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Mountain snowpacks provide 53–78% of water used for irrigation,

municipalities, and industrial consumption in the western United States.

Snowpacks serve as natural reservoirs during the winter months and play

an essential role in water storage for human consumption and ecosystem

functions. However, wildfires across the West are increasing in severity, size,

and frequency, progressively putting snowpacks at risk as they burn further

into the seasonal snow zone. Following a fire, snow disappears 4–23 days

earlier and melt rates increase by up to 57%. In a high burn severity fire in the

Oregon Cascades, the black carbon and charred woody debris shed from

burned trees onto the snowpack decreased the snow albedo by 40%. Canopy

cover loss causes a 60% increase in solar radiation reaching the snow surface.

Together, these e�ects produce a 200% increase in net shortwave radiation

absorbed by the snowpack. This mini-review synthesizes the implications

of wildfire for snow hydrology in mountainous watersheds with the primary

aim to characterize wildfires’ varied influences on the volume and timing

of water resources across time scales (daily to decadal), space (plot to

watershed) and burn severity (low to high). The increase in the geographical

overlap between fire and snow poses unique challenges for managing snow-

dominated watersheds and highlights deficiencies in research and operational

snow hydrologic modeling, emphasizing the need for additional field and

remote-sensing observations and model experiments.
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Introduction

In the western U.S., snow is the primary source of water and streamflow (Li et al.,

2017). Mountain snowpacks accumulate during the winter and release meltwater in the

spring and summer when water demands are the greatest (Church, 1935; Garen, 1992).

Snowpack observations provide information to make streamflow forecasts and inform

water allocations, reservoir operations, and irrigation scheduling decisions (Pagano et al.,

2004; Anghileri et al., 2016). Snowpacks are vital to recharge downstream reservoirs that

capture and store winter precipitation for release during the dry summer months (Mote

et al., 2005, 2018). In snow-dominated watersheds, snowmelt-derived runoff contributes

up to 80% of the total annual flow (Stewart et al., 2004). Ongoing population growth,
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FIGURE 1

(A) Schematic drawing of changes in snow processes during melt season after a fire for each burn severity. Changes in solar radiation, canopy

interception, snow accumulation and snow albedo are noted above. (B) Diagram of post-wildfire e�ects on snow processes. Existing feedbacks

are noted by blue arrows. Climate scale feedbacks are noted in the smaller box on the right.

however the MTBS/BAER datasets provide temporal continuity

for research use.

To fully understand the watershed scale impacts of wildfires,

we must understand how burn severity variability alters

snowpack characteristics and snowmelt rates (Figure 1A). For

every 20% increase in overstory mortality, used as a proxy for

burn severity, Maxwell and St. Clair (2019) found accumulated

snow depth increased by 17% across burn severity gradients

in south-central Utah. However, this relationship is weaker at

higher elevations where storm intensity is greater and forest

density is thinner, overcoming the impacts of canopy structure

changes (D’Eon, 2004). The discrepancies in burn severity

can partially be explained by the two orders of magnitude

difference in black carbon (BC) concentration between high

and low burn severity (Uecker et al., 2020). The effects of

reduced canopy density also change the energy balance of the

snowpack. Most studies focus on specific fire case studies. More

research is needed to understand the nuance between burn

severities across different forest types and snowpack climates.

Most studies compare high burn severity with unburned areas

and do not account for low and moderate burn severities.

In California, only 18% of fires that occurred from 2000 to

2019 in the snow zone were classified as high burn severity

(Koshkin, 2022). Sincemoderate and low burn severities account

for over 65% of the burned area (Koshkin, 2022), additional

research is warranted for lower severity fires, especially as

prescribed burns are scaled-up. Conceptualizing the effects

of fire on snow by burn severity could help understand

wildfire’s influence on snow-water storage at watershed- to

mountain range-scales.
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Snow albedo and snowpack energy
balance

