

1 **Harmful Algal Blooms and Climate Change: Learning From the Past and Present to**
2 **Forecast the Future**

3 4 Mark L. Wells^{1*}, Vera L. Trainer², Theodore J. Smayda³, Bengt S. O. Karlson⁴, Charles G.
4 5 Trick⁵, Raphael M. Kudela⁶, Akira Ishikawa⁷, Stewart Bernard⁸, Angela Wulff⁹, Donald M.
5 6 Anderson¹⁰, William P. Cochlan¹¹

7 8 * Corresponding Author

9 10 ¹ School of Marine Sciences
11 University of Maine
12 Orono, ME 04469
13 mlwells@maine.edu
14 (207) 581-4322

15 16 ² Marine Biotoxins Program
17 Northwest Fisheries Science Center
18 National Marine Fisheries Service
19 National Oceanic and Atmospheric Administration
20 2725 Montlake Blvd. E.
21 Seattle, WA 98112
22 vera.l.trainer@noaa.gov

23 24 ³ Graduate School of Oceanography
25 University of Rhode Island
26 Kingston, RI 02881
27 tsmayda@uri.edu

28 29 ⁴ SMHI^[L]Research & Development, Oceanography
30 Sven Källfelts gata 15^[L]
31 426 71 Västra Frölunda^[L]
32 Sweden
33 Bengt.Karlsson@smhi.se

34 35 ⁵ Department of Biology
36 Western University
37 London, Ontario N6A 5B7
38 trick@uwo.ca

39 40 ⁶ Ocean Sciences
41 University of California Santa Cruz
42 1156 High Street
43 Santa Cruz, California 95064
44 kudela@ucsc.edu

45 46 ⁷ Laboratory of Biological Oceanography

1 Graduate School of Bioresources^[1]
2 Mie University
3 1577 Kurima-machiya-cho
4 Tsu-shi, Mie-ken, 514-8507
5 Japan
6 ishikawa@bio.mie-u.ac.jp
7
8 ⁸ Earth Systems Earth Observation^[1]
9 CSIR - NRE^[1]Centre for High Performance Computing^[1]
10 15 Lower Hope Street
11 Rosebank^[1]Cape Town 7700
12 South Africa
13 sbernard@csir.co.za
14
15 ⁹ Department of Biological and Environmental Sciences
16 University of Gothenburg
17 Box 461
18 SE405 30 Göteborg
19 Sweden
20 angela.wulff@bioenv.gu.se
21
22 ¹⁰ Woods Hole Oceanographic Institution
23 Woods Hole, Massachusetts 02543
24 USA
25 danderson@whoi.edu
26
27 ¹¹ Romberg Tiburon Center for Environmental Studies
28 San Francisco State University
29 3152 Paradise Drive
30 Tiburon, CA 94920-1205
31 cochlan@sfsu.edu
32

1 **Abstract**

2 Climate change pressures will influence marine planktonic systems globally, and it is
3 conceivable that harmful algal blooms may increase in frequency and severity. These pressures
4 will be manifest as alterations in temperature, stratification, light, ocean acidification,
5 precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the
6 mechanisms driving harmful algal blooms frustrates most hope of forecasting their future
7 prevalence. Summarized here is the consensus of a recent workshop held to address what
8 currently is known and not known about the environmental conditions that favor initiation and
9 maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB)
10 geographical domains should expand in some cases, as will seasonal windows of opportunity for
11 harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate
12 upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover,
13 current research strategies are not well suited to inform these fundamental linkages. There is a
14 critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB
15 species, and the lack of uniform experimental protocols limits the quantitative cross-investigation
16 comparisons essential to advancement. A HAB “best practices” manual would help foster more
17 uniform research strategies and protocols, and selection of a small target list of model HAB
18 species or isolates for study would greatly promote the accumulation of knowledge. Despite the
19 need to focus on keystone species, more studies need to address strain variability within species,
20 their responses under multifactorial conditions, and the retrospective analyses of long-term
21 plankton and cyst core data; research topics that are departures from the norm. Examples of some
22 fundamental unknowns include how larger and more frequent extreme weather events may break
23 down natural biogeographic barriers, how stratification may enhance or diminish HAB events,

1 how trace nutrients (metals, vitamins) influence cell toxicity, and how grazing pressures may
2 leverage, or mitigate HAB development. There is an absence of high quality time-series data in
3 most regions currently experiencing HAB outbreaks, and little if any data from regions expected
4 to develop HAB events in the future. A subset of observer sites is recommended to help develop
5 stronger linkages among global, national, and regional climate change and HAB observation
6 programs, providing fundamental datasets for investigating global changes in the prevalence of
7 harmful algal blooms. Forecasting changes in HAB patterns over the next few decades will
8 depend critically upon considering harmful algal blooms within the competitive context of
9 plankton communities, and linking these insights to ecosystem, oceanographic and climate
10 models. From a broader perspective, the nexus of HAB science and the social sciences of
11 harmful algal blooms is inadequate and prevents quantitative assessment of impacts of future
12 HAB changes on human well-being. These and other fundamental changes in HAB research will
13 be necessary if HAB science is to obtain compelling evidence that climate change has caused
14 alterations in HAB distributions, prevalence or character, and to develop the theoretical,
15 experimental, and empirical evidence explaining the mechanisms underpinning these ecological
16 shifts.

17

18 ***Key Words:*** *Harmful Algal Blooms, HAB, Climate Change*

19

20 **1.0 Introduction**

21 The warming of the global system is unequivocal and has resulted in unprecedented changes
22 in climate, or decadal or longer time scale shifts in overall weather characteristics (Stocker et al.,
23 2013). The proximal changes, manifest primarily in terms of temperature, precipitation, and

1 wind, work interactively with surface water acidification stemming from increased CO₂
2 emissions to alter mean surface water conditions, and perhaps more importantly their extremes.
3 There is increasing concern that this shifting milieu will cause changes in phytoplankton
4 community structure and composition, including a greater prevalence and geographical spread of
5 harmful algal blooms. But the anticipated linkages between climate change and harmful algal
6 blooms are founded on limited and often conflicting experimental and observational data.
7 Scientists are left mostly to “informed” speculation about whether future climate may enhance or
8 diminish the frequency, intensity, and distribution of HAB outbreaks. A fundamental challenge
9 to HAB scientists is to identify key indicators and demonstrated relationships that reveal solid
10 evidence of climate-induced changes in harmful algal blooms.

11 The current state of knowledge stems from a rich literature on the taxonomy, growth
12 characteristics, and ecophysiology of freshwater and marine phytoplankton collectively grouped
13 as “harmful algae”. This societally defined category includes toxic species that express toxicity
14 to higher trophic levels, largely fish, shellfish, marine mammals, or humans, and include
15 members of the cyanobacteria, dinoflagellates, raphidophytes, haptophytes, and diatoms.
16 Included also under the HAB umbrella are largely human-caused high-biomass events that, while
17 often comprising non-toxic phytoplankton species, still critically alter ecosystems through
18 hypoxia/anoxia, altered food web efficiencies, stimulation of pathogenic bacteria, or other
19 ecological consequences.

20 Current spatial and temporal ranges of HAB species will most certainly change under future
21 climate scenarios. Spatially, one can expect that the geographic domains of species may expand,
22 contract, or just shift latitudinally. Temporally, the seasonal windows for growth will also
23 contract and expand. Successful “invasions” of new HAB species will depend fundamentally on

1 the species "getting there", meaning spatial transport, "being there" as indigenous species
2 (hidden flora) that potentially can grow in abundance within the phytoplankton community, and
3 "staying there" by persistence through unfavorable conditions (e.g., high temperature, nutrient
4 depletion, overwintering).

5 The HAB research community is largely unprepared to address these questions. The central
6 challenge is to achieve consensus about the way forward from both research and management
7 perspectives. This focused community synergy will be critical if the knowledge base is to
8 advance faster than the influence of climate-related changes on harmful algal blooms, and if
9 statistically credible evidence of this change can be provided soon enough to contribute to the
10 societal debate over climate change impacts. These preparations will be particularly critical for
11 high latitude regