
1. Introduction
Snow on Arctic sea ice impacts the energy budget and mass balance of the ice. The insulating properties of 
snow limit ice growth in the winter (Maykut & Untersteiner, 1971; Sturm et al., 2002) whereas its high albedo 
(Warren, 2019) slows ice melt in the summer (Perovich et al., 2002). Snow is a freshwater source for melt ponds 
(Polashenski et al., 2012) and habitat for biota (Iacozza & Ferguson, 2014). Despite this importance, the snow 
mass balance on Arctic sea ice remains uncertain. Several poorly-constrained processes contribute to the net 
budget, including: precipitation, deposition, sublimation, melting, flooding (snow-ice formation), superimposed 
ice formation, and wind-blown snow redistribution into open water leads (snow loss into leads).

Snow loss into leads has been estimated to consume up to 50% of the snowfall on Antarctic sea ice (Leonard 
& Maksym, 2011). The applicability of these estimates to the Arctic is unclear. There are no published direct 
measurements of snow loss into leads in the Arctic. Nevertheless, parameterizations of the process have been 
developed and implemented in climate models (Lecomte et  al.,  2015) and data assimilation products (Petty 
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et al., 2018). For example, Petty et al. (2018) modeled that blowing snow loss into leads reduced the snow depth 
on sea ice North of 60°N by 10 cm throughout the winter (∼25% reduction).

We present the first measurements of snow loss into Arctic leads from four cases we observed in detail in winter 
2020 in the Atlantic sector of the Central Arctic Ocean. Snow loss into leads was determined from the δ 18O of 
the lead ice, a signature routinely used to identify snow contributions to sea ice (Arndt et al., 2021; Granskog 
et al., 2003, 2004, 2017; Jeffries et al., 1994, 1997, 2001; Kawamura et al., 2001; Tian et al., 2020). When snow 
enters seawater in a lead, the snow is less dense than seawater and consequently floats at the surface. If there 
is sufficient heat at the ocean surface to melt the snow, the resulting freshwater is less dense than seawater. As 
the lead freezes, the snow (solid or melted) is incorporated into the lead ice. Due to isotopic fractionation, snow 
is depleted in  18O relative to seawater (Dansgaard, 1953). We contextualize the observations with atmospheric 
conditions at the time of lead formation to infer controls on snow loss into leads.

2. Materials and Methods
2.1. Overview of Data Collection

During the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, R/V 
Polarstern drifted with an ice floe in the Arctic Ocean from October 2019 to May 2020 (Nicolaus et al., 2022; 
Rabe et al., 2022; Shupe et al., 2022). In March and April 2020, within 1 km of Polarstern, we observed the 
formation of ∼18 leads ranging in width from 5 m to greater than 100 m. Whenever possible, we identified 
the timing of lead formation and refreezing to within 20 min by visual observations and time-lapse panoramic 
imagery (Nicolaus et al., 2021). Near-surface meteorology and localized snow depth were measured continuously 
from a tower and two mobile stations in the area nearby these active leads. Also observed continuously from the 
tower were mass fluxes of drifting and blowing snow at an average height of 0.1 m using a snow particle counter, 
which detected the number and sizes of horizontally-transported snow particles (SPC-95, Niigata Electric Co., 
Ltd.; M. M. Frey et al., 2020; Sato et al., 1993). Following Wagner et al. (2022) we assume that the snow particles 
are spherical with a density of 917 kg m −3. Surface snow samples from various locations were collected approx-
imately every other day and stable water isotopes were subsequently measured.

