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Abstract

Geospatial models are commonly used to quantify sediment contributions at the watershed
scale. However, the sensitivity of these models to variation in hydrological and
geomorphological features, in particular to land use and topography data, remains uncertain.
Here, we assessed the performance of one such model, the INVEST sediment delivery model,
for six sites comprising a total of 28 watersheds varying in area (6-13,500 km?), climate (tropical,
subtropical, mediterranean), topography, and land use/land cover. For each site, we compared
uncalibrated and calibrated model predictions with observations and alternative models. We
then performed correlation analyses between model outputs and watershed characteristics,
followed by sensitivity analyses on the digital elevation model (DEM) resolution. Model
performance varied across sites (overall r> = 0.47), but estimates of the magnitude of specific
sediment export were as or more accurate than global models. We found significant correlations
between metrics of sediment delivery and watershed characteristics, including erosivity,
suggesting that empirical relationships may ultimately be developed for ungauged watersheds.
Model sensitivity to DEM resolution varied across and within sites, but did not correlate with
other observed watershed variables. These results were corroborated by sensitivity analyses
performed on synthetic watersheds ranging in mean slope and DEM resolution. Our study
provides modelers using INVEST or similar geospatial sediment models with practical insights
into model behavior and structural uncertainty: first, comparison of model predictions across
regions is possible when environmental conditions differ significantly; second, local knowledge
on the sediment budget is needed for calibration; and third, model outputs often show significant
sensitivity to DEM resolution.
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1 Introduction

Sediment transport models seek to represent the sources and volumes of sediment leaving a
basin. Predictions from such models help inform landscape management decisions at various
spatial scales. For example, estimates of sediment export have supported global ecosystem
service assessments, highlighting the value of native vegetation and exposing vulnerabilities
under scenarios of land use or climate change (e.g. Water blueprint by McDonald and Shemie,
2014). At smaller scales, sediment models can support the design of watershed management
plans that balance agricultural development, domestic water demand, and biodiversity
conservation (e.g. Goldman-Benner et al., 2012).

A number of practical applications necessitate spatially-explicit information on sediment yields.
Given their relative simplicity and the growing availability of environmental data, geographic
information system (GIS)-based models are increasingly used: a major application is to identify
zones of high or low sediment yield, thereby supporting decisions to prioritize sites for
restoration or implementation of best practices. Alternatively, these tools may be used for
predictions of sediment yield under particular scenarios of climate or land cover change (e.g.
Hamel et al., 2015). GIS-based models can also contribute to basic research toward refining
sediment budgets by distinguishing the contributions from sources such as sheet, gully, and
bank erosion (de Vente et al., 2013).

An important class of spatially distributed models combine an estimate of soil erosion with a
transport model, which represents the amount of sediment actually reaching the watershed
outlet (e.g. GWLF, SWAT, SEDEM, AGNPS models, reviewed by de Vente et al. 2013).
Estimates of soil erosion can be derived from empirical models such as the Universal soil loss
equation (USLE) or its variants RUSLE/MUSLE (see review by Merritt et al., 2003), or from the
direct use of empirical export coefficients (e.g. White et al., 2015). Soil loss estimates are then
combined with information on sediment transport, or connectivity, which is defined as “the
integrated transfer of sediment across all possible sources to all potential sinks in a system over
the continuum of detachment, transport and deposition” (Bracken et al., 2015).

In recent years, measures of sediment connectivity have been derived from geographic
datasets that describe environmental features with basic assumptions about how sediment is
transported across the landscape to the stream. These datasets typically include topography,
intensity and frequency of precipitation events, and land use/land cover (LULC) (Bracken et al.,
2013). For example, Borselli et al. (2008) implemented and tested a theory of landscape
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hydrologic connectivity via an index that is computed from geospatial raster data, specifically a
digital elevation model (DEM) and a LULC map used to derive slope, flow accumulation, and
landscape “roughness”. The connectivity index can subsequently be used to calculate sediment
delivery ratios (SDR), representing the proportion of eroded soil on a pixel that eventually
reaches the stream.

