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Abstract 18 

Geospatial models are commonly used to quantify sediment contributions at the watershed 19 

scale. However, the sensitivity of these models to variation in hydrological and 20 

geomorphological features, in particular to land use and topography data, remains uncertain. 21 

Here, we assessed the performance of one such model, the InVEST sediment delivery model, 22 

for six sites comprising a total of 28 watersheds varying in area (6-13,500 km2), climate (tropical, 23 

subtropical, mediterranean), topography, and land use/land cover. For each site, we compared 24 

uncalibrated and calibrated model predictions with observations and alternative models. We 25 

then performed correlation analyses between model outputs and watershed characteristics, 26 

followed by sensitivity analyses on the digital elevation model (DEM) resolution. Model 27 

performance varied across sites (overall r2 = 0.47), but estimates of the magnitude of specific 28 

sediment export were as or more accurate than global models. We found significant correlations 29 

between metrics of sediment delivery and watershed characteristics, including erosivity, 30 

suggesting that empirical relationships may ultimately be developed for ungauged watersheds. 31 

Model sensitivity to DEM resolution varied across and within sites, but did not correlate with 32 

other observed watershed variables. These results were corroborated by sensitivity analyses 33 

performed on synthetic watersheds ranging in mean slope and DEM resolution. Our study 34 

provides modelers using InVEST or similar geospatial sediment models with practical insights 35 

into model behavior and structural uncertainty: first, comparison of model predictions across 36 

regions is possible when environmental conditions differ significantly; second, local knowledge 37 

on the sediment budget is needed for calibration; and third, model outputs often show significant 38 

sensitivity to DEM resolution.   39 
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1 Introduction 40 

Sediment transport models seek to represent the sources and volumes of sediment leaving a 41 

basin. Predictions from such models help inform landscape management decisions at various 42 

spatial scales. For example, estimates of sediment export have supported global ecosystem 43 

service assessments, highlighting the value of native vegetation and exposing vulnerabilities 44 

under scenarios of land use or climate change (e.g. Water blueprint by McDonald and Shemie, 45 

2014). At smaller scales, sediment models can support the design of watershed management 46 

plans that balance agricultural development, domestic water demand, and biodiversity 47 

conservation (e.g. Goldman-Benner et al., 2012). 48 

A number of practical applications necessitate spatially-explicit information on sediment yields. 49 

Given their relative simplicity and the growing availability of environmental data, geographic 50 

information system (GIS)-based models are increasingly used: a major application is to identify 51 

zones of high or low sediment yield, thereby supporting decisions to prioritize sites for 52 

restoration or implementation of best practices. Alternatively, these tools may be used for 53 

predictions of sediment yield under particular scenarios of climate or land cover change (e.g. 54 

Hamel et al., 2015). GIS-based models can also contribute to basic research toward refining 55 

sediment budgets by distinguishing the contributions from sources such as sheet, gully, and 56 

bank erosion (de Vente et al., 2013).  57 

An important class of spatially distributed models combine an estimate of soil erosion with a 58 

transport model, which represents the amount of sediment actually reaching the watershed 59 

outlet (e.g. GWLF, SWAT, SEDEM, AGNPS models, reviewed by de Vente et al. 2013). 60 

Estimates of soil erosion can be derived from empirical models such as the Universal soil loss 61 

equation (USLE) or its variants RUSLE/MUSLE (see review by Merritt et al., 2003), or from the 62 

direct use of empirical export coefficients (e.g. White et al., 2015). Soil loss estimates are then 63 

combined with information on sediment transport, or connectivity, which is defined as “the 64 

integrated transfer of sediment across all possible sources to all potential sinks in a system over 65 

the continuum of detachment, transport and deposition” (Bracken et al., 2015).  66 

In recent years, measures of sediment connectivity have been derived from geographic 67 

datasets that describe environmental features with basic assumptions about how sediment is 68 

transported across the landscape to the stream. These datasets typically include topography, 69 

intensity and frequency of precipitation events, and land use/land cover (LULC) (Bracken et al., 70 

2013). For example, Borselli et al. (2008) implemented and tested a theory of landscape 71 
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hydrologic connectivity via an index that is computed from geospatial raster data, specifically a 72 

digital elevation model (DEM) and a LULC map used to derive slope, flow accumulation, and 73 

landscape “roughness”. The connectivity index can subsequently be used to calculate sediment 74 

delivery ratios (SDR), representing the proportion of eroded soil on a pixel that eventually 75 

reaches the stream.  76 

The algorithm from Borselli et al. described above was recently adapted and integrated into the 77 

InVEST software, a suite of tools that aims to assess ecosystem services (Sharp et al., 2016).  78 

The model showed good performance in a range of environments, explaining a large proportion 79 

of the variance in sediment yields for nested watersheds in United States (Hamel et al. 2015). 80 

Other studies conducted with the original algorithm developed by Borselli also found that the 81 

model was able to predict variability in sediment yields in Italy, South-East Australia and Hawai’i 82 

