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Abstract

Precipitation extremes present significant risks to Midwest agriculture, water

resources, and natural ecosystems. Recently, there is growing attention to the

transitions of precipitation extremes, or shifts between heavy precipitation and

drought, due to their profound environmental and socio-economic impacts.

Changes in Midwest precipitation extremes and transitions between extremes

over the past few decades have been documented; however, their future

changes are still unknown. In this study, we estimate the projected changes in

transitions of precipitation extremes in the Midwest based on 17 CMIP6

models. Two Standardized Precipitation Index (SPI) based metrics, intra-

annual variability and transitions, are used to quantify the magnitude, dura-

tion, and frequency of variability and transitions between wet and dry

extremes. Compared with the observation-based precipitation datasets, the

multimodel ensemble median of CMIP6 can reasonably represent the spatial

patterns of SPI extremes and transitions. Climate projections show signifi-

cantly intensified wet extremes across the Midwest by the end of the century,

with a greater increase over the northern Midwest and the Great Lakes region.

The short-term SPI also shows intensified dry extremes over the western half

of the Midwest. Consequently, there is a significant increase in the magnitude

of intra-annual variability in most areas. Projections also suggest more fre-

quent and rapid transitions between the wet and dry extremes, especially over

the Great Lakes region and northern Midwest. Seasonally, more frequent tran-

sitions from a wet spring to a dry summer (or from a dry fall to a wet winter/

spring) are projected to occur; and generally, the wet and dry conditions

between the transitions are projected to be more intense compared to the his-

torical period. Furthermore, the intensified precipitation extremes and acceler-

ated transitions are greatly alleviated under a lower emission scenario,

implying that future changes in hydroclimate extremes, and impacts thereof,

in the Midwest are sensitive to climate change mitigation.
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1 | INTRODUCTION

The variations of precipitation extremes, such as heavy
precipitation and drought, present major risks for natural
and human systems. The US Midwest, one of the most
agriculturally productive regions in the world (Berhane
et al., 2020), can be heavily impacted by those extreme
events, resulting in crop yield reduction, infrastructure
damage, poor human and ecological health outcomes,
and tremendous economic loss (Angel et al., 2018; Liu
and Basso, 2020). Historically, significant increasing
trends in heavy precipitation have been observed in the
Midwest (Janssen et al., 2014; Walsh et al., 2014). Histori-
cal changes in drought are more mixed, with some stud-
ies finding increasing drought frequency especially in the
northern Midwest (Ficklin et al., 2015) and other studies
reporting no change or largely decreasing drought risk in
the Midwest (Mo and Lettenmaier, 2018; Basso et al.,
2021). Under a warming climate, precipitation extremes
are expected to be more intense (Seneviratne et al., 2012),
because the water holding capacity of the atmosphere
increases with temperature according to the Clausius–
Clapeyron scaling (Bador et al., 2018). Climate projec-
tions from state-of-the-art climate models (such as
Coupled Model Intercomparison Project Phase 6 [CMIP6]
and North America Coordinated Regional Downscaling
Experiment [NA-CORDEX]) have projected increased
risks of floods and droughts in the future (Akinsanola
et al., 2020a; 2020b; Chen and Ford, 2021; Almazroui
et al., 2021).

Although considerable attention has been given to
the precipitation extremes by quantifying different pre-
cipitation indices independently (Akinsanola et al.,
2020a; 2020b; Chen and Ford, 2021), there is an increas-
ing demand for a better understanding of the transitions
between precipitation extremes, which may lead to more
significant environmental and socio-economic impacts
(Ford et al., 2021). Transitions between extremes, also
described as “weather whiplash” (e.g., Cohen, 2016),
refers to the rapid evolution from one climate extreme to
that of the opposite sign. Such transitions of precipitation
extremes and their impacts have been documented in the
Midwest. Christian et al. (2015) suggest that there is a
considerable chance that a drought year is followed by a
pluvial year in the US Great Plains. Loecke et al. (2017)
attributed water quality problems in the Midwest to poor
soil conditions and nutrient runoff due to the rapid tran-
sition drought in 2012 to pluvial in 2013. A more recent
example was the widespread flooding across the Midwest

in spring 2019, followed by rapid onset drought in the
late summer 2019 over the southern Midwest, both of
which resulted in reductions in crop yield (Yin et al.,
2020). Our recent study explores Midwest precipitation
extremes and transitions over the last 70 years, and finds
that wet-to-dry transitions have largely increased in
speed and frequency in many areas of the Midwest (Ford
et al., 2021).

Despite the increased concerns about recent transi-
tions of precipitation extremes and associated environ-
mental and socio-economic impacts, little work has been
done to estimate how the transitions will change in the
future climate. Understanding future transitions is essen-
tial to Midwestern agriculture, especially considering the
projected intensification of precipitation extremes. There-
fore, the goal of the study is to investigate the projected
changes in transitions of precipitation extremes in the
Midwest using climate projections from CMIP6. We aim
to answer two research questions: (a) Can CMIP6 models
represent the regional precipitation extremes and transi-
tions during the historical period? (b) How will the tran-
sitions change in different climate scenarios? The paper
is organized as follows. A detailed description of data and
methods is given in section 2. Historical precipitation
extreme transitions in CMIP6 are evaluated in section 3.
The projected changes in the transitions and their season-
ality are presented in section 4. Discussions and summa-
ries are provided in section 5.

2 | DATASETS AND
METHODOLOGY

2.1 | CMIP6 output

In this study, we use precipitation output from CMIP6 to
quantify the present and future precipitation extremes.
Two metrics developed in Ford et al. (2021) are applied to
quantify the transition of precipitation extremes. We use
simulated daily precipitation from 17 global climate
models (GCMs) participating in CMIP6 to analyse the
transitions of precipitation extremes. Previous studies
have evaluated the performance of CMIP6 in simulating
precipitation extremes in the United States at continental
or regional scales and suggest that multimodel median
performs better overall than individual models (e.g.,
Akinsanola, 2020a; Srivastava et al., 2020). Also, there are
studies assessing future changes in regional precipitation
extremes using CMIP6 (e.g., Tang et al., 2021; Xu et al.,
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2021). Those studies in model evaluation and extreme
assessment have demonstrated that CMIP6 models can
be used for regional precipitation extreme studies.
Table 1 shows the information of 17 models and their
availability for the historical simulations from 1850 to
2014 and future projections from 2015 to 2100 under
three Shared Socioeconomic Pathways (SSPs). SSP585,
SSP245, and SSP126 represent the high, medium, and
low ends of the range of future pathways producing radi-
ative forcings of 8.5, 4.5, and 2.6 W�m−2 by 2100, respec-
tively (O'Neill et al., 2016). There is one model (NESM3)
without SSP245 simulations available and two models
(NESM3 and NorESM2-LM) without SSP126 simulations
available. Although some models provide more than one
ensemble member, only the first ensemble member is
used in the analysis. This approach is consistent with pre-
vious studies assessing projected changes in precipitation
extremes (Akinsanola et al., 2020a; 2020b).

2.2 | Evaluation data

Precipitation data for the period 1950–2014 is obtained
from the 3rd phase Global Soil Wetness Project (GSWP;
Kim, 2017) to evaluate the CMIP6 models' performance
in simulating historical transitions of precipitation
extremes. GSWP is a hybrid dataset produced based on a
dynamical downscaling of the 20th Century Reanalysis
(20CR; Compo et al., 2011) at a spatial resolution of

0.5� × 0.5� latitude–longitude grid. Bias corrections are
then applied using global observationally based gridded
datasets (such as Global Precipitation Climatology Centre
[GPCC], Global Precipitation Climatology Project
[GPCP], and Climate Prediction Center [CPC] Unified
Precipitation Project) to improve the representation of
temperature and precipitation variables (Dirmeyer et al.,
2006; Yoshimura and Kanamitsu, 2008). This dataset has
been used as the primary meteorological forcing in the
offline simulations of the Land Surface, Snow and Soil
Moisture Model Intercomparison Project (LS3MIP), a
CMIP6-Endorsed Model Intercomparison Project (MIP),
which is designed to evaluate the land models of current
Earth system models and investigate land surface, snow
and soil moisture feedback to climate variability and cli-
mate change (van den Hurk et al., 2016). Although pre-
cipitation bias has been found in many gridded
meteorological datasets when compared to in situ obser-
vations due to the intrinsic heterogeneity (van den Hurk
et al., 2016) and many of gridded datasets show a nega-
tive bias in precipitation over the Great Lakes region
(Behnke et al., 2016), the application of GSWP in LS3MIP
as the primary forcing dataset demonstrates its credibility
in representing precipitation variability.

