Version of Record: https://www.sciencedirect.com/science/article/pii/S0341816220301521
Manuscript_1085dalfal8e71e5fal8ce91d9ctfOc6

[\

10

11

12

13

14

15

16

17

18

19
20
21
22

23

24

25

26

Use of A High-Resolution-Satellite-Based Precipitation Product in
Mapping Continental-Scale Rainfall Erosivity:
A Case Study of the United States

Jungho Kim®P, Heechan Han®, Boran Kim®,

Haonan Chen®®, Jai-Hong Lee?

4 Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University,
Fort Collins, Colorado, U.S.A.

> NOAA Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado,
U.S.A.

¢ Department of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado, U.S.A.

¢ Department of Civil and Mechanical Engineering, South Carolina State University,

Orangeburg, SC, U.S.A.

Corresponding author: Heechan Han (postal address: Department of Civil and Environmental
Engineering, Colorado State University, Fort Collins, 80523, Colorado, U.S.A.; e-mail:

heechan.han@colostate.edu)

Submitted to Catena

© 2020 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/


https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0341816220301521
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0341816220301521

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Abstract

A rainfall erosivity map is useful for understanding the spatial variability of rainfall erosivity,
and for identifying regions vulnerable to soil erosion by rainfall. This study addresses a new
approach to mapping rainfall erosivity on a continental scale, based on a high-resolution-
satellite-based precipitation product—the National Oceanic and Atmospheric and
Atmospheric Administration’s Climate Precipitation Center morphing technique (CMORPH).
For this purpose, a rainfall erosivity map of the contiguous United States is experimentally
developed, and is analyzed from the perspectives of the corresponding hydrological basins
and climate features. In general, we conclude that the CMORPH precipitation product is
useful for mapping rainfall erosivity on a continental scale. In the contiguous United States,
the mean of rainfall erosivity was 1,260 MJ mm ha'h'! yr!, with high variability by region.
The coastal regions showed the highest rainfall erosivity, at 20%. The seasonality of the
rainfall erosivity was evident in most coastal regions (rainfall erosivity depends on climates).
The rainfall erosivity in the tropical climate zone was the highest, whereas it was the lowest
in the arid climate zone (and spatially homogeneous). However, corrections were required for
improving the accuracy of the CMORPH precipitation in most coastal regions, i.e., to secure
a better rainfall erosivity product. Compared to a rain gauge-based rainfall erosivity map, the
CMORPH’s rainfall erosivity map tended to underestimate the rainfall erosivity in coastal
regions near the Gulf of Mexico and Atlantic Ocean, but overestimated it in coastal regions

near the Pacific Ocean.

Keywords: Soil erosion; Rainfall erosivity; R-factor; High resolution satellite-based

precipitation; CMORPH
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1. Introduction

The identification of regions vulnerable to soil erosion is very important, as soil loss
has a significant influence on reductions in agricultural land, reservoir capacity, water quality,
and carbon sequestration (Conner et al., 1989; Smith et al., 2001; Lal, 2005; Panagos et al.,
2016a; 2016b). Typically, soil erosion (e.g., interrill erosion) is caused by two physical
processes (Nearing et al., 1994): a soil particle separation process owing to the impact of the
rainfall kinetic energy on the soil surface, and a sediment transportation process owing to
surface flows. The erosion depends on the rainfall features in the region (e.g., intensity and
terminal velocity), as well as the topographical and pedological features (e.g., slope, soil type,
and vegetative cover) (Jayawardena and Rezaur, 2000). The rainfall intensity and its kinetic
energy on the soil surface are the primary factors causing interrill erosion, as these factors
lead to the physical separation of soil particles. In the hydrologic community, the rainfall
erosion index (a R-factor based on the two factors) has been used to quantitatively represent
and measure degrees of soil erosion from rainfall (Goovaerts, 1999; Panagos et al., 2016a).
The universal soil loss equation (USLE, Wischmeier and Smith, 1978) and revised USLE
(Renard et al., 1991) are good examples of calculations that employ the R-factor as a major
parameter in estimating soil loss. However, it is challenging to map rainfall erosivity using
ground-based rain-gauge observations (hereinafter referred to rain-gauge data), as they
cannot represent the spatial distribution of the precipitation. As such, they require
interpolation to map the rainfall erosivity. Accordingly, high-resolution-satellite-based
precipitation products might be an alternative to mapping rainfall erosivity on a large scale.