The algorithm from Borselli et al. described above was recently adapted and integrated into the
INVEST software, a suite of tools that aims to assess ecosystem services (Sharp et al., 2016).
The model showed good performance in a range of environments, explaining a large proportion
of the variance in sediment yields for nested watersheds in United States (Hamel et al. 2015).
Other studies conducted with the original algorithm developed by Borselli also found that the
model was able to predict variability in sediment yields in ltaly, South-East Australia and Hawai'i
(Cavalli et al., 2013; Falinski, 2016; Leombruni et al., 2009; Vigiak et al., 2012).

Despite these encouraging results and the utility of GIS-based models for landscape planning,
the level of confidence associated with these models remains unclear. In particular, uncalibrated
results difficult to ascertain, and model comparisons across regions are rare, making it difficult
to distinguish model noise from actual differences in sediment exports (Chaplin-Kramer et al.,
2016). For example, the optimal value of the main calibration parameter, ks (see Section 2.1),
was 2 in Australian catchments (Vigiak et al., 2012) and 1.8 in North Carolina (Hamel et al.,
2015). Such difference is expected given the empirical nature of the model but better guidance
and regional insights would improve uncertainty assessment and modeling practice.

Among the factors influencing model predictions, DEM resolution plays a particular important
role: in fact, both pixel-scale soil loss (computed via a grid-based implementation of the USLE),
and the SDR factor are functions of pixel size. Recent studies have aimed to quantify the effect
of DEM resolution on hydrologic predictions: for example, Zhu et al. (2014) showed that for six
watersheds in China, the accuracy of the slope-length factor decreased with increasing DEM
resolution and terrain complexity. Mondal et al. (2016) show that increasing DEM resolution can
decrease soil loss estimates by >12% in their catchment in India, and these trends were similar
to those found by Lin et al. (2013) and Wu et al. (2005). Although this body of literature confirms
the importance of the DEM effect, limited practical guidance is currently available to model
users. With regards to sediment connectivity, and therefore the SDR factor, the algorithm used
in the calculation of sediment connectivity showed limited sensitivity to DEM resolution in a
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subset of Australian watersheds (Vigiak et al. 2012), although these results cannot be
extrapolated to other geographies.

In this paper, we propose to advance the understanding of the above two issues: the effect of
environmental factors on one hand, and of DEM resolution on the other hand, on model
performance and usefulness, with implications for both researchers and practitioners. Through
six recent applications of the INVEST sediment delivery model, we assess the effect of
topography and land cover on the sediment export computed by the model and perform
sensitivity analyses on the effects of DEM resolution, for the six watersheds and a range of
synthetic watersheds. These analyses provide important insights into the structural uncertainty
of the INVEST model. Results also have implications for a range of GIS-based sediment models
using a similar modeling philosophy (the coupling of a soil loss module with a transport module).
Recognizing the demand for practical guidance from the environmental modeling community,
we propose in our conclusion a set of practical recommendations that are relevant to
practitioners using such models.

2 Methods
2.1 Study sites

The six sites used in this study are located in the contiguous U.S., Hawai‘i, Puerto Rico, Kenya,
and Spain, thus representing Mediterranean, tropical and subtropical climates (Figure 1; Table 1
summarizes key watershed characteristics). Relief varies greatly, with median slopes ranging
from 4 to 72% (see Table 1 for ranges), and are dominated by forest and crops (Tana). Each
site was used in previous work by the authors such that model inputs, observations and
alternative model predictions were readily available (see Supplementary Material). In total, they
constitute a dataset of 28 subwatersheds, with between two and eight subwatersheds in each
site. Note that data sources differ between sites: for example, erosivity was obtained directly
from governmental agencies’ datasets for the U.S. sites, while it was derived from precipitation
data and empirical equations for other sites. Similarly, C and P factors (see below for a
description of these parameters) were obtained from different regional sources; therefore, they
have different values in each site.
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2.2 Model overview

The INVEST sediment delivery model implements a soil loss algorithm linked to the sediment
connectivity algorithm proposed by Borselli et al. (2008). Soil loss is computed with the revised
universal soil loss equation (RUSLE) for each pixel (Renard et al., 1997). The equation
multiplies five factors corresponding to the erosivity (R; related to the energy from precipitation
that is available to move particles), erodibility (K; reflecting soil physical properties that define
susceptibility to particle removal), slope-length (LS; related to the topographic context for
particle movement), and two empirical factors related to the land use-land cover: the cover
factor, C, and the practice factor, P. The LS factor is computed with D-infinity routing following
the expression developed by Desmet and Govers (1996) and implemented in the
PyGeoprocessing library (Sharp et al. 2016).

