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Abstract 27 

 28 

A rainfall erosivity map is useful for understanding the spatial variability of rainfall erosivity, 29 

and for identifying regions vulnerable to soil erosion by rainfall. This study addresses a new 30 

approach to mapping rainfall erosivity on a continental scale, based on a high-resolution-31 

satellite-based precipitation product—the National Oceanic and Atmospheric and 32 

Atmospheric Administration’s Climate Precipitation Center morphing technique (CMORPH). 33 

For this purpose, a rainfall erosivity map of the contiguous United States is experimentally 34 

developed, and is analyzed from the perspectives of the corresponding hydrological basins 35 

and climate features. In general, we conclude that the CMORPH precipitation product is 36 

useful for mapping rainfall erosivity on a continental scale. In the contiguous United States, 37 

the mean of rainfall erosivity was 1,260 MJ mm ha-1 h-1 yr-1, with high variability by region. 38 

The coastal regions showed the highest rainfall erosivity, at 20%. The seasonality of the 39 

rainfall erosivity was evident in most coastal regions (rainfall erosivity depends on climates). 40 

The rainfall erosivity in the tropical climate zone was the highest, whereas it was the lowest 41 

in the arid climate zone (and spatially homogeneous). However, corrections were required for 42 

improving the accuracy of the CMORPH precipitation in most coastal regions, i.e., to secure 43 

a better rainfall erosivity product. Compared to a rain gauge-based rainfall erosivity map, the 44 

CMORPH’s rainfall erosivity map tended to underestimate the rainfall erosivity in coastal 45 

regions near the Gulf of Mexico and Atlantic Ocean, but overestimated it in coastal regions 46 

near the Pacific Ocean.  47 

 48 

Keywords: Soil erosion; Rainfall erosivity; R-factor; High resolution satellite-based 49 

precipitation; CMORPH  50 
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1. Introduction 51 

 52 

The identification of regions vulnerable to soil erosion is very important, as soil loss 53 

has a significant influence on reductions in agricultural land, reservoir capacity, water quality, 54 

and carbon sequestration (Conner et al., 1989; Smith et al., 2001; Lal, 2005; Panagos et al., 55 

2016a; 2016b). Typically, soil erosion (e.g., interrill erosion) is caused by two physical 56 

processes (Nearing et al., 1994): a soil particle separation process owing to the impact of the 57 

rainfall kinetic energy on the soil surface, and a sediment transportation process owing to 58 

surface flows. The erosion depends on the rainfall features in the region (e.g., intensity and 59 

terminal velocity), as well as the topographical and pedological features (e.g., slope, soil type, 60 

and vegetative cover) (Jayawardena and Rezaur, 2000). The rainfall intensity and its kinetic 61 

energy on the soil surface are the primary factors causing interrill erosion, as these factors 62 

lead to the physical separation of soil particles. In the hydrologic community, the rainfall 63 

erosion index (a R-factor based on the two factors) has been used to quantitatively represent 64 

and measure degrees of soil erosion from rainfall (Goovaerts, 1999; Panagos et al., 2016a). 65 

The universal soil loss equation (USLE, Wischmeier and Smith, 1978) and revised USLE 66 

(Renard et al., 1991) are good examples of calculations that employ the R-factor as a major 67 

parameter in estimating soil loss. However, it is challenging to map rainfall erosivity using 68 

ground-based rain-gauge observations (hereinafter referred to rain-gauge data), as they 69 

cannot represent the spatial distribution of the precipitation. As such, they require 70 

interpolation to map the rainfall erosivity. Accordingly, high-resolution-satellite-based 71 

precipitation products might be an alternative to mapping rainfall erosivity on a large scale. 72 

The R-factor has been estimated using various methods dependent on various 73 

temporal resolutions of precipitation data: sub-hourly (Wischmeier and Smith, 1978; Yin et 74 

al., 2007), hourly (Ramos and Durán, 2014), daily (Angulo-Martínez and Beguería, 2009), 75 
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monthly (Renard and Freimund, 1994; Hernando and Romana, 2015), and yearly (Lee and 76 

Heo, 2011) data. The point-scale R-factor estimated from these methods has been mapped 77 

using an interpolation approach, allowing researchers to estimate amounts of potential rainfall 78 

erosivity in ungauged areas, understand the spatial variability, and identify regions vulnerable 79 

to soil erosion. As a result, over the last four decades, rainfall erosivity maps have been 80 

presented on various scales: continental-scale maps (Roose, 1977; Oduro-Afriyie, 1998; 81 

Panagos et al., 2015), national-scale maps (Elwell and Stocking, 1976; Krauer, 1988; Lenvain 82 

et al., 1988; Oduro-Afriyie, 1996; Mikhailova et al., 1997; Da Silva, 2004; Leow et al., 2011; 83 

Klik et al., 2015; Panagos et al., 2016a), and regional-scale maps (Angulo-Martinez and 84 