The spatial resolution of gridded datasets can possibly
affect the detected precipitation extremes, particularly
over regions with complex terrain (Gervais et al., 2014;
Herold et al., 2017). However, the Midwest is not as
orographically complex as the eastern or western

TABLE 1 Information of the 17 CMIP6 models used in this study

Model
Horizontal resolution
(lat × lon grid numbers) Historical SSP585 SSP245 SSP126

ACCESS-CM2 144 × 192 ✓ ✓ ✓ ✓

ACCESS-ESM1-5 145 × 192 ✓ ✓ ✓ ✓

BCC-CSM2-MR 160 × 320 ✓ ✓ ✓ ✓

CanESM5 64 × 128 ✓ ✓ ✓ ✓

CESM2 192 × 288 ✓ ✓ ✓ ✓

FGOALS-g3 90 × 180 ✓ ✓ ✓ ✓

GFDL-CM4 180 × 288 ✓ ✓ ✓

GFDL-ESM4 180 × 288 ✓ ✓ ✓ ✓

INM-CM5-0 120 × 180 ✓ ✓ ✓ ✓

IPSL-CM6A-LR 143 × 144 ✓ ✓ ✓ ✓

MIROC6 128 × 256 ✓ ✓ ✓ ✓

MPI-ESM1-2-HR 192 × 384 ✓ ✓ ✓ ✓

MPI-ESM1-2-LR 96 × 192 ✓ ✓ ✓ ✓

MRI-ESM2-0 160 × 320 ✓ ✓ ✓ ✓

NESM3 96 × 192 ✓ ✓

NorESM2-LM 96 × 144 ✓ ✓ ✓

NorESM2-MM 192 × 288 ✓ ✓ ✓ ✓
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United States. Precipitation products at such a spatial res-
olution have been used to assess precipitation extremes
in previous studies (e.g., Donat et al., 2013; Zhou et al.,
2016; Olmo et al., 2020). Meanwhile, comparing the
GSWP-based results with the high-resolution results in
our previous study (Ford et al., 2021), the two datasets
show a good agreement in the spatial pattern in transi-
tions of precipitation extremes, although GSWP may lose
some spatial details (to be discussed in section 3). Consid-
ering the uncertainty of the precipitation data, another
observational precipitation dataset, the gridded CPC uni-
fied gauge-based precipitation analysis (Chen et al., 2008;
Xie et al., 2010), is also used for the evaluation. The CPC
dataset provides daily precipitation at a spatial resolution
of 0.5� × 0.5� latitude–longitude grid over the contiguous
United States since 1948.

2.3 | Definitions of variability and
transitions in precipitation extremes

In this study, precipitation extremes are characterized
using the Standardized Precipitation Index (SPI; McKee
et al., 1993). SPI is a probability-based index and has been
widely used for drought monitoring (Svoboda et al., 2002)
and precipitation extremes studies (e.g., Russo et al.,
2013; Choi et al., 2016; Wang et al., 2017). It should be
noted that there are several limitations of SPI, including
the requirement for data quality and length, not being
capable of identifying regions that may be more
“drought-prone” than others, and possibly misleading
large values of short-term SPI in regions with low sea-
sonal precipitation (Hayes et al., 1999), and no consider-
ation of other meteorological conditions closely related to
drought. However, due to its simplicity and versatility,
SPI has been recommended as a key drought indicator by
the World Meteorological Organization (Wilhite, 2006)
and a universal meteorological drought index by the Lin-
coln Declaration on Drought (Hayes et al., 2011). In the
SPI algorithm, at a given grid cell, long-term (e.g., the
historical period 1950–2014 in this study) precipitation
data is used to determine the probability density function
(PDF) of n-day accumulated precipitation by fitting a
gamma distribution. To calculate the SPI for each CMIP6
model, its historical simulation during 1950–2014 is used
as the reference to fit the gamma distribution. Then the
actual n-day accumulated precipitation on a given day in
a given year (in the historical or future period) is
expressed as a standardized departure from the PDF. In
this study, we calculate 30-, 90-, and 180-day SPI to char-
acterize monthly to seasonal precipitation extremes. We
used those three aggregation periods, matching the
methods of Ford et al. (2021) to capture variability,
change, and transitions at the subseasonal to seasonal

timescale. Variability and transitions on shorter timescales
(i.e., 30 days) are important for agriculture management
and decision making, while those on 90- to 180-day time-
scales are more relevant for water resource planning.
Because the calculation of accumulated precipitation pro-
duces missing values for the first n-1 days, the first year
(1950) is discarded in our analysis.

We apply two SPI-based metrics developed in Ford
et al. (2021) to quantify the transition of precipitation
extremes: intra-annual variability and transition. Intra-
annual variability is based on the annual maximum SPI
and annual minimum SPI within a calendar year. It
allows us to quantify the magnitude and duration of
extreme precipitation variability of each year. Magnitude
is defined as the difference between the annual maximum
and minimum SPI; duration is the time span between the
two intra-annual extremes, measured in days.

Because the calculation of SPI can essentially erase
the seasonal cycle of precipitation, the identified intra-
annual variability should be carefully evaluated. First, we
compare the annual maximum/minimum precipitation
with the actual precipitation when the annual maxi-
mum/minimum SPI is identified (Figure S1, Supporting
Information). The total precipitation associated with the
max/min SPI is very similar to the annual max/min pre-
cipitation totals. Although SPI-based results are slightly
less extreme than the total precipitation-based results
(i.e., higher minima and lower maxima), the overall
agreement suggests that the SPI-based approach is repre-
sentative of dry/wet conditions and the magnitude of the
seasonal cycle of precipitation.

We then examine the difference in timing between
annual maximum (minimum) SPI and accumulated pre-
cipitation (Figure S2). For 30-day SPI, most of the domain
shows the average difference in timing is within 60 days,
suggesting that the identified maxima or minima are still
representative of the wet/dry conditions for a certain sea-
son. We also see certain differences between the SPI-
based results and the actual precipitation, especially over
the Northwest. This is mainly because there is relatively
strong seasonal variability in precipitation in those
regions, with evident dry and wet seasons (Figure S3).
For instance, an average amount of precipitation during
the dry season can be less than the precipitation amount
for an “extreme-dry” period during the wet season. If
using actual precipitation for detection, the average dry
season will be identified as the annual minimum; if using
SPI, the “extreme-dry” wet season will be considered as
the annual minimum. Although both are justifiable, an
SPI value represents the deviation of the total precipita-
tion from the average or expected value, which speaks to
the intensity of the anomaly. Spatially speaking, having
the same SPI value in a humid area and a semi-arid area
signifies that the total precipitation in the two cities is of
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equal anomaly or intensity, after having accounted for
the difference in background climatology. This eases
comparison of precipitation extremes across a large
region such as the Midwest, also is the primary reason
why SPI has been used frequently for identifying precipi-
tation extremes in previous studies (e.g., Zhang et al.,
2009; Mallya et al., 2016; Onuşluel Gül et al., 2021) and
was one of the many reasons SPI was recommended to
the WMO as a primary indicator for monitoring meteoro-
logical drought worldwide (Hayes et al., 2011).

The transition, or as DeGaetano and Lim (2020)
described, the “tail swing,” occurs when SPI moves from
at or above +1.6 to at or below −1.6, or vice versa. The
transition can occur within a single calendar year or
across different years. This approach allows us to quan-
tify transition frequency and duration (i.e., how quickly
the transition occurred). The frequency of transitions is
defined as the number of transitions within a certain
period (e.g., the period 1951–2014 used for model evalua-
tion). The duration of a transition is defined as the num-
ber of days that elapse between the extreme of one sign
and the subsequent extreme of the opposite sign. More
details of the transition can be found in Ford et al. (2021).
It should be noted that the thresholds ±1.6 are used for
the transition calculation because the value −1.6 of SPI is
the threshold for identifying “extreme drought” in the
United States drought monitor. We also test the thresh-
olds at ±0.8, which are used to define “moderate
drought.” The identified transitions are more frequent if
considering modest extremes, but their spatial patterns
are consistent (not shown).