The high albedo (0.9–0.95) of clean, new snow (Warren,

1982) influences snowpack energy balance from the snow’s

local surface to global climate scales across varied timescales

(hours to millennia) (Skiles et al., 2018). Shortwave albedo

is tightly coupled with the energy and mass balance of the

snowpack (Dozier et al., 1981; Skiles et al., 2012). As snow

albedo decreases, the snowpack absorbs more solar energy and

the rates of warming and melt accelerate. This shifts the date

of snow disappearance earlier (Warren and Wiscombe, 1980;

Gleason et al., 2013). Since snow is highly reflective in the visible

wavelengths (400–700 nm), small changes in visible albedo due

to light-absorbing particles (LAPs), such as dust, soot, and

charred woody debris, increase net shortwave radiation and

accelerate snowmelt (Warren andWiscombe, 1980; Dozier et al.,

2009; Skiles et al., 2012; Gleason and Nolin, 2016; Uecker et al.,

2020). Burned forests decrease snow albedo by shedding BC

and burned woody debris onto the snowpack (Gleason et al.,

2013; Gleason and Nolin, 2016; Aubry-Wake et al., 2022). In

January, when the snow cover extent is the greatest, Gleason et al.

(2019) calculated the radiative forcing from albedo changes to

be 32 and 101 Wm−2 1 year after a severe fire using the Snow,

Ice, and Aerosol Radiation (SNICAR) model and measured

albedo values, respectively. The radiative forcing declined to

23 and 44 Wm−2 15 years post-fire (Gleason et al., 2019).

SNICAR uses Mie Theory and cannot capture scattering and

absorption from larger LAPs such as woody debris (Flanner

and Zender, 2006), implying it provides a minimum estimate of

radiative forcing.

LAPs in the snow increase radiative heating and accelerate

snowmelt rates (Painter et al., 2007; Flanner et al., 2009; Skiles

et al., 2012, 2018; Aubry-Wake et al., 2022). However, BC is an

order of magnitude more effective at absorbing solar energy

in the visible spectrum compared to mineral dust (Warren

and Wiscombe, 1980; Thomas et al., 2017; Gleason et al.,

2019). In burned forests, BC can decrease snow albedo by

40%, an effect that is most significant during periods of high

insolation (Gleason et al., 2013; Uecker et al., 2020). In high

severity burns, forest canopy removal increases incoming solar

radiation by 60% (Gleason et al., 2013). Together, the albedo

decrease combined with canopy removal increased snowpack

net shortwave radiation by 200% in the Oregon Cascades

(Gleason et al., 2013). Decreased snow albedo and increased

insolation can reduce maximum snow water storage in burned

forests because of mid-winter melt events (Musselman et al.,

2018). As winter snowpacks continue to diminish, lower snow

albedo and increased net shortwave radiation will amplify

declines in SWE (Burles and Boon, 2011; Skiles et al., 2012;

Thackeray et al., 2014). Together, these processes amplify several

feedbacks that occur across climate and local processes-based

scales. Most notably, fire intensifies the positive feedback

effects of the snow-albedo and land-surface albedo feedbacks

(Figure 1B).

Forest-snow-fire interactions

Snowpack mass balance in burned areas is affected by

tradeoffs between increased net shortwave and decreased canopy

interception (Varhola et al., 2010). A healthy forest canopy

intercepts up to 60% of snowfall (Storck et al., 2002; Roth and

Nolin, 2019), which reduces snow accumulation by up to 40%

(Varhola et al., 2010; Lundquist et al., 2013; Harpold et al., 2014).

Post-fire canopy removal increases the snow accumulation in

burned areas (Gleason et al., 2013, 2019). On the plot scale,

burned areas undergo increases in snow depth during the

accumulation season compared to nearby control plots after

a fire (Burles and Boon, 2011; Harpold et al., 2014). On a

watershed scale, Micheletty et al. (2014) showed a significant

increase in basin-average snow cover fraction (fSCA) and the

total number of high snow-covered days after a fire due to the

canopy reduction.

