), with amplitudes larger than
anticipated (Srokosz and Bryden 2015). As an example,
the Atlantic MOC has shown an exceptional downward
linear trend of about 0.5 Sv yr2 1 (1 Sv [ 106 m3 s2 1)
(Smeed et al. 2014), in addition to interannual varia-
tions including a year-long dramatic reduction of about
30% (McCarthy et al. 2012). At the annual time scale,
the MOC at 268N shows a substantial seasonal cycle of
roughly 30% of its absolute magnitude. Prior to the
268N moored sustained observations, the Atlantic
MOC had been estimated from synoptic hydrographic
surveys. From Þve surveys spanning 50 years, a re-
duction of 8 Sv was identiÞed (Bryden et al. 2005), but
this was later mostly attributed to aliasing of the sea-
sonal variability of the MOC into longer time scales
(Kanzow et al. 2010). Thus, analysis of the MOC vari-
ability is complicated by the superposition of multiple
time scales of variability.

At any given latitude, the observed and simulated
variability of the MOC may be induced by local or re-
mote forcing. For example, the seasonal cycle of the
MOC at 268N is explained by coastal wind forcing off the
Canary Islands and the associated heave of isopycnals by
wind stress curl (Chidichimo et al. 2010; Kanzow et al.
2010). Variations in the MOC strength can also result
from local adjustment to boundary waves propagating
around ocean basins (Johnson and Marshall 2002; Elipot
et al. 2013) or planetary waves propagating westward
from the basin interior but with limited meridional ex-
tent (Kanzow et al. 2009; Zhao and Johns 2014b). The
topic of local versus remote forcing of the MOC is linked
to the issue of observing the MOC at a single latitude: is
the measure of the MOC at a single latitude represen-
tative of large-scale MOC variability? Elipot et al.
(2014)showed that the observed MOCs at 268and 418N
(Willis 2010) were temporally coherent on near-annual
time scales, yet the phases of their annual cycles were in
quadrature, resulting in a null correlation (see also

Mielke et al. 2013). In general, numerical simulation
experiments clearly indicate that the latitudinal
boundaries between tropical, subtropical, and sub-
polar gyres can break the meridional coherence of the
MOC on various time scales (Bingham et al. 2007; Xu
et al. 2014).

Numerical simulations are able to provide basinwide
and consistent transport estimates at all latitudes
(Bingham et al. 2007; Zhang 2010). In contrast, transport
estimates at discrete latitudes from observational
methods are not necessarily comparable. For the MOC,
observational methods include 1) a net transport over a
Þxed depth range [measured from proÞling ßoats at a
nominal 3-month time resolution near 418N (Willis
2010)], 2) the maximum of an overturning stream-
function [estimated from transbasin geostrophic shear,
as near 268N with the RAPIDÐMOC/MOCHA
(Cunningham et al. 2007; Rayner et al. 2011)], 3) the
transport of a physically coherent current near bound-
aries [such as the Deep Western Boundary Current near
398N (Toole et al. 2011) and at 268N (Meinen et al.
2013)], or 4) zonally integrated meridional transport
across a partial basin width [as near 168N (Send et al.
2011)]. In this study, we use some of the same observa-
tions in the North Atlantic, but we aim at estimating
comparable oceanic transport quantities at each of these
four latitudes (418, 268, 398, and 168N), applying the
method of using ocean bottom pressure (OBP) gradi-
ents on the western boundary of the AtlanticÕs basin
(Hughes et al. 2013; Elipot et al. 2014). Next, we apply
statistical methods to study the covariance between
transport estimates, and investigate wind forcing as a
driver of this covariance.

This paper is organized as follows.Section 2presents a
brief review of the concepts of overturning processes and
observational principles. Section 3 presents the oceanic
and atmospheric data used. Section 4 describes the
methods used.Section 5presents the results of analyses
between the four transport time series by themselves.
Section 6 presents the results on the statistical analyses
between the four transport time series and the wind over
the North Atlantic, and provides dynamical interpreta-
tion for the observed statistical linkage. Section 7
provides a summary and conclusions.