Beguería, 2009; Ufoegbune et al., 2011; Elbasit et al., 2013; Ramos and Durán, 2014). 85 

Panagos et al. (2017) developed a novel global R-factor map for representing high spatial 86 

variability in rainfall erosivity for six continents, using rain-gauge data collected from 63 87 

countries.  88 

The first rainfall erosivity map in the United States was introduced in an agriculture 89 

handbook (Wischmeier and Smith, 1965). The map was developed from 22 years of rainfall 90 

records, and 11 of the western states were omitted from the map, as sufficient long-term 91 

recording-rain-gauge records were unavailable. In 1997, the United States Department of 92 

Agriculture revised the map, using rainfall records from 1,082 stations over 20 years (Renard 93 

et al., 1997). The rainfall erosivity map was divided into five regions: Eastern and Western 94 

United States, California, Oregon, and Washington, and Hawaii. Since then, only a few 95 

studies have developed soil erosivity maps for the United States (Niedermeier, 1998; Wang et 96 

al., 2002; Cooper, 2011).  97 

Using rain-gauge data to estimate the R-factor is the easiest way to secure and handle 98 

data. However, many studies addressed the limitations in employing rain-gauge data 99 

compared to remote sensing data, such as the advantages of satellite-based precipitation 100 
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products in being able to capture the spatial distribution of precipitation regardless of the type 101 

of terrain, and the ability to track a storm from the ocean to an inland area (Buytaert et al., 102 

2006; Nesbitt and Anders, 2009; Anagnostou et al., 2010; Kim and Yoo, 2014; Kim et al., 103 

2015). Technically, the rain-gauge data can only represent a measured value within a 104 

constrained radius of observation instruments, as it is a point-scale. In addition, it is affected 105 

by the sampling density of rain-gauge data, which can vary with different terrain types. Thus, 106 

the greatest uncertainty in the rainfall erosivity map constructed from rain-gauge data is 107 

probably related to the transition areas between different topographic conditions, climate 108 

zones, and ungauged areas (Panagos et al., 2017).  109 

Most studies using rain-gauge data have employed a spatial interpolation method for 110 

predicting and mapping rainfall erosivity in the transition areas, e.g., inverse distance 111 

weighting, radial basis functions, regression, kriging, and co-kriging methods (Goovaerts, 112 

1999; LOWLAND, 2005; Bonilla and Vidal, 2011; Khorsandi et al., 2012; Meusburger et al., 113 

2012; Lee and Lin, 2015; Meddi et al., 2016). Thus, there is a high possibility that the 114 

interpolated rainfall erosivity values will have a large amount of uncertainty, arising from the 115 

use of an interpolation method (Goovaerts, 1999; Panagos et al., 2015; Ballabio et al., 2017). 116 

Vrieling et al. (2010) and Zhu et al. (2011), understood the usefulness of remote sensing data, 117 

and utilized 3-hourly satellite-based precipitation data (e.g., tropical rainfall measuring 118 

mission products, (TRMM)) to map rainfall erosivity. Vrieling et al. (2010) concluded that 119 

the 3-hourly and 0.25° (approximately 27 km temporal resolution) resolutions of the TRMM 120 

data provided insufficient details for representing high-intensity erosive events. Zhu et al. 121 

(2011) indicated that the 3-hourly temporal resolution was not sufficiently fine to map 122 

rainfall erosivity, and recommended a sub-hourly temporal resolution for mapping. These 123 

conclusions have consistently provided support for employing high-resolution-satellite-based 124 
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precipitation products with a sub-hourly temporal resolution to estimate and map rainfall 125 

erosivity on a continental scale.   126 

This study aims to propose a new approach for estimating and mapping a rainfall 127 

erosivity index, the R-factor, on a continental scale. The approach employs a high-resolution-128 

satellite-based precipitation product, i.e., the National Oceanic and Atmospheric 129 

Administration (NOAA) Climate Precipitation Center morphing technique precipitation 130 

product (hereinafter referred to CMORPH). In addition, the approach employs a standard 131 

method that requires precipitation data in a 30-min temporal resolution. As a case study, the 132 

approach is applied to the contiguous United States (CONUS). The rainfall erosivity map 133 

over the CONUS is analyzed to identify and understand the rainfall erosivity attributes from 134 

various points of view: annual, monthly, hydrologic unit basins, and climate zones.  135 

 136 

2. Materials and Methods 137 

 138 

2.1 Study Area 139 

 140 

The CONUS is chosen as the application domain because it has a variety of 141 

geographic and climate features. The CONUS consists of the 48 states of the US (excluding 142 

Alaska, Hawaii, and the Caribbean) and eighteen river basins, based on the United States 143 

Geological Survey hydrologic unit codes. These basins include either the drainage area of a 144 

major river, or the combined drainage areas of a series of rivers (Seaber et al. 1987, Ahn, K. 145 

H., Palmer). The climate features of the CONUS vary owing to the impacts of oceans (e.g., 146 

the Pacific Ocean, Gulf of Mexico, and Atlantic Ocean) and geographic features, including 147 

mountains and arid/semi-arid desserts. It consists of 15 climate zones such as tropical, arid, 148 
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temperate, and cold. Generally, the climate of the CONUS becomes warm and dry in the west 149 

and south regions, and humid in the east and north regions.  150 

The annual precipitation over the CONUS is approximately 760 mm, and varies with 151 

regional topography and climate characteristics. For example, for western regions with warm 152 

and dry climatic features, the average annual precipitation is approximately 630 mm, whereas 153 

it is approximately 1,250 mm for southeastern regions. In addition, the average annual 154 

precipitation in the central regions unaffected by oceans is approximately 420 mm, which is 155 

relatively lower than the other regions.  156 

Unlike the central regions, precipitation in the western and southeastern regions is 157 

affected by the oceans. In the western region, extratropical cyclones or jet streams (usually 158 

from the Pacific Ocean between September and May) cause a large amount of rainfall 159 

(https://www.wpc.ncep.noaa.gov/research/mcs_web_test_test_files/Page1539.htm). 160 

Moreover, atmospheric rivers cause heavy rainfall during the rainy season (Ralph et al., 2006; 161 

Han et al., 2019). The southeastern regions have higher amounts of precipitation than the 162 

other regions, mainly owing to the humid air coming from the Atlantic and Caribbean Oceans 163 

and the Gulf of Mexico. Between late summer and early fall, tropical cyclones move from the 164 

Atlantic Ocean and Gulf of Mexico to the southeastern regions, providing a quarter of the 165 

annual precipitation (Knight and Davis, 2007). 166 

 167 

 168 

2.2 CMORPH Precipitation Product 169 

 170 

The CMORPH is a very high spatial and temporal resolution global precipitation 171 

product that covers over the CONUS, with a history longer than ground-based remote sensing 172 

data such as weather radars. The CMORPH produces global precipitation estimates at an 8 173 
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km × 8 km resolution every 30 min. Overall, this technique exclusively uses precipitation 174 

estimates derived from low Earth orbit (LEO) satellite-derived passive microwave (PWM) 175 

observations. As the coverage of the PMW-based retrievals is severely limited in the half-176 

hour window owing to the spatial and temporal sampling natures of LEO satellites (even 177 

when multiple satellites are used), the CMORPH takes advantage of the high temporal 178 

resolution of the geostationary satellite infrared (IR) imagery to create motion vectors for the 179 

cloud systems. It subsequently applies the cloud motion vectors to the available PMW-based 180 

retrievals to produce continuous precipitation estimates over the entire globe. At each half-181 

hour window, the availability of the IR data is almost guaranteed at a given location, and can 182 

be used to extract the spatial propagation of precipitation features. For additional details 183 

regarding the CMORPH technique, interested readers are referred to Joyce et al. (2004), Xie 184 

et al. (2017) and Chen et al. (2020). 185 

The entire CMORPH dataset in version 1.0 is reprocessed and extended to cover the 186 

period from 1998 to the present. The reprocessing includes a bias correction using gauge data 187 

(Xie et al. 2017). There are three types of precipitation estimates from the CMORPH: 30-188 

min/8 km, 3-h/0.25°, and 1-day/0.25°. As the CMORPH provides precipitation data over 30 189 

min in mm/h, to obtain hourly precipitation estimates for calculating the R-factor, each half-190 

hourly rainfall rate estimate is assumed to be constant for the entire half hour (e.g., a 1.0 191 

mm/h rainfall rate estimate over 30 min = 0.5 mm of accumulated precipitation during that 192 

time). Each 30-min estimate is accumulated to obtain the hourly precipitation.  193 

This study is conducted with the understanding that the accuracy of the CMORPH 194 

might be lower than that of rain-gauge data in some regions, and briefly compares the 195 

CMORPH precipitation data with the rain-gauge data in the discussion part. 196 

 197 

2.3 Rainfall Erosivity Index: R-factor 198 
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 199 

The R-factor has been denoted by various expressions: rainfall erosivity, rainfall 200 

erosivity index, rainfall erosivity factor, rainfall erosion factor, rainfall erosion index, 201 

rainfall-runoff erosivity, rainfall erosive index, R-value, and energy-intensity. In all of these 202 

expressions, the R-factor is defined as a multiplication of the rainfall kinetic energy and 203 

rainfall intensity, based on long-term data (Wischmeier and Smith, 1958). The R-factor uses 204 

MJ mm ha-1 h-1 yr-1 as the SI unit; it represents the degree of soil erosivity from rainfall. 205 

A number of methods for estimating the R-factor have been developed, depending on 206 

the temporal resolution of the precipitation data. These include the standard method 207 

(Wischmeier and Smith, 1978; Renard et al., 1997), simple methods (Lee and Heo, 2011), 208 

and alternative index methods (Fournier, 1960; Arnoldus, 1977). The simple and alternative 209 

index methods mainly use a rainfall parameter-based regression equation to estimate the R-210 

factor (Meddi et al., 2016). The alternative index methods include the "KE index" method 211 