(Cavalli et al., 2013; Falinski, 2016; Leombruni et al., 2009; Vigiak et al., 2012). 83 

Despite these encouraging results and the utility of GIS-based models for landscape planning, 84 

the level of confidence associated with these models remains unclear. In particular, uncalibrated 85 

results difficult to ascertain, and model comparisons across regions are rare, making it difficult 86 

to distinguish model noise from actual differences in sediment exports (Chaplin-Kramer et al., 87 

2016). For example, the optimal value of the main calibration parameter, kb (see Section 2.1), 88 

was 2 in Australian catchments (Vigiak et al., 2012) and 1.8 in North Carolina (Hamel et al., 89 

2015). Such difference is expected given the empirical nature of the model but better guidance 90 

and regional insights would improve uncertainty assessment and modeling practice.  91 

Among the factors influencing model predictions, DEM resolution plays a particular important 92 

role: in fact, both pixel-scale soil loss (computed via a grid-based implementation of the USLE), 93 

and the SDR factor are functions of pixel size. Recent studies have aimed to quantify the effect 94 

of DEM resolution on hydrologic predictions: for example, Zhu et al. (2014) showed that for six 95 

watersheds in China, the accuracy of the slope-length factor decreased with increasing DEM 96 

resolution and terrain complexity. Mondal et al. (2016) show that increasing DEM resolution can 97 

decrease soil loss estimates by >12% in their catchment in India, and these trends were similar 98 

to those found by Lin et al. (2013) and Wu et al. (2005). Although this body of literature confirms 99 

the importance of the DEM effect, limited practical guidance is currently available to model 100 

users.  With regards to sediment connectivity, and therefore the SDR factor, the algorithm used 101 

in the calculation of sediment connectivity showed limited sensitivity to DEM resolution in a 102 
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subset of Australian watersheds (Vigiak et al. 2012), although these results cannot be 103 

extrapolated to other geographies.  104 

In this paper, we propose to advance the understanding of the above two issues: the effect of 105 

environmental factors on one hand, and of DEM resolution on the other hand, on model 106 

performance and usefulness, with implications for both researchers and practitioners. Through 107 

six recent applications of the InVEST sediment delivery model, we assess the effect of 108 

topography and land cover on the sediment export computed by the model and perform 109 

sensitivity analyses on the effects of DEM resolution, for the six watersheds and a range of 110 

synthetic watersheds. These analyses provide important insights into the structural uncertainty 111 

of the InVEST model. Results also have implications for a range of GIS-based sediment models 112 

using a similar modeling philosophy (the coupling of a soil loss module with a transport module). 113 

Recognizing the demand for practical guidance from the environmental modeling community, 114 

we propose in our conclusion a set of practical recommendations that are relevant to 115 

practitioners using such models.  116 

 117 

2 Methods 118 

2.1 Study sites 119 

The six sites used in this study are located in the contiguous U.S., Hawai‘i, Puerto Rico, Kenya, 120 

and Spain, thus representing Mediterranean, tropical and subtropical climates (Figure 1; Table 1 121 

summarizes key watershed characteristics). Relief varies greatly, with median slopes ranging 122 

from 4 to 72% (see Table 1 for ranges), and are dominated by forest and crops (Tana). Each 123 

site was used in previous work by the authors such that model inputs, observations and 124 

alternative model predictions were readily available (see Supplementary Material). In total, they 125 

constitute a dataset of 28 subwatersheds, with between two and eight subwatersheds in each 126 

site. Note that data sources differ between sites: for example, erosivity was obtained directly 127 

from governmental agencies’ datasets for the U.S. sites, while it was derived from precipitation 128 

data and empirical equations for other sites. Similarly, C and P factors (see below for a 129 

description of these parameters) were obtained from different regional sources; therefore, they 130 

have different values in each site. 131 
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2.2 Model overview 132 

The InVEST sediment delivery model implements a soil loss algorithm linked to the sediment 133 

connectivity algorithm proposed by Borselli et al. (2008). Soil loss is computed with the revised 134 

universal soil loss equation (RUSLE) for each pixel (Renard et al., 1997). The equation 135 

multiplies five factors corresponding to the erosivity (R; related to the energy from precipitation 136 

that is available to move particles), erodibility (K; reflecting soil physical properties that define 137 

susceptibility to particle removal), slope-length (LS; related to the topographic context for 138 

particle movement), and two empirical factors related to the land use-land cover: the cover 139 

factor, C, and the practice factor, P. The LS factor is computed with D-infinity routing following 140 

the expression developed by Desmet and Govers (1996) and implemented in the 141 

PyGeoprocessing library (Sharp et al. 2016).  142 

Soil loss is then multiplied by a sediment delivery ratio (SDR) factor, computed for each pixel 143 

according to the sediment connectivity algorithm (Borselli et al., 2008; Cavalli et al., 2013). The 144 

product of soil loss and the SDR factor is the sediment export from each pixel (see example 145 

map in Figure S1).  The SDR factor is a function of the index of connectivity, which is itself a 146 

function of the upslope contributing area and downslope flow path of a pixel (cf. Figure 1a in 147 