2.4 | Quantify future changes in
transitions of precipitation extremes

We calculate intra-annual variability and transitions of
precipitation extremes for the historical period 1951–2014
from individual CMIP6 models. Due to the different spa-
tial resolutions of CMIP6 models, the calculated metrics
are regridded to a common 1.0� × 1.0� latitude–longitude
grid size, and multimodal ensemble medians are then
calculated. Observation-based metrics are calculated
using the GSWP and CPC precipitation and are also reg-
ridded to a 1.0� × 1.0� latitude–longitude resolution for
the evaluation purpose. When calculating the average
across the Midwest, we use grid cells within the area 34�–
50�N and 80�–100�W of the United States. Additionally,
to evaluate the performance of individual CMIP6 models
and multimodel ensemble median, ranking scores are
calculated based on correlation coefficient and relative
bias of the climatology of each SPI-based variable (annual
maximum SPI, annual minimum SPI, magnitude of intra-
annual variability, duration of intra-annual variability,

frequency of transitions, duration of dry-to-wet transitions,
and duration of wet-to-dry transitions). The correlation
coefficient measures the spatial agreement between the
observation and model, and relative bias (RB) measures
the mean error for each model (Equation (1)),

RB=
M−O

O
×100%, ð1Þ

where M and O are climatological mean from the model
and observation, respectively. The total ranking score
(RS) is defined in Equation (2) according to the method
in Kim et al. (2020),

RS=1−
1

MNR

XR

i=1

XN

j=1

ranki,j, ð2Þ

where M is 18 (the multimodel ensemble median and 17
CMIP6 models), N is 3 (the variable derived from 30-, 90-
, and 180-day SPI), R is 2 (correlation coefficient and rela-
tive bias), and ranki,j represents the ranking of the model
for the evaluation measure i and the SPI-based variable j.
Values of RS closer to 1 indicate better model
performance.

For the projected changes in transitions, we calculate
the difference between the historical period (1981–2010)
and the future period (2071–2000 as long-term future)
under three SSPs. Two criteria are used to evaluate the
statistical significance of the projected change. First, the
nonparametric Wilcoxon signed-rank test is used to
assess the statistical significance of the multimodel
ensemble median (Sillmann et al., 2013). The projected
changes are considered “significant” when the Wilcoxon
test rejects the null hypothesis at the 5% significance
level. Second, the robustness across CMIP6 models is
assessed based on intermodel agreement (Chen, 2020).
The projected changes are considered “robust” when at
least 75% of the models agree on the sign of the change.

3 | EVALUATION OF THE
HISTORICAL PRECIPITATION
EXTREME TRANSITIONS

We first evaluate the climatology of annual maximum
and minimum SPI during the period 1951–2014. Figure 1
shows the comparison between GSWP and CMIP6.
Although GSWP is a hybrid precipitation product at a rel-
atively coarse resolution, it well represents the spatial dis-
tribution of SPI extremes compared to the observations
used in Ford et al. (2021) (Figure S4). For the 30-day SPI,
the eastern half of the Midwest shows higher values in
annual maximum (i.e., wetter) and lower values in
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annual minimum (i.e., drier), indicating greater shorter-
term precipitation variability in this region. For the 90-
and 180-day SPI, the northern regions exhibit a larger
intra-annual range, suggesting greater longer-term pre-
cipitation variability in those regions. Figure S5 shows
the climatology of annual maximum and minimum SPI
based on the CPC precipitation dataset, which exhibits a
reasonably good agreement with the GSWP-based results
in both magnitude and spatial pattern. The major differ-
ence is found in the annual minimum 30- and 90-day
SPI. CPC suggests lower values in the southwest, but
GSWP and nClimDiv in Ford et al. (2021) suggest lower
values in the southeast. Previous studies also discussed
the uncertainty among different observational datasets
and concluded that the spread among different observa-
tional datasets for most precipitation extreme indices are
comparable to the CMIP6 interquartile model spread
(Srivastava et al., 2020). CMIP6 somewhat captures the
observed spatial pattern of SPI extreme climatologies,
except for the annual minimum 90-day SPI. Meanwhile,
the multimodel ensemble median of CMIP6 has

smoothed spatial variability. For instance, CMIP6 under-
estimates the dry conditions in the north, where the
180-day annual minimum SPI is relatively low, but over-
estimates the dry conditions in other regions.

Figure 2 shows the magnitude and duration of intra-
annual variability in GSWP and CMIP6. Similar to the
finding in SPI extreme climatologies, there is greater
intra-annual variability in 30-day SPI over the eastern
half of the Midwest. With longer SPI intervals (e.g., 90 or
180 days), the value of magnitude gradually decreases,
and more areas in the north exhibit relatively higher
intra-annual variability compared to other regions. CPC
agrees with GSWP in the magnitude and duration and
intra-annual variability (Figure S6), but the magnitude of
the 30-day SPI variability shows relatively high values in
the southwest, which are not present in GSWP and Ford
et al. (2021). CMIP6 shows a general agreement in the
spatial pattern with GSWP, with a pattern correlation of
0.54, 0.47, and 0.61 for 30-, 90-, and 180-day SPI, respec-
tively. According to the three observation-based SPI
intervals, northern regions (e.g., Wisconsin, Minnesota,

FIGURE 1 Climatology of

annual maximum (a–f, unitless) and
minimum (g–l, unitless) SPI during
1951–2014 based on 30-, 90-, and

180-day SPI in GSWP and CMIP6.

Text in panels d–f and j–l shows the
pattern correlation between CMIP6

and GWSP. An asterisk sign indicates

the correlation is significant at the

95% confidence level [Colour figure

can be viewed at

wileyonlinelibrary.com]

260 CHEN AND FORD

http://wileyonlinelibrary.com


and North Dakota) have a relatively short duration of
intra-annual variability, suggesting the transitions
between wet and dry events usually occur within a
shorter time in those regions. For instance, a transition
from extreme dry to extreme wet conditions occurs on
average within 4 months in northern Wisconsin. CMIP6
does not capture the duration of intra-annual variability
at 30- and 90-day SPI but shows a good agreement with
GSWP for 180-day SPI.

Figure 3 shows the frequency of transition during the
period 1951–2014. For 30-day SPI, more frequent transi-
tions occur over the eastern half of the Midwest, espe-
cially in the Great Lakes region, with a return interval of
less than a year. When SPI is calculated at a longer inter-
val (e.g., 180 days), the northern states, such as Minne-
sota and North Dakota, also exhibit high transition
frequency, with a return interval of about 2.7 years.
Again, CPC shows a reasonably good agreement with the
GSWP in both magnitude and spatial pattern of the fre-
quency (Figure S7). Generally, CMIP6 well represents the
observed high frequency of 30-day SPI transitions in the

east, and the high frequency of 90- and 180-day SPI tran-
sitions in the north and the Great Lakes region. The pat-
tern correlation between CMIP6 and GSWP is 0.58, 0.47,
and 0.35 for 30-, 90-, and 180-day SPI transitions, respec-
tively. However, CMIP6 exhibits less spatial variability
than GSWP. Although CMIP6 agrees with GSWP in the
regions with a higher frequency of transitions, it overesti-
mates the frequency in the rest areas of the Midwest.

The duration of transitions is closely related to the
frequency—a higher frequency generally corresponds to
quicker transitions. Therefore, the duration of transitions
from extreme dry (wet) to extreme wet (dry) shows a con-
sistent pattern with the frequency (Figure S8). The
shortest 30-day SPI transitions occur in the east and the
Great Lakes regions, where transitions of precipitation
extremes only take 3–4 months. The 180-day SPI shows
that the shortest transitions also appear in the north,
such as Minnesota and Dakotas. We also note some dif-
ferences between the dry-to-wet and wet-to-dry transi-
tions. The 180-day SPI highlights the southwest part of
the region, which exhibits relatively quick dry-to-wet

FIGURE 2 Climatology of the

magnitude (a–f, unitless) and
duration (g–l, in days) of intra-

annual variability during 1951–2014
based on 30-, 90-, and 180-day SPI in

GSWP and CMIP6. Text in panels d–f
and j–l shows the pattern correlation

between CMIP6 and GWSP. An

asterisk sign indicates the correlation

is significant at the 95% confidence

level [Colour figure can be viewed at

wileyonlinelibrary.com]
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transitions (Figure S8c), which is not shown in the wet-
to-dry transitions (Figure S8i). Similar to the performance
in simulating transition frequency, CMIP6 captures the
spatial pattern of the duration but with overall less vari-
ability in many regions.

Furthermore, we evaluate the temporal evolution of
SPI extremes. Figure 4 shows the time series of annual
maximum and minimum SPI averaged over the Midwest.
Although there is little agreement in inter-annual vari-
ability of the SPI extremes between GSWP and CMIP6,
we do find the general trends are consistent in these two
datasets. During the historical period 1951–2014, observa-
tions show a significant increase in annual maximum
SPI. The rate of increase is larger for longer-term SPI
intervals. CMIP6 also exhibits a significant positive trend
in annual maximum SPI but at a lower rate. Both obser-
vations and CMIP6 show a decrease in the 30-day annual
minimum SPI (i.e., increasing dry extremes), and an
increase in the 90- and 180-day SPI annual minimums
(i.e., decreasing dry extremes); however, these trends are
not statistically significant.