The R-factor has been estimated using various methods dependent on various
temporal resolutions of precipitation data: sub-hourly (Wischmeier and Smith, 1978; Yin et

al., 2007), hourly (Ramos and Durén, 2014), daily (Angulo-Martinez and Begueria, 2009),
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monthly (Renard and Freimund, 1994; Hernando and Romana, 2015), and yearly (Lee and
Heo, 2011) data. The point-scale R-factor estimated from these methods has been mapped
using an interpolation approach, allowing researchers to estimate amounts of potential rainfall
erosivity in ungauged areas, understand the spatial variability, and identify regions vulnerable
to soil erosion. As a result, over the last four decades, rainfall erosivity maps have been
presented on various scales: continental-scale maps (Roose, 1977; Oduro-Afriyie, 1998;
Panagos et al., 2015), national-scale maps (Elwell and Stocking, 1976; Krauer, 1988; Lenvain
et al., 1988; Oduro-Afriyie, 1996; Mikhailova et al., 1997; Da Silva, 2004; Leow et al., 2011;
Klik et al., 2015; Panagos et al., 2016a), and regional-scale maps (Angulo-Martinez and
Begueria, 2009; Ufoegbune et al., 2011; Elbasit et al., 2013; Ramos and Duran, 2014).
Panagos et al. (2017) developed a novel global R-factor map for representing high spatial
variability in rainfall erosivity for six continents, using rain-gauge data collected from 63
countries.

The first rainfall erosivity map in the United States was introduced in an agriculture
handbook (Wischmeier and Smith, 1965). The map was developed from 22 years of rainfall
records, and 11 of the western states were omitted from the map, as sufficient long-term
recording-rain-gauge records were unavailable. In 1997, the United States Department of
Agriculture revised the map, using rainfall records from 1,082 stations over 20 years (Renard
et al., 1997). The rainfall erosivity map was divided into five regions: Eastern and Western
United States, California, Oregon, and Washington, and Hawaii. Since then, only a few
studies have developed soil erosivity maps for the United States (Niedermeier, 1998; Wang et
al., 2002; Cooper, 2011).

Using rain-gauge data to estimate the R-factor is the easiest way to secure and handle
data. However, many studies addressed the limitations in employing rain-gauge data

compared to remote sensing data, such as the advantages of satellite-based precipitation
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products in being able to capture the spatial distribution of precipitation regardless of the type
of terrain, and the ability to track a storm from the ocean to an inland area (Buytaert et al.,
2006; Nesbitt and Anders, 2009; Anagnostou et al., 2010; Kim and Yoo, 2014; Kim et al.,
2015). Technically, the rain-gauge data can only represent a measured value within a
constrained radius of observation instruments, as it is a point-scale. In addition, it is affected
by the sampling density of rain-gauge data, which can vary with different terrain types. Thus,
the greatest uncertainty in the rainfall erosivity map constructed from rain-gauge data is
probably related to the transition areas between different topographic conditions, climate
zones, and ungauged areas (Panagos et al., 2017).

Most studies using rain-gauge data have employed a spatial interpolation method for
predicting and mapping rainfall erosivity in the transition areas, e.g., inverse distance
weighting, radial basis functions, regression, kriging, and co-kriging methods (Goovaerts,
1999; LOWLAND, 2005; Bonilla and Vidal, 2011; Khorsandi et al., 2012; Meusburger et al.,
2012; Lee and Lin, 2015; Meddi et al., 2016). Thus, there is a high possibility that the
interpolated rainfall erosivity values will have a large amount of uncertainty, arising from the
use of an interpolation method (Goovaerts, 1999; Panagos et al., 2015; Ballabio et al., 2017).
Vrieling et al. (2010) and Zhu et al. (2011), understood the usefulness of remote sensing data,
and utilized 3-hourly satellite-based precipitation data (e.g., tropical rainfall measuring
mission products, (TRMM)) to map rainfall erosivity. Vrieling et al. (2010) concluded that
the 3-hourly and 0.25° (approximately 27 km temporal resolution) resolutions of the TRMM
data provided insufficient details for representing high-intensity erosive events. Zhu et al.
(2011) indicated that the 3-hourly temporal resolution was not sufficiently fine to map
rainfall erosivity, and recommended a sub-hourly temporal resolution for mapping. These

conclusions have consistently provided support for employing high-resolution-satellite-based
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precipitation products with a sub-hourly temporal resolution to estimate and map rainfall
erosivity on a continental scale.