(Hudson, 1971) based on rainfall kinetic energy (E) and erodibility (K), AIm index method 212 

(Lal, 1976) based on rainfall amount (A) and maximum rainfall intensity (Im), and the 213 

climatic coefficient index (Fournier, 1956). The standard method has been widely used to 214 

estimate the R-factor, as the resultant R-factor is regarded as the finest value (Lombardi Neto 215 

and Moldenhauer, 1992; Bertol et al., 2007; Meusburger et al., 2012; Panagos et al., 2016b). 216 

The standard method uses all erosive storm events, as quantified by the rainfall kinetic energy 217 

and maximum rainfall intensity over 30 min (Stocking and Elwell, 1973; Hoyos et al., 2005; 218 

Oliveira et al., 2013). The R-factors from other methods (using coarser temporal resolutions) 219 

have been compared with the results from the standard method to verify their performance. 220 

As the temporal resolution of the CMORPH is fine and sufficient for application in the 221 

standard method, this study adapts the standard method to estimate the R-factor.   222 

 223 
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Figure 1 

 224 

Fig. 1 presents a diagram of the methodology, and consists of steps for mapping 225 

rainfall erosivity and representing the details of the classification process for an independent 226 

storm event. First, the domain fitting is trimmed to the CONUS, as the CMORPH comprises 227 

global-scale precipitation data. A threshold is applied to eliminate small amounts of rainfall 228 

arising from rainfall intermittency; this is a pre-processing step for clarifying the inter-event 229 

time definition for classification of independent rainfall pulses. The independent rainfall 230 

pulses are then classified, considering the conditions as shown in blue-line box in Fig. 1. The 231 

box illustrates the details of the classification of independent rainfall pulses. This is an 232 

important process, as it accounts for a number of effective rainfall events for estimating 233 

rainfall erosivity at each grid of the CMORPH data. Subsequently, the maximum intensity of 234 

each rainfall pulse in 30 min is extracted. The R-factor is then estimated, based on the 235 

following equation (Wischmeier and Smith, 1978; Brown and Foster, 1987; Panagos et al., 236 

2015): 237 

 238 

R =  1� � ���	
��

��


��

�

���
                                                                                                                        �1� 239 

 240 

Where, R indicates the R-factor, in MJ mm ha-1 h-1 yr-1; n is the number of years used to 241 

estimate the R-factor; mi is the number of erosivity events in a given year i, and E and I30 242 

indicate the rainfall kinetic energy and maximum rainfall intensity in 30 min at an event j, 243 

respectively. EI30 (MJ mm ha-1 h-1) determines the R-factor of a single event, and is defined 244 

as follows: 245 

 246 
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� 	
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 248 

Where, ek is the unit rainfall energy (MJ ha-1 mm-1), and pk is the k-th rainfall volume (mm) 249 

of a storm event including m parts. k is the time period of each rainfall, and m is the duration 250 

of the storm event.  251 

The unit rainfall energy is estimated using a rainfall intensity-energy equation derived 252 

from Van Dijk et al. (2002). The equation was verified in a number of previous studies 253 

(Marques et al., 2007; Vrieling et al., 2010). The rainfall intensity-energy equation used in 254 

this study is as follows: 255 

 256 

e� =  28.3 1 − 0.52exp�−0.042	�'                                                                                              �3� 257 

 258 

Where, I is the rainfall intensity (mm hr-1). As the R-factor is estimated based on each grid, 259 

the final R-factor map is visualized with colors representing corresponding values. 260 

 261 

3. Results  262 

 263 

3.1 Annual and Monthly Rainfall Erosivity Maps over the CONUS 264 

 265 

The annual R-factors from 1998–2015 were estimated using the CMORPH 266 

precipitation product and standard method. Fig. 2 shows the number of identified storm 267 

events, annual precipitation, and R-factors for each year. Overall, the results demonstrate that 268 

the trends of the annual precipitation and number of storms are similar to the increasing and 269 

decreasing patterns of the annual R-factor. In 1998, 2004, 2009, and 2015, i.e., where the R-270 
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factor was higher than other years, the number of storm events and annual precipitation were 271 

also higher than in the other years. The mean annual number of storms ranges from 25 to 30, 272 

the mean value of annual precipitation ranges from 570 to 770 mm, and the mean annual R-273 

factor ranges from 920 to 1420 MJ mm ha-1 h-1 yr-1.  274 

 275 

Figure 2 

 276 

Fig. 3 shows the rainfall erosivity map for the United States, and a probability density 277 

function of the R-factors. The rainfall erosivity map was presented at an 8 km × 8 km spatial 278 

resolution. The mean of the rainfall erosivity is 1,260 MJ mm ha-1 h-1 yr-1 with high 279 

variability, as expressed by the standard deviation of 1,037 MJ mm ha-1 h-1 yr-1. The median 280 