Soil loss is then multiplied by a sediment delivery ratio (SDR) factor, computed for each pixel
according to the sediment connectivity algorithm (Borselli et al., 2008; Cavalli et al., 2013). The
product of soil loss and the SDR factor is the sediment export from each pixel (see example
map in Figure S1). The SDR factor is a function of the index of connectivity, which is itself a
function of the upslope contributing area and downslope flow path of a pixel (cf. Figure 1a in
Hamel et al. 2015). Specifically, SDR and IC are related to the C-factor and slope according to
the following equations (computed on each pixel):

IC =log, (g—;i), (1)

where Dy, is the upslope component defined as:

Dup = CSVE, @)

with C is the average C factor of the upslope contributing area, S is the average slope gradient
of the upslope contributing area (m/m) and A is the upslope contributing area (m?). The upslope
contributing area is delineated from the D-infinity flow algorithm (Tarboton, 1997).

The downslope component Dqs is given by:

d;
Dgn = i PR 3)
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where di (m) is the distance along the steepest downslope direction from the it" pixel to the first
downslope stream pixel; Ci and S; are the C factor and the slope gradient of the it pixel,
respectively (Figure 1a in Hamel et al., 2015). The hydrographic network (stream pixels) is
extracted from the DEM using a threshold flow accumulation parameter, TFA, corresponding to
the number of pixels (or, equivalently, the area) necessary to initiate channel flow.

The sediment delivery ratio for a given pixel i is derived from the connectivity index IC using a
sigmoid function:

SDR = —SPRMax (4)

—_ b
1 +exp(—m?€blc)

where SDRmax , Ko, and ICo are model parameters. Additional details and a sensitivity analysis
for the Cape Fear watershed can be found in previous work (Falinski, 2016; Hamel et al., 2015).
Model calibration is usually done by changing the ky value following the approach explained by
Hamel et al. (2015), aiming to minimize the model bias on sediment export. Details for each site
are provided in Supplementary Material. ICo is also used as a calibration parameter, which is the
case for the Hawai'‘i site in this study (cf. Supplementary Material, Section 2).

2.3 Comparison of sediment export

For each subwatershed, we first computed the specific sediment export, defined as sediment
export normalized by watershed area, obtained from the uncalibrated INVEST model. We
compared these estimates to specific sediment exports obtained from at least one of the
following methods (depending on data availability): INVEST calibrated model, direct
observations (obtained either from bathymetric survey or sediment concentration time series),
alternative deterministic model (SWAT), and two statistical models (BQART, Syvitski and
Milliman, 2007; and FSM, Verstraeten et al., 2003). The two statistical models permitted a
comparison of INVEST to alternative approaches with modest data and time requirements, while
the comparison to SWAT outputs served as reference to approaches with greater complexity.

The Supplementary Material provides additional details on processing of observed data or
alternative sources for the “best estimate” for sediment export at each subwatershed, as well as
execution of individual models at each site (INVEST and alternative models). We selected
BQART and FSM based on a review by de Vente et al. (2013) for regional sediment yield
models, focusing on models that had low data and computational requirements (lumped
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models). BQART uses data on runoff (Q), area (A), relief (R), temperature (T), lithology,
glaciology and human influence (B) to predict sediment yield. It was verified on 488 catchments
worldwide, accounting for 95% of the variance in sediment loads. Runoff values were taken
from previous studies when available (Cape Fear, from Hamel and Guswa, 2014, and Llobregat,
from Terrado et al. 2013), or from Figure 1 in the original BQART paper by Syvitski et al. 2007.
Temperature data were taken from Figure 1 in Syvitski et al. 2007. FSM uses five factors
characterizing vegetation, topography, presence of gullies, lithology, and shape to predict
sediment yield. It was tested on 96 catchments and explained between 67 and 87% of the
variance (de Vente et al. 2013). For some of the catchments studied in this work, the regression
equation of FSM yielded negative values and the predictions were therefore discarded. Section
7 of the Supplementary Material summarizes sediment export estimates from each model.