This study aims to propose a new approach for estimating and mapping a rainfall
erosivity index, the R-factor, on a continental scale. The approach employs a high-resolution-
satellite-based precipitation product, i.e., the National Oceanic and Atmospheric
Administration (NOAA) Climate Precipitation Center morphing technique precipitation
product (hereinafter referred to CMORPH). In addition, the approach employs a standard
method that requires precipitation data in a 30-min temporal resolution. As a case study, the
approach is applied to the contiguous United States (CONUS). The rainfall erosivity map
over the CONUS is analyzed to identify and understand the rainfall erosivity attributes from

various points of view: annual, monthly, hydrologic unit basins, and climate zones.

2. Materials and Methods

2.1 Study Area

The CONUS is chosen as the application domain because it has a variety of
geographic and climate features. The CONUS consists of the 48 states of the US (excluding
Alaska, Hawaii, and the Caribbean) and eighteen river basins, based on the United States
Geological Survey hydrologic unit codes. These basins include either the drainage area of a
major river, or the combined drainage areas of a series of rivers (Seaber et al. 1987, Ahn, K.
H., Palmer). The climate features of the CONUS vary owing to the impacts of oceans (e.g.,
the Pacific Ocean, Gulf of Mexico, and Atlantic Ocean) and geographic features, including

mountains and arid/semi-arid desserts. It consists of 15 climate zones such as tropical, arid,
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temperate, and cold. Generally, the climate of the CONUS becomes warm and dry in the west
and south regions, and humid in the east and north regions.

The annual precipitation over the CONUS is approximately 760 mm, and varies with
regional topography and climate characteristics. For example, for western regions with warm
and dry climatic features, the average annual precipitation is approximately 630 mm, whereas
it is approximately 1,250 mm for southeastern regions. In addition, the average annual
precipitation in the central regions unaffected by oceans is approximately 420 mm, which is
relatively lower than the other regions.

Unlike the central regions, precipitation in the western and southeastern regions is
affected by the oceans. In the western region, extratropical cyclones or jet streams (usually
from the Pacific Ocean between September and May) cause a large amount of rainfall
(https://www.wpc.ncep.noaa.gov/research/mcs_web_test_test_files/Page1539.htm).
Moreover, atmospheric rivers cause heavy rainfall during the rainy season (Ralph et al., 2006;
Han et al., 2019). The southeastern regions have higher amounts of precipitation than the
other regions, mainly owing to the humid air coming from the Atlantic and Caribbean Oceans
and the Gulf of Mexico. Between late summer and early fall, tropical cyclones move from the
Atlantic Ocean and Gulf of Mexico to the southeastern regions, providing a quarter of the

annual precipitation (Knight and Davis, 2007).

2.2 CMORPH Precipitation Product

The CMORPH is a very high spatial and temporal resolution global precipitation
product that covers over the CONUS, with a history longer than ground-based remote sensing

data such as weather radars. The CMORPH produces global precipitation estimates at an 8
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km x 8 km resolution every 30 min. Overall, this technique exclusively uses precipitation
estimates derived from low Earth orbit (LEO) satellite-derived passive microwave (PWM)
observations. As the coverage of the PMW-based retrievals is severely limited in the half-
hour window owing to the spatial and temporal sampling natures of LEO satellites (even
when multiple satellites are used), the CMORPH takes advantage of the high temporal
resolution of the geostationary satellite infrared (IR) imagery to create motion vectors for the
cloud systems. It subsequently applies the cloud motion vectors to the available PMW-based
retrievals to produce continuous precipitation estimates over the entire globe. At each half-
hour window, the availability of the IR data is almost guaranteed at a given location, and can
be used to extract the spatial propagation of precipitation features. For additional details
regarding the CMORPH technique, interested readers are referred to Joyce et al. (2004), Xie
et al. (2017) and Chen et al. (2020).

The entire CMORPH dataset in version 1.0 is reprocessed and extended to cover the
period from 1998 to the present. The reprocessing includes a bias correction using gauge data
(Xie et al. 2017). There are three types of precipitation estimates from the CMORPH: 30-
min/8 km, 3-h/0.25°, and 1-day/0.25°. As the CMORPH provides precipitation data over 30
min in mm/h, to obtain hourly precipitation estimates for calculating the R-factor, each half-
hourly rainfall rate estimate is assumed to be constant for the entire half hour (e.g., a 1.0
mm/h rainfall rate estimate over 30 min = 0.5 mm of accumulated precipitation during that
time). Each 30-min estimate is accumulated to obtain the hourly precipitation.

This study is conducted with the understanding that the accuracy of the CMORPH
might be lower than that of rain-gauge data in some regions, and briefly compares the

CMORPH precipitation data with the rain-gauge data in the discussion part.

2.3 Rainfall Erosivity Index: R-factor
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The R-factor has been denoted by various expressions: rainfall erosivity, rainfall
erosivity index, rainfall erosivity factor, rainfall erosion factor, rainfall erosion index,
rainfall-runoff erosivity, rainfall erosive index, R-value, and energy-intensity. In all of these
expressions, the R-factor is defined as a multiplication of the rainfall kinetic energy and
rainfall intensity, based on long-term data (Wischmeier and Smith, 1958). The R-factor uses
MJ mm ha! h'! yr'! as the ST unit; it represents the degree of soil erosivity from rainfall.

A number of methods for estimating the R-factor have been developed, depending on
the temporal resolution of the precipitation data. These include the standard method
(Wischmeier and Smith, 1978; Renard et al., 1997), simple methods (Lee and Heo, 2011),
and alternative index methods (Fournier, 1960; Arnoldus, 1977). The simple and alternative
index methods mainly use a rainfall parameter-based regression equation to estimate the R-
factor (Meddi et al., 2016). The alternative index methods include the "KE index" method
(Hudson, 1971) based on rainfall kinetic energy (E) and erodibility (K), Aly index method
(Lal, 1976) based on rainfall amount (A) and maximum rainfall intensity (In), and the
climatic coefficient index (Fournier, 1956). The standard method has been widely used to
estimate the R-factor, as the resultant R-factor is regarded as the finest value (Lombardi Neto
and Moldenhauer, 1992; Bertol et al., 2007; Meusburger et al., 2012; Panagos et al., 2016b).
The standard method uses all erosive storm events, as quantified by the rainfall kinetic energy
and maximum rainfall intensity over 30 min (Stocking and Elwell, 1973; Hoyos et al., 2005;
Oliveira et al., 2013). The R-factors from other methods (using coarser temporal resolutions)
have been compared with the results from the standard method to verify their performance.
As the temporal resolution of the CMORPH is fine and sufficient for application in the

standard method, this study adapts the standard method to estimate the R-factor.
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Figure 1

Fig. 1 presents a diagram of the methodology, and consists of steps for mapping
rainfall erosivity and representing the details of the classification process for an independent
storm event. First, the domain fitting is trimmed to the CONUS, as the CMORPH comprises
global-scale precipitation data. A threshold is applied to eliminate small amounts of rainfall
arising from rainfall intermittency; this is a pre-processing step for clarifying the inter-event
time definition for classification of independent rainfall pulses. The independent rainfall
pulses are then classified, considering the conditions as shown in blue-line box in Fig. 1. The
box illustrates the details of the classification of independent rainfall pulses. This is an
important process, as it accounts for a number of effective rainfall events for estimating
rainfall erosivity at each grid of the CMORPH data. Subsequently, the maximum intensity of
each rainfall pulse in 30 min is extracted. The R-factor is then estimated, based on the

following equation (Wischmeier and Smith, 1978; Brown and Foster, 1987; Panagos et al.,

2015):
1 n m
R= ;Z Z(Elgo)j €Y)
i=1 j=1

Where, R indicates the R-factor, in MJ mm ha! h'! yr'!; n is the number of years used to
estimate the R-factor; mi is the number of erosivity events in a given year i, and E and I3
indicate the rainfall kinetic energy and maximum rainfall intensity in 30 min at an event j,
respectively. Elzp (MJ mm ha™! h'!') determines the R-factor of a single event, and is defined

as follows:

10
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m
El3y = <Z ekPk) I3 (2)
k=1

Where, e is the unit rainfall energy (MJ ha™! mm™), and py is the k-th rainfall volume (mm)
of a storm event including m parts. & is the time period of each rainfall, and m is the duration
of the storm event.

The unit rainfall energy is estimated using a rainfall intensity-energy equation derived
from Van Dijk et al. (2002). The equation was verified in a number of previous studies
(Marques et al., 2007; Vrieling et al., 2010). The rainfall intensity-energy equation used in

this study is as follows:
ex = 28.3[1 — 0.52exp(—0.0421)] 3)

Where, [ is the rainfall intensity (mm hr'!). As the R-factor is estimated based on each grid,

the final R-factor map is visualized with colors representing corresponding values.
3. Results
3.1 Annual and Monthly Rainfall Erosivity Maps over the CONUS

The annual R-factors from 1998-2015 were estimated using the CMORPH
precipitation product and standard method. Fig. 2 shows the number of identified storm
events, annual precipitation, and R-factors for each year. Overall, the results demonstrate that
the trends of the annual precipitation and number of storms are similar to the increasing and

decreasing patterns of the annual R-factor. In 1998, 2004, 2009, and 2015, i.e., where the R-

11
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factor was higher than other years, the number of storm events and annual precipitation were
also higher than in the other years. The mean annual number of storms ranges from 25 to 30,
the mean value of annual precipitation ranges from 570 to 770 mm, and the mean annual R-

factor ranges from 920 to 1420 MJ mm ha™! h! yr'!.

