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Drawing on ergodic theory, we introduce a novel training method for machine learning

based forecasting methods for chaotic dynamical systems. The training enforces dynam-

ical invariants—such as the Lyapunov exponent spectrum and fractal dimension—in the

systems of interest, enabling longer and more stable forecasts when operating with limited

data. The technique is demonstrated in detail using reservoir computing, a specific kind

of recurrent neural network. Results are given for the Lorenz 1996 chaotic dynamical sys-

tem and a spectral quasi-geostrophic model of the atmosphere, both typical test cases for

numerical weather prediction.

a) We express our profound sadness in the passing of Henry Don Isaac Abarbanel
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Numerical weather prediction (NWP) requires vast amounts of computational power to solve

global forecasting models. Machine learning (ML) systems—acting as surrogate models for

the differential equations—have the promise of lessening the computational burden by using

a larger time step than a classical numerical solver or through dedicated hardware accelera-

tion. In order to be integrated into the data assimilation optimization routines of numerical

weather prediction, ML models must reproduce the correct intrinsic error growth rates of

the chaotic system and other dynamical invariants. We introduce here a training method

for recurrent neural networks, a type of ML model that has shown great success in pre-

dicting chaotic dynamical systems, that enforces these invariants. By providing information

on the physics of the system we bias the network towards reproducing the correct physical

characteristics and enhance its predictive capabilities.

I. INTRODUCTION

Predicting the future trajectory of a dynamical system—a time series whose evolution is gov-

erned by a set of differential equations—is crucial in fields such as weather prediction, economics,

chemistry, physics and many others1,2. A prediction can be generated by deriving the governing

equations of motion (EOM) for the system and integrating forward in time, perhaps with data be-

ing used to determine the value of particular constants or the initial conditions. Machine learning

(ML), on the other hand, allows the construction of a forecast purely from observational data in

lieu of a physical model. When the EOM are expensive to evaluate numerically, ML can be used

to construct a surrogate model; such models can be integrated into data assimilation3 algorithms—

such as the Kalman filter4,5—a typical use case when data are noisy and the model imperfect, such

as in numerical weather prediction (NWP)6.

The inclusion of physical knowledge—EOM, conservation laws and dynamical invariants—

into ML algorithms has been a topic of ongoing interest7–15. Enforcing these laws effectively

reduces the searchable parameter space for a workable model, decreasing the training time and

increasing the accuracy of the resulting models. An ML model trained without knowledge of

the underlying physics may fail to generalize and can produce solutions that violate fundamental

constraints on the physical system16. Many of the examples cited above involve conservation

of quantities based on the symmetry of the equations of motion, such as conservation of energy
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and momentum13, or the inclusion of previously derived differential equations11 as components

of the ML training. “Physics informed” neural networks14,15,17–19 add the known or partially

known differential equations as a soft constraint in the loss function of the neural network, but

conservation laws are not necessarily enforced and the equations must be known.

Many physical dynamical systems of interest are dissipative—e.g., any dynamical system con-

taining friction—meaning they exchange energy and mass with the surrounding environment20.

High dimensional dissipative systems are very likely to exhibit chaos21—making them extremely

sensitive to initial conditions. Enforcing conservation of quantities such as momentum, mass, or

energy11,13,22,23 for dissipative systems in isolation may not be sufficient for generalization due to

the exchange of energy/momentum with the environment. Problems exhibiting chaotic dynamics,

such as weather forecasting, have fractal phase space trajectories that make it difficult to specify

analytic constraints11.

With the goal of enforcing dynamical invariants, we suggest an alternative cost function for

dissipative systems based on ergodicity, rather than symmetry. This has broad implications for

time series prediction of dynamical systems. After formulating the invariants, we give a recurrent

neural network (RNN)24 example applied to the Lorenz 1996 system25 and quasi-geostrophic

dynamics26 where we add soft constraints into the training of the network in order to ensure that

these dynamical invariant quantities are reproduced.

II. DERIVING DYNAMICAL INVARIANTS

Ergodicity is a property of the evolution of a dynamical system. A system exhibiting ergodic-

ity, called ergodic, is one in which the trajectories of that system will eventually visit the entire

available phase space27, with time spent in each part proportional to its volume. In general, the

available phase space is a subset of the entire phase space volume. For instance a Hamiltonian sys-

tem will only visit the hypersurface with constant energy20. Ergodicity implies that time averages

over the system trajectories can be replaced with spatial averages

lim
t f→∞

1
t f

∫ t f

0
g(F t(u0))dt =

∫
u∈B

g(u)ρB(u)du ∀u0 ∈ B (1)

for an arbitrary function g, where F t is the application of the flow of the dynamical system over

time t, and ρB(u) defines an invariant density over the finite set B27. The invariant density gives

an intuitive measure of how often a trajectory visits each part of B. The invariant density defines
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the invariant measure27

µ(B ⊂ R) =
∫

B
ρB(u)du. (2)
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FIG. 1. left) 2D slice through the strange attractor of the spectral QG model reproduced from Fig.(3) in

Reinhold and Pierrehumbert 198226 using the implementation in Demaeyer et al.202028. An attractor is a

hypersurface that draws in nearby trajectories of the system, such that the system will eventually be con-

strained to stay on the manifold. The motion of the dynamical system on a strange attractor is chaotic with

extreme sensitivity to initial conditions. Strange attractors can be analyzed through the invariant measure

that describes how often the system visits each part of the attractor29,30. Related quantities such as the fractal

dimension and the Lyapunov exponents30 are globally invariant through any smooth change of coordinates

and thus are natural invariant quantities for chaotic systems. right) The Lyapunov exponents of the spectral

QG model. There are two positive exponents making the system chaotic.

B will often consist of exotic geometries such as quasi-periodic orbits and strange attractors20.

The strange attractor is a hypersurface that contains the available subspace for a chaotic dynamical

system—see Fig.(1). Deterministic chaotic systems are of importance to a vast array of applica-

tions such as in NWP3, chemical mixing31,32, optics33, robotics34 and many other fields.

Despite being deterministic, the precise long term prediction of chaotic systems is impossible

due to the exponential growth of errors, as quantified by the system’s Lyapunov spectrum. The

Lyapunov spectrum, composed of a system’s Lyapunov exponents (LEs), characterizes a dynam-

ical system29,35 by giving a quantitative measure of how a volume of phase space stretches or

shrinks over time.
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For the prediction of chaotic systems, we suggest that although short term predictions will

inevitably diverge, long term prediction of any system must preserve the invariants of motion

characterized by the invariant measure µB eq.(2). Furthermore, enforcing such invariants could

help to generalize the training of neural networks designed to emulate dissipative chaotic systems,

in much the same way that conservation of energy and momentum has for conservative systems.

While any function g(u) integrated with the invariant density is a constant—as seen in eq.(1)—by

the multiplicative ergodic theorem36 the LEs and the fractal dimension are both invariant under

smooth coordinate transformations and have algorithms that make them feasible to compute from

observed data29.

In the next sections we provide a concrete example using the fractal dimension and LEs as

invariants that must be enforced when training a neural network. We use an RNN based on the

reservoir computer (RC) architecture37–39. We impose a loss function that takes into account the

preservation of the LEs and fractal dimension, and detail the benefits of doing so. We stress that

the concept is not limited to RC models and can in fact apply to any neural network architecture.

III. RECURRENT NEURAL NETWORKS AND RESERVOIR COMPUTING

An RNN is a network composed of nonlinear elements that are connected in such a way as to

enable self excitation40. Therefore, given a state of the network r(t −1), the next state

r(t) = Fr(r(t −1),u(t −1),θ) (3)

is a function of the input u, the RNN equations Fr and the internal weights θ . The label over

the input data t ∈ Z—conveniently called time—gives the natural order and allows the analysis

of the RNN as a dynamical map. r(t) can then be decoded by a function Wout(r(t)) = û. Wout is

typically trained so that û is as close to the target output as possible24. In time series prediction

tasks û ∼ u(t) so that the driven system eq.(3) can become autonomous (with no external input)

r(t) = Fr(r(t −1),Wout(r(t −1)),θ) (4)

and predict the future of the dynamical system.