2.4 Correlation between sediment delivery metrics and watershed characteristics

A major objective of this paper is to understand how watershed characteristics influence the
sediment export and sediment delivery ratio factor (SDR, the proportion of exported sediment
relative to eroded soil for a given pixel). With this aim, we analyzed the correlation between
SDR and a range of watershed variables related to topography, climate, soils, and vegetation,

as summarized in Table 2.

2.5 Sensitivity of sediment delivery metrics to DEM resolution

2.5.1 Empirical analyses

For each site, we created a 30-m, 90-m, and 180-m DEM based on the finest available
resolution for the site (10 or 15 m). Recent literature suggests that the choice of the resampling
method does not influence results significantly in studies of DEM resolution (Wu et al., 2008).
Here, we used the bilinear interpolation to resample DEM to coarser resolutions. We re-ran
each calibrated model with these DEMs to compare the soil loss (USLE) and sediment export
for each resolution. The threshold flow accumulation parameter, describing the number of
upstream pixels contributing flow to the point of stream channel initiation, was adjusted to match
the pixel size from resampled rasters using the following equation:

TFA, = TFA, (:—‘1’)2 (5)
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where TFA and r represent, respectively, the threshold flow accumulation and the resolution for
the initial (“0”) and new (“1”) DEMs.

2.5.2 Numerical analyses

To assess the effect of DEM resolution on model outputs, we conducted a sensitivity analysis of
INVEST output variables with a synthetic watershed ‘template’ (Figure 2). Our goal here was not
to investigate multiple topographic features but to gain insights into how InVEST variables
varied with DEM resolution for a simplified topography. The watersheds templates are 10 km-
side squares draining to the center of one side, and created in Python. The function used to
construct the elevation (Figure 2, left) assigns each pixel a height value as a function of the
horizontal distance to the watershed drain, multiplied by a constant factor to adjust mean slope,
and offset by a small random value to generate a non-trivial stream network (Figure 2, left).
Formally, pixel's height in the synthetic landscape is:

height,(d) = d * s + rand(p) (6)

where d is the distance of pixel p to the watershed drain, s is the mean slope of the watershed,
and rand(p) generates a random number between -1 and 1. Five synthetic watersheds were
built from this template, with a mean slope of 2, 5, 10, 15, and 5 m/m, respectively.

From each template, we created 40 watersheds with distinct DEM resolutions, starting from 5 m
and increasing to the coarsest resolution of 200 m by increments of 5 m, and computed
sediment variables with the INVEST model. Erosivity and erodibility are homogeneous across
the area (equal to 1 unit). LULC is also assumed homogeneous for four of the watersheds, with
C and P factors set to 0.1 and 1, respectively. For the fifth watershed template, with a 5 m/m-
mean slope DEM, we used a two-class LULC raster with the C factor equal to 0.1 in the upper
part, and 0.5 in the lower part (Figure 2, right).
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3 Results
3.1 Comparison of sediment exports

Specific sediment exports, which by definition discard the effect of watershed area, varied
widely across sites. Values ranged from 0.98 ton/km?/yr in Cape Fear, to more than 3100
ton/km?/yr in Puerto Rico (see Supplementary Material for discussion of these high yields).

The calibrated INVEST model predicted the relative magnitude of specific sediment yields
(Figure 3) with relatively good accuracy (r? of 0.47). Uncalibrated model performance was lower
(r? of 0.39), although relative differences between sites were generally correctly predicted
(crossed square in Figure 3). In general, relative errors were lower for the uncalibrated model
than the one obtained with the BQART and FSM models (for comparison, r? for both models is
<0.03).