Figure 2

Fig. 3 shows the rainfall erosivity map for the United States, and a probability density
function of the R-factors. The rainfall erosivity map was presented at an 8 km x 8 km spatial
resolution. The mean of the rainfall erosivity is 1,260 MJ mm ha' h'! yr! with high
variability, as expressed by the standard deviation of 1,037 MJ mm ha! h'! yr!. The median
(50th percentile) of the R-factor is 1,100 MJ mm ha™! h! yr'!. The bottom 20% of the R-
factors are lower than 357 MJ mm ha™! h'! yr'!, and the highest 20% (80th percentile) are

greater than 2,200 MJ mm ha™! h! yr'! (see Fig. 3b).

Figure 3

The range of the R-factor is from 33 to 6,000 MJ mm ha! h'! yr'l, and it varies
considerably with region. As expected, the results indicate that the high values of the R-factor
are estimated mainly around the coastal regions. The highest 20% (of the R-factor) is
estimated from the coastal regions of the Pacific Ocean, Gulf of Mexico, Florida Peninsula,
and Atlantic Ocean. Among the coastal regions, for example, the western north region (in
contact with the North Pacific Ocean) is vulnerable to soil erosion by rainfall, as this region

has seasonal and extreme rainfall storms (e.g., atmospheric rivers) routinely inflowing into

12
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the regions during winter. Moreover, high rainfall intensity is commonly observed, owing to
complex terrain (Han et al., 2019). Along the same lines, the spatial patterns of rainfall
erosivity in a chain of mountains in the western/north United States were completely different
between the western (complex terrain) and eastern (flat terrain) regions.

The map demonstrates that the inland and coastal regions affected by the various
types of storms from the Gulf of Mexico and Atlantic Ocean have high R-factor values. The
coastal regions of the Gulf of Mexico and Atlantic Ocean have a long history of hurricanes
and tropical storms, as the climatologically warm seawater provides an abundant energy
source for intense storms during the hurricane season from May to November (Jarvinen et al.,
1984; Maloney and Hartmann, 2000). Thus, hurricanes and tropical storms could easily move
into the inland areas and deliver heavy rainfalls, owing to the warm sea temperature and flat
terrain (Bales, 2003; Stanturf et al., 2007). Except for the regions mentioned above, the
spatial patterns of the R-factor are homogeneous over the United States, and the R-factors are

not excessively high compared to the coastal regions.

Figure 4

Fig. 4 shows the monthly rainfall erosivity maps. The intensity of the monthly R-
factor apparently varies with the regional seasonality. For example, the west coastal region
showed high rainfall erosivity during a winter season from November to March, and the R-
factor was identified in December. However, during the summer and early fall seasons from
June to September, the rainfall erosivity was low and spatially homogeneous. In addition, the
monthly rainfall erosivity maps exhibited a smooth decrease in the R-factor from winter to
spring, followed by lower homogeneous values in summer, and then a smooth increase in fall.

As expected, the results suggest that the trend of rainfall erosivity is affected by the
13
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seasonality, as is the case with precipitation. In the coastal and inland regions near the Gulf of
Mexico, the spatial distribution of the R-factor was inhomogeneous, and the value was very
high from June to December. The period from June to September showed conflicting
tendencies in rainfall erosivity between the western and eastern coastal regions. In addition,

the R-factors in the Florida Peninsula were significantly higher from June to September.

3.2 Attributes of Rainfall Erosivity on Hydrological Basins and Climate Zones

The rainfall erosivity map was further analyzed in the context of hydrological unit
basins and climatological zones. For this purpose, the hydrologic unit code-2 (HUC,
https://water.usgs.gov//GIS/huc.html) and climate features (hereinafter referred to as climate
zones) developed by Wladimir Koppen (Kottek et al., 2006) were used. This section
addresses the analysis results for the hydrological unit basins. Fig. 5 shows the HUC
boundary (the upper left), its area distribution (the upper right), and R-factors (the bottom).
The HUC includes the Tennessee region, i.e., the smallest basin (105,949 sq. km), and the

Missouri region, i.e., the biggest basin (1,349,418 sq. km, or 15% of the total area).