We studied the snow loss in four of the leads (described in Section 2.2) that formed in a range of conditions. 
From each lead, we collected 7–14 ice cores (9 cm diameter). Cores were drilled along transects perpendicular to 
(i.e., across) and parallel to (i.e., along) the leads with a spacing of 1–2.5 m between cores. Supporting Informa-
tion S1 includes additional details on sampling (Text S1 in Supporting Information S1) and maps of lead loca-
tions (Figure S1 in Supporting Information S1). One or two cores from each lead were vertically sectioned into 
5 cm samples in the field and the remainder were whole core samples. We recorded ice thickness, snow depth, 
freeboard, core length, and visual stratigraphy (locations and thicknesses of granular ice layers) in the field. 
Onboard Polarstern, we melted each sample and mixed it before measuring salinity (practical salinity scale) with 
a YSI Model 30 (https://www.ysi.com/File%20Library/Documents/Manuals%20for%20Discontinued%20Prod-
ucts/030136-YSI-Model-30-Operations-Manual-RevE.pdf) and completely filling and sealing a 20 mL subsam-
ple in a High-Density-Polyethylene vial. The δ 18O of the subsamples were determined in the central laboratory 
of the Swiss Federal Institute for Forest, Snow and Landscape, Birmensdorf, Switzerland with an Isotopic Water 
Analyzer IWA-45-ER (ABB - Los Gatos Research Inc., US). Measurement uncertainty for δ 18O was ±1‰, the 
precision ±0.5‰. Samples were measured in duplicate and averaged. The quality control was conducted with 
three standards for δ 18O at 0.00‰, −12.34‰, and −55.50‰ are presented as per mil difference relative to 
VSMOW (‰, Vienna Standard Mean Ocean Water).

2.2. Lead Descriptions

Information on the four leads is presented in Table 1, Sections 2.2.1–2.2.4, and in Supporting Information S1.

2.2.1. SL Lead

The SL lead opened for the first time on 11 March and experienced numerous subsequent cycles of opening and 
refreezing followed by ridging and rafting. The ice we sampled formed in lead opening events on either 25–26 or 
29–30 March. Although the date of ice formation is not known, the surface meteorology was similar during the 
two opening periods, with air temperatures close to climatological values (Rinke et al., 2021). We have combined 

https://www.ysi.com/File%20Library/Documents/Manuals%20for%20Discontinued%20Products/030136-YSI-Model-30-Operations-Manual-RevE.pdf
https://www.ysi.com/File%20Library/Documents/Manuals%20for%20Discontinued%20Products/030136-YSI-Model-30-Operations-Manual-RevE.pdf
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these time periods in subsequent analysis (e.g., Figure 2a). Most ice cores contained a 
granular layer 3 cm thick at 15 cm depth (Figure 1a). This layer, combined with observa-
tions that the lead contracted after opening, indicated that the ice rafted after formation.

2.2.2. M Lead

The M lead opened around 4:00 UTC on 23 March. Within a few hours of opening, the 
lead was covered by a thin layer of nilas. Between 29 March and 1 April, a closing event 
reduced the lead's width by approximately half to 8 m wide. Afterward the lead remained 
quiescent. Most cores contained a granular layer 1 cm thick at 32 cm depth (Figure 1b), 
indicating that the ice rafted after formation.

2.2.3. T Lead

The T lead opened around 0:00 UTC 4 April. During 5–8 April, ice dynamics occurred in 
the center of the T lead but not where we would subsequently collect samples from. The T 
lead was split in the middle by a crack running parallel to the lead that opened the morning 
we sampled. Unfortunately, we were unable to access the ice on the upwind (at the time 
of lead formation) half of the lead on 15 April and this ice ridged in the following days.

2.2.4. A Lead

The A lead opened around 8:20 UTC 19 April during a warm air advection event associ-
ated with extreme warmth (Rinke et al., 2021), precipitation, and high winds originating 
from a cyclone moving northward from the Greenland Sea. During 19–20 April, the open 
water we observed in leads was not rapidly freezing. We visually estimated that the open 
water fraction in the area within 1 km of Polarstern was approximately 0.03. Within a 
50 km radius of Polarstern, ice drift derived from subsequent SAR scenes indicates that 
divergent ice motion opened new leads covering approximately 0.02 of the area (these 
measurements do not preclude the persistence of open water from prior days).