3.2 Correlation between sediment delivery metrics and watershed characteristics

We found a significant relationship (p<0.05) between the SDR median value, watershed area,
erosivity, erodibility, and the percentage of urban areas and other LULC in the landscape (Table
3). Contrary to our expectations, we found no relationship between the SDR median value and
any of the slope metrics, although there was a weak (r=-0.41) correlation between the 10t
percentile of SDR values and the median slope. To help interpret these results, we also
examined the correlation coefficients with the IC median value, a variable that is not affected by
calibration: a significant relationship was also found with the percentage of LULC areas, but the
correlation with the watershed area and erosivity and erodibility weakened. The 10 and 90t
percentiles for each metric yielded generally similar results.

The large variability in topography and LULC between sites may confound some of these
relationships. Therefore, we looked at correlations between variables within a site, Cape Fear,
which was the one with the most subwatersheds for correlation analyses. We found the same
trends as those presented in Table 3 (i.e. levels of significance and order of magnitude of the

correlation coefficients were generally similar).

10
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3.3 Sensitivity of sediment delivery metrics to DEM resolution

3.3.1 Empirical validation

The DEM resolution did not have a consistent effect on sediment export between sites, and the
effect of increasing resolution differed both between sites and within sites (Figure 4). Relative to
the highest resolution original baseline (either 10 or 15 m, depending on the site), the change in
sediment export approximately ranged from -70% to 20%.

For some sites (e.g. Cape Fear), sediment export decreased with increasing resolution, while
for others (e.g. Llobregat 2), the trend was positive. For yet other sites (e.g. Upatoi), sediment
export did not show a monotonous trend.

Given the inconsistent trends, we explored the effect of DEM resolution on the SDR and RUSLE
rasters separately: as explained in the next section, because sediment export from a pixel is the
product of these two variables, its sensitivity to DEM resolution is affected by the sensitivity of
each of the two variables. Similar to the data presented in Figure 4, we computed the change in
USLE and SDR (compared to the baseline) for all sites. For some watersheds, the effect of
DEM resolution on both USLE and SDR was cumulative, whereas it had opposite directions for
other sites. Across the six sites, this compensatory effect, i.e. when the effect of DEM resolution
has a different direction for USLE and SDR, seems to be common since most of the watersheds
exhibited non-uniform trends (similar to Upatoi or Tana in Figure 4).

3.3.2 Numerical analyses

For all the synthetic watersheds, we saw an increase in total sediment export as DEM resolution
coarsened. The relative difference between the 5-m and the 200-m resolution ranged from 5 to
10% for the five synthetic watersheds.

Figure 5 illustrates this trend for the 5 m/m-slope watershed, with homogeneous LULC, showing
that sediment export increased by 10% for the 200-m resolution. This increase seems to be
driven by the increase in total soil loss (+20%) and the median value of the SDR factor across
the landscape, which both increase. However, given that the sediment export on a pixel is the
product of soil loss and the SDR factor, we expected a sharper relative increase in sediment
export (>10%). It appears that the trend in the median SDR value is not representative of SDR
values across the landscape. For high values of SDR, e.g. 90" percentile, we observed a
decreasing trend (orange line in Figure 5). This explains the trends in Figure 4: for some

11
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topographies, there exists a compensatory effect between soil loss and sediment delivery — the
former increases while the latter decreases with coarser resolutions — for pixels with the highest
SDR values. These pixels, which are more connected to the stream, contribute the most to the
total sediment export and their response to coarsening resolution has a major influence on this

output.

4 Discussion

Magnitude of sediment export predictions

Our analyses provide insight into the performance of the INVEST model when used across
regions. Figure 3 shows that the INVEST model performance in our study watersheds was
superior to global empirical tools for both the uncalibrated and calibrated models. This is partly
due to the use of the RUSLE, which accounts for major environmental differences between sites
(i.e. climate, through the erosivity, soils, through the erodibility). However, the transport
component of the INVEST model (the SDR factor) also explains 39% of the variance in
calibrated sediment exports (correlation between the 90™ percentile of the SDR values and
calibrated exports), suggesting that both components of the model contribute to the reasonable
prediction of sediment exports.