(50th percentile) of the R-factor is 1,100 MJ mm ha-1 h-1 yr-1. The bottom 20% of the R-281 

factors are lower than 357 MJ mm ha-1 h-1 yr-1, and the highest 20% (80th percentile) are 282 

greater than 2,200 MJ mm ha-1 h-1 yr-1 (see Fig. 3b). 283 

 284 

Figure 3 

 285 

The range of the R-factor is from 33 to 6,000 MJ mm ha-1 h-1 yr-1, and it varies 286 

considerably with region. As expected, the results indicate that the high values of the R-factor 287 

are estimated mainly around the coastal regions. The highest 20% (of the R-factor) is 288 

estimated from the coastal regions of the Pacific Ocean, Gulf of Mexico, Florida Peninsula, 289 

and Atlantic Ocean. Among the coastal regions, for example, the western north region (in 290 

contact with the North Pacific Ocean) is vulnerable to soil erosion by rainfall, as this region 291 

has seasonal and extreme rainfall storms (e.g., atmospheric rivers) routinely inflowing into 292 
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the regions during winter. Moreover, high rainfall intensity is commonly observed, owing to 293 

complex terrain (Han et al., 2019). Along the same lines, the spatial patterns of rainfall 294 

erosivity in a chain of mountains in the western/north United States were completely different 295 

between the western (complex terrain) and eastern (flat terrain) regions.  296 

The map demonstrates that the inland and coastal regions affected by the various 297 

types of storms from the Gulf of Mexico and Atlantic Ocean have high R-factor values. The 298 

coastal regions of the Gulf of Mexico and Atlantic Ocean have a long history of hurricanes 299 

and tropical storms, as the climatologically warm seawater provides an abundant energy 300 

source for intense storms during the hurricane season from May to November (Jarvinen et al., 301 

1984; Maloney and Hartmann, 2000). Thus, hurricanes and tropical storms could easily move 302 

into the inland areas and deliver heavy rainfalls, owing to the warm sea temperature and flat 303 

terrain (Bales, 2003; Stanturf et al., 2007). Except for the regions mentioned above, the 304 

spatial patterns of the R-factor are homogeneous over the United States, and the R-factors are 305 

not excessively high compared to the coastal regions. 306 

 307 

Figure 4 

 308 

Fig. 4 shows the monthly rainfall erosivity maps. The intensity of the monthly R-309 

factor apparently varies with the regional seasonality. For example, the west coastal region 310 

showed high rainfall erosivity during a winter season from November to March, and the R-311 

factor was identified in December. However, during the summer and early fall seasons from 312 

June to September, the rainfall erosivity was low and spatially homogeneous. In addition, the 313 

monthly rainfall erosivity maps exhibited a smooth decrease in the R-factor from winter to 314 

spring, followed by lower homogeneous values in summer, and then a smooth increase in fall. 315 

As expected, the results suggest that the trend of rainfall erosivity is affected by the 316 
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seasonality, as is the case with precipitation. In the coastal and inland regions near the Gulf of 317 

Mexico, the spatial distribution of the R-factor was inhomogeneous, and the value was very 318 

high from June to December. The period from June to September showed conflicting 319 

tendencies in rainfall erosivity between the western and eastern coastal regions. In addition, 320 

the R-factors in the Florida Peninsula were significantly higher from June to September. 321 

 322 

3.2 Attributes of Rainfall Erosivity on Hydrological Basins and Climate Zones 323 

 324 

The rainfall erosivity map was further analyzed in the context of hydrological unit 325 

basins and climatological zones. For this purpose, the hydrologic unit code-2 (HUC, 326 

https://water.usgs.gov//GIS/huc.html) and climate features (hereinafter referred to as climate 327 

zones) developed by Wladimir Köppen (Kottek et al., 2006) were used. This section 328 

addresses the analysis results for the hydrological unit basins. Fig. 5 shows the HUC 329 

boundary (the upper left), its area distribution (the upper right), and R-factors (the bottom). 330 

The HUC includes the Tennessee region, i.e., the smallest basin (105,949 sq. km), and the 331 

Missouri region, i.e., the biggest basin (1,349,418 sq. km, or 15% of the total area). 332 

 333 

Figure 5 

 334 

The range of the R-factors varies with the location of the basin. The ‘a’-‘h’ (except ‘d’ 335 

and ‘g’) basins, located on the Florida Peninsula and influenced by the climates of the 336 

Atlantic Ocean and Gulf of Mexico, have high rainfall erosivity. ‘h’ (lower Mississippi 337 

region) represents the basin where the highest R-factor was identified. However, the ‘n’ 338 

(upper Colorado region), ‘o’ (lower Colorado region), and ‘p’ (great basin region) basins had 339 

relatively low values of the R-factor. Considering the ranges of the R-factors in the three 340 



 