In an unburned forest, the canopy shades the snow and

is a source of longwave radiation, influencing the timing of

snowmelt in the forest (Lundberg et al., 2004; Roth and Nolin,

2019). Consequently, canopy removal increases solar radiation

and alters turbulent heat fluxes of the snowpack (Faria et al.,

2000; Varhola et al., 2010). Without tree cover, the combination

of solar forcing and sublimation can result in vapor loss of

up to 50% (Molotch et al., 2007; Reba et al., 2012; Musselman

et al., 2018). Eddy-covariance measurements demonstrate that

sublimation rates in open areas are 3–10 times higher than

in forested areas (Reba et al., 2012). For example, Harpold

et al. (2014) found a 50% reduction in snow depth in burned

forests during winter ablation in New Mexico. A decrease in

net longwave radiation (Burles and Boon, 2011) and an increase

in sublimation can partially offset and balance the increase

in net shortwave radiation (Harpold et al., 2014). Increased

solar radiation combined with decreased albedo amplifies the

effects of post-fire changes on water retention in snowpacks

(Figure 1B).

Timing of snowmelt

Decreased albedo and increased solar radiation accelerate

snowmelt after a fire (Figures 1A, 2). In burned forests, snow

disappears 4–23 days earlier, and snowmelt rates increase as

much as 57% during ablation (Burles and Boon, 2011; Winkler,

2011; Gleason et al., 2013; Uecker et al., 2020). Smoot and

Gleason (2021) assessed 78 burned western U.S. SNOTEL sites

and found that maximum snow-water storage decreased on
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FIGURE 2

Synthesis of five snow metrics after a wildfire delineated by burn severity including peak snow water equivalent (peak SWE), peak SWE date,

snow disappearance date (SDD), snow accumulation rate, and snowmelt rate. Red arrows denote changes after a wildfire.

average by 30mm and snowmelt rates increased by 3 mm/day

in high severity burned areas compared to unburned areas. In

the Washington Cascades, Uecker et al. (2020) showed that in

burned areas, 84% of seasonal snow melted out before 1 May

compared to only 56% prior to the fire. The effects of reduced

water storage and earlier snowmelt can be observed for at least

10 years following a fire (Gleason et al., 2019; Uecker et al., 2020;

Smoot and Gleason, 2021; Williams et al., 2022).

Lower latitude and warmer maritime climate snowpacks

undergo larger post-fire shifts in earlier snow disappearance

date, earlier peak SWE, and decreased volume of snow-water

storage (Serreze et al., 1999; Sun et al., 2019) (Figure 2). Already

more vulnerable to climate warming, warmer snowpacks are

persistently near 0◦C, therefore a slight change in the energy

balance due to increased solar forcing from wildfires imply

large-scale impacts on the persistence of the snowpack. Colder

and drier continental climates yield shallower snowpacks with

higher cold content (Sturm et al., 1995; Sturm and Liston, 2021),

but remain susceptible to wildfire and therefore vulnerable to

changes in the timing of peak SWE and snow disappearance.

The shift in the timing of snowmelt, snow disappearance date,

and peak SWE, especially in high burn severity areas, decreases

late season runoff (Smoot and Gleason, 2021). Changes in peak

SWE appear to be site specific. Smoot and Gleason (2021) found

a general trend of decrease in peak SWE post-fire; however,

Maxwell and St. Clair (2019) demonstrated a 15% increase in

peak SWE in Utah. The region, topography, and inter- and

intra- annual climate and weather variability all contribute to

variation in post-fire peak SWE outcomes. As a significant

contributor to mountain runoff, shifts in snowmelt may have

serious consequences on the patterns and magnitudes of late-

season stream temperatures and discharge.

Land surface and snowpack models

Investigations of post-fire impacts on snow are primarily

remote sensing- or field-based. Small-scale wildfire modeling

studies typically focus on infiltration (Ebel, 2013) or run-

off and erosion (Rulli and Rosso, 2007; Martin et al., 2011).

