Sensitivities of cloud radiative effects to large-scale meteorology and aerosols from global observations
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Sensitivities of cloud radiative effects to large-scale meteorology and aerosols from global observations

Filetype[PDF-7.86 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The radiative effects of clouds make a large contribution to the Earth's energy balance, and changes in clouds constitute the dominant source of uncertainty in the global warming response to carbon dioxide forcing. To characterize and constrain this uncertainty, cloud-controlling factor (CCF) analyses have been suggested that estimate sensitivities of clouds to large-scale environmental changes, typically in cloud-regime-specific multiple linear regression frameworks. Here, local sensitivities of cloud radiative effects to a large number of controlling factors are estimated in a regime-independent framework from 20 years (2001–2020) of near-global (60∘ N–60∘ S) satellite observations and reanalysis data using statistical learning. A regularized linear regression (ridge regression) is shown to skillfully predict anomalies of shortwave (R2=0.63) and longwave cloud radiative effects (CREs) (R2=0.72) in independent test data on the basis of 28 CCFs, including aerosol proxies. The sensitivity of CREs to selected CCFs is quantified and analyzed. CRE sensitivities to sea surface temperature and estimated inversion strength are particularly pronounced in low-cloud regions and generally in agreement with previous studies. The analysis of CRE sensitivities to three-dimensional wind field anomalies reflects the fact that CREs in tropical ascent regions are mainly driven by variability of large-scale vertical velocity in the upper troposphere. In the subtropics, CRE is sensitive to free-tropospheric zonal and meridional wind anomalies, which are likely to encapsulate information on synoptic variability that influences subtropical cloud systems by modifying wind shear and thus turbulence and dry-air entrainment in stratocumulus clouds, as well as variability related to midlatitude cyclones. Different proxies for aerosols are analyzed as CCFs, with satellite-derived aerosol proxies showing a larger CRE sensitivity than a proxy from an aerosol reanalysis, likely pointing to satellite aerosol retrieval biases close to clouds, leading to overestimated aerosol sensitivities. Sensitivities of shortwave CREs to all aerosol proxies indicate a pronounced cooling effect from aerosols in stratocumulus regions that is counteracted to a varying degree by a longwave warming effect. The analysis may guide the selection of CCFs in future sensitivity analyses aimed at constraining cloud feedback and climate forcings from aerosol–cloud interactions using data from both observations and global climate models.
  • Keywords:
  • Source:
    Atmospheric Chemistry and Physics, 23(18), 10775-10794
  • DOI:
  • ISSN:
    1680-7324
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1