The difference between uncalibrated and calibrated model predictions was important, reducing
bias by as much as 200% for some sites. This difference calls for caution in the interpretation of
uncalibrated absolute values of sediment yields and should prompt users to think about the
model’s structural and parameter uncertainty. Parameter uncertainty is inevitable and can be
quantified with simple sensitivity analyses (e.g. Hamel et al., 2015). There are also numerous
reasons proposed for the differences between observed and modeled results, related to
simplification of the processes represented by INVEST: for example, instream deposition and
additional sediment sources such as bank erosion, gullies, landslides, or legacy sediments (e.g.
in Hawai'‘i, see Supplementary Material) are not captured by the model. Recent work by Broeckx
et al. (2016) suggests that in landscapes dominated by landslides, the SDR index or other
distance-to-stream metrics were not a strong predictor of sediment yields. In such case, the
major part of the sediment budget will not be adequately represented by the sheetwash erosion
predicted by the model.

12
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Of note, the calibration process used in this study assumes that sediment observations
represent sheetwash erosion only, since this is the only process represented by the model.
(One exception is for Cape Fear, where instream sedimentation was taken into account to
correct sediment exports.) This simplification means that the spatially-explicit soil loss derived
from the RUSLE is used as a proxy for other sediment sources. In doing so, the calibration
process also compensates for the difference between sheetwash erosion and the total sediment
production on a given pixel. While this is not the primary application of the model, it can prove
useful in some applications where one can assume that the variations in RUSLE-based soil
losses is representative (e.g. gully erosion may be driven by similar factors as sheetwash

erosion).
Factors influencing the SDR and the sensitivity to DEM

Our correlation analyses indicated that the median SDR was sensitive to watershed area. This
was unexpected given that the model structure is agnostic to this parameter: only the ratio of
upslope area to downslope flow path (until the stream) is used. We suggest that this correlation
can be explained by the calibration process. In fact, the correlation between sediment export
and watershed area has been recognized for a long time (see de Vente et al., 2007), and our
dataset of observed data exhibits this relationship. Therefore, the process of model calibration
results in the predicted sediment export values to exhibit this relationship. This hypothesis is
corroborated by the fact that the IC values, which are not affected by the calibration process, did
not show any correlation with the area. Of note, the absence of correlation between IC values
and watershed area are due to the implementation of the sediment delivery algorithm, which
uses stream pixels as the “target” for downstream flow paths. An alternative algorithm uses the
watershed outlet as the target, i.e. flow paths continued along the streams until the outlet. This
formulation, examined by Cavalli et al. (2013) makes IC values sensitive to watershed areas but
is not preferred for sediment delivery given the different processes involved in channel
transport.

The SDR values showed a strong correlation with erosivity, which can be explained by the role
of erosivity in watershed connectivity: in fact, high values of rainfall intensity are associated with
higher delivery of sediment. Empirical evidence of such relationship was recently found in the
Latrobe River catchment, Australia, where Vigiak et al. (2016) showed that periods of drought
were associated with lower hillslope connectivity. Of note, we also examined the relationship
between the SDR metrics and watershed runoff but found weak (and negative) correlation,

13
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suggesting that erosivity is a better proxy for watershed-scale connectivity in our study. We only
found weak (and negative) correlation with the slope metrics. We expected such relationships
given the presence of slope in the SDR equation, although it is possible that the proxies used in
this study (percentiles of raster values) present an oversimplified picture of these relationships.

The correlation between SDR metrics and erosivity could be used for the development of
heuristic approaches to estimate SDR values, and thus calibration values. Based on the six
sites, the linear relationship (r>=0.38) between the calibration parameter and median erosivity is:

kp, = 1.56 + 0.0002 * median(K) (7)

Of note, this relationship is given here as a starting point for future research and we recognize
that our sample size is small and that a number of factors may confound this relationship in new
sites. For example, the correlation with the LULC metrics indicates that the SDR factor might be
affected by values of the C-factor for particular classes. In our study, the percentage of urban
and other classes showed a high correlation, which reflects the relatively lower values of the
urban areas selected in a number of sites: for example, in Cape Fear, C-factor is 0.1, whereas it
is 0.25 for agriculture (corn), which means that an increase in urban areas at the detriment of
agricultural areas has the general effect of reducing the average C-factor.