Reservoir computing37,38,41–44 is a simplified form of RNN for which only the large scale pa-

rameters of the network are varied with the detailed weights selected from probability distributions.

For an RC with tanh(·) nonlinear activation functions at the nodes, the RNN equations become45

r(t) = α tanh(Ar(t −1)+Winu(t −1)+σb)+(1−α)r(t −1). (5)
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The elements of the N ×N adjacency matrix A are fixed i.e., not trained—in contrast to other

RNN architectures—with only its overall properties chosen such as the size N, density ρA, and

spectral radius ρSR. Win ∈ RN×D maps the input into the high dimensional reservoir space u ∈

RD → Winu ∈ RN ; the elements of Win are chosen between
[
−σ ,σ

]
. α is the leak rate and is

related to the time constant of the RC39. σb is an input bias governing the fixed point of the RC

and the strength of the tanh(·) nonlinearity. See Lukosevicius 201239 for detailed explanations of

the architecture and parameter choices.

Training the RC includes training the function Wout—often taken to be a matrix Wout and

trained through linear regression—as well as finding the correct parameters N, ρA, ρSR, σ , σb.

When predicting the RC must first achieve synchronization with the input data46 during a “spinup”

phase before the prediction can begin. In6,45,47 it is shown how to train the RC network through a

two step training procedure that takes into account both the one step prediction accuracy as well

as the long term forecast skill.

RC has been shown to be extremely successful in time series prediction tasks. Its simple form

allows the easy computation of the Jacobian with respect to the internal (hidden) states and other

quantities that can help in a dynamical systems analysis of the RNN. Platt et al.202146 showed

that the RC, when well trained, can reproduce dynamical invariants such as the LEs and fractal

dimension. It was further shown that the reproduction of these quantities maximized the prediction

time and ensured the stability of the predictions. The training procedure used in previous works did

not enforce the dynamical invariants directly, rather the results relied on using long term forecasts

as a proxy. Here we reformulate the RC training to explicitly account for the dynamical invariant

quantities.

IV. ENFORCING INVARIANTS

The standard training of an RC is determined by the training data and the selection of the

parameters governing the global properties of the RC: N, ρA, ρSR, σ , σb and a regularization

coefficient β . Once these quantities are chosen and the weights instantiated, then Wout is given

Wout = urT (rrT +β I)−1

where u is the D×T matrix of input data, T is the number of time steps and r is the N×T matrix of

reservoir states45. We can add into the selection of these parameters prior knowledge of the global
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FIG. 2. Example prediction and the probability distribution function of the valid prediction time (VPT) for

200 initial conditions over the 20 dimensional QG system described in section V B. VPT6,48 is calculated

as the time when the root mean square error RMSE(t) =

√
1
D ∑

D
i=1

[
uf

i(t)−ui(t)
σi

]2
exceeds a certain value ε , in

this case ε = 0.3 approximately in line with6,45,48. D is the system dimension, σ is the long term standard

deviation of the time series and u f is the RC forecast. The largest LE 1/λ1 ∼ 12 days gives the natural

time scale for error growth of the system and thus can be used as a measurement for the predictive skill.

The RC returns fantastic prediction times for this low resolution model. The size of the RC is N=1500 and

100,000 training steps were provided with a ∆t = 80min giving about 30 years of data, we consider this the

“data rich” case because extra training data does not have a significant impact on the predictive ability of

the network.

invariants of the system u and a penalty term for longer-range forecasts. Therefore we construct a

loss function

Loss = ε1∥Cu −CRC∥2 + ε2

M

∑
k=1

tf

∑
t=ti

∥∥∥uf
k(t)−uk(t)