2. Overturning meridional transports: Concepts
and observational principles

To investigate rapid coupling between wind forcing
and overturning transports, it is useful to consider the
velocity decomposition of Lee and Marotzke (1998)(see
also Jayne and Marotzke 2001; Sime et al. 2006).
Assuming that a time-dependence is implicit, the
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meridional velocity y(x, y, z) is decomposed into three
components:

y(x, y, z) 5
1
H

ð0

2 H
y(x, y, z) dz

1
�
ye(x, y, z) 2

1
H

ð0

2 H
ye(x, y, z) dz

�
1 ysh(x, y, z), (1)

where H(x, y) is the water depth at location (x, y). Each
of these three terms can lead to an overturning, where
overturning refers to a zonally integrated meridional
transport that varies with depth. The Þrst term represents
velocities that are depth independent at each (x, y) spa-
tial location, but its zonal integral can vary with depth
because of varying topography and basin width. As an
example, imagine a hypothetical ocean where the west-
ern half is 1000 m deep with a depth-independent ve-
locity of 2 cm s2 1 northward, and the eastern half is
2000 m deep with a depth-independent velocity of
1 cm s2 1 southward. The resulting zonally averaged ve-
locity proÞle will be 1 cm s2 1 northward in the top 1000 m
and 1 cm s2 1 southward in the lower 2000 m, effectively
forming an overturning circulation. The overturning
transport from the Þrst term in (1) is the so-called ex-
ternal mode, and is often associated with a barotropic
gyre circulation. Conceptual examples of such circula-
tions leading to an overturning are given by Lee and
Marotzke (1998), Elipot et al. (2013), and Yang (2015).

The second velocity term in the square bracket of(1)
leads to the so-called Ekman overturning. The Þrst
subterm in the bracket is the upper-ocean response to
zonal wind stress, summing to a meridional Ekman ßow
distributed over a surface Ekman layer of unknown
thickness.1 The second subterm in the bracket
represents a local vertically uniform return ßow that
compensates the surface Ekman ßow, thus forming an
overturning circulation. As noted by Hughes et al. (2013),
the Ekman return ßow is a convenient mathematical
representation that is not meant to be physically correct
since it will be distributed over a range of depths.
Killworth (2008) shows that the return ßow in a simple
linear frictional ocean model with ßat bottom can vary
strongly horizontally and vertically. In addition, the exact
distribution may also depend on the time scales under
consideration, as also shown byJayne and Marotzke
(2001) in an ocean general circulation model.

The Þnal term of (1) leads to a baroclinic (i.e., verti-
cally sheared) meridional ßow, with

Ð0
2 H ysh dz 5 0. The

velocity ysh consists mostly of a thermal-wind sheared
velocity that is balanced by the zonal density gradient
but could also include non-Ekman ageostrophic ßow.
In a numerical model, Lee and Marotzke (1998)Þnd that
Ekman overturning dominates the meridional over-
turning of the Indian Ocean. In a coupled climate model,
Sime et al. (2006)Þnd that the contributions to the MOC
of each term of (1) in the Atlantic Ocean on seasonal
and interannual time scales depend on the latitude un-
der consideration.

Let us now consider the meridional geostrophic ve-
locity yg from the zonal pressure gradient:

f yg 5
1
r

› p
› x

,

where f is the Coriolis parameter, and r is the water
density. The zonal integral of this equation gives the
geostrophic meridional mass transport per unit depth:

T ( y, z) [
ðxE

xW

ry g dx 5
pE( y, z) 2 pW( y, z)

f
, (2)

wherepE andpW are the OBP on the eastern and western
boundaries, respectively. Thus,T is given by the differ-
ence between OBP on each sidexW and xE of an ocean
basin. Overturning, by deÞnition, is a measure not of the
net ßow across a given latitude, but of compensating
meridional ßows at different depths, meaning a zonally
integrated ßow that has vertical shear. Thus, to capture
an overturning transport, it is not so much absolute OBP
signals that are needed but rather the vertical OBP
gradient alongside boundaries [seeBingham and Hughes
(2008) for an extended discussion of this point]:

›
› z

T( y, z) 5
1
f

›
› z

[pE( y, z) 2 pW( y, z)]. (3)

The sheared transport › T/› z can then be formally
separated into two contributions: one arising from
the western boundary OBP gradient, and one from
the eastern boundary OBP gradient, independently
of the interior velocity Þeld. In an ocean basin with
vertical sidewalls, the vertical pressure gradient is pro-
portional to density anomalies through the hydrostatic
relation. In the presence of sloping boundaries, hori-
zontal geostrophic velocities near the boundaries are
also needed to obtain the full vertical pressure gradient
(Hughes et al. 2013).

The appropriateness of using the OBP gradient
method to estimate overturning was demonstrated in an
ocean general circulation model (OGCM) of the North
Atlantic by Bingham and Hughes (2008). They found

1 At the RAPIDÐMOC/MOCHA the Ekman transport calcu-
lated from wind data is evenly distributed over the upper 100 m of
the ocean.
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that the western boundary OBP gradient integrated to
form a layer transport representative of the MOC ex-
plained more than 90% of the interannual variability of
transports calculated directly from the model velocity
Þelds. The dominance of the western boundary OBP
variance is due to more energetic ßow on the western
boundaries and westward accumulating variability as-
sociated with Rossby waves and eddies. From observa-
tional data, Elipot et al. (2014) found that the dominant
signal of the MOC near 268and 418N is the geostrophic
overturning, which is itself dominated by the western
boundary contribution. They further demonstrated that
OBP gradient time series on the western boundary, in-
tegrated within appropriate depth ranges to form
transport quantities, captured a large fraction of the
variability of the MOC. In particular, at 26 8N, the
equivalent of the western boundary OBP gradient in-
tegrated relative to and below 1000 m is representative
of the variability of the MOC at semiannual, and longer,
time scales.

Of the three terms in (1), the Þrst and last terms are
primarily geostrophic. In the second term, ye is the result
of a frictional process, but the compensation term (the
integral) is assumed to be geostrophic. The overturning
transport estimated from vertical pressure gradients
following boundaries as in (3) should therefore capture
overturning transports arising from all but the ye con-
tribution. In this study we investigate the covariance of
western boundary pressure gradient contributions to
overturning transports at four different latitudes, with
respect to the wind forcing on a basin scale. Because our
transport time series are only a few years long, and be-
cause of the nature of the methodologies applied, we
investigate near-instantaneous velocity responses of the
oceanic circulation, which we expect will be manifested
in the Þrst two terms of (1). The baroclinic ocean re-
sponse to wind forcing, manifested in the third term, is
mediated from the ocean interior by westward propa-
gating planetary waves, and is delayed by months or
years until it reaches the western boundary to inßuence
the geostrophic shear estimated from the western
boundary pressure gradients. For example, the North
Atlantic Oscillation (NAO) atmospheric pattern drives a
response in the North Atlantic Ocean characterized by
anomalous horizontal circulations at the boundary be-
tween subtropical and subpolar gyres (Visbeck et al.
2003). Eventually, these velocity responses project onto
the western boundary pressure, and thus inßuence the
overturning. Instead, the mechanisms of adjustment
considered here are typically deemed barotropic, as
they are communicated by fast propagating baro-
tropic waves within the ocean interior and around
ocean basins boundaries (OÕRourke 2009).

3. Oceanic and atmospheric observations

a. Oceanic overturning transport time series

1) DERIVATIONS OF TRANSPORT TIME SERIES

AT RAPID WAVE L INE B, L INE W,
AND RAPIDÐMOC/MOCHA

We study the basin-scale covariance of the North
Atlantic MOC by considering the western boundary
contribution to zonally integrated meridional transport
relative to and below 1000 m, from observations at four
different latitudes. The four mooring arrays from which
data are used are shown inFig. 1: Line B of the RAPID
Western Atlantic Variability Experiment (WAVE) ar-
ray near 428N (Elipot et al. 2013), the Woods Hole
Oceanographic Institution Line W near 398N (Toole
et al. 2011), RAPIDÐMOC/MOCHA near 26.5 8N
(Cunningham et al. 2007), and the Meridional Over-
turning Variability Experiment (MOVE) array at 16 8N
(Send et al. 2011). The common length of the transport
time series from these four arrays is 1325 days (3.6 yr), so
we are limited to studying processes acting on time
scales less than three years and seven months (i.e., from
seasonal to interannual time scales).

Elipot et al. (2013) applied (3) to derive western
boundary contributions to zonally integrated meridional
transport relative to and below 1000 m from Line B and

FIG . 1. (left) Western North Atlantic bathymetry and (right)
locations of western boundary arrays used to derive western
boundary overturning transports. At (left) the black longitudeÐ
latitude boxes delineate the close-ups at (right); (top)Ð(bottom)
from north to south, these are RAPID WAVE Line B, Woods
Hole Line W, RAPIDÐMOC/MOCHA (west moorings only), and
MOVE array (west moorings only). Bathymetry data are from
Smith and Sandwell (1997)topography database version 13.1.
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Line W, two arrays separated by about 1000 km along
the western boundary. The two resulting time series
called TW (398N) and TB (418N) were shown to be co-
herent and almost in phase for all time scales from
3 months to 3.6 years. At shorter time scales, they were
still coherent but with group delay estimates implying a
propagation speed of 1 m s2 1 between the two latitudes,
consistent with expectations for baroclinic coastally
trapped wave speeds.Elipot et al. (2014) showed sub-
sequently that these two time series were representative
of the Atlantic MOC as captured by Argo ßoat data
analyses near 418N (Willis 2010), on semiannual time
scales and longer.

A third time series of overturning transport below and
relative to 1000 m, calledT26, was derived byElipot et al.
(2014) from RAPIDÐMOC/MOCHA, and shown to be
strongly coherent and out of phase with the MOC
strength, deÞned from the same array as the maximum
of the vertically integrated streamfunction ( Kanzow
et al. 2010). The overturning transport T26 captured
most of variance of the MOC at periods longer than
2 years. At periods of 6 months to 2 years,T26 captured
most of the western boundary contribution to the geo-
strophic variance of the MOC.

No propagating signals were detected from the lati-
tudes of Line B and Line W to 268N, and while TB and
TW were coherent with T26 on semiannual and longer
time scales, there was a 908-out-of-phase relationship
resulting in a null correlation. The reasons for the co-
herence between Line B and Line W and 268N was
unclear.

2) DERIVATION OF THE DEEP OVERTURNING

TRANSPORT TIME SERIES AT THE MOVE
ARRAY

The mooring array of the MOVE experiment located
near 168N is designed to capture the deep meridional
ßow in the western basin of the North Atlantic, between
Guadeloupe in the Antilles to the west and the Mid-
Atlantic Ridge to the east. The details of the instrumen-
tations and moorings, as well as transport calculations and
analyses can be found inKanzow et al. (2006, 2008)and
Send et al. (2011). The volume transport at the MOVE
array is calculated by combining the unreferenced interior
mass transport between an eastern tall density mooring
(M1) located west of the mid-Atlantic ridge and a western
tall density mooring just east of Guadeloupe (M3), with
the volume transport estimated by direct velocity mea-
surement (mooring M4) between mooring M3 and the
continental rise between M3 and Guadeloupe. Based on
water masses boundary considerations, absolute trans-
port is derived by referencing geostrophic velocities to
zero at 4950m (Send et al. 2011).