Retrievals of precipitation based on a 35-GHz vertically-pointing radar mounted on 
the Polarstern deck indicate 1.04 cm of liquid-equivalent snowfall from 16 to 22 April 
(Matrosov et al., 2022). Blowing snow picked up around 0530 UTC on 20 April. The 
three stations on level ice near Polarstern with downward-pointing acoustic rangefinders 
observed accumulation generally coinciding with pulses of precipitation (documented 
by radar reflectivities), followed shortly by ablation. No net change in the surface height 
after the storm was observed, implying winds eroded all of the new, but none of the 
pre-existing snow. Repeat snow depth transects within 1 km of Polarstern at this time also 
did not record notable snow accumulation (Itkin et al., 2023). This suggests that much of 
the blowing snow during the A lead event was from concurrent precipitation.

Cores from the A lead on 24 April (Figure 1d) generally comprised about 27 cm of very 
soft ice overlying 31–37 cm of slush. Ice thickness measurements indicated that there 
were 10–20 cm of slush below this that the corer was unable to collect. The ice had a 
distinctive layer-cake-like structure with alternating light and dark 1–3 cm thick layers. 
We revisited the A lead on 28 April and collected a single core. This core was considera-
bly more solid than those collected 4 days prior, but was otherwise similar.

2.3. Analysis of Snow Mass in Leads

Following Jeffries et al. (1994), Granskog et al. (2017), Tian et al. (2020), the δ 18O in a 
sample of sea ice is a mixture, by mass, of the δ 18O of pure snow—which we denote δs,l for 
lead l—and the δ 18O of snow-free sea ice—which we denote δref (same notation as Granskog 
et al., 2017). Additionally, we represent the measurement uncertainty of the δ 18O measure-
ment (Section 2.1) as Gaussian, uncorrelated noise—which we denote ϵl,i for sample i from 
lead l—with a standard deviation: σδ = 0.5 ‰. Equations 1 and 2 represent this model:

𝛿𝛿𝑙𝑙𝑙𝑙𝑙 =
𝑠𝑠𝑙𝑙𝑙𝑙𝑙

𝑡𝑡𝑙𝑙𝑙𝑙𝑙
𝛿𝛿𝑠𝑠𝑙𝑙𝑙 +

(
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𝜖𝜖𝑙𝑙𝑙𝑙𝑙 ∼ 𝑁𝑁
(

0𝑙 𝜎𝜎2

𝛿𝛿

)

 (2)

where sl,i is the snow water equivalent (SWE) in the sample and tl,i is the total 
water equivalent of the sample. 𝐴𝐴

𝑠𝑠𝑙𝑙𝑙𝑙𝑙

𝑡𝑡𝑙𝑙𝑙𝑙𝑙
 is the mass fraction of snow in the ice.

The δ 18O of snow-free ice (δref) is higher than that of pure sea water because 
fractionation during the freezing process enriches it in  18O (K. Moore 
et al., 2017; Tian et al., 2020). We follow Granskog et al. (2017) and use the 
bottom ice samples of the sectioned cores (defined as ice below the lowest 
granular ice) to determine δref. To account for the measurement uncertainty, 
we represent δref as a normal distribution whose mean (μref) and standard 
deviation (τref) are estimated from the bottom ice samples via Bayesian infer-
ence with a noninformative prior (Gelman et al., 2021, Chapter 2.5).

The δ 18O of snow (δs,l) varies depending on the provenance of the snow. In 
particular, snow precipitated from warmer air masses (e.g., the 16–21 April 
warm air intrusions) is less depleted in  18O (has less negative δ 18O) than 
snow from colder air masses. For the A lead event, we identified two surface 
snow samples that accumulated contemporaneously with snow blowing into 
A lead. We represent δs,A as a normal distribution whose mean (μs,A) and 
standard deviation (τs,A) are estimated from these surface snow samples in 
the same manner as δref.