Figure 5

The range of the R-factors varies with the location of the basin. The ‘a’-‘h’ (except ‘d’
and ‘g’) basins, located on the Florida Peninsula and influenced by the climates of the
Atlantic Ocean and Gulf of Mexico, have high rainfall erosivity. ‘h’ (lower Mississippi
region) represents the basin where the highest R-factor was identified. However, the ‘n’
(upper Colorado region), ‘0’ (lower Colorado region), and ‘p’ (great basin region) basins had

relatively low values of the R-factor. Considering the ranges of the R-factors in the three
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basins, the spatial distributions of the R-factors in these basins were considerably
homogenous. ‘j° (Missouri region), the largest basin in the United States, had a relatively
narrow range for the R-factor, indicating a low variation and spatially homogeneous
distribution. Both ‘k’ (Arkansas-White-Red region) and ‘i’ (Texas-Gulf region) were smaller
than j’; both basins had a wider range of the R-factors than ‘j’, and spatially inhomogeneous

distributions.

Figure 6

Fig. 6 illustrates the results for monthly R-factors by basin, to show the seasonal
patterns of the R-factors. Most basins showed a change of rainfall erosivity with season. In
particular, some basins (‘a’-‘1’) located on the east coast line had a high rainfall erosivity
from June to September, whereas it was low in January, February, and December. Basins (‘q’
and ‘r’) located on the west coastline showed a high rainfall erosivity during the winter
season (from November to March), but showed a low rainfall erosivity during the warm
season (from April to September). ‘h’ had high R-factor values for all months. Compared
with other basins, ‘c’ (South Atlantic-Gulf region) had the highest values of the R-factor from
June to September. The monthly R-factors of ‘n’, ‘0’, and ‘p’ were consistent, as the range
was only from 3 to 52, and it was not varied from month-to-month. These results suggest that
those basins show no seasonality in rainfall erosivity.

The rainfall erosivity map is also analyzed based on climate zones. Fig. 7 shows a
map of climate zones in the United States, and the distribution of the R-factor by the climate
zones. Over the CONUS, five (Cfa, BSk, Dfb, Dfa, and Csb) of climate zones are complexly
distributed in the western region, whereas three (Cfa, Dfa, and Dfb) climate zones are

homogeneously distributed in the eastern region (depending on the latitude).
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Figure 7

The tropical climate zones have the highest R-factor, followed by the temperate, cold,
and arid climate groups. On average, 45 annual mean storm events with sufficient intensity to
erode soil were observed in the tropical climate group (covering most of the southern Florida
Peninsula). This was 1.5 times higher than the number of annual mean storm events in the
United States. The temperate climate zones (covering most of the regions affected by storms
from the Gulf of Mexico and Atlantic Ocean) had relatively high rainfall erosivity. Moreover,
15 of the annual mean storm events were observed in the arid climate group, which showed
the lowest rainfall erosivity within 15 of the climate zones. That was only approximately half

the number of annual mean storm events in the United States.

Figure 8

Fig. 8 shows the monthly rainfall erosivity by climate zone. The seasonality of the R-
factor was clearly visible in the tropical climate group. The high values of the R-factor (mean
= 492 MJ mm ha! hr! month!) were identified during the wet season from June to
September, whereas the low values of the R-factor (mean = 108 MJ mm ha! hr'! month™)
were found during a dry season from November to April. However, the arid climate zone

showed no seasonality in regards to the rainfall erosivity.

3.3 Comparison with the Ground-Based Rainfall Erosivity Map
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To evaluate the rainfall erosivity map developed in this study, it was compared to a
rainfall erosivity map based on rain-gauge data (Fig. 9). Panagos et al. (2017) developed a
global rainfall erosivity map using high-resolution rain-gauge data collected from 65
countries as a reference. For the United States, they employed 92 pieces of gauge data over
11 years (2006-2016). The average density of the observation stations was one every 83,303
km?. They used a Gaussian process regression model to interpolate the R-factor point values
to a map at a 1 km x 1 km spatial resolution. This map is available from the European Soil

Data Centre (https://esdac.jrc.ec.europa.eu/content/global-rainfall-erosivity).

Figure 9

The range of the R-factors in Panagos et al. (2017) is 6-9,645 MJ mm ha! h! yr'!,
and the mean value is 2,067 MJ mm ha! h! yr!, i.e., 1.65 times higher than the mean R-
factor estimated in this study. In Fig. 9, the western north region (a), middle region (b), and
coastal and inland region near by Gulf of Mexico (c) were highlighted for comparison. The
R-factors in box (a), as estimated in this study, are higher than those from Panagos et al.
(2017). Considering the comparison result of the annual precipitations in Fig. 8, this result
demonstrates that the R-factors calculated by Panagos et al. (2017) were far more
underestimated than those in this study. This is because Panagos et al. (2017) only used three
rain-gauge sites to cover the region. Notably, the spatial distribution of the rainfall erosivity
estimated in this study is more seamless than that in Panagos et al. (2017), even though the
spatial resolution of this study (8 x 8 km) is coarser than that of Panagos et al. (2017) (1 x 1
km), especially for the box (c) regions close to the Gulf of Mexico. This result exhibits the
typical limitations in using rain-gauge data and interpolation methods for predicting R-factors