∥∥∥2
exp

{
− t− ti

tf − ti

}
; t ∈ Z (6)

that can be minimized over the RC parameters and with εx hyperparameters. The selection of the

parameters leads to the matrix Wout based on training data utrain. Platt et al.202245 generated a

number of long term forecasts u f (t) and compared them to the data u; with enough data this proce-

dure often leads to a model that reproduces the correct dynamical invariants. Without the explicit

enforcement of these invariants, however, the model can fail to capture the dynamics—particularly

for high dimensional systems and in cases where the number of trajectories M is constrained. Here

we add the dynamical invariants (Cx) as a constraint in order to directly train for generalizability,
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similar to Beucler et al.202149. This scheme is illustrated in Fig.(3). The global optimization

routine used to minimize the cost function was the covariance matrix adaption evolution strategy

(CMA-ES)50,51. CMA-ES is a derivative free global optimization routine involving the iterative

update of sampled points through an evolutionary strategy. At each iteration only the sampled

points with lowest loss are kept and that distribution is used to update the mean and covariance

matrix of the routine from which new samples are drawn. As we are optimizing a non-convex

function, the technique is not guaranteed to converge to the global optimum in the given time

specified for optimization—indeed we often see differences in the parameters found by the routine

depending on the initial sampling.

Reservoir Computer
Wout = urT (rrT + �I)�1

<latexit sha1_base64="w2WVmEPWWry4z3R8frt9FBVIZNI="></latexit>

M Forecasts 𝑢!(𝑡), 𝐶"#

Observed Data 𝑢!(𝑡)

Dynamical Invariant 
𝐶"

Validation Data 
𝑢#(𝑡)

Training Data 𝑢(𝑡)

Parameters 
𝜌$% , 𝜌&, 𝛼, 𝜎, 𝛽

Loss(𝐶", 𝐶%' , 𝑢( , 𝑢#)

FIG. 3. Parameter optimization of a reservoir computer showing the introduction of dynamical invariants.

The observed data is split into training, validation and testing sets with the invariants calculated from the

data29. These quantities can then be incorporated into the loss function to improve the overall training of

the RC. A general discussion of the training strategy is found in Platt et al.202245.

We use the Lyapunov exponents and the fractal dimension as examples of dynamical invari-

ants in order to demonstrate the technique. With the equations of motion, such as eq.(4) for the

RC, it is quite simple to calculate these quantities using well known and efficient algorithms30.

When training directly from data—without knowledge of the underlying system—we may not

know the equations of motion so these quantities must be estimated. The largest LE can often

be approximated from time series data29,52,53 and the fractal dimension can be calculated using
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various techniques29,54. A calculation of the full LE spectrum is more difficult. Use of other

dynamical invariants derived from the invariant measure eq.(2) are also possible, for instance the

energy density spectrum of a fluid dynamical system as a function of wavenumber.

V. RESULTS

A. Lorenz 1996

Our first test case for the RC is the Lorenz 1996 system (L96)25, a standard testbed for data

assimilation applications in numerical weather prediction. L96 describes the evolution of a scalar

quantity over a number of sites positioned uniformly over a periodic lattice of constant latitude.

The evolution of this scalar quantity is governed by terms representing advection and diffusion,

duk

dt
=−uk−1(uk−2 −uk+1)−uk +F. (7)

In this case we take the number of sites to be D = 10 and forcing F = 8.0 with the purpose of

making the system hyperchaotic, with three positive Lyapunov exponents Fig.(4).

1 2 3 4 5 6 7 8 9 10
Lyapunov Exponents

4

3

2

1

0

1

M
ag

ni
tu

de

Lorenz 1996
Magnitude of the Lyapunov Exponents

FIG. 4. Lyapunov exponents of the 10D Lorenz 1996 system25 with F = 8.0. There are three positive LEs,

a single zero exponent, and the remaining LEs are negative.

The results for CRC = LEs eq.(6) are shown in Fig.(5). When no global information is given

to the RC then it can fail to generalize when presented with unseen input. Simply providing the

largest LE to the RC during training enables the neural networks to:
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1. generalize to unseen data so that there are good predictions over the entire range of possible

initial conditions, and

2. reconstruct the attractor as in55 and46 with the prediction giving the correct ergodic proper-

ties of the data even after the prediction necessarily diverges from the ground truth.