15 

 

basins, the spatial distributions of the R-factors in these basins were considerably 341 

homogenous. ‘j’ (Missouri region), the largest basin in the United States, had a relatively 342 

narrow range for the R-factor, indicating a low variation and spatially homogeneous 343 

distribution. Both ‘k’ (Arkansas-White-Red region) and ‘i’ (Texas-Gulf region) were smaller 344 

than ‘j’; both basins had a wider range of the R-factors than ‘j’, and spatially inhomogeneous 345 

distributions.  346 

 347 

Figure 6 

 348 

Fig. 6 illustrates the results for monthly R-factors by basin, to show the seasonal 349 

patterns of the R-factors. Most basins showed a change of rainfall erosivity with season. In 350 

particular, some basins (‘a’-‘i’) located on the east coast line had a high rainfall erosivity 351 

from June to September, whereas it was low in January, February, and December. Basins (‘q’ 352 

and ‘r’) located on the west coastline showed a high rainfall erosivity during the winter 353 

season (from November to March), but showed a low rainfall erosivity during the warm 354 

season (from April to September). ‘h’ had high R-factor values for all months. Compared 355 

with other basins, ‘c’ (South Atlantic-Gulf region) had the highest values of the R-factor from 356 

June to September. The monthly R-factors of ‘n’, ‘o’, and ‘p’ were consistent, as the range 357 

was only from 3 to 52, and it was not varied from month-to-month. These results suggest that 358 

those basins show no seasonality in rainfall erosivity. 359 

The rainfall erosivity map is also analyzed based on climate zones. Fig. 7 shows a 360 

map of climate zones in the United States, and the distribution of the R-factor by the climate 361 

zones. Over the CONUS, five (Cfa, BSk, Dfb, Dfa, and Csb) of climate zones are complexly 362 

distributed in the western region, whereas three (Cfa, Dfa, and Dfb) climate zones are 363 

homogeneously distributed in the eastern region (depending on the latitude).  364 
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 365 

Figure 7 

 366 

The tropical climate zones have the highest R-factor, followed by the temperate, cold, 367 

and arid climate groups. On average, 45 annual mean storm events with sufficient intensity to 368 

erode soil were observed in the tropical climate group (covering most of the southern Florida 369 

Peninsula). This was 1.5 times higher than the number of annual mean storm events in the 370 

United States. The temperate climate zones (covering most of the regions affected by storms 371 

from the Gulf of Mexico and Atlantic Ocean) had relatively high rainfall erosivity. Moreover, 372 

15 of the annual mean storm events were observed in the arid climate group, which showed 373 

the lowest rainfall erosivity within 15 of the climate zones. That was only approximately half 374 

the number of annual mean storm events in the United States. 375 

 376 

Figure 8 

 377 

Fig. 8 shows the monthly rainfall erosivity by climate zone. The seasonality of the R-378 

factor was clearly visible in the tropical climate group. The high values of the R-factor (mean 379 

= 492 MJ mm ha-1 hr-1 month-1) were identified during the wet season from June to 380 

September, whereas the low values of the R-factor (mean = 108 MJ mm ha-1 hr-1 month-1) 381 

were found during a dry season from November to April. However, the arid climate zone 382 

showed no seasonality in regards to the rainfall erosivity. 383 

 384 

3.3 Comparison with the Ground-Based Rainfall Erosivity Map 385 

 386 
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To evaluate the rainfall erosivity map developed in this study, it was compared to a 387 

rainfall erosivity map based on rain-gauge data (Fig. 9). Panagos et al. (2017) developed a 388 

global rainfall erosivity map using high-resolution rain-gauge data collected from 65 389 

countries as a reference. For the United States, they employed 92 pieces of gauge data over 390 

11 years (2006–2016). The average density of the observation stations was one every 83,303 391 

km2. They used a Gaussian process regression model to interpolate the R-factor point values 392 

to a map at a 1 km × 1 km spatial resolution. This map is available from the European Soil 393 

Data Centre (https://esdac.jrc.ec.europa.eu/content/global-rainfall-erosivity). 394 

 395 

Figure 9 

 396 

The range of the R-factors in Panagos et al. (2017) is 6–9,645 MJ mm ha-1 h-1 yr-1, 397 

and the mean value is 2,067 MJ mm ha-1 h-1 yr-1, i.e., 1.65 times higher than the mean R-398 

factor estimated in this study. In Fig. 9, the western north region (a), middle region (b), and 399 

coastal and inland region near by Gulf of Mexico (c) were highlighted for comparison. The 400 

R-factors in box (a), as estimated in this study, are higher than those from Panagos et al. 401 

(2017). Considering the comparison result of the annual precipitations in Fig. 8, this result 402 

demonstrates that the R-factors calculated by Panagos et al. (2017) were far more 403 

underestimated than those in this study. This is because Panagos et al. (2017) only used three 404 

rain-gauge sites to cover the region. Notably, the spatial distribution of the rainfall erosivity 405 

estimated in this study is more seamless than that in Panagos et al. (2017), even though the 406 

spatial resolution of this study (8 × 8 km) is coarser than that of Panagos et al. (2017) (1 × 1 407 

km), especially for the box (c) regions close to the Gulf of Mexico. This result exhibits the 408 

typical limitations in using rain-gauge data and interpolation methods for predicting R-factors 409 

in ungauged areas. 410 
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The bottom-left panel in Fig. 9 shows a comparison of R-factor samplings extracted 411 

from 10,000 random points. The R-squared value is 0.64, and the bias is 64%. Based on the 412 