Overall, the multimodel ensemble median of CMIP6
shows good agreement with the observations with respect
to the spatial patterns of intra-annual variability and
transitions of precipitation extremes. Although biases are
noted in some regions, the models are capable of rep-
resenting the climatologies of transitions and the general
trends of SPI extremes in the Midwest. Moreover, we
examine the performance of individual CMIP6 models.
The multimodel ensemble median consistently outper-
forms most of the models throughout all the SPI-based
variables (Table S1). We also find there is no evident dif-
ference in the projected changes between the multimodel
ensemble from all available models and the multimodel
ensemble from best performance models (e.g., top 5) (not

shown). Therefore, to maintain a consistent set of models
in the historical and future analysis, we chose to use the
median values based on simulations from all CMIP6
models in both cases.

4 | PROJECTED CHANGES IN
TRANSITIONS OF PRECIPITATION
EXTREMES

4.1 | Changes in SPI extremes
and intra-annual variability

From 2015 to 2100, all three scenarios show a significant
increase in annual maximum SPI over the Midwest, indi-
cating that the intensity of wet events is projected to
increase in the future (Figure 4). Among the three sce-
narios, SSP585 shows the greatest increase. The annual
maximum 30-day SPI averaged across the Midwest is
about 2.07 during the reference period 1981–2010. By the
end of the century (2071–2100), the annual maximum
SPI is projected to increase by 0.54, approximately 26%
relative to the baseline. For reference, the regional-
average annual maximum 30-day SPI during the extreme
flooding of 2019 was 2.37. Although SSP245 and SSP126
also exhibit a rapid increase at the early stage of the 21st
century, the rate of increase moderates from 2040 to the
end of the century, likely due to less projected warming
as a result of future climate mitigation efforts applied to
these scenarios (O'Neill et al., 2016). By the end of the
century, the annual maximum 30-day SPI is estimated to
increase by 18 and 14% in SSP245 and SSP126, respec-
tively. Similar to the historical trends, the projected
change in annual minimum SPI depends on the time
interval of the SPI investigated. The 30-day SPI shows a

FIGURE 3 Frequency of

precipitation extreme transitions

(in number of transitions per year)

during 1951–2014 based on 30-, 90-,

and 180-day SPI in GSWP and

CMIP6. Text in panels d–f shows the
pattern correlation between CMIP6

and GWSP. An asterisk sign

indicates the correlation is significant

at the 95% confidence level [Colour

figure can be viewed at

wileyonlinelibrary.com]
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significant decrease in the Midwest, suggesting the short-
term dry events will get more intense. The average annual
minimum 30-day SPI is −2.35 during the reference period,
and is projected to decrease by approximately 15% (−0.35)
by the period 2071–2100. For reference, the region-
average annual minimum 30-day SPI during the drought
year of 2012 was −2.82. SSP245 and SSP126 exhibit a neg-
ative trend in 30-day SPI, however, which is not statisti-
cally significant. For the 90- or 180-day SPI, the trend of
annual minimum SPI is relatively small and mostly not
significant, which broadly supports the hypothesis that
seasonal drought in this region will not systematically
increase in response to the greenhouse gas forcing
(e.g., Cook et al., 2020).

Figure 5 shows the spatial distributions of projected
changes in annual maximum and minimum SPI in the
Midwest by the end of the century. The annual maximum
SPI is projected to increase across the Midwest in all
three scenarios, with the greatest increase in SSP585.

Spatially, the intensification of wet conditions is stronger
in the northern states and the Great Lakes region. The
annual minimum 30- and 90-day SPI shows a significant
decrease in SSP585, especially over the western half of the
Midwest. We also see a slight decrease over the southwest
in SSP245 and SSP126, and a slight increase in 180-day
SPI in some areas of the west. However, no significant
changes are found in large areas of the Midwest in
SSP245 and SSP126 with longer SPI intervals. This agrees
with the regional average time series (Figure 4), indicating
little change in the intensity of future seasonal to multi-
season meteorological droughts over the Midwest.

Due to the increased annual maximum SPI and
decreased annual minimum SPI, the magnitude of intra-
annual variability shows a significant increase in most of
the areas in the Midwest by the end of the century
(Figure 6). The greatest increase is found in the northern
half of the study area for the 30-day SPI under the
SSP585 scenario. Meanwhile, we note that there is no

FIGURE 4 Time series of annual maximum (a–c, unitless) and minimum (d–f, unitless) SPI anomalies averaged across the Midwest

during 1951–2100 based on 30-, 90-, and 180-day SPI. Anomalies are calculated based on the reference period 1981–2010. Shading shows the
inter-model spread (25th and 75th percentiles). Time series are smoothed with a 10-year running average. Text in each panel shows the

linear trend (in per decade) of annual maximum or minimum SPI. An asterisk sign indicates the trend is significant based on the Mann–
Kendall nonparametric test. Colours of the text correspond to different datasets or different simulations. It should be noted that the thick

black/grey lines for CMIP6 historical are based on three different sets of models that are available for SSP585, SSP245, and SSP126 (shown in

Table 1), and they show consistency. The historical trend is calculated based on all available models [Colour figure can be viewed at

wileyonlinelibrary.com]
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significant change in the duration of intra-annual vari-
ability (Figure S9). From the historical perspective
(Figure 2), the northern states already have a relatively
short duration of intra-annual variability. Therefore, the
projected increase in magnitude would pose a higher risk
of precipitation extremes in those regions.

4.2 | Changes in transition

Figure 7 shows the projected changes in the frequency of
precipitation transitions. The 30-day SPI suggests signifi-
cantly more transitions will occur across the Midwest by
the end of the century in SSP585 and SSP245. The most
prominent increase can be found in 30-day SPI over the
Great Lakes regions and the northern Midwest, including
Minnesota, Wisconsin, Illinois, Indiana, and Michigan,
where at least one more transition will occur every 2 years.
The changes account for about 30% increase compared to
the historical transition frequency. It should be noted that
the Great Lakes and the north already have higher transi-
tion frequency than other areas of the Midwest during the
historical period. The greater increase in future transition
frequency would further highlight the vulnerability of
those regions to climate change. When precipitation
extremes are quantified using a longer-interval SPI, there is

a slight increase in transition frequency in the western half
of the Midwest in SSP585 and no significant changes in the
other two scenarios. Additionally, we examine the projected
changes related to the definition of precipitation extremes
(section 2.3). Figure S10 shows the projected changes in the
frequency of transitions based on three sets of thresholds
(±1.6, ±1.2, and ±0.8). They are used because −1.6, −1.2,
and −0.8 are used to define extreme, severe, and moderate
droughts, respectively, according to the drought classifica-
tion of United States drought monitoring. The spatial pat-
terns of the project changes among the three sets of
thresholds are consistent. If including severe/moderate
extremes, the magnitude of the projected increase in transi-
tion frequency is much lower than the magnitude with con-
sidering “extreme” extremes only, especially for the 30- and
90-day SPI. This suggests that there are more frequent tran-
sitions between extreme wet/dry conditions, but fewer tran-
sitions between moderate wet/dry conditions.

The increased frequency can correspond to a short-
ened duration of precipitation transitions (Figure 8). Both
dry-to-wet and wet-to-dry transitions are projected to
become more rapid across the Midwest under a warming
climate. Historically, the transitions would take around 3
months over the Great Lakes region (Figure S8). Under a
warming climate, the reduced duration is about 20 days
in those regions. Although no significant changes in

FIGURE 6 Projected changes in

magnitude of intra-annual variability

(unitless) over the time period 2071–
2100 relative to the historical period

1981–2010 under the SSP585 (a–c),
SSP245 (d–f), and sSP126 (g–i)
scenarios. Stippling indicates the

changes are statistically significant

[Colour figure can be viewed at

wileyonlinelibrary.com]
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transition frequency are found in SSP245 and SSP126 for
180-day SPI, we note significantly reduced transition
durations in some regions (e.g., Illinois). Therefore,
future warming may not affect the total number of transi-
tions between long-term droughts and wet conditions,
but significantly accelerates the transitions between the
extremes. The unaltered transition frequency with
reduced transition duration also imply that the long-term
extremes may last longer in the future, however, which is
out of the scope of this study and will be investigated in
our future work.

4.3 | Changes in seasonality

We examine the seasonality of the transitions averaged
across the Midwest during the historical period 1981–2010

and the future period 2071–2100 under the SSP585 sce-
nario. Because the 90- and 180-day SPI is based on the
accumulated total precipitation over 3 and 6 months,
respectively, their seasonality has been largely smoothed
out. Therefore, our analysis is only focused on the 30-day
SPI. Figure 9 shows the frequency of maximum and mini-
mum 30-day SPI that is identified in different months.
Historically, GSWP and CMIP6 show a good agreement.
A slight difference is found in annual minimum SPI dur-
ing summer, which may explain the discrepancy in the
duration of intra-annual variability discussed in section 3.
The frequency of SPI extremes is evenly distributed
throughout the year. In other words, no clear seasonality
is seen in the occurrence of annual maximum and mini-
mum SPI. By the end of the century, more annual maxi-
mum SPI tends to occur during the cold season (e.g., from
December to April), and more annual minimum SPI

FIGURE 7 Projected changes in frequency of transitions (in number of transitions per year) over the time period 2071–2100 relative to

the historical period 1981–2010 under the SSP585 (a–c), SSP245 (d–f), and sSP126 (g–i) scenarios. Stippling indicates the changes are
statistically significant [Colour figure can be viewed at wileyonlinelibrary.com]
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tends to occur during the warm season (e.g., from July to
September). The projected changes in the seasonality of
SPI extremes demonstrate a potential wet-spring-dry-
summer pattern in a warming climate, which is also docu-
mented in previous studies (Dai et al., 2016; Byun and
Hamlet, 2018; Hamlet et al., 2019). This is also consistent
with cool-season warming in the northern parts of the
domain, where temperature currently limits winter
precipitation.

Figure 10 shows the seasonality of transitions
between extreme wet and dry conditions. Similar to the
SPI extremes, neither wet-to-dry nor dry-to-wet transi-
tions show evident seasonality during the historical
period. Under the SSP585 scenario, there are more

wet-to-dry transitions occurring in late spring or early
summer, and more dry-to-wet transitions happening in
late fall or early winter. As the duration of the transition
is projected to decrease in the future, the transitions
would only take 2–3 months. Consequently, slightly more
wet-to-dry transitions end in summer, and more dry-to-
wet transitions end in winter/spring. Combining with the
results discussed in section 4.2, the projected changes in
seasonality suggest that more frequent transitions from a
wet spring to a dry summer (or from a dry fall to a wet
winter/spring) will occur in the Midwest, and, generally,
the wet and dry conditions between the transitions are
projected to be more intense compared to the historical
period.

FIGURE 9 Frequency (in %) of the occurrence of maximum and minimum 30-day SPI in each month. Shading shows the intermodel

spread (25th and 75th percentiles) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Frequency (in %) of the occurrence of wet-to-dry (a, c) and dry-to-wet (b, d) transitions in each month based on the 30-day

SPI. Panels (a, b) show when the transition starts; panels (c, d) show when the transition ends. Shading shows the inter-model spread (25th

and 75th percentiles) [Colour figure can be viewed at wileyonlinelibrary.com]

268 CHEN AND FORD

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


5 | SUMMARY AND
CONCLUSIONS

This study investigates the historical and future variability
of and transitions between precipitation extremes in the
Midwest using state-of-the-art climate models in CMIP6.
We find significantly increased magnitude of precipitation
extremes and increased frequency of transitions, which
could have substantial socio-economic and environmental
impacts in the Midwest. Similar results about future wet
and dry extremes have been documented in recent studies
of the CMIP6 projections (e.g., Cook et al., 2020;
Akinsanola et al., 2020a; 2020b). Observation-based
assessments have suggested that increased precipitation
variability and systematic warming have important impli-
cations for flood risk and conjunctive water management
(Hamlet and Lettenmaier, 2007). The projected increase
in annual maximum SPI suggests heavy precipitation is
expected to be more intense, possibly leading to increased
flood risk and issues with excessively wet soils (Byun
et al., 2019; Scoccimarro and Gualdi, 2020). Due to the
large area of agricultural land in the Midwest, the
increased heavy precipitation is also likely to drive more
nutrient runoff to surface water bodies (Motew et al.,
2018; Coffey et al., 2019), and augment long-standing soil
erosion issues in the region (Thaler et al., 2021). The
increased flood risk also poses challenges for the drainage
system in urban areas (Yazdanfar and Sharma, 2015), par-
ticularly those with undersized systems and/or combined
sewer overflows.

Meanwhile, the projected decrease in annual mini-
mum SPI indicates that future dry conditions will get
drier, exposing the agricultural regions to potential eco-
nomic losses due to drought (Ukkola et al., 2020). Irriga-
tion has often been proposed as a climate adaptation
strategy to improve crop resilience to future changes in
drought risk (e.g., Li et al., 2020). However, along with
being cost-prohibitive, widespread adoption of irrigation,
especially in the currently majority nonirrigated agricul-
tural lands in the Midwest, could exacerbate water supply
issues for municipal or commercial use in times of pro-
longed drought. Soil and water conservation strategies
are also vital adaptation measures for Midwest agricul-
ture, and are becoming increasingly important to boost
resilience to drought and reduce soil erosion and nutrient
runoff from increasing precipitation intensity. For
instance, the increased flood risk in spring highlights the
need for improved drainage systems (such as drainage
tiles), but leads to a certain trade-off between improving
drainage and potential for nitrogen losses (Bowles et al.,
2018). Meanwhile, considering the transitions into
increased drought risk in summer, the drain systems also
should avoid draining too much water in the early

season, which can potentially support late-season crop
growth (Castellano et al., 2019).

It is important to note that the sequencing of precipi-
tation extremes can greatly determine the magnitude of
associated impacts. For example, a 30-day dry extreme
that follows a prolonged wet period will have less socio-
economic impacts than the same extreme following a
near-normal or prolonged dry period. Similarly, condi-
tions preceding wet extremes such as soil moisture condi-
tions, reservoir levels, and streamflow can greatly impact
the extent of flood damage associated with wet extremes.
Although it is beyond the scope of this study, further
impact-focused research is necessary to better recognize
and communicate the implications of changing Midwest
precipitation extremes for drought and flood impact pre-
paredness, adaptation, and management.

We also find more frequent transitions of precipita-
tion extremes, particularly transitions from wet spring to
dry summer in the Midwest. Observation-based studies
also document a wetting trend during the early growing
season and a drying trend during the late growing season
in the Midwest (Dai et al., 2016). Such a transition would
seriously impair crop production, especially for the rain-
fed crops, which dominate agriculture in the eastern Mid-
west. Excess precipitation and flooding in spring can
cause widespread planting delays for both commodity
and annual specialty crops, soil compaction, poor seed
germination, higher fungus, and bacterial disease inci-
dence, and lead to issues with nutrient loss and soil ero-
sion (Rao and Li, 2003; Kleinman et al., 2006).
Concurrently, even 30- or 90-day drought, if aligned with
crop pollination and/or grain/fruit formation periods,
can lead to yield decreases or crop failure (Westcott et al.,
2005; Rippey, 2015). The results of this study show pro-
jected increases in the speed of transitions between
extremely wet and dry conditions, suggesting overall less
time for preparation and management of the hazard
impacts.

Like other precipitation extreme studies (such as
Akinsanola et al., 2020a; 2020b; Srivastava et al., 2020),
this study is based on climate projections from state-of-
the-art climate models in CMIP6. However, we need to
acknowledge certain limitations of the current analysis.
First, the dry bias in the central United States has been a
long-standing issue in CMIP5 and CMIP6 models (Al-
Yaari et al., 2019; Srivastava et al., 2020). The SPI-based
analysis can somewhat avoid the influence of the mean
bias, but associated uncertainty in precipitation distribu-
tion may still affect the identified precipitation extremes
(Pierce et al., 2015). Second, the springtime extreme pre-
cipitation over the central United States is primarily con-
trolled by mesoscale convective systems (Feng et al.,
2016). However, current CMIP6 models still are not able
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to resolve these mesoscale convective systems due to their
coarse spatial resolutions (Ridder et al., 2021). Therefore,
it is necessary to investigate the impacts of bias correction
and high-resolution dynamical downscaling on the tran-
sitions of precipitation extremes. Meanwhile, although
dynamical downscaling can provide more useful informa-
tion for regional impact studies due to its higher spatial
resolution, uncertainties related to regional climate
models (RCMs) cannot be ignored. Our previous study
found that different RCMs with the same GCM boundary
conditions can lead to opposite changes in precipitation
extremes (Chen and Ford, 2021). Some studies even show
worse performance in dynamic downscaling than GCMs
(e.g., Mishra et al., 2018). Moreover, coarse-resolution
(e.g., 12–50 km) and high-resolution (e.g., convection-
permitting resolution, <5 km) RCMs may lead to incon-
sistent rainfall intensity (Kendon et al., 2017). Therefore,
when dynamically downscaled CMIP6 climate data
becomes available, it will be worthwhile to evaluate the
added value of downscaling in precipitation extremes
compared to the GCMs.