In this case, providing the largest LE was sufficient to improve the predictions, with no further

gains coming from providing additional LEs. Indeed, a slight decrease in the mean prediction time

is observed when providing more LEs. A calculation of the LEs of the reservoir after optimization

shows that providing the single largest exponent and the sample trajectories are sufficient for the

entire LE spectrum to be reproduced. Providing additional LEs during training therefore adds

more constraints but no new information, resulting in a slightly less optimal result.

0 1 2 3 4 5 FD
Number of Provided LEs

0

1

2

3

4

5

6

7

M
ea

n 
VP

T

Lorenz 1996
Mean Valid Prediction Time ( 1t)

FIG. 5. The RC is initialized 10 times, providing k LEs and M=7 long term forecasts eq.(6); we report on

the average of the distribution of predictions for the 10 dimensional Lorenz 1996 system25 eq.(7). There

are 10 total LEs—3 positive, shown in Fig.(4). When 0 LEs are provided the RC has no global information

and the prediction time is poor. Providing the largest LE is sufficient for generalizable predictions and this

quantity is quite easily calculated from numerical data29. The last column shows the alternative result when

providing only the fractal dimension (no LEs provided) as another example of an invariant quantity. The

size of the RC is N = 400 and the number of test initial conditions is 1000. The forecast time is given as

an average over the 1000 trajectories and then scaled by the largest LE to give the prediction in terms of the

number of Lyapunov timescales. The LEs were calculated using the QR decomposition method56 from the

equations of motion. Results of how the forecast and hyperparameter distributions change as the number of

exponents is varied are found in the supplemental information.
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The second invariant given is the fractal dimension of the data calculated through the Kaplan-

Yorke formulation57,58

Dimension = α +
∑

α
i=1 λi

|λα+1|
, (8)

with D the system dimension, λ the ordered LEs and α the smallest index where the sum of the

LEs does not cross zero29. There are alternate definitions and methods for calculating the fractal

dimension54.

Providing the fractal dimension to the loss function as an invariant has a similar effect to provid-

ing the LEs by raising the mean valid prediction time (VPT) from ∼ 2 → 4. The fractal dimension

may not, however, be unique to a particular set of data while the LE spectrum has a much greater

chance of constraining the shape of the resulting strange attractor. Therefore, we see that there is

not as much improvement in the forecast when providing the fractal dimension compared to the

LE spectrum.

It is typically possible to calculate an approximation of the largest LE from numerical data29—

for a large and complex system, however, the calculation is often difficult and the result may be

inaccurate. The robustness of the proposed training technique to errors in provided LEs is tested

in Fig(6), where multiples of the correct exponent are provided to the RC during training. The

addition of the LE acts as a guide to the training, not as a hard requirement—see eq.(6). Errors in

the provided exponent up to a factor of 2-3 cause only a slight degradation of performance. This

experiment shows that the training method is robust to the numerical errors in the calculation of

the largest LE from measured data.

B. Synoptic Scale Atmospheric Model

For more complex higher-dimensional dynamical systems, the Lyapunov spectrum or Kaplan-

Yorke dimension are quite difficult, if not impossible, to calculate. However, our previous results

showed that capturing the leading Lyapunov exponent (LLE) enhanced prediction skill greatly,

and even with complex models this quantity can be estimated more readily either from data52,53

or from a model56,59. We therefore explore the value of representing the LLE in the case of

quasi-geostrophic (QG) dynamics60, which assume that large-scale atmospheric disturbances are

governed by the conservation of potential temperature and absolute potential vorticity, while the

horizontal velocity is quasi-geostrophic and the pressure quasi-hydrostatic. Numerical models
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FIG. 6. The effect of including an incorrect LE in the training for the 10D Lorenz 96 system. The RC

dimension is N=400 with 1 LE and M=7 trajectories with t f = 3 provided during training eq.(6). The peak

prediction time occurs when the exact exponent is given but even large errors of up to a factor of 2-3 cause

only minimal degradation to the prediction skill.

based on the QG approximation were a precursor to larger scale primitive equation models used for

global numerical weather prediction3 and are frequently used in data assimilation studies targeting

the atmosphere and ocean61,62. Here, we consider the two-layer baroclinic model of Charney and

Strauss (1980)63 used to study the planetary-scale motions of a thermally driven atmosphere in

the presence of topography. We further incorporate the adaption of Reinhold and Pierrehumbert

(1982)26 to include an additional wave in the zonal direction making it highly baroclinically un-

stable. We use the implementation of Demaeyer et al.(2020)28, which provides a truncated 2-layer

QG atmospheric model on a mid-latitude β -plane frictionally coupled to a mountain and a valley

with a dimension of 20 in the spectral space of the model.

For the atmospheric streamfunctions ψ1
a/ψ3

a at heights 250/750 hPa and the vertical velocity

ω = dp
dt , the equations of motion are derived to be

∂

∂ t

vorticity︷ ︸︸ ︷(
∇2ψ1

a

)
+

horizontal advection︷ ︸︸ ︷
J(ψ1

a ,∇
2
ψ

1
a ) +

β−plane Coriolis force︷ ︸︸ ︷
β

∂ψ1
a

∂x
=−

friction︷ ︸︸ ︷
k′d∇

2(ψ1
a −ψ

3
a )+

vertical stretching︷ ︸︸ ︷
f0

∆p
ω (9)

∂

∂ t

(
∇2ψ3

a

)
+ J(ψ3

a ,∇
2
ψ

3
a )+ J(ψ3

a , f0h/Ha)+β
∂ψ3

a
∂x

= k′d∇
2(ψ1

a −ψ
3
a )− kd∇

2
ψ

3
a +

f0

∆p
ω

(10)

with ∇ = ∂

∂x x̂+ ∂

∂y ŷ, k′d the friction between the layers, kd the friction between the atmosphere and
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the ground, h/Ha the ratio of ground height to the characteristic depth of the atmospheric layer,

∆p = 500 hPa the pressure differential between the layers and J(g1,g2) =
∂g1
∂x

∂g2
∂y − ∂g1

∂y
∂g2
∂x the

Jacobian. More details are given in26,28.

After integrating the model forward in time, we ask if an RC model is capable of predicting

the dynamics given a significant amount of training data. An example forecast and distribution of

predictions is shown in Fig.(2) where the conventionally trained6,45 RC model successfully pre-

dicts the synoptic scale atmospheric dynamics for a number of months. Such significant predictive

power on a low resolution QG model is an interesting result in and of itself, showcasing the ability

of RNNs to resolve more realistic atmospheric dynamics.

When we reduce the amount of data and set M = 1—the limited data case in eq. (6) with

a single forecast as part of the training loss—the RC model loses its predictive power. Adding

in the information contained in the LLE, which is ∼ 0.01, enables the model to recover a large

amount of predictive capability. The calculated LLE of the RC with no provided LEs is 0.14,

compared to ∼ 0.01 when it is provided. The mismatch between the LEs of the two systems is a

clear indication that synchronization between the two is not achieved46. The impact of the added

information provided via the LLE is clear in Figure 7, where the average VPT has extended from

only a few days to multiple weeks.

VI. DISCUSSION AND CONCLUSION

Chaotic dynamical systems are difficult to predict due to their sensitivity to initial conditions64.

Better understanding and accounting for dynamical uncertainties has, however, allowed fields like

numerical weather prediction to provide useful and continually improving forecasts65. Previous

works (e.g.13,49) proposed that including conserved quantities such as energy/momentum may

help to improve the application of neural networks to physical systems. However, the introduction

of the proposed conserved quantities is not generally applicable to dissipative chaotic dynamical

systems. Thus, we instead considered dynamical invariants based on the invariant measure.