Here we use data from moorings M3 and M4 only to
derive a western boundary contribution to the overturning
transport relative to and below 1000m. First, we calculate
the vertical shear of the interior transport with the east
boundary density proÞle set to constant values where the
results here are independent of the choice of constant
value. Second, vertical proÞles of cross-sectional velocity
are calculated by linear interpolation and constant extrap-
olation at each time step from a discrete number of current
meters on moorings M3 and M4. Those proÞles are mul-
tiplied by nominal cross-sectional areas to form proÞles of
transport per unit depth at each mooring, which, when
summed, provide a total transport proÞle per unit depth in
the western wedge. This transport proÞle is differentiated in
the vertical to obtain the transport shear in the wedge which
is then added to the interior shear to estimate the total
western boundary transport shear. This shear is then in-
tegrated from zero at a reference level of 1000m downward
to 4000m to obtainTM, the western boundary contribution
to overturning transport relative to and below 1000m. Note
that the TM daily time series derived here is anticorrelated
( r 5 2 0.14 with ap value of 0.15) with the North Atlantic
Deep Water (NADW) transport time series of Send et al.
(2011) for the 8 February 2002Ð23 June 2009 period. This
may seem surprising but cross-spectral analysis (not shown)
reveals that the absolute value of coherence phase between
those two time series is mostly greater than 908 for time
periods shorter than about 8 months (corresponding to
anticorrelation at those time scales) but becomes less than
908 for longer time periods (corresponding to positive
correlation). This implies that the two time series convey
similar transport tendencies at longer time scales.

b. Other data

We investigate the forcing of the overturning trans-
ports by the wind. We use the 10-m wind data from the
Cross-Calibrated Multiplatform (CCMP) ocean surface
wind vector product (Atlas et al. 2011), obtained from the
NASA Physical Oceanography Distributed Active Ar-
chive Center (http://podaac.jpl.nasa.gov). The resolution
of this product is 0.258 3 0.258at 6-h intervals, and the
region used is 08Ð608N, 08Ð808W in the North Atlantic. A
1.258 two-dimensional Gaussian smoothing window is
applied at each time step and then subsampled every 0.58
to reduce the volume of the data. To match the spectral
content of the transport time series, a third-order type-I
Chebyshev Þlter with a cutoff frequency of 1 cycles per
day (cpd) is applied to the time series of wind stress at
each grid point, in both forward and reverse directions to
ensure zero-phase distortion of signals. The wind time
series are then subsampled at 12-h intervals.

We also analyze changes of the geostrophic surface
circulation as revealed by absolute dynamic topography
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(ADT) data produced by SSALTO/Data UniÞcation
and Altimeter Combination System (DUACS) and
distributed by AVISO ( http://www.aviso.oceanobs.com/
duacs/). SpeciÞcally, we used the merged, delayed-time,
reference ADT map product at 7-day interval on a 1/38
Mercator grid. Note that we use the products before the
update of April 2014. We also use the mean dynamic
topography product Centre National dÕÉtudes SpatialesÐ
Collecte Localisation Satellites (CNES-CLS09) version
1.1 (v1.1) (Rio et al. 2011).

4. Statistical methodologies

a. Analytic signal and analytic correlation

We use the analytic transform (Gabor 1946) in our an-
alyses because, as we will show in our results, this trans-
formation conveys phase and phase difference information
from temporal time series (Jacovitti and Scarano 1993;
Marple 1999). It also forms the basis of the analytic eigen
method described next. When x(t) is a real-valued time
series, its complex-valued analytic extensionx1 (t) is

x1 (t) 5 x(t) 1 ix̂(t) , (4)

where x̂(t) is the Hilbert transform of x(t):

x̂(t) 5
�

x*
1
p t

�
(t) 5

1
p

2 �
ð2‘

1‘

x(u)
t 2 u

du. (5)

Here, �
Ð

is the Cauchy principal value integral, * rep-
resents the convolution operator, andi [

�������
2 1

p
.