Hamel et al. 2015). Specifically, SDR and IC are related to the C-factor and slope according to 148 

the following equations (computed on each pixel): 149 

�� = ����� 	
��


�

�, (1) 

 150 

where Dup is the upslope component defined as: 151 

��� = �̅�̅√�, (2) 

 152 

with �̅ is the average C factor of the upslope contributing area, �̅ is the average slope gradient 153 

of the upslope contributing area (m/m) and A is the upslope contributing area (m2). The upslope 154 

contributing area is delineated from the D-infinity flow algorithm (Tarboton, 1997).  155 

The downslope component Ddn is given by: 156 

��� = ∑ ��
����� , (3) 
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where di (m) is the distance along the steepest downslope direction from the ith pixel to the first 157 

downslope stream pixel; Ci and Si are the C factor and the slope gradient of the ith pixel, 158 

respectively (Figure 1a in Hamel et al., 2015). The hydrographic network (stream pixels) is 159 

extracted from the DEM using a threshold flow accumulation parameter, TFA, corresponding to 160 

the number of pixels (or, equivalently, the area) necessary to initiate channel flow. 161 

The sediment delivery ratio for a given pixel i is derived from the connectivity index IC using a 162 

sigmoid function: 163 

��� = �
� !"
�#$%& ()*+,)*

-. /
, (4) 

where SDRmax , kb, and IC0 are model parameters. Additional details and a sensitivity analysis 164 

for the Cape Fear watershed can be found in previous work (Falinski, 2016; Hamel et al., 2015). 165 

Model calibration is usually done by changing the kb value following the approach explained by 166 

Hamel et al. (2015), aiming to minimize the model bias on sediment export. Details for each site 167 

are provided in Supplementary Material. IC0 is also used as a calibration parameter, which is the 168 

case for the Hawai‘i site in this study (cf. Supplementary Material, Section 2). 169 

 170 

2.3 Comparison of sediment export 171 

For each subwatershed, we first computed the specific sediment export, defined as sediment 172 

export normalized by watershed area, obtained from the uncalibrated InVEST model. We 173 

compared these estimates to specific sediment exports obtained from at least one of the 174 

following methods (depending on data availability): InVEST calibrated model, direct 175 

observations (obtained either from bathymetric survey or sediment concentration time series), 176 

alternative deterministic model (SWAT), and two statistical models (BQART, Syvitski and 177 

Milliman, 2007; and FSM, Verstraeten et al., 2003). The two statistical models permitted a 178 

comparison of InVEST to alternative approaches with modest data and time requirements, while 179 

the comparison to SWAT outputs served as reference to approaches with greater complexity. 180 

The Supplementary Material provides additional details on processing of observed data or 181 

alternative sources for the “best estimate” for sediment export at each subwatershed, as well as 182 

execution of individual models at each site (InVEST and alternative models). We selected 183 

BQART and FSM based on a review by de Vente et al. (2013) for regional sediment yield 184 

models, focusing on models that had low data and computational requirements (lumped 185 
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models). BQART uses data on runoff (Q), area (A), relief (R), temperature (T), lithology, 186 

glaciology and human influence (B) to predict sediment yield. It was verified on 488 catchments 187 

worldwide, accounting for 95% of the variance in sediment loads. Runoff values were taken 188 

from previous studies when available (Cape Fear, from Hamel and Guswa, 2014, and Llobregat, 189 

from Terrado et al. 2013), or from Figure 1 in the original BQART paper by Syvitski et al. 2007. 190 

Temperature data were taken from Figure 1 in Syvitski et al. 2007. FSM uses five factors 191 

characterizing vegetation, topography, presence of gullies, lithology, and shape to predict 192 

sediment yield. It was tested on 96 catchments and explained between 67 and 87% of the 193 

variance (de Vente et al. 2013). For some of the catchments studied in this work, the regression 194 

equation of FSM yielded negative values and the predictions were therefore discarded. Section 195 

7 of the Supplementary Material summarizes sediment export estimates from each model. 196 

 197 

2.4 Correlation between sediment delivery metrics and watershed characteristics 198 

A major objective of this paper is to understand how watershed characteristics influence the 199 

sediment export and sediment delivery ratio factor (SDR, the proportion of exported sediment 200 

relative to eroded soil for a given pixel). With this aim, we analyzed the correlation between 201 

SDR and a range of watershed variables related to topography, climate, soils, and vegetation, 202 

as summarized in Table 2.  203 

 204 

2.5 Sensitivity of sediment delivery metrics to DEM resolution 205 

2.5.1 Empirical analyses 206 

For each site, we created a 30-m, 90-m, and 180-m DEM based on the finest available 207 

resolution for the site (10 or 15 m). Recent literature suggests that the choice of the resampling 208 

method does not influence results significantly in studies of DEM resolution (Wu et al., 2008). 209 