Importantly, the sensitivity analyses on synthetic watersheds allowed us to disentangle the
relationship between sediment export and DEM resolution. We confirmed the presence of a
compensatory effect between the USLE and SDR variables (at the pixel scale), which we also
observed with empirical data. The trends could not be simply associated with watershed
characteristics, which means that predicting the direction of change of sediment export with a
change in DEM resolution, let alone the magnitude of this change, remains a challenge. Of note,
the LS factor (and thus soil loss values) in our synthetic watersheds increased with increasing
resolution whereas it decreases in the watersheds studied by Mondal et al. (2016). This is due
to the concavity of the hillslopes (U-shape in our study). Further work is needed to better
determine the relationship between topographic indices and the USLE and the SDR values (see
Reaney et al. (2014) for similar work for overland flow connectivity).
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5 Conclusion and practical implications

Geospatial models are increasingly used for both research and practical management
questions. The analyses presented here provide some useful practical insights into the behavior
of one such model, the INVEST sediment delivery model. In particular, our comparison with
alternative global models suggests that the use of the USLE captures some useful
environmental characteristics, meaning that the model performance for regional comparison
was fair even without calibration. In addition, the sensitivity analyses on synthetic watersheds
demonstrated the possibility that the SDR factor and the USLE-based soil loss varied in
opposite directions as DEM resolution increased, which means that their product, the sediment
export, may only be mildly affected by changes in resolution. However, empirical data suggest
that this is not the case for all topography, and predicting these relationships remain challenging
for real, complex terrains (Baartman et al., 2013).

A number of practical questions have been raised in this study related to the model performance
for ungauged and gauged watersheds and how watershed topography and DEM resolution
affect model outputs. Although further research is needed to answer these questions with more
confidence, we propose here a list of practical implications of this work. First, we suggest that
comparison of INVEST predictions across regions is possible but should be accompanied by
relatively simple verifications: DEM resolution should be comparable, and estimates of sediment
yields should be verified against available data. As noted earlier, the model was able to capture
sediment export variability when important environmental differences were seen between sites
(e.g. erosivity and erodibility); however, the noise in Figure 3 prevents a straightforward
comparison of model outputs across sites, especially within a homogeneous region.

Second, to improve confidence in model results, better understanding of the local sediment
budget in a given watershed is key (see Chaplin-Kramer et al., 2016). The variability in
calibration values (k, ranging from 1.8 and 3.5, see Supplementary Material), as well as the
large differences between calibrated and uncalibrated values suggest that the model calibration
may overcompensate for errors in sediment sources. Better understanding of the sediment
budget will improve model interpretation, especially when used to predict environmental
changes, i.e. outside model calibration conditions. Unfortunately, relationships between
watershed variables and model outputs (including calibrated k;, values) were relatively weak
(and with a small sample size), meaning that further work is needed to “regionalize” the
calibration process (e.g. determining regional values for k). However, we suggest that erosivity
is a good proxy for the sediment delivery and propose a relationship (eq. 7) that can be tested in
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future studies. Alternatively, one practical option to calibrate the model in the absence of
observed data is based on the watershed-scale sediment delivery ratio: by using regional
relationships between area and this ratio such as those shown in de Vente (2007), it is possible
to estimate the average proportion of soil loss that will be transported to the stream for a given
watershed.

Third, the model outputs showed substantial sensitivity to DEM resolution. Our analyses
suggest that sediment export may be less sensitive to DEM resolution with a simple topography
such as the U-shape used in the numerical study. This is because the SDR factor and soil loss
(determined by the USLE) may show opposite trends with DEM resolution, compensating their
respective effects on sediment export. Practically, if changes in resolutions are anticipated in the
analyses, coarser resolutions will show less sensitivity (right-hand side of the curves in Figure
4). More generally, the variability in sensitivity found across the six sites suggest that site-
specific analyses may be needed to understand the effect of DEM resolution on particular
results (e.g. land use change). Lowering the barriers to conducting sensitivity analyses, similar
to those presented in this work, may be a useful practical step to address this type of
uncertainty in modeling studies.
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Figure 1. The six sites used in this study. The background shows the Képpen-Geiger world main climate zones.
(Source: (Rubel and Kottek, 2010))

Figure 2. Synthetic watershed template used for the numerical analyses. Left: DEM and stream network (for the 90m
DEM). Right: land two-class LULC raster used for the sensitivity analyses. Right: The C factor of the LULC equals 0.1
in the upper watershed, 0.5 in the bottom part.