The analytic correlation between two zero-mean time
seriesx(t) and y(t) is deÞned as the correlation between
their respective analytic transforms (Jacovitti and Scarano
1993; Marple 1999):

r 1 5
E[x1* (t)y1 (t)]

���������������������������������������������������������
E[x1* (t)x1 (t)]E[ y1* (t)y1 (t)]

q , (6)

where E[�] is the expectation or time average operator
and (�)* is the conjugation operator. It is relatively
straightforward to show that the (zero lag) analytic cross
covariance E[x1* (t)y1 (t)] is equal, up to a real factor, to
the frequency integral of the cross-spectrum ofx(t) and y(t).
Thus, the phase of the analytic covariance, like the phase of
r 1 , is a power-weighted sum of all phases of the cross-
spectrum, and will be dominated by the phases of the cross-
spectrum in the frequency bands where this one has the
largest power (seeappendix A).

b. Analytic extension of singular value decomposition
analysis

The singular value decomposition (SVD) method is
used in climate sciences to decompose the cross-covariance

patterns between two real-valued scalar Þeld variables,
a left one and a right one, into statistical modes po-
tentially revealing linear couplings between the two
Þelds (Preisendorfer and Mobley 1988). This is also known
as maximum covariance analysis (MCA;von Storch and
Zwiers 2002). When the left and right Þelds are the same,
the SVD method reduces to the empirical orthogonal
function (EOF) method. A variant of the EOF method
exists when the single-Þeld variable components have
undergone the analytic transform [(4)] and thus become
complex-valued variables. The method is then known as
complex (Barnett 1983; Horel 1984) or Hilbert ( von Storch
and Zwiers 2002; Hannachi et al. 2007) EOF analysis.

To the best of our knowledge, the variant of the SVD
method when distinct left and right Þeld variables have
both undergone the analytic transform has not been
described before, and it is named here the analytic SVD
(ASVD) method. Under speciÞc conditions, such as
when signals of interest have a clear and unique peri-
odicity, the ASVD method can be equivalent to a SVD
method when one of the two Þelds has been lagged in
time (e.g., Czaja and Frankignoul 1999) because the
analytic covariance (or correlation) integrates the cross-
spectrum (appendix A). Here, the modes that will be
revealed by our analyses do not have a single periodicity,
and their spectra are generally red. Thus, the phase in-
formation cannot be readily interpreted as a temporal
lag. Yet, the time evolution of the phase of the principal
component (PC) time series of these modes still indicate a
cyclic and oscillatory character of the explained variance.

The algebra necessary to conduct the ASVD analysis
is standard, yet care needs to be taken because the data
are complex valued (e.g.,Schreier 2008). To establish
our conventions, appendix B describes the ASVD
method in detail. Here we note two points of impor-
tance. First, the coupling coefÞcient of a given mode,
which measures the strength of the linear relationship
between the left and right Þeld variables for that mode,
is the analytic correlation (6) between the complex-
valued PC time series of the left Þeld and the complex-
valued PC time series of the right Þeld. By construction,
the coupling coefÞcient is real valued, and thus the PC
time series are ÔÔin phaseÕÕ on average. It is the patterns
of the phase of the left and right singular vectors for that
mode (i.e., the spatial patterns) that determine the phase
lags between the individual components within each
Þeld, and between the left and right Þelds. The second
point of importance is that we choose to decompose the
wind stress (a bivariate Þeld variable) into its rotary
components (clockwise and counterclockwise) (Lilly and
Olhede 2010), rather than into its Cartesian components
(zonal and meridional). The reason for this choice is that
applying ASVD onto Cartesian components intertwines
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geometric and temporal phase information of the bi-
variate variables, making them difÞcult to extricate. In
contrast, ASVD applied to rotary components leads to
relatively tractable elliptical modes of variance with
distinguishable geometry and phase information; in
particular the geometry of the variance ellipses of a
given mode is the same as the geometry of the instan-
taneous hodographs of the vector anomalies [seeElipot
and Beal (2015)for details].

c. Spectral model and estimates

For the purpose of simulation, we Þt a Matérn model
to the observed transport time seriesTj,t for j 5 1, . . . , 4.
The Matérn model (Matérn 1960) is more commonly
applied to spatial data (Stein 1999) but is also reasonable
for time series analysis (Sykulski et al. 2016). The
spectral density of the model is

SM (n) 5
a2

1

(n2 1 a2
2)

a3
, (7)

for which the parameters are usually interpreted as
follows. The parameter a2

1 is an overall energy level,a3

determines the smoothness or differentiability of the
process, anda2 determines the range or correlation
decay.