It is expected that the intensity of heavy precipitation
would scale with the change in air temperature (Held
and Soden, 2006). Therefore, we see significantly
increased annual maximum SPI with the greatest
increase in the SSP585 scenario, which corresponds to
the greatest temperature increase (Cook et al., 2020).
Meanwhile, a warmer atmosphere would take longer to
replenish its moisture between storms (Shiu et al., 2012),
potentially leading to longer dry spells and intensified
drought conditions. However, identifying the mecha-
nisms that result in projected more frequent and rapid
transitions of precipitation extremes will be a focal point
in our future work.

Despite the potential future risks of intensified precip-
itation extremes and more frequent transitions over the
Midwest, we note considerable differences in the projec-
ted changes among different scenarios. The projected
increase in magnitude and frequency of precipitation
extreme transitions can be largely avoided under a lower-
emission scenario (Figures 5–8). Aligning with previous
literature that has explored the impacts of 0.5�C less
global warming on climate extremes (such as King and
Karoly, 2017; Zhang et al., 2018), this study highlights the
importance of climate mitigation efforts in reducing the
risks of extreme events in the Midwest.

In summary, this study investigates the projected
changes in transitions of precipitation extremes in the
Midwest using climate simulations from 17 CMIP6
models. Two SPI-based metrics, intra-annual variability
and transition adopted from Ford et al. (2021), are used
to quantify the magnitude, duration, and frequency of
transitions between wet and dry extremes. The

evaluation with the observation-based precipitation
dataset suggests the multimodel ensemble median of
CMIP6 can reasonably represent the spatial patterns of
the SPI extremes and transitions during the historical
period. For instance, using 30-day SPI, which depicts
short-term (e.g., monthly) precipitation variability, we
see greater intra-annual variability and higher frequency
of transitions in the eastern half of the Midwest, espe-
cially in the Great Lakes region. With longer SPI inter-
vals, which represent longer-term (e.g., seasonal)
precipitation variability, the northern areas exhibit
greater magnitude and shorter duration of intra-annual
variability, and higher frequency of transitions.

Climate projections suggest significantly intensified wet
extremes across the Midwest by the end of the century,
with a greater increase in the north and the Great Lakes
region. The short-term SPI also shows intensified dry
extremes over the western half of the Midwest. Conse-
quently, there is significantly increased intra-annual vari-
ability in most of the areas in the Midwest compared to the
historical period. Meanwhile, a warming climate also leads
to more frequent and rapid transitions between the wet
and dry extreme events, especially over the Great Lakes
regions and the northern states. Seasonality analysis fur-
ther reveals that more frequent transitions from a wet
spring to a dry summer (or from a dry fall to a wet winter/
spring) will occur in the Midwest. The difference among
three scenarios, including SSP585, SSP245, and SSP126,
indicates that the intensified precipitation extremes and
accelerated transitions can be greatly alleviated under a
lower emission scenario, and highlights the importance of
effective climate action in the long-term development of
climate-vulnerable regions in the Midwest.

ACKNOWLEDGEMENTS
This work was supported by National Oceanic and Atmo-
spheric Administration (Contract NA18OAR4310253B),
with support from the Illinois Farm Bureau. We
acknowledge the World Climate Research Programme,
which, through its Working Group on Coupled Model-
ling, coordinated and promoted CMIP6. We thank the cli-
mate modelling groups for producing and making
available their model output, the Earth System Grid Fed-
eration (ESGF) for archiving the data and providing
access, and the multiple funding agencies that support
CMIP6 and ESGF. All CMIP6 data are available from
https://esgf-node.llnl.gov/projects/cmip6/. The CPC US
Unified Precipitation data provided by the NOAA/OAR/
ESRL PSL, Boulder, CO, USA, from their website at
https://psl.noaa.gov/data/gridded/data.unified.daily.
conus.html. We would like to thank Dr. David Kristovich
for his review of this manuscript. The authors declare
that there is no conflict of interest. We also thank the

270 CHEN AND FORD

https://esgf-node.llnl.gov/projects/cmip6/
https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html


reviewers for their constructive and thoughtful com-
ments, which helped us improve this manuscript.

ORCID
Liang Chen https://orcid.org/0000-0003-1553-2846
Trent W. Ford https://orcid.org/0000-0002-2873-8520

REFERENCES
Akinsanola, A.A., Kooperman, G.J., Reed, K.A., Pendergrass, A.G.

and Hannah, W.M. (2020a) Projected changes in seasonal pre-
cipitation extremes over the United States in CMIP6 simula-
tions. Environmental Research Letters, 15, 104078. https://doi.
org/10.1088/1748-9326/abb397.

Akinsanola, A.A., Kooperman, G.J., Pendergrass, A.G., Hannah, W.
M. and Reed, K.A. (2020b) Seasonal representation of extreme
precipitation indices over the United States in CMIP6 present-
day simulations. Environmental Research Letters, 15, 094003.
https://doi.org/10.1088/1748-9326/ab92c1.

Al-Yaari, A., Ducharne, A., Cheruy, F., Crow, W.T. and
Wigneron, J.P. (2019) Satellite-based soil moisture provides
missing link between summertime precipitation and surface
temperature biases in CMIP5 simulations over conterminous
United States. Scientific Reports, 9, 1657. https://doi.org/10.
1038/s41598-018-38309-5.

Almazroui, M., Saeed, F., Saeed, S., Ismail, M., Ehsan, M.A., Islam, M.
N., Abid, M.A., O’Brien, E., Kamil, S., Rashid, I.U, and Nadeem I.
(2021) Projected changes in climate extremes using CMIP6 simu-
lations over SREX regions. Earth Systems and Environment, 5(3):
481–497. https://doi.org/10.1007/s41748-021-00250-5.

Angel, J., Swanston, C., Boustead, B.M., Conlon, K.C., Hall, K.R.,
Jorns, J.L., Kunkel, K.E., Lemos, M.C., Lofgren, B., Ontl, T.A.,
Posey, J., Stone, K., Takle, G., and Todey, D. (2018) Midwest.
In: Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.
E., Lewis, K.L.M., Maycock, T.K. and Stewart, B.C. (Eds.)
Impacts, Risks, and Adaptation in the United States: Fourth
National Climate Assessment, Vol. 2. Washington, DC: U.S.
Global Change Research Program, pp. 872–940. https://doi.org/
10.7930/NCA4.2018.CH21.

Bador, M., Donat, M.G., Geoffroy, O. and Alexander, L.V. (2018)
Assessing the robustness of future extreme precipitation inten-
sification in the CMIP5 ensemble. Journal of Climate, 31, 6505–
6525. https://doi.org/10.1175/JCLI-D-17-0683.1.

Basso, B., Martinez-Feria, R.A., Rill, L. and Ritchie, J.T. (2021) Con-
trasting long-term temperature trends reveal minor changes in
projected potential evapotranspiration in the US Midwest.
Nature Communications, 12, 1476. https://doi.org/10.1038/
s41467-021-21763-7.

Behnke, R., Vavrus, S., Allstadt, A., Albright, T., Thogmartin, W.E.,
and Radeloff, V.C. (2016) Evaluation of downscaled, gridded
climate data for the conterminous United States. Ecological
Applications, 26(5): 1338–1351. https://doi.org/10.1002/15-1061.

Berhane, T.M., Lane, C.R., Mengistu, S.G., Christensen, J.,
Golden, H.E., Qiu, S., Zhu, Z. and Wu, Q. (2020) Land-cover
changes to surface-water buffers in the midwestern USA:
25 years of Landsat data analyses (1993–2017). Remote Sensing,
12, 754. https://doi.org/10.3390/rs12050754.

Bowles, T.M., Atallah, S.S., Campbell, E.E., Gaudin, A.C.M.,
Wieder, W.R. and Grandy, A.S. (2018) Addressing agricultural

nitrogen losses in a changing climate. Nature Sustainability, 1,
399–408. https://doi.org/10.1038/s41893-018-0106-0.

Byun, K., Chiu, C.-M. and Hamlet, A.F. (2019) Effects of 21st cen-
tury climate change on seasonal flow regimes and hydrologic
extremes over the Midwest and Great Lakes region of the US.
Science of the Total Environment, 650, 1261–1277. https://doi.
org/10.1016/j.scitotenv.2018.09.063.