Here, we used the bilinear interpolation to resample DEM to coarser resolutions. We re-ran 210 

each calibrated model with these DEMs to compare the soil loss (USLE) and sediment export 211 

for each resolution. The threshold flow accumulation parameter, describing the number of 212 

upstream pixels contributing flow to the point of stream channel initiation, was adjusted to match 213 

the pixel size from resampled rasters using the following equation:  214 

01�� = 01�� 	2+
23

�4
, 

(5) 
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 215 

where TFA and r represent, respectively, the threshold flow accumulation and the resolution for 216 

the initial (“0”) and new (“1”) DEMs. 217 

2.5.2 Numerical analyses 218 

To assess the effect of DEM resolution on model outputs, we conducted a sensitivity analysis of 219 

InVEST output variables with a synthetic watershed ‘template’ (Figure 2). Our goal here was not 220 

to investigate multiple topographic features but to gain insights into how InVEST variables 221 

varied with DEM resolution for a simplified topography. The watersheds templates are 10 km-222 

side squares draining to the center of one side, and created in Python. The function used to 223 

construct the elevation (Figure 2, left) assigns each pixel a height value as a function of the 224 

horizontal distance to the watershed drain, multiplied by a constant factor to adjust mean slope, 225 

and offset by a small random value to generate a non-trivial stream network (Figure 2, left).  226 

Formally, pixel’s height in the synthetic landscape is: 227 

ℎ67�ℎ8�9:; = : ∗ = + ?@A:9B; (6) 

 228 

where d is the distance of pixel p to the watershed drain, s is the mean slope of the watershed, 229 

and rand(p) generates a random number between -1 and 1. Five synthetic watersheds were 230 

built from this template, with a mean slope of 2, 5, 10, 15, and 5 m/m, respectively.  231 

From each template, we created 40 watersheds with distinct DEM resolutions, starting from 5 m 232 

and increasing to the coarsest resolution of 200 m by increments of 5 m, and computed 233 

sediment variables with the InVEST model. Erosivity and erodibility are homogeneous across 234 

the area (equal to 1 unit). LULC is also assumed homogeneous for four of the watersheds, with 235 

C and P factors set to 0.1 and 1, respectively. For the fifth watershed template, with a 5 m/m-236 

mean slope DEM, we used a two-class LULC raster with the C factor equal to 0.1 in the upper 237 

part, and 0.5 in the lower part (Figure 2, right).  238 
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 239 

3 Results  240 

3.1 Comparison of sediment exports 241 

Specific sediment exports, which by definition discard the effect of watershed area, varied 242 

widely across sites. Values ranged from 0.98 ton/km2/yr in Cape Fear, to more than 3100 243 

ton/km2/yr in Puerto Rico (see Supplementary Material for discussion of these high yields).  244 

The calibrated InVEST model predicted the relative magnitude of specific sediment yields 245 

(Figure 3) with relatively good accuracy (r2 of 0.47). Uncalibrated model performance was lower 246 

(r2 of 0.39), although relative differences between sites were generally correctly predicted 247 

(crossed square in Figure 3). In general, relative errors were lower for the uncalibrated model 248 

than the one obtained with the BQART and FSM models (for comparison, r2 for both models is 249 

<0.03). 250 

 251 

3.2 Correlation between sediment delivery metrics and watershed characteristics 252 

We found a significant relationship (p<0.05) between the SDR median value, watershed area, 253 

erosivity, erodibility, and the percentage of urban areas and other LULC in the landscape (Table 254 

3). Contrary to our expectations, we found no relationship between the SDR median value and 255 

any of the slope metrics, although there was a weak (r=-0.41) correlation between the 10th 256 

percentile of SDR values and the median slope. To help interpret these results, we also 257 

examined the correlation coefficients with the IC median value, a variable that is not affected by 258 

calibration: a significant relationship was also found with the percentage of LULC areas, but the 259 

correlation with the watershed area and erosivity and erodibility weakened. The 10th and 90th 260 

percentiles for each metric yielded generally similar results. 261 

The large variability in topography and LULC between sites may confound some of these 262 

relationships. Therefore, we looked at correlations between variables within a site, Cape Fear, 263 

which was the one with the most subwatersheds for correlation analyses. We found the same 264 

trends as those presented in Table 3 (i.e. levels of significance and order of magnitude of the 265 

correlation coefficients were generally similar).  266 

 267 
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3.3 Sensitivity of sediment delivery metrics to DEM resolution 268 

3.3.1 Empirical validation 269 

The DEM resolution did not have a consistent effect on sediment export between sites, and the 270 

effect of increasing resolution differed both between sites and within sites (Figure 4). Relative to 271 

the highest resolution original baseline (either 10 or 15 m, depending on the site), the change in 272 

sediment export approximately ranged from -70% to 20%. 273 

For some sites (e.g. Cape Fear), sediment export decreased with increasing resolution, while 274 

for others (e.g. Llobregat 2), the trend was positive. For yet other sites (e.g. Upatoi), sediment 275 

export did not show a monotonous trend. 276 

Given the inconsistent trends, we explored the effect of DEM resolution on the SDR and RUSLE 277 

rasters separately: as explained in the next section, because sediment export from a pixel is the 278 

product of these two variables, its sensitivity to DEM resolution is affected by the sensitivity of 279 

each of the two variables. Similar to the data presented in Figure 4, we computed the change in 280 