We estimate the parameter a 5 (a1, a2, a3) of the
Matérn spectrum by maximizing the Whittle likelihood
(Whittle 1953):

‘ (a) 5 �
bN/2c2 1

k5 1

8
<

:
2 log

�
SM

�
k
N

;a
��

2
jJ0(Tj , n)j2

SM
� k
N

;a
�

9
=

;
, (8)

where

J0(Tj , n) 5 �
N2 1

t5 0
h0,t[Tj,t 2 Tj ]e

2 2ipnt , (9)

and Tj is the sample mean ofTj (Sykulski et al. 2016).
The sum over the indicesk corresponds to thebN/2c2 1
frequency bands achievable from theN data points time
series. The Þrst Slepian data taper ish0,t (Walden 2000),
used to remove leakage in the Fourier transform. A
single taper for the estimation of a is used because the
objective of its usage is to minimize spectral leakage
rather than to estimate the spectrum. The maximization
of ‘ (a) is achieved by applying the standard NelderÐ
Mead optimization method ( Press et al. 1988). The op-
timum values for each transport time series are listed in
Table 1.

We also estimate the auto- or cross-spectral density
function of our quantities Tj by a multitaper estimate,

which is formed from individual orthogonal Slepian ta-
pers hk,t; each individual tapered estimate is written as

Jk(Tj ; n) 5 �
N2 1

t5 0
hk,t[Tj,t 2 Tj ]e

2 2ipnt. (10)

A spectral estimate is formed by averaging across tapers
and so we obtain (Walden 2000)

Ŝij (n) 5
1

K 1 1
�
K

k5 0
Jk * (Ti ; n)Jk(Tj ; n) . (11)

d. Bootstrapping

Throughout this study, the Matérn spectrum model
SM

j (n) for each transport time seriesTj, is used to assess
the signiÞcance of the various statistics estimated from
the observational data. We use a parametric approach,
coupled with phase scrambling, to bootstrap whole time
series (Theiler et al. 1992; Davison and Hinkley 1997,
p. 408). From the Matérn model parameters obtained
for each Tj, simulated replicated time series are gener-
ated as follows. The Fourier transform of a simulated
time series corresponding to Tj is generated with a
random phase for each discrete frequencynk as

F [Tj ](n) 5
�������������
SM

j (n)
q Z1(n) 2 iZ 2(n)

���
2

p , (12)

whereSM
j (n) is the Matérn model for Tj, and whereZ1(n)

and Z2(n) are two zero-mean unit-variance Gaussian
random sequences of length (N/2) 2 1, the number of
frequencies sampled, coupled with two real-valued unit
variance Gaussian random sequences atn 5 0 andn 5 1/2
just multiplied by

�������������
SM

j (n)
q

. To make the generated time
series real valued, the sequence is extended to negative
frequencies using Hermitian symmetry of the Fourier
transform. The simulated time series is then obtained by
taking the inverse Fourier transform. To avoid periodic
sequences a series of twice the length of the data is gen-
erated, and half the series subsequently discarded. This
operation is repeated 104 times to obtain a pool of sim-
ulated time series. Typically, the statistical analyses in this
study (correlation, coherence, complex empirical or-
thogonal function analysis, singular value decomposition)
are repeated over these simulated realizations, and the

TABLE 1. Estimated parameters for frequency spectrum marginal
Matérn model function of frequency n, S(n) 5 a2

1/(a
2
2 1 n2)a3 .

TB TW T26 TM

a1 0.1025 0.1197 0.5811 0.4077
a2 0.0522 0.1498 0.0210 0.0248
a3 1.8400 2.7311 1.0402 1.2706
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