Byun, K. and Hamlet, A.F. (2018) Projected changes in future cli-
mate over the Midwest and Great Lakes region using down-
scaled CMIP5 ensembles. International Journal of Climatology,
38, e531–e553. https://doi.org/10.1002/joc.5388.

Castellano, M.J., Archontoulis, S.V., Helmers, M.J.,
Poffenbarger, H.J. and Six, J. (2019) Sustainable intensification
of agricultural drainage. Nature Sustainability, 2, 914–921.
https://doi.org/10.1038/s41893-019-0393-0.

Chen, L. and Ford, T.W. (2021) Effects of 0.5�C less global warming
on climate extremes in the contiguous United States. Climate
Dynamics, 57, 303–319. https://doi.org/10.1007/s00382-021-
05717-9.

Chen, L. (2020). Impacts of climate change on wind resources over
North America based on NA-CORDEX. Renewable energy, 153,
1428–1438. https://doi.org/10.1016/j.renene.2020.02.090.

Chen, M., Shi, W., Xie, P., Silva, V.B.S., Kousky, V.E., Wayne
Higgins, R. and Janowiak, J.E. (2008) Assessing objective tech-
niques for gauge-based analyses of global daily precipitation.
Journal of Geophysical Research, 113, D04110. https://doi.org/
10.1029/2007JD009132.

Choi, Y.-W., Ahn, J.-B., Suh, M.-S., Cha, D.-H., Lee, D.-K., Hong,
S.-Y., Min, S.-K., Park, S.-C., and Kang, H.-S (2016) Future
changes in drought characteristics over South Korea using
multi regional climate models with the standardized precipita-
tion index. Asia-Pacific Journal of Atmospheric Sciences, 52,
209–222. https://doi.org/10.1007/s13143-016-0020-1.

Christian, J., Christian, K. and Basara, J.B. (2015) Drought and plu-
vial dipole events within the Great Plains of the United States.
Journal of Applied Meteorology and Climatology, 54, 1886–1898.
https://doi.org/10.1175/JAMC-D-15-0002.1.

Coffey, R., Paul, M.J., Stamp, J., Hamilton, A. and Johnson, T.
(2019) A review of water quality responses to air temperature
and precipitation changes 2: nutrients, algal blooms, sediment,
pathogens. Journal of the American Water Resources Associa-
tion, 55, 844–868. https://doi.org/10.1111/1752-1688.12711.

Cohen, J. (2016) An observational analysis: tropical relative to Arc-
tic influence on midlatitude weather in the era of Arctic ampli-
fication. Geophysical Research Letters, 43, 5287–5294. https://
doi.org/10.1002/2016GL069102.

Compo, G.P., Whitaker, J.S., Sardeshmukh, P.D., Matsui, N., Allan, R.
J., Yin, X., Gleason, B.E., Vose, R.S., Rutledge, G., Bessemoulin,
P., Brönnimann, S., Brunet, M., Crouthamel, R.I., Grant, A.N.,
Groisman, P.Y., Jones, P.D., Kruk, M.C., Kruger, A.C., Marshall,
G.J., Maugeri, M., and Worley, S.J. (2011) The twentieth century
reanalysis project. Quarterly Journal of the Royal Meteorological
Society, 137, 1–28. https://doi.org/10.1002/qj.776.

Cook, B.I., Mankin, J.S., Marvel, K., Williams, A.P., Smerdon, J.E.
and Anchukaitis, K.J. (2020) Twenty-first century drought pro-
jections in the CMIP6 forcing scenarios. Earth's Future, 8,
e2019EF001461. https://doi.org/10.1029/2019EF001461.

Dai, S., Shulski, M.D., Hubbard, K.G. and Takle, E.S. (2016) A spa-
tiotemporal analysis of Midwest US temperature and

CHEN AND FORD 271

https://orcid.org/0000-0003-1553-2846
https://orcid.org/0000-0003-1553-2846
https://orcid.org/0000-0002-2873-8520
https://orcid.org/0000-0002-2873-8520
https://doi.org/10.1088/1748-9326/abb397
https://doi.org/10.1088/1748-9326/abb397
https://doi.org/10.1088/1748-9326/ab92c1
https://doi.org/10.1038/s41598-018-38309-5
https://doi.org/10.1038/s41598-018-38309-5
https://doi.org/10.1007/s41748-021-00250-5
https://doi.org/10.7930/NCA4.2018.CH21
https://doi.org/10.7930/NCA4.2018.CH21
https://doi.org/10.1175/JCLI-D-17-0683.1
https://doi.org/10.1038/s41467-021-21763-7
https://doi.org/10.1038/s41467-021-21763-7
https://doi.org/10.1002/15-1061
https://doi.org/10.3390/rs12050754
https://doi.org/10.1038/s41893-018-0106-0
https://doi.org/10.1016/j.scitotenv.2018.09.063
https://doi.org/10.1016/j.scitotenv.2018.09.063
https://doi.org/10.1002/joc.5388
https://doi.org/10.1038/s41893-019-0393-0
https://doi.org/10.1007/s00382-021-05717-9
https://doi.org/10.1007/s00382-021-05717-9
https://doi.org/10.1016/j.renene.2020.02.090
https://doi.org/10.1029/2007JD009132
https://doi.org/10.1029/2007JD009132
https://doi.org/10.1007/s13143-016-0020-1
https://doi.org/10.1175/JAMC-D-15-0002.1
https://doi.org/10.1111/1752-1688.12711
https://doi.org/10.1002/2016GL069102
https://doi.org/10.1002/2016GL069102
https://doi.org/10.1002/qj.776
https://doi.org/10.1029/2019EF001461


precipitation trends during the growing season from 1980 to
2013. International Journal of Climatology, 36, 517–525. https://
doi.org/10.1002/joc.4354.

DeGaetano, A.T. and Lim, L. (2020) Declining U.S. regional and
continental trends in intra-annual and interannual extreme
temperature swings. International Journal of Climatology, 40,
2830–2844. https://doi.org/10.1002/joc.6369.

Dirmeyer, P.A., Gao, X., Zhao, M., Guo, Z., Oki, T. and
Hanasaki, N. (2006) GSWP-2: multimodel analysis and implica-
tions for our perception of the land surface. Bulletin of the
American Meteorological Society, 87, 1381–1398. https://doi.org/
10.1175/BAMS-87-10-1381.

Donat, M.G., Alexander, L.V., Yang, H., Durre, I., Vose, R.,
Dunn, R.J.H., Willett, K.M., Aguilar, E., Brunet, M., Caesar, J.,
Hewitson, B., Jack, C., Klein Tank, A.M.G., Kruger, A.C.,
Marengo, J., Peterson, T.C., Renom, M., Oria Rojas, C.,
Rusticucci, M., Salinger, J. and Kitching, S. (2013) Updated
analyses of temperature and precipitation extreme indices since
the beginning of the twentieth century: the HadEX2 dataset.
Journal of Geophysical Research: Atmospheres, 118, 2098–2118.
https://doi.org/10.1002/jgrd.50150.

Feng, Z., Leung, L.R., Hagos, S., Houze, R.A., Burleyson, C.D. and
Balaguru, K. (2016) More frequent intense and long-lived
storms dominate the springtime trend in central US rainfall.
Nature Communications, 7, 13429. https://doi.org/10.1038/
ncomms13429.

Ficklin, D.L., Maxwell, J.T., Letsinger, S.L. and Gholizadeh, H.
(2015) A climatic deconstruction of recent drought trends in
the United States. Environmental Research Letters, 10, 044009.
https://doi.org/10.1088/1748-9326/10/4/044009.

Ford, T.W., Chen, L. and Schoof, J.T. (2021) Variability and transi-
tions in precipitation extremes in the Midwest United States.
Journal of Hydrometeorology, 22, 533–545. https://doi.org/10.
1175/JHM-D-20-0216.1.

Gervais, M., Tremblay, L.B., Gyakum, J.R. and Atallah, E. (2014)
Representing extremes in a daily gridded precipitation analysis
over the United States: impacts of station density, resolution,
and gridding methods. Journal of Climate, 27, 5201–5218.
https://doi.org/10.1175/JCLI-D-13-00319.1.

Hamlet, A.F., Byun, K., Robeson, S.M., Widhalm, M. and
Baldwin, M. (2019) Impacts of climate change on the state of
Indiana: ensemble future projections based on statistical down-
scaling. Climatic Change, 163, 1881–1895. https://doi.org/10.
1007/s10584-018-2309-9.

Hamlet, A.F. and Lettenmaier, D.P. (2007) Effects of 20th century
warming and climate variability on flood risk in the western U.
S. Water Resources Research, 43, H24B-05. https://doi.org/10.
1029/2006WR005099.

Hayes, M., Svoboda, M., Wall, N. and Widhalm, M. (2011) The Lincoln
declaration on drought indices: universal meteorological drought
index recommended. Bulletin of the American Meteorological Soci-
ety, 92, 485–488. https://doi.org/10.1175/2010BAMS3103.1.

Hayes, M.J., Svoboda, M.D., Wilhite, D.A. and Vanyarkho, O.V.
(1999) Monitoring the 1996 drought using the standardized pre-
cipitation index. Bulletin of the American Meteorological Society,
80, 429–438. https://doi.org/10.1175/1520-0477(1999)080<0429:
MTDUTS>2.0.CO;2.

Held, I.M. and Soden, B.J. (2006) Robust responses of the hydrologi-
cal cycle to global warming. Journal of Climate, 19, 5686–5699.
https://doi.org/10.1175/JCLI3990.1.

Herold, N., Behrangi, A. and Alexander, L.V. (2017) Large uncer-
tainties in observed daily precipitation extremes over land.
Journal of Geophysical Research: Atmospheres, 122, 668–681.
https://doi.org/10.1002/2016JD025842.

Janssen, E., Wuebbles, D.J., Kunkel, K.E., Olsen, S.C., Goodman,
A. (2014) Observational- and model-based trends and projec-
tions of extreme precipitation over the contiguous United
States. Earth’s Future, 2(2), 99–113. https://doi.org/10.1002/
2013EF000185.

Kendon, E.J., Ban, N., Roberts, N.M., Fowler, H.J., Roberts, M.J.,
Chan, S.C., Evans, J.P., Fosser, G. and Wilkinson, J.M. (2017)
Do convection-permitting regional climate models improve
projections of future precipitation change? Bulletin of the Amer-
ican Meteorological Society, 98, 79–93. https://doi.org/10.1175/
BAMS-D-15-0004.1.

Kim, H. (2017) Global soil wetness project phase 3 atmospheric
boundary conditions (experiment 1). Tokyo, Japan: Data Integra-
tion and Analysis System (DIAS), JAMSTEC, The University of
Tokyo. https://doi.org/10.20783/DIAS.501.

Kim, M., Yu, D., Oh, J., Byun, Y., Boo, K., Chung, I., Park, J., Park,
D.R., Min, S., and Sung, H.M. (2020) Performance evaluation of
CMIP5 and CMIP6 models on heatwaves in Korea and associ-
ated teleconnection patterns. Journal of Geophysical Research:
Atmospheres, 125, e2020JD032583. https://doi.org/10.1029/
2020JD032583.

King, A.D. and Karoly, D.J. (2017) Climate extremes in Europe at
1.5� and 2� of global warming. Environmental Research Letters,
12, 114031. https://doi.org/10.1088/1748-9326/aa8e2c.

Kleinman, P.J.A., Srinivasan, M.S., Dell, C.J., Schmidt, J.P.,
Sharpley, A.N. and Bryant, R.B. (2006) Role of rainfall intensity
and hydrology in nutrient transport via surface runoff. Journal
of Environmental Quality, 35, 1248–1259. https://doi.org/10.
2134/jeq2006.0015.

Li, Y., Guan, K., Peng, B., Franz, T.E., Wardlow, B. and Pan, M.
(2020) Quantifying irrigation cooling benefits to maize yield in
the US Midwest. Global Change Biology, 26, 3065–3078. https://
doi.org/10.1111/gcb.15002.

Liu, L. and Basso, B. (2020) Impacts of climate variability and adap-
tation strategies on crop yields and soil organic carbon in the
US Midwest. PLoS One, 15, e0225433. https://doi.org/10.1371/
journal.pone.0225433.

Loecke, T.D., Burgin, A.J., Riveros-Iregui, D.A., Ward, A.S.,
Thomas, S.A., Davis, C.A. and Clair, M.A.S. (2017) Weather
whiplash in agricultural regions drives deterioration of water
quality. Biogeochemistry, 133, 7–15. https://doi.org/10.1007/
s10533-017-0315-z.

Mallya, G., Mishra, V., Niyogi, D., Tripathi, S. and Govindaraju, R.
S. (2016) Trends and variability of droughts over the Indian
monsoon region. Weather and Climate Extremes, 12, 43–68.
https://doi.org/10.1016/j.wace.2016.01.002.

McKee, T.B., Doesken, N.J. and Kleist, J. (1993) The relationship of
drought frequency and duration to time scales. In: Proceedings
of the 8th Conference on Applied Climatology, Anaheim, CA,
Vol. 17, pp. 179–183.

Mishra, S.K., Sahany, S. and Salunke, P. (2018) CMIP5
vs. CORDEX over the Indian region: How much do we benefit
from dynamical downscaling? Theoretical and Applied Clima-
tology, 133, 1–9. https://doi.org/10.1007/s00704-017-2237-z.

Mo, K.C. and Lettenmaier, D.P. (2018) Drought variability and
trends over the Central United States in the instrumental

272 CHEN AND FORD

https://doi.org/10.1002/joc.4354
https://doi.org/10.1002/joc.4354
https://doi.org/10.1002/joc.6369
https://doi.org/10.1175/BAMS-87-10-1381
https://doi.org/10.1175/BAMS-87-10-1381
https://doi.org/10.1002/jgrd.50150
https://doi.org/10.1038/ncomms13429
https://doi.org/10.1038/ncomms13429
https://doi.org/10.1088/1748-9326/10/4/044009
https://doi.org/10.1175/JHM-D-20-0216.1
https://doi.org/10.1175/JHM-D-20-0216.1
https://doi.org/10.1175/JCLI-D-13-00319.1
https://doi.org/10.1007/s10584-018-2309-9
https://doi.org/10.1007/s10584-018-2309-9
https://doi.org/10.1029/2006WR005099
https://doi.org/10.1029/2006WR005099
https://doi.org/10.1175/2010BAMS3103.1
https://doi.org/10.1175/1520-0477(1999)080%3C0429:MTDUTS%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1999)080%3C0429:MTDUTS%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1999)080%3C0429:MTDUTS%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1999)080%3C0429:MTDUTS%3E2.0.CO;2
https://doi.org/10.1175/JCLI3990.1
https://doi.org/10.1002/2016JD025842
https://doi.org/10.1002/2013EF000185
https://doi.org/10.1002/2013EF000185
https://doi.org/10.1175/BAMS-D-15-0004.1
https://doi.org/10.1175/BAMS-D-15-0004.1
https://doi.org/10.20783/DIAS.501
https://doi.org/10.1029/2020JD032583
https://doi.org/10.1029/2020JD032583
https://doi.org/10.1088/1748-9326/aa8e2c
https://doi.org/10.2134/jeq2006.0015
https://doi.org/10.2134/jeq2006.0015
https://doi.org/10.1111/gcb.15002
https://doi.org/10.1111/gcb.15002
https://doi.org/10.1371/journal.pone.0225433
https://doi.org/10.1371/journal.pone.0225433
https://doi.org/10.1007/s10533-017-0315-z
https://doi.org/10.1007/s10533-017-0315-z
https://doi.org/10.1016/j.wace.2016.01.002
https://doi.org/10.1007/s00704-017-2237-z


record. Journal of Hydrometeorology, 19, 1149–1166. https://doi.
org/10.1175/JHM-D-0225.1.

Motew, M., Booth, E.G., Carpenter, S.R., Chen, X. and Kucharik, C.
J. (2018) The synergistic effect of manure supply and extreme
precipitation on surface water quality. Environmental Research
Letters, 13, 044016. https://doi.org/10.1088/1748-9326/aaade6.

O'Neill, B.C., Tebaldi, C., van Vuuren, D.P., Eyring, V.,
Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque,
J.-F., Lowe, J., Meehl, G.A., Moss, R., Riahi, K., and Sanderson,
B.M. (2016) The scenario model intercomparison project
(scenariomip) for CMIP6. Geoscientific Model Development, 9,
3461–3482. https://doi.org/10.5194/gmd-9-3461-2016.

Olmo, M., Bettolli, M.L. and Rusticucci, M. (2020) Atmospheric circu-
lation influence on temperature and precipitation individual and
compound daily extreme events: spatial variability and trends
over southern South America.Weather and Climate Extremes, 29,
100267. https://doi.org/10.1016/j.wace.2020.100267.
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