in ungauged areas.
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The bottom-left panel in Fig. 9 shows a comparison of R-factor samplings extracted
from 10,000 random points. The R-squared value is 0.64, and the bias is 64%. Based on the
Y-axis (the R-factors of Panagos et al. (2017)), the bias is 88.1% when the R-factor is smaller
than 2,000, whereas the bias is 55.6% when the R-factor is greater than 2,000. This result
suggests that the larger the estimated R-factors, the higher the uncertainty. Considering that
the R-factors greater than 2,000 are mostly from the coastal regions, data assimilation with
high-density rain-gauge data might be necessary in these regions to improve the accuracy of

the predicted R-factor.

4. Discussion

4.1 The CMORPH for Mapping Rainfall Erosivity

With regard to hydrologic applications, many studies have evaluated the CMORPH product
against ground-based observations and "Next Generation Weather Radar" Stage IV (radar-
based and gauge-adjusted) as reference data (Derin et al., 2016). According to AghaKouchak
et al. (2011) and Romilly and Gebremichael (2011), the CMORPH data is superior to that
from other satellite precipitation products (e.g., "PERSIANN," "TMPA-RT," and TMPA-V6)
with respect to the probability of detecting extremes and the volume of correctly identified
precipitation. When applying CMORPH in Ethiopian river basins, the volume of precipitation
tends to be underestimated by 11%, and the bias depends on the rainfall regime and
topographical characteristics. Habib et al. (2012) evaluated the CMORPH using dense ground
observations in south Louisiana, and suggested that the CMORPH product has high detection
skills. In particular, they suggested that the probability of successful detection is

approximately 80% for surface rain rates >2 mm/h, the probability of false detection is <3%,
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and the CMORPH has a negligible bias. However, they also concluded that the accuracy of

the CMORPH products varied with temporal resolution, region, and season.

Figure 10

As the CMORPH is a satellite-based precipitation product, it might incorporate
several uncertainties that might influence the estimation and mapping of the R-factors. In this
study, we intend to highlight two issues: overestimated precipitation on water bodies (e.g.,
lakes and reservoirs), and the accuracy of annual precipitation. It is well-known that satellite-
based precipitation products are likely to overestimate precipitation where lakes and
reservoirs are located (Tian and Peters-Lidard, 2007). This fact is also confirmed in this study.
Fig. 10 shows (a) a map showing the locations of water bodies on the annual precipitation
field, and (b) the rainfall erosivity map. It is found that the annual precipitation on water
bodies is abnormally higher than in other areas. It is also confirmed that the R-factor result
shows the same trend for water bodies. In view of this attribute of the CMORPH precipitation
product, this study excluded the abnormally overestimated R-factors for water bodies from
further analysis.

To briefly verify the accuracy of the CMORPH precipitation, this study compared the
CMORPH and "PRISM" (http://www.prism.oregonstate.edu/), a rain gauge-based
precipitation product. Fig. 11 shows three comparison results: spatial distributions (top left
panel), probability density functions (top right panel), and samples extracted from 10,000

random points (bottom panel).

Figure 11
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In the spatial distribution maps, three regions are selected, i.e., boxes (a), (b), and (c).
Overall, the trends of the spatial distributions are similar to each other, and the correlation of
the two maps reaches as high as 0.71. In the case of box (b), in the middle of the country, and
box (c), affected by Atlantic Ocean and Gulf of Mexico, both annual precipitation maps show
similar patterns of spatial distributions and PDFs (top panels). However, box (a), close to the
Pacific Ocean, shows that the CMORPH was underestimated as compared to that of PRISM,
and the difference was up to approximately double. Considering this result, the rainfall
erosivity map based on the CMORPH has a higher possibility of underestimation around the
region. Data assimilation with rain-gauge data might be a way to overcome this limitation of
the CMORPH, and to improve the quantitative accuracy of the precipitation product for
mapping rainfall erosivity. As this topic is challenging and out of scope for this study, we
leave this issue for future study.