For the snow blown into the SL, M, and T leads, we could not unambiguously 
identify surface snow samples that accumulated during each event. The blow-
ing snow during these events was likely re-mobilized snow. Eleven surface 
snow samples were collected from a week before the first lead opened to a 
week after the last lead refroze (16 March–12 April). To account for the fact 
that we do not know the precise provenance of the snow blown into these 
leads, we estimated the mean (μs,(SL,M,T)) and standard deviation (τs,(SL,M,T)) of 
δs,(SL,M,T) as the sample mean and standard deviation of these 11 samples. In 
this case, the uncertainty of the provenance greatly exceeds the measurement 
uncertainty.

We apply Bayes rule (Bayes & Price, 1763) to estimate the probability density 
of SWE in each core given its δ 18O measurement (𝐴𝐴 ℙ(𝑠𝑠𝑙𝑙𝑙𝑙𝑙|𝛿𝛿𝑙𝑙𝑙𝑙𝑙) ; Equation 3). For 
sectioned cores, we computed the weighted-average (by section length) δ 18O 

for the core from the sections. The likelihood (𝐴𝐴 ℙ(𝛿𝛿𝑙𝑙𝑙𝑙𝑙|𝑠𝑠𝑙𝑙𝑙𝑙𝑙) ; Equations 4–6) follows from the mixture model (Equa-
tions 1 and 2). We have no prior information about the snow mass in these leads except that it is non-negative 
and cannot exceed the total mass of the ice (tl,i). Thus we represent our prior (𝐴𝐴 ℙ(𝑠𝑠𝑙𝑙𝑙𝑙𝑙) ; Equation 7) as a uniform 
distribution on this domain. We numerically estimate 𝐴𝐴 ℙ(𝑠𝑠𝑙𝑙𝑙𝑙𝑙|𝛿𝛿𝑙𝑙𝑙𝑙𝑙) through grid sampling (Gelman et  al.,  2021, 
Chapter 10.3). The probability density of the mean SWE in each lead given the N samples from that lead (

𝐴𝐴 ℙ(𝑠𝑠𝑙𝑙|𝛿𝛿𝑙𝑙𝑙1𝑙 𝛿𝛿𝑙𝑙𝑙2𝑙 . . . 𝑙 𝛿𝛿𝑙𝑙𝑙𝑙𝑙 ) ; Equation 8) is the conflation (Hill, 2011) of the sample probability densities 𝐴𝐴 (ℙ(𝑠𝑠𝑙𝑙𝑙𝑙𝑙|𝛿𝛿𝑙𝑙𝑙𝑙𝑙)) .

ℙ(𝑠𝑠𝑙𝑙𝑙𝑙𝑙|𝛿𝛿𝑙𝑙𝑙𝑙𝑙) ∝ ℙ(𝛿𝛿𝑙𝑙𝑙𝑙𝑙|𝑠𝑠𝑙𝑙𝑙𝑙𝑙)ℙ(𝑠𝑠𝑙𝑙𝑙𝑙𝑙) (3)

ℙ(𝛿𝛿𝑙𝑙𝑙𝑙𝑙|𝑠𝑠𝑙𝑙𝑙𝑙𝑙) =
1

𝜎𝜎𝑙𝑙𝑙𝑙𝑙

√

2𝜋𝜋

exp

(

−(𝛿𝛿𝑙𝑙𝑙𝑙𝑙 − 𝜇𝜇𝑙𝑙𝑙𝑙𝑙)
2

2𝜎𝜎2

𝑙𝑙𝑙𝑙𝑙

)

 (4)

𝜇𝜇𝑙𝑙𝑙𝑙𝑙 =
𝑠𝑠𝑙𝑙𝑙𝑙𝑙
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+

(

1 −
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𝑡𝑡𝑙𝑙𝑙𝑙𝑙
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𝜏𝜏2
𝑟𝑟𝑟𝑟𝑟𝑟

+ 𝜎𝜎2

𝛿𝛿
 (6)

ℙ(𝑠𝑠𝑙𝑙𝑙𝑙𝑙) = 𝑈𝑈 (0𝑙 𝑡𝑡𝑙𝑙𝑙𝑙𝑙) (7)

Figure 1. Representative ice cores from leads SL (a), M (b), T (c), and A 
(d). The top of each core is to the left. The SL and M cores contain granular 
layers around 15 and 30 cm respectively. The T core contains no granular 
layers below the top (the feature at 28 cm is a crack), and the A core is entirely 
opaque.
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ℙ(𝑠𝑠𝑙𝑙|𝛿𝛿𝑙𝑙𝑙1𝑙 𝛿𝛿𝑙𝑙𝑙2𝑙 . . . 𝑙 𝛿𝛿𝑙𝑙𝑙𝑙𝑙 ) ∝

𝑙𝑙
∏

𝑖𝑖=1

ℙ(𝑠𝑠𝑙𝑙𝑙𝑖𝑖|𝛿𝛿𝑙𝑙𝑙𝑖𝑖) (8)

3. Results
During the A lead event, peak air temperatures reached ∼0°C (16°C warmer than the November to April average) 
and it coincided with one of the largest blowing snow events (97th percentile) of December through April (Figures 2a 
and 2b). In contrast, the SL and T leads formed during typical temperature, wind, and blowing snow conditions 
(blowing snow at 66th and 33rd percentiles respectively; Figures 2a and 2b). During the formation of the M lead 
wind speeds were calmer than usual, temperatures were typical, and the blowing snow was at the ninth percentile.

The mean δ 18O of the A lead (−8.9 ‰) was considerably lower than that of the SL, M, and T leads (1.2, 2.0, and 
2.4 ‰ respectively). The δ 18O of snow-free ice (δref) was 2.24 ± 0.30 ‰ (all plus-minus at the 95% confidence 

Figure 2. (a) The distribution of 10 m wind speed and 2 m air temperature for November to April at MOSAiC (black 
contours) with the distributions at the time of formation for each lead (colored contours). Contours indicate 10% density 
isolines. (b) Daily mean snow mass flux measured nominally 10 cm above the surface, colored by air temperature and 
snowfall rate (Matrosov et al., 2022). Formation dates of leads are indicated by vertical dotted lines (same colors as a, c, d). 
Both possible formation dates for ice in SL are indicated. (c) Histograms δ 18O measurements for each lead (left axis) and 
distributions of δ 18O for snow and snow-free ice (right axis). (d) Probability distributions of mean snow water equivalent in 
each lead.
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level; solid black line in Figure 2c). For the A lead event δsA was −14.3 ± 0.70 ‰ (dotted red line in Figure 2c). 
For the other leads δsSLMT was −23.0 ± 14.3 ‰ (dotted black line in Figure 2c). See Supporting Information S1 
(Text S2 and Tables S1 and S2) for more information on δ 18O of snow and snow-free ice.

The SWE in the A lead (35.0 ± 1.1 cm; Figure 2d) was approximately 16 times greater per unit area than that in 
the SL lead (2.2 ± 0.7 cm)—the next highest. The M lead contained just 0.6 cm of SWE (95% credible interval 
0.1–1.2 cm). Given the low winds and minimal blowing snow, much of this must have been interred by rafting. 
Finally, we found minimal—if any—SWE in the T lead (95% credible interval 0.0–0.4 cm). The mean snow 
percentages, by mass, in the A, SL, M, and T leads were 67.5%, 3.8%, 1.1%, and 0.3% respectively.

The open water fraction during the A lead event was approximately 0.03 within 1 km of Polarstern and 0.02 
within 50 km of Polarstern (Section 2.2.4). Thus, if the snow loss into A lead were typical of the event, snow 
loss may have reduced the snow budget by approximately 0.7–1.1 cm SWE. The other three lead events had a 
negligible impact on the snow budget.

4. Discussion
4.1. Minimal Snow Loss in Typical Wintertime Conditions

Our results suggest that in typical wintertime conditions at MOSAiC (characterized by the SL and T leads), mini-
mal snow was lost into open water leads in the Arctic pack ice. First, at MOSAiC major blowing snow events—
like the A lead event—were responsible for most of the blowing snow flux near the surface, but they occurred 
rarely and appear limited by the frequency of precipitation events. The 10 days (6.6% of the data) with the highest 
blowing snow flux at MOSAiC accounted for 70% of the total cumulative blowing snow flux. All but one of these 
days came during or immediately after the five major snowfall events on MOSAiC (Wagner et al., 2022). Little 
snow is likely to be deposited in leads outside of a major blowing snow event. Second, at typical wintertime air 
temperatures, open water in leads rapidly refreezes—limiting snow loss. We discuss this process in more detail 
in Section 4.3. From November through April, only 4.3% of days had mean air temperatures above −10°C: two 
days in mid-November and six days in April (including the A lead event). Unfortunately, neither blowing snow 
flux data nor δ 18O lead ice samples are available for the mid-November event, so we cannot assess the amount 
of snow loss into leads. But it was potentially a high snow loss into leads event due to high wind speeds (mean 
10.6 m s −1 on November 16) and observations of open water around the Polarstern. Besides the A lead and possi-
bly mid-November events, the impact of snow loss into leads on the snow mass budget at MOSAiC was likely 
minor. von Albedyll et al. (2022) estimated that from 14 October to 17 April, ice growth in leads contributed 
0.1 m to the mean ice thickness. The mean snow percentages in our typical leads ranged from 0.3% (T lead) to 
3.8% (SL lead). If these snow percentages were characteristic of ice grown in leads, then snow loss into typical 
wintertime leads consumed 0.02–0.34 cm SWE or approximately 0.2%–3.2% of the total annual snow precipita-
tion (Wagner et al., 2022).

4.2. Significant Snow Loss in Exceptional Conditions

If there is a recent snowfall, high winds, and open water remains unfrozen (due to high temperatures), a signifi-
cant amount of snow can be lost into leads, even at open water fractions under 0.05. At MOSAiC, approximately 
1.04 cm SWE precipitated immediately before and during the A lead event and 9.8–11.4 cm SWE precipitated at 
MOSAiC throughout the accumulation season (Matrosov et al., 2022; Wagner et al., 2022). Thus, snow loss into 
open water during the A lead event may have consumed 65%–100% of the recent precipitation and 6%–10% of the 
total annual snow precipitation. This is consistent with the observation that no net accumulation occurred at the 
three meteorological stations (Section 2.2.4). Additionally, large snow loss during the A lead event is consistent 
with estimates during a warm storm event in the Bellinghausen Sea that all recent precipitation was lost into leads 
(Leonard & Maksym, 2011).

The A lead event was associated with a cyclone and warm air intrusion that advected warm air from the Atlantic 
and produced record-breaking warm and moist atmospheric conditions at the MOSAiC site (Rinke et al., 2021). 
While the April 2020 event was extreme, warming events are possibly becoming more common (G. W. K. 
Moore,  2016). The frequency of winter warming events North of 85°N roughly doubled from 1980 to 2015 
(Graham et  al.,  2017). Further research is needed to explore the connections between snow loss into leads, 
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cyclones, and warm air intrusions—and how these events might change snow 
loss in a changing climate.

4.3. Impacts of Temperature on the Duration of Open Water in Leads

Once the surface of a lead is frozen, snow cannot directly enter open water. 
Due to enhanced turbulent heat flux (Andreas & Cash, 1999), leads under 
colder air freeze faster (Figure  3a). For example, on 11 March at an air 
temperature of −25°C, we observed a thin ice skin form on a 1–2 m wide lead 
within 20 min. This lead was sufficiently refrozen to support snow on top of 
it within 2 hr (Figures 3b–3d). In contrast, the leads during the A lead event 
stayed unfrozen for 2 days, likely due to the near-freezing air temperature 
suppressing the turbulent heat flux. Accounting for only turbulent heat fluxes 
(Andreas & Cash, 1999), a hypothetical 20-m-wide lead under a wind speed 
of 6 m s −1 could freeze 3.6 times faster at an air temperature of −24.6°C (the 
November to April mean) than at a temperature of −7.8°C (the A lead event 
mean; Figure 3a). Given a constant snow flux, the cold lead would consume 
72% less snow than the warm one. The exact values change slightly with our 
assumptions about lead width and wind speed, but the overall pattern is that 
the duration of open water in leads increases dramatically for air temperatures 
above approximately −10°C.