USLE and SDR (compared to the baseline) for all sites. For some watersheds, the effect of 281 

DEM resolution on both USLE and SDR was cumulative, whereas it had opposite directions for 282 

other sites. Across the six sites, this compensatory effect, i.e. when the effect of DEM resolution 283 

has a different direction for USLE and SDR, seems to be common since most of the watersheds 284 

exhibited non-uniform trends (similar to Upatoi or Tana in Figure 4). 285 

 286 

3.3.2 Numerical analyses 287 

For all the synthetic watersheds, we saw an increase in total sediment export as DEM resolution 288 

coarsened. The relative difference between the 5-m and the 200-m resolution ranged from 5 to 289 

10% for the five synthetic watersheds.  290 

Figure 5 illustrates this trend for the 5 m/m-slope watershed, with homogeneous LULC, showing 291 

that sediment export increased by 10% for the 200-m resolution. This increase seems to be 292 

driven by the increase in total soil loss (+20%) and the median value of the SDR factor across 293 

the landscape, which both increase. However, given that the sediment export on a pixel is the 294 

product of soil loss and the SDR factor, we expected a sharper relative increase in sediment 295 

export (>10%). It appears that the trend in the median SDR value is not representative of SDR 296 

values across the landscape. For high values of SDR, e.g. 90th percentile, we observed a 297 

decreasing trend (orange line in Figure 5). This explains the trends in Figure 4: for some 298 
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topographies, there exists a compensatory effect between soil loss and sediment delivery – the 299 

former increases while the latter decreases with coarser resolutions – for pixels with the highest 300 

SDR values. These pixels, which are more connected to the stream, contribute the most to the 301 

total sediment export and their response to coarsening resolution has a major influence on this 302 

output. 303 

 304 

4 Discussion 305 

Magnitude of sediment export predictions 306 

Our analyses provide insight into the performance of the InVEST model when used across 307 

regions. Figure 3 shows that the InVEST model performance in our study watersheds was 308 

superior to global empirical tools for both the uncalibrated and calibrated models. This is partly 309 

due to the use of the RUSLE, which accounts for major environmental differences between sites 310 

(i.e. climate, through the erosivity, soils, through the erodibility). However, the transport 311 

component of the InVEST model (the SDR factor) also explains 39% of the variance in 312 

calibrated sediment exports (correlation between the 90th percentile of the SDR values and 313 

calibrated exports), suggesting that both components of the model contribute to the reasonable 314 

prediction of sediment exports.  315 

The difference between uncalibrated and calibrated model predictions was important, reducing 316 

bias by as much as 200% for some sites. This difference calls for caution in the interpretation of 317 

uncalibrated absolute values of sediment yields and should prompt users to think about the 318 

model’s structural and parameter uncertainty. Parameter uncertainty is inevitable and can be 319 

quantified with simple sensitivity analyses (e.g. Hamel et al., 2015). There are also numerous 320 

reasons proposed for the differences between observed and modeled results, related to 321 

simplification of the processes represented by InVEST: for example, instream deposition and 322 

additional sediment sources such as bank erosion, gullies, landslides, or legacy sediments (e.g. 323 

in Hawai‘i, see Supplementary Material) are not captured by the model. Recent work by Broeckx 324 

et al. (2016) suggests that in landscapes dominated by landslides, the SDR index or other 325 

distance-to-stream metrics were not a strong predictor of sediment yields. In such case, the 326 

major part of the sediment budget will not be adequately represented by the sheetwash erosion 327 

predicted by the model.  328 
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Of note, the calibration process used in this study assumes that sediment observations 329 

represent sheetwash erosion only, since this is the only process represented by the model. 330 

(One exception is for Cape Fear, where instream sedimentation was taken into account to 331 

correct sediment exports.) This simplification means that the spatially-explicit soil loss derived 332 

from the RUSLE is used as a proxy for other sediment sources. In doing so, the calibration 333 

process also compensates for the difference between sheetwash erosion and the total sediment 334 

production on a given pixel. While this is not the primary application of the model, it can prove 335 

useful in some applications where one can assume that the variations in RUSLE-based soil 336 

losses is representative (e.g. gully erosion may be driven by similar factors as sheetwash 337 

erosion).  338 

Factors influencing the SDR and the sensitivity to DEM 339 

Our correlation analyses indicated that the median SDR was sensitive to watershed area. This 340 

was unexpected given that the model structure is agnostic to this parameter: only the ratio of 341 

upslope area to downslope flow path (until the stream) is used. We suggest that this correlation 342 

can be explained by the calibration process. In fact, the correlation between sediment export 343 

and watershed area has been recognized for a long time (see de Vente et al., 2007), and our 344 