According to the result in Fig. 11 (bottom panel), the R-squared value is as high as
0.67 and the bias is 84%, indicating an ideal case. It is confirmed that the scatter samples
where the PRISM is greater than the CMORPH are mostly extracted from box (a). Thus, the
accuracy of satellite-based precipitation data can be lower than that of the rain-gauge data,
but can help overcome the aforementioned limitations in the rain-gauge data. Considering the
pace of technological developments in satellite observation systems and data quality
improvements, satellite-based precipitation data should be the best alternative to a ground-

based observation system in the future.

4.2 Potential Benefit of the Rainfall Erosivity Map in Practice
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Considering the effects of soil erosion by rainfall on the entire environment, it is
expected that the rainfall erosivity map developed in this study can be used to estimate
amounts of soil loss, and to identify regions vulnerable to soil erosion. The 1972 amendments
to the Clean Water Act (CWA) prohibit the discharge of any pollutant into navigable waters,
unless the discharge is authorized by a National Pollutant Discharge Elimination System
(NPDES) permit. As construction site stormwater runoff can contribute significantly to water
quality problems, the Phase 1 Stormwater Rule required that all construction sites with a
planned land disturbance of five acres or more must obtain an NPDES permit and implement
stormwater runoff control plans. Phase II extended the requirements of the stormwater
program to sites between 1-5 acres (EPA, 2012). The rainfall erosivity waiver allows the
permitting authorities to waive the requirements for those sites that do not have adverse water
quality impacts. The United States Environmental Protection Agency (EPA) NPDES has
developed a web-based R-factor estimation tool for users attempting to implement the CWA
(https://www.epa.gov/waterdata/rainfall-erosivity-factor-calculator). = However, it  is
questionable whether the tool can estimate a proper R-factor in a certain area, as the tool is
based on rain-gauge data and a spatial interpolation method. Therefore, at this point, the
rainfall erosivity map developed in this study could practically improve or replace the EPA

NPDES R-factor map.

5. Conclusions

This study suggested a new approach for mapping rainfall erosivity using a high-
resolution satellite-based precipitation product, and applied it to the CONUS. The rainfall

erosivity map was analyzed in terms of different temporal resolutions (e.g., monthly and
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annual rainfall erosivity), hydrological unit basins, and climate zones. Based on the results,

we concluded as follows:

Using the CMORPH (a high-resolution satellite-based data) to map rainfall
erosivity has strengths and weaknesses. The CMORPH was able to apply the
standard method to estimate a relatively accurate R-factor, and to map a
seamless rainfall erosivity without employing an interpolation method. These
merits were useful for understanding the spatial variability of rainfall erosivity,
and for identifying regions vulnerable to soil erosion by rainfall. However, the
CMORPH precipitation product might require correction for some coastal
regions to improve the rainfall erosivity map.

From the rainfall erosivity map, the mean of the rainfall erosivity was 1,260
MJ mm ha! h'! yr'!, with high variability ranging from 33 to 6,000 MJ mm ha
U'h! yr!, depending on the region of the United States. The coastal regions
near the Pacific Ocean, Gulf of Mexico, and Atlantic Ocean have the highest
20% of rainfall erosivity. The seasonality of rainfall erosivity was confirmed
through the monthly rainfall erosivity maps. Most coastal regions are
vulnerable to soil erosion by rainfall, depending on their typical rainy seasons.
In addition, climate features have a strong relation with rainfall erosivity, and
the spatial pattern of rainfall erosivity varies within climate zones. The rainfall
erosivity in the tropical climate group was relatively higher than that in the
other groups, whereas the arid climate group presented very low and spatially
homogeneous rainfall erosivity. Soil loss should be monitored in coastal
regions, and construction areas should be thoroughly examined in the southern

Florida Peninsula belonging to the tropical climate group.
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Finally, considering the pace of technological developments in satellite observation
systems and data quality improvements, satellite-based rainfall erosivity maps represent the

best alternative to ground-based rainfall erosivity maps in the future.
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Abstract: This paper examines the economic and political implications of two market-based
policies, eco-certifications and emission taxes. We evaluate each policy's effects on the
environment, investment in clean technology, and social welfare under imperfect competition.
We find that eco-certification reduces total damage to the environment, increases consumer
benefits, and is socially desirable. However, polluting firms will never voluntarily accept the
socially optimal eco-standard, leading to suboptimal certification programs. Unless the marginal
damage to the environment from emissions is sufficiently low and demand is sufficiently large,
environmental damage occurring under voluntary eco-certification is higher in comparison to
alternative policies. We examine the welfare impacts of each policy to identify social preferences.
Using realized market benefits to construct policy preferences, we show conditions under which
the socially optimal environmental policy is unlikely to be politically feasible. Our results
explain the popularity and suboptimal qualities of eco-certification programs.
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