Accounting for the impacts of air temperature on the duration of open water in 
leads may be important for models and data assimilation products represent-
ing snow loss into leads. For example, some snow data assimilation products 
use passive microwave sea ice concentration products (e.g., Comiso, 1986) 
that misclassify thin ice as open water (Ivanova et al., 2015). Utilizing such 
products without accounting for the impacts of air temperature on the dura-
tion of open water could overestimate snow loss into leads.

4.4. Outlook

Further work is needed to quantify the relationship between air tempera-
ture and snow loss into open water. In particular, observations of snow loss 

into leads during major blowing snow events at a range of air temperatures are needed. One limitation of this 
work is that we do not have ice samples from leads that formed during cold major blowing snow events. This 
temperature dependence could also be considered in models that represent snow loss into leads (e.g., Hunke 
et al., 2017; Petty et al., 2018), and it is important that models accurately simulate freezing times. Additionally, 
the net impacts of snow loss into leads on the ice mass budget are uncertain. The immediate impact of snow in 
leads on the ice budget is positive (the snow turns into ice), but the net effect may depend on the timing of snow 
loss events. If there were less snow on Arctic sea ice, it would increase thermodynamic ice growth in the winter 
(Maykut & Untersteiner, 1971; Sturm et al., 2002) but reduce the albedo (Perovich & Elder, 2002; Perovich & 
Polashenski, 2012), which increases ice melt in the summer. Thus, autumn snow loss events may increase the ice 
mass budget whereas spring snow loss events likely decrease it. Further observations and modeling are needed to 
investigate these competing effects.

5. Conclusions
We presented the first direct observations of snow loss into leads in the Arctic from four leads at MOSAiC. 
Three leads formed under typical, cold winter conditions and contained <2.9 cm SWE. Under typical winter 
conditions at MOSAiC, the impact of leads on the snow budget was likely minor. However, one lead contained 
35.0 ± 1.1 cm SWE and was associated with a cyclone which delivered snowfall, high winds, and record-breaking 
warm temperatures. During this event, open water may have consumed 65%–100% of recent snow precipitation 
and approximately 6%–10% of annual snow precipitation. The frequency of such extreme events may be impor-
tant for the snow budget on Arctic sea ice. Finally, this event highlighted that the duration of open water in leads, 

Figure 3. (a) Estimated time required to freeze 3 cm of ice thickness in a 
20-m-wide lead at a wind speed of 6 m s −1 for a given air temperature, only 
accounting for turbulent heat flux (estimated from Andreas & Cash, 1999). 
Boxes show interquartile ranges and whiskers show 90% ranges of air 
temperatures at MOSAiC. (b–d) Images of a freezing lead on MOSAiC. In 
(b) the ice has just opened up, exposing open water between the mature ice 
and the young ice (closer to the camera) which had formed a few hours prior. 
Within 20 min, panel (c) shows that a thin skim of ice has frozen over the open 
water (the mature ice has also retreated exposing more open water). Within 
2 hr, panel (d) shows that this new ice is sufficiently solid to accumulate snow 
on top of it.
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which increases dramatically with warmer air temperature, may be an underappreciated factor in how much snow 
can be lost into leads.

Data Availability Statement
Data from lead cores is available at Clemens-Sewall et  al.  (2022). Surface meteorology data are avail-
able at Cox, Gallagher, Shupe, Persson, Blomquist, et  al.  (2023), Cox, Gallagher, Shupe, Persson, Grachev, 
et al. (2023a, 2023b). Snow surface isotope data are available at Macfarlane et al. (2022). Blowing snow flux data 
are available at M. Frey et al. (2023).
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