Y-axis (the R-factors of Panagos et al. (2017)), the bias is 88.1% when the R-factor is smaller 413 

than 2,000, whereas the bias is 55.6% when the R-factor is greater than 2,000. This result 414 

suggests that the larger the estimated R-factors, the higher the uncertainty. Considering that 415 

the R-factors greater than 2,000 are mostly from the coastal regions, data assimilation with 416 

high-density rain-gauge data might be necessary in these regions to improve the accuracy of 417 

the predicted R-factor. 418 

 419 

4. Discussion  420 

4.1 The CMORPH for Mapping Rainfall Erosivity 421 

 422 

With regard to hydrologic applications, many studies have evaluated the CMORPH product 423 

against ground-based observations and "Next Generation Weather Radar" Stage IV (radar-424 

based and gauge-adjusted) as reference data (Derin et al., 2016). According to AghaKouchak 425 

et al. (2011) and Romilly and Gebremichael (2011), the CMORPH data is superior to that 426 

from other satellite precipitation products (e.g., "PERSIANN," "TMPA-RT," and TMPA-V6) 427 

with respect to the probability of detecting extremes and the volume of correctly identified 428 

precipitation. When applying CMORPH in Ethiopian river basins, the volume of precipitation 429 

tends to be underestimated by 11%, and the bias depends on the rainfall regime and 430 

topographical characteristics. Habib et al. (2012) evaluated the CMORPH using dense ground 431 

observations in south Louisiana, and suggested that the CMORPH product has high detection 432 

skills. In particular, they suggested that the probability of successful detection is 433 

approximately 80% for surface rain rates >2 mm/h, the probability of false detection is <3%, 434 
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and the CMORPH has a negligible bias. However, they also concluded that the accuracy of 435 

the CMORPH products varied with temporal resolution, region, and season. 436 

 437 

Figure 10 

 438 

As the CMORPH is a satellite-based precipitation product, it might incorporate 439 

several uncertainties that might influence the estimation and mapping of the R-factors. In this 440 

study, we intend to highlight two issues: overestimated precipitation on water bodies (e.g., 441 

lakes and reservoirs), and the accuracy of annual precipitation. It is well-known that satellite-442 

based precipitation products are likely to overestimate precipitation where lakes and 443 

reservoirs are located (Tian and Peters-Lidard, 2007). This fact is also confirmed in this study. 444 

Fig. 10 shows (a) a map showing the locations of water bodies on the annual precipitation 445 

field, and (b) the rainfall erosivity map. It is found that the annual precipitation on water 446 

bodies is abnormally higher than in other areas. It is also confirmed that the R-factor result 447 

shows the same trend for water bodies. In view of this attribute of the CMORPH precipitation 448 

product, this study excluded the abnormally overestimated R-factors for water bodies from 449 

further analysis. 450 

To briefly verify the accuracy of the CMORPH precipitation, this study compared the 451 

CMORPH and "PRISM" (http://www.prism.oregonstate.edu/), a rain gauge-based 452 

precipitation product. Fig. 11 shows three comparison results: spatial distributions (top left 453 

panel), probability density functions (top right panel), and samples extracted from 10,000 454 

random points (bottom panel).  455 

 456 

Figure 11 
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 457 

In the spatial distribution maps, three regions are selected, i.e., boxes (a), (b), and (c). 458 

Overall, the trends of the spatial distributions are similar to each other, and the correlation of 459 

the two maps reaches as high as 0.71. In the case of box (b), in the middle of the country, and 460 

box (c), affected by Atlantic Ocean and Gulf of Mexico, both annual precipitation maps show 461 

similar patterns of spatial distributions and PDFs (top panels). However, box (a), close to the 462 

Pacific Ocean, shows that the CMORPH  was underestimated as compared to that of PRISM, 463 

and the difference was up to approximately double. Considering this result, the rainfall 464 

erosivity map based on the CMORPH has a higher possibility of underestimation around the 465 

region. Data assimilation with rain-gauge data might be a way to overcome this limitation of 466 

the CMORPH, and to improve the quantitative accuracy of the precipitation product for 467 

mapping rainfall erosivity. As this topic is challenging and out of scope for this study, we 468 

leave this issue for future study. 469 

According to the result in Fig. 11 (bottom panel), the R-squared value is as high as 470 