Figure 3. Comparison of specific sediment yields from the InVEST model. The panels show results before (crossed
squares, left panel) and after (plain squares, right panel) calibration, with the two regional models (BQART, pluses,
and FSM, crosses). The “best estimate” on the x-axis is either observed data or prediction from an alternative model
with higher level of confidence (see Table 1). Each point represents one watershed (note that not all watersheds had

valid predictions from regional models). Note the log-scale.

Figure 4. Trend in sediment export predicted for four DEM resolutions for selected subwatersheds. Some sites show
a uniform trend, with sediment export either increasing or decreasing with coarser resolution, while others show non-

uniform variations.

Figure 5. Difference in SDR 10th, 50th, and 90th percentiles, sediment export (sed_exp) and total erosion (usle),

relative to the 5m resolution. Results are presented for the synthetic watershed with 5% average slope.
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Table 1. Characteristics of the sites used for the empirical analyses, including watershed properties and InVEST

calibration values (ICo was kept constant, except for Hawai'i, see Supplementary Material)

Hawai'i Puerto Upatoi Cape Fear  Llobregat Tana
(U.S.) Rico (U.S.) (U.S.) (Spain) (Kenya)
Climate Tropical Tropical Humid Humid Hot summer Tropical wet
rainforest rainforest subtropical subtropical Mediterrane and dry
an
Mean annual 2500- 1480 1310 1120 600-1000* 1300
precipitation 5900*
(mm)
Areas (km?) [6-10] [36-123] [38-886] [197-13,500] [500-4900] [464-2050]
Slope (10- [17;103] [8; 42] [1;10] [1;11] [12;62] [2;20]
90™) (%)
Major LULC Forest Forest Forest Forest (52%) Forest (31%) Crop (84%)
(85%) (63%) (67%) Urban (17%) Grassland Forest (12%)
Urban Urban Grassland (26%)
(15%) (29%) (19%)
No. of 4 6 5 8 2 3
watersheds
Best Observed Observed SWAT Observed Regional SWAT
estimate daily load daily load predictions  daily load estimate** predictions
(calibrated (calibrated
on one on one
watershed) watershed)
InVEST 2 (1C=0.1) 3.5 34 1.8 3
calibration
(ko value)

* Ranges are given when there is high variability between subwatersheds for a given site (see
Supplementary Material)

** based on sedimentation and monthly load data



Table 2. Summary of variables and their statistics analyzed in this study. InVEST metrics are derived from the
calibrated model. USLE: Soil loss; IC: Index of connectivity; SDR: Sediment Deliverly ratio; LS: slope-length

Variable Type Statistic
InVEST metrics
Sediment export Decimal value -
(ton/yr)
IC () Raster Median, 10th and 90th
SDR (-) Raster Median, 10th and 90th
LS Raster Median, 10th and 90th
Watershed
characteristics
Area (km?3) Decimal -
Elevation (m) Raster Relief (Min-max)
Slope (m/m) Raster Median, 10th and 90th
R factor (S| unit) Raster Median
K factor (Sl unit) Raster Median

%Forest, Grassland, Decimal
Urban, Other




Table 3. Significant correlations between SDR and IC median values, and watershed characteristics. n.s means non-

significant at the 0.01-level. *Sed. Export is the calibrated sediment export in ton/km2/yr

Sed. Export*
SDR median
SDR 10th
SDR 90th

IC median

LS 90th

tfa

area (km2)
Relief (m)
Slope median
R median

K median
%Mix. Forest
%Urban
%Croplands
%0ther

Sed. Export*

0.53
0.44
0.64
0.66
n.s.
0.54
n.s.
0.71
n.s.
n.s.
n.s.
-0.58
n.s.
0.82

n.s.
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-0.69
n.s.
n.s.
n.s.
-0.41
n.s.
n.s.
n.s.
-0.49
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n.s.
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o .
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o o0
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ns.
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