dataset of observed data exhibits this relationship. Therefore, the process of model calibration 345 

results in the predicted sediment export values to exhibit this relationship. This hypothesis is 346 

corroborated by the fact that the IC values, which are not affected by the calibration process, did 347 

not show any correlation with the area. Of note, the absence of correlation between IC values 348 

and watershed area are due to the implementation of the sediment delivery algorithm, which 349 

uses stream pixels as the “target” for downstream flow paths. An alternative algorithm uses the 350 

watershed outlet as the target, i.e. flow paths continued along the streams until the outlet. This 351 

formulation, examined by Cavalli et al. (2013) makes IC values sensitive to watershed areas but 352 

is not preferred for sediment delivery given the different processes involved in channel 353 

transport.  354 

The SDR values showed a strong correlation with erosivity, which can be explained by the role 355 

of erosivity in watershed connectivity: in fact, high values of rainfall intensity are associated with 356 

higher delivery of sediment. Empirical evidence of such relationship was recently found in the 357 

Latrobe River catchment, Australia, where Vigiak et al. (2016) showed that periods of drought 358 

were associated with lower hillslope connectivity. Of note, we also examined the relationship 359 

between the SDR metrics and watershed runoff but found weak (and negative) correlation, 360 
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suggesting that erosivity is a better proxy for watershed-scale connectivity in our study. We only 361 

found weak (and negative) correlation with the slope metrics. We expected such relationships 362 

given the presence of slope in the SDR equation, although it is possible that the proxies used in 363 

this study (percentiles of raster values) present an oversimplified picture of these relationships.  364 

The correlation between SDR metrics and erosivity could be used for the development of 365 

heuristic approaches to estimate SDR values, and thus calibration values. Based on the six 366 

sites, the linear relationship (r2=0.38) between the calibration parameter and median erosivity is:  367 

CD = 1.56 +  0.0002 ∗  K6:7@A9L; (7) 

 368 

Of note, this relationship is given here as a starting point for future research and we recognize 369 

that our sample size is small and that a number of factors may confound this relationship in new 370 

sites.  For example, the correlation with the LULC metrics indicates that the SDR factor might be 371 

affected by values of the C-factor for particular classes. In our study, the percentage of urban 372 

and other classes showed a high correlation, which reflects the relatively lower values of the 373 

urban areas selected in a number of sites: for example, in Cape Fear, C-factor is 0.1, whereas it 374 

is 0.25 for agriculture (corn), which means that an increase in urban areas at the detriment of 375 

agricultural areas has the general effect of reducing the average C-factor.  376 

Importantly, the sensitivity analyses on synthetic watersheds allowed us to disentangle the 377 

relationship between sediment export and DEM resolution. We confirmed the presence of a 378 

compensatory effect between the USLE and SDR variables (at the pixel scale), which we also 379 

observed with empirical data. The trends could not be simply associated with watershed 380 

characteristics, which means that predicting the direction of change of sediment export with a 381 

change in DEM resolution, let alone the magnitude of this change, remains a challenge. Of note, 382 

the LS factor (and thus soil loss values) in our synthetic watersheds increased with increasing 383 

resolution whereas it decreases in the watersheds studied by Mondal et al. (2016). This is due 384 

to the concavity of the hillslopes (U-shape in our study). Further work is needed to better 385 

determine the relationship between topographic indices and the USLE and the SDR values (see 386 

Reaney et al. (2014) for similar work for overland flow connectivity).  387 

 388 



 

15 
 

5 Conclusion and practical implications 389 

Geospatial models are increasingly used for both research and practical management 390 

questions. The analyses presented here provide some useful practical insights into the behavior 391 

of one such model, the InVEST sediment delivery model. In particular, our comparison with 392 

alternative global models suggests that the use of the USLE captures some useful 393 

environmental characteristics, meaning that the model performance for regional comparison 394 

was fair even without calibration. In addition, the sensitivity analyses on synthetic watersheds 395 

demonstrated the possibility that the SDR factor and the USLE-based soil loss varied in 396 

opposite directions as DEM resolution increased, which means that their product, the sediment 397 

export, may only be mildly affected by changes in resolution. However, empirical data suggest 398 

that this is not the case for all topography, and predicting these relationships remain challenging 399 

for real, complex terrains (Baartman et al., 2013).  400 

A number of practical questions have been raised in this study related to the model performance 401 

for ungauged and gauged watersheds and how watershed topography and DEM resolution 402 

affect model outputs.  Although further research is needed to answer these questions with more 403 

confidence, we propose here a list of practical implications of this work. First, we suggest that 404 

comparison of InVEST predictions across regions is possible but should be accompanied by 405 

relatively simple verifications: DEM resolution should be comparable, and estimates of sediment 406 

yields should be verified against available data. As noted earlier, the model was able to capture 407 

sediment export variability when important environmental differences were seen between sites 408 

(e.g. erosivity and erodibility); however, the noise in Figure 3 prevents a straightforward 409 

comparison of model outputs across sites, especially within a homogeneous region.  410 