0.67 and the bias is 84%, indicating an ideal case. It is confirmed that the scatter samples 471 

where the PRISM is greater than the CMORPH are mostly extracted from box (a). Thus, the 472 

accuracy of satellite-based precipitation data can be lower than that of the rain-gauge data, 473 

but can help overcome the aforementioned limitations in the rain-gauge data. Considering the 474 

pace of technological developments in satellite observation systems and data quality 475 

improvements, satellite-based precipitation data should be the best alternative to a ground-476 

based observation system in the future. 477 

 478 

4.2 Potential Benefit of the Rainfall Erosivity Map in Practice 479 

 480 



 

21 

 

Considering the effects of soil erosion by rainfall on the entire environment, it is 481 

expected that the rainfall erosivity map developed in this study can be used to estimate 482 

amounts of soil loss, and to identify regions vulnerable to soil erosion. The 1972 amendments 483 

to the Clean Water Act (CWA) prohibit the discharge of any pollutant into navigable waters, 484 

unless the discharge is authorized by a National Pollutant Discharge Elimination System 485 

(NPDES) permit. As construction site stormwater runoff can contribute significantly to water 486 

quality problems, the Phase I Stormwater Rule required that all construction sites with a 487 

planned land disturbance of five acres or more must obtain an NPDES permit and implement 488 

stormwater runoff control plans. Phase II extended the requirements of the stormwater 489 

program to sites between 1–5 acres (EPA, 2012). The rainfall erosivity waiver allows the 490 

permitting authorities to waive the requirements for those sites that do not have adverse water 491 

quality impacts. The United States Environmental Protection Agency (EPA) NPDES has 492 

developed a web-based R-factor estimation tool for users attempting to implement the CWA 493 

(https://www.epa.gov/waterdata/rainfall-erosivity-factor-calculator). However, it is 494 

questionable whether the tool can estimate a proper R-factor in a certain area, as the tool is 495 

based on rain-gauge data and a spatial interpolation method. Therefore, at this point, the 496 

rainfall erosivity map developed in this study could practically improve or replace the EPA 497 

NPDES R-factor map. 498 

 499 

 500 

5. Conclusions 501 

 502 

This study suggested a new approach for mapping rainfall erosivity using a high-503 

resolution satellite-based precipitation product, and applied it to the CONUS. The rainfall 504 

erosivity map was analyzed in terms of different temporal resolutions (e.g., monthly and 505 
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annual rainfall erosivity), hydrological unit basins, and climate zones. Based on the results, 506 

we concluded as follows: 507 

� Using the CMORPH (a high-resolution satellite-based data) to map rainfall 508 

erosivity has strengths and weaknesses. The CMORPH was able to apply the 509 

standard method to estimate a relatively accurate R-factor, and to map a 510 

seamless rainfall erosivity without employing an interpolation method. These 511 

merits were useful for understanding the spatial variability of rainfall erosivity, 512 

and for identifying regions vulnerable to soil erosion by rainfall. However, the 513 

CMORPH precipitation product might require correction for some coastal 514 

regions to improve the rainfall erosivity map. 515 

� From the rainfall erosivity map, the mean of the rainfall erosivity was 1,260 516 

MJ mm ha-1 h-1 yr-1, with high variability ranging from 33 to 6,000 MJ mm ha-517 

1 h-1 yr-1, depending on the region of the United States. The coastal regions 518 

near the Pacific Ocean, Gulf of Mexico, and Atlantic Ocean have the highest 519 

20% of rainfall erosivity. The seasonality of rainfall erosivity was confirmed 520 

through the monthly rainfall erosivity maps. Most coastal regions are 521 

vulnerable to soil erosion by rainfall, depending on their typical rainy seasons. 522 

In addition, climate features have a strong relation with rainfall erosivity, and 523 

the spatial pattern of rainfall erosivity varies within climate zones. The rainfall 524 

erosivity in the tropical climate group was relatively higher than that in the 525 

other groups, whereas the arid climate group presented very low and spatially 526 

homogeneous rainfall erosivity. Soil loss should be monitored in coastal 527 

regions, and construction areas should be thoroughly examined in the southern 528 

Florida Peninsula belonging to the tropical climate group. 529 

 530 
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Finally, considering the pace of technological developments in satellite observation 531 

systems and data quality improvements, satellite-based rainfall erosivity maps represent the 532 

best alternative to ground-based rainfall erosivity maps in the future.  533 
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Abstract: This paper examines the economic and political implications of two market-based 

policies, eco-certifications and emission taxes. We evaluate each policy's effects on the 

environment, investment in clean technology, and social welfare under imperfect competition. 

We find that eco-certification reduces total damage to the environment, increases consumer 

benefits, and is socially desirable. However, polluting firms will never voluntarily accept the 

socially optimal eco-standard, leading to suboptimal certification programs. Unless the marginal 

damage to the environment from emissions is sufficiently low and demand is sufficiently large, 

environmental damage occurring under voluntary eco-certification is higher in comparison to 

alternative policies. We examine the welfare impacts of each policy to identify social preferences. 

Using realized market benefits to construct policy preferences, we show conditions under which 

the socially optimal environmental policy is unlikely to be politically feasible. Our results 

explain the popularity and suboptimal qualities of eco-certification programs.     
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