We provided a concrete example using quantities derived from the invariant measure, such as

the Lyapunov exponents and the fractal dimension, to train a particular RNN architecture called

reservoir computing (RC). Previous RC training algorithms used long-term forecasts initialized

from many different initial conditions in order to improve generalizability6,47, essentially impos-

ing these invariant measures by proxy. Here, we imposed the invariant measures as constraints
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FIG. 7. Prediction time in days across 100 predictions for the QG model with an RC trained with and without

input of LEs and with t f = 1 in the optimization routine eq.(6). The size of the reservoir is N = 500 and

50000 training steps are provided with ∆t = 80min. Without the provided exponents in this low information

regime, unlike in the data rich example in Fig(2), the RC model is unable to correctly infer the correct

dynamical invariants and fails to generalize.

directly in the training algorithm, allowing the RC to generalize with fewer data. Fortunately, we

have found that much of the value of this additional constraint is achieved through the use of the

leading Lyapunov exponent. While the entire Lyapunov spectrum can be quite difficult to cal-

culate, particularly for large systems, the leading Lyapunov exponent can be estimated by using

numerical techniques such as the breeding method66,67 or other methods described in21,56,59. This

provides an opportunity for extension of this technique to higher-dimensional systems.

Recent works from68–70 have shown promise in producing data-driven surrogate weather mod-

els that are competitive by some metrics with conventional operational forecast models. A key

property that has not yet been demonstrated with such surrogate models is their ability to repro-

duce dynamical quantities such as the LEs, which indicate an average measure of the response to

small errors in the initial conditions. For weather models in particular, the enforcement of LEs is

crucial for the correct operation of data assimilation algorithms3. Platt et al.202146 demonstrated

the importance of reconstructing the LE spectrum for producing a skillful deterministic forecast

model. Similarly, Penny et al.6 indicated the ability of the RC to reproduce accurate finite-time

LEs as a requirement for RC-based ensemble forecasts to produce good estimates of the fore-

14

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
56

99
9

 09 January 2024 21:31:06



cast error covariance, which is the primary tool used in conventional data assimilation methods to

project observational data to unobserved components of the system. This information can then be

used to make the RC robust to sparse and noisy measurements. While this is the more realistic

scenario used in online weather prediction systems, it is a fact that is rarely taken into account in

neural network applications. The introduction of explicit constraints in the training cost function

both improves predictions and trains the RNN to reconstruct the correctly shaped attractor45,55.
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VIII. SOURCE CODE

The basic RC implementation used in this study is available

https://github.com/japlatt/BasicReservoirComputing
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Appendix A: Supplemental Information

We provide in this supplemental section a few detailed graphs that give added insight into the

working of the optimization routine. Figure (8) more clearly shows how the additional informa-

tion in the dynamical invariants enables the routine to find the correct set of parameters. Even
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FIG. 8. This is the same data as in Fig.(5) for the 10 dimensional Lorenz 1996 system eq.(7) with F=8. Both

the number of trajectories M, eq.(6), and the number of exponents provided to the cost function are varied,

showing that the optimizer often fails to find a predictive solution when the number of provided exponents

is 0. Even as the number of trajectories increases the mean predictive time over the sampled trajectories is

extremely volatile. The procedure is that the optimizer is initialized 5 times for each condition and then the

mean predictive time over the test set is recorded. Distributions are over these 5 points with the error bars

giving the 95% confidence intervals.

with many provided trajectories, with no added dynamical information it is difficult to locate the

correct minimum. Figures (9, 10) show how the found parameters change with the added informa-

tion. There is a clear optimal spectral radius around ∼ 0.2 that the RC without LEs fails to find.

Additionally we show that the no LE case also fails to reproduce the correct largest LE, a clear

sign of suboptimality46.
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FIG. 9. Distribution of the spectral radii for the optimized RCs of the Lorenz 1996 system—the same as

Fig.(8). The optimal SR is found by the optimizer when we provide the correct number of exponents but

with 0 LEs provided it is unable to find the correct value.
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FIG. 10. Distribution of the largest LE for the optimized RCs of the Lorenz 1996 system—the same as

Fig.(8). The correct largest LE (black line) is found by the optimizer when we provide LEs as inputs but

with 0 LEs provided it is unable to find the correct value.
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