Second, to improve confidence in model results, better understanding of the local sediment 411 

budget in a given watershed is key (see Chaplin-Kramer et al., 2016). The variability in 412 

calibration values (kb ranging from 1.8 and 3.5, see Supplementary Material), as well as the 413 

large differences between calibrated and uncalibrated values suggest that the model calibration 414 

may overcompensate for errors in sediment sources. Better understanding of the sediment 415 

budget will improve model interpretation, especially when used to predict environmental 416 

changes, i.e. outside model calibration conditions. Unfortunately, relationships between 417 

watershed variables and model outputs (including calibrated kb values) were relatively weak 418 

(and with a small sample size), meaning that further work is needed to “regionalize” the 419 

calibration process (e.g. determining regional values for kb). However, we suggest that erosivity 420 

is a good proxy for the sediment delivery and propose a relationship (eq. 7) that can be tested in 421 
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future studies. Alternatively, one practical option to calibrate the model in the absence of 422 

observed data is based on the watershed-scale sediment delivery ratio: by using regional 423 

relationships between area and this ratio such as those shown in de Vente (2007), it is possible 424 

to estimate the average proportion of soil loss that will be transported to the stream for a given 425 

watershed. 426 

Third, the model outputs showed substantial sensitivity to DEM resolution. Our analyses 427 

suggest that sediment export may be less sensitive to DEM resolution with a simple topography 428 

such as the U-shape used in the numerical study. This is because the SDR factor and soil loss 429 

(determined by the USLE) may show opposite trends with DEM resolution, compensating their 430 

respective effects on sediment export. Practically, if changes in resolutions are anticipated in the 431 

analyses, coarser resolutions will show less sensitivity (right-hand side of the curves in Figure 432 

4). More generally, the variability in sensitivity found across the six sites suggest that site-433 

specific analyses may be needed to understand the effect of DEM resolution on particular 434 

results (e.g. land use change). Lowering the barriers to conducting sensitivity analyses, similar 435 

to those presented in this work, may be a useful practical step to address this type of 436 

uncertainty in modeling studies. 437 
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Figure 1. The six sites used in this study. The background shows the Köppen-Geiger world main climate zones. 578 

(Source: (Rubel and Kottek, 2010)) 579 

 580 

Figure 2. Synthetic watershed template used for the numerical analyses. Left: DEM and stream network (for the 90m 581 

DEM). Right: land two-class LULC raster used for the sensitivity analyses. Right: The C factor of the LULC equals 0.1 582 

in the upper watershed, 0.5 in the bottom part.  583 

 584 

Figure 3. Comparison of specific sediment yields from the InVEST model. The panels show results before (crossed 585 

squares, left panel) and after (plain squares, right panel) calibration, with the two regional models (BQART, pluses, 586 

and FSM, crosses). The “best estimate” on the x-axis is either observed data or prediction from an alternative model 587 

with higher level of confidence (see Table 1). Each point represents one watershed (note that not all watersheds had 588 

valid predictions from regional models). Note the log-scale. 589 

 590 

Figure 4. Trend in sediment export predicted for four DEM resolutions for selected subwatersheds. Some sites show 591 

a uniform trend, with sediment export either increasing or decreasing with coarser resolution, while others show non-592 

uniform variations. 593 

 594 

Figure 5. Difference in SDR 10th, 50th, and 90th percentiles, sediment export (sed_exp) and total erosion (usle), 595 

relative to the 5m resolution. Results are presented for the synthetic watershed with 5% average slope. 596 

 597 













Table 1. Characteristics of the sites used for the empirical analyses, including watershed properties and InVEST 

calibration values (IC0 was kept constant, except for Hawai‘i, see Supplementary Material) 

 Hawai'i 

(U.S.) 

Puerto 

Rico 

Upatoi 

(U.S.) 

Cape Fear 

(U.S.) 

Llobregat 

(Spain) 

Tana 

(Kenya) 

Climate Tropical 

rainforest 

Tropical 

rainforest 

Humid 

subtropical 

Humid 

subtropical 

Hot summer 

Mediterrane

an 

Tropical wet 

and dry 

Mean annual 

precipitation 

(mm) 

2500-

5900* 

1480 1310 1120 600-1000* 1300 

Areas (km2) [6-10] [36-123] [38-886] [197-13,500] [500-4900] [464-2050] 

Slope (10-

90th) (%) 

[17;103] [8; 42] [1;10] [1;11] [12;62] [2;20] 

Major LULC Forest 

(85%) 

Urban 

(15%) 

Forest 

(63%) 

Urban 

(29%) 

Forest 

(67%) 

Grassland 

(19%) 

Forest (52%) 

Urban (17%) 

Forest (31%) 

Grassland 

(26%) 

Crop (84%) 

Forest (12%) 

No. of 

watersheds 

4 6 5 8 2 3 

Best 

estimate 

Observed 

daily load 

Observed 

daily load 

SWAT 

predictions 

(calibrated 

on one 

watershed) 

Observed 

daily load 

Regional 

estimate**  

SWAT 

predictions 

(calibrated 

on one 

watershed) 

InVEST 

calibration 

(kb value) 

2 (IC0=0.1) 3.5 3.4 1.8 2 3 

* Ranges are given when there is high variability between subwatersheds for a given site (see 

Supplementary Material) 

** based on sedimentation and monthly load data 

  



Table 2. Summary of variables and their statistics analyzed in this study. InVEST metrics are derived from the 

calibrated model. USLE: Soil loss; IC: Index of connectivity; SDR: Sediment Deliverly ratio; LS: slope-length 

 Variable Type Statistic  

InVEST metrics    

 Sediment export 

(ton/yr) 

Decimal value - 

 IC (-) Raster Median, 10th and 90th 

 SDR (-) Raster Median, 10th and 90th 

 LS Raster Median, 10th and 90th 

Watershed 

characteristics 

   

 Area (km2) Decimal - 

 Elevation (m) Raster Relief (Min-max) 

 Slope (m/m) Raster Median, 10th and 90th 

 R factor (SI unit) Raster Median 

 K factor (SI unit) Raster Median 

 %Forest, Grassland, 

Urban, Other 

Decimal  

 

  



Table 3. Significant correlations between SDR and IC median values, and watershed characteristics. n.s means non-

significant at the 0.01-level. *Sed. Export is the calibrated sediment export in ton/km2/yr 

 

 S
e

d
. 

E
x
p

o
rt

*
 

S
D

R
 m

e
d

ia
n

 

S
D

R
 1

0
th

 

S
D

R
 9

0
th

 

IC
 m

e
d

ia
n

 

LS
 9

0
th

 

tf
a

 

a
re

a
 (

k
m

2
) 

R
e

li
e

f 
(m

) 

S
lo

p
e

 m
e

d
ia

n
 

R
 m

e
d

ia
n

 

K
 m

e
d

ia
n

 

%
M

ix
e

d
 F

o
re

st
 

%
U

rb
a

n
 

%
C

ro
p

la
n

d
s 

%
O

th
e

r 

Sed. Export*  1 0.53 0.44 0.64 0.66 n.s. 0.54 n.s. 0.71 n.s. n.s. n.s. -0.58 n.s. 0.82 n.s. 

SDR median 0.53 1 n.s. 0.98 0.9 n.s. n.s. -0.53 n.s. n.s. 0.79 -0.64 n.s. -0.55 n.s. -0.66 

SDR 10th 0.44 n.s. 1 0.44 n.s. -0.69 n.s. n.s. n.s. -0.41 n.s. n.s. n.s. -0.49 0.54 n.s. 

SDR 90th 0.64 0.98 0.44 1 0.93 n.s. n.s. -0.46 n.s. n.s. 0.69 -0.59 n.s. -0.57 n.s. -0.65 

IC median 0.66 0.9 n.s. 0.93 1 n.s. 0.62 n.s. 0.54 0.44 0.64 -0.61 n.s. -0.52 n.s. -0.59 

LS 90th n.s. n.s. -0.69 n.s. n.s. 1 n.s. n.s. 0.58 0.77 n.s. n.s. n.s. n.s. n.s. n.s. 

tfa 0.54 n.s. n.s. n.s. 0.62 n.s. 1 n.s. 0.9 n.s. n.s. -0.5 -0.66 n.s. 0.64 n.s. 

area (km2) n.s. -0.53 n.s. -0.46 n.s. n.s. n.s. 1 n.s. n.s. -0.56 n.s. n.s. n.s. n.s. n.s. 

Relief (m) 0.71 n.s. n.s. n.s. 0.54 0.58 0.9 n.s. 1 n.s. n.s. -0.39 -0.58 n.s. 0.8 n.s. 

Slope median n.s. n.s. -0.41 n.s. 0.44 0.77 n.s. n.s. n.s. 1 0.5 n.s. 0.47 n.s. n.s. n.s. 

R median n.s. 0.79 n.s. 0.69 0.64 n.s. n.s. -0.56 n.s. 0.5 1 -0.48 0.6 n.s. -0.4 -0.6 

K median n.s. -0.64 n.s. -0.59 -0.61 n.s. -0.5 n.s. -0.39 n.s. -0.48 1 n.s. n.s. n.s. n.s. 

%Mix. Forest -0.58 n.s. n.s. n.s. n.s. n.s. -0.66 n.s. -0.58 0.47 0.6 n.s. 1 n.s. -0.73 n.s. 

%Urban n.s. -0.55 -0.49 -0.57 -0.52 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. 1 n.s. n.s. 

%Croplands 0.82 n.s. 0.54 n.s. n.s. n.s. 0.64 n.s. 0.8 n.s. -0.4 n.s. -0.73 n.s. 1 n.s. 

%Other n.s. -0.66 n.s. -0.65 -0.59 n.s. n.s. n.s. n.s. n.s. -0.6 n.s. n.s. n.s. n.s. 1 
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