Larger-scale modeling focuses on evapotranspiration (Bond-

Lamberty et al., 2009; Roche et al., 2018) or overland flow

(Beeson et al., 2001; McMichael and Hope, 2007). No study

has directly simulated landscape changes with the sole focus

of snow processes. Maina and Siirila-Woodburn (2020) use a

physically-based model to assess post-fire watershed hydrology

incorporating snow dynamics in the Northern Sierra Nevada.

They found that SWE increases after a wildfire, increasing

water yields and following snowmelt, post-fire changes in

surface roughness increased surface flow (Maina and Siirila-

Woodburn, 2020). Beyond this study, most runoff models

(e.g., iSNOBAL, Alpine3D, and SnowModel) and land surface

models (e.g., NOAH, CLM, ISBA) do not explicitly incorporate

post-fire landscape changes. Neither type of model accurately

parameterizes post-fire snow albedo nor effectively characterizes

burned landscapes (Marks et al., 1999; Lehning et al., 2006;

Liston and Elder, 2006). Therefore, these models may not

Frontiers inWater 05 frontiersin.org

https://doi.org/10.3389/frwa.2022.971271
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Koshkin et al. 10.3389/frwa.2022.971271

adequately account for increasing net shortwave radiation or

turbulent heat fluxes. Gridded snow reanalyses also do not

explicitly account for post-wildfire landscape changes (Broxton

et al., 2016; Margulis et al., 2016). Therefore, time-series analyses

based on these data products may not adequately represent

post-fire changes in snow hydrology and canopy structure.

The lack of albedo parameterization and incorporation

of LAPs in climate and energy balance models increases

uncertainty in snowmelt quantity and timing (Hedrick et al.,

2018; Skiles et al., 2018). Earth system models have shown

notable sensitivity to changes in snow-albedo (Letcher and

Minder, 2015). However, radiative transfer models still miss

the mark on incorporating LAP in snow radiative forcing (Hao

et al., 2022). Gleason and Nolin (2016) developed an albedo

decay function that accounts for BC. Although implemented

into SnowModel, this parameterization has not yet been

incorporated into distributed watershed models. Incorporating

observational daily updates to albedo and seasonal updates

to canopy structure could help constrain changes to canopy

structure and the snowpack energy balance. Still, the problem

of scales remains. Ultimately, we need to bring together multi-

scale models to incorporate these changes into models spanning

the atmosphere to bedrock to fully address this issue (Siirila-

Woodburn et al., 2021). If net shortwave and topography are

the biggest drivers of changes in SWE (Maina and Siirila-

Woodburn, 2020), then incorporating canopy changes and snow

albedo is imperative to reduce uncertainty in land surface

(Letcher and Minder, 2015; Hao et al., 2022). Additional

physically-based model studies examining the direct impacts of

wildfire-induced landscape changes on snowpack dynamics are

needed to supplement growing observational studies.

Conclusion

Wildfires yield persistent and widespread effects on snow

hydrology. As fires burn larger, more frequently, and higher in

elevation, snowpacks are increasingly vulnerable. It is critical

to understand the sensitivity of snow-dominated watersheds

to wildfire’s influences to evaluate direct and indirect impacts

and feedbacks on snow-derived water resources. Researchers

and managers alike can leverage models and observations

to gain a more complete understanding of impacts, however

improvements are needed. Explicitly incorporating fire impacts

into SWE reanalysis products and parameterizing their effects

in land surface models represents a recommended first step

toward improving our understanding of post-fire outcomes. The

increasing spatial overlap between fire and snow creates a need

to continue observing the physical processes accompanying

these landscape-altering events. To better assess wildfire impacts

on snow, we recommend prioritizing more albedo and canopy

density multi-scale observations to improve parameterizations

in research and operational models. Evaluating the changes in

net shortwave radiation in post-fire environments is critical

to skillfully simulate runoff magnitude and timing. Further

research is needed to understand the uncertainties associated

with multi-scale (meter to watershed) and regional variability in

wildfire impacts on snowmelt timing and snow-water storage.

This predictive skill hinges on representative data to improve

hydrologic and climate models’ forecasting capabilities at daily

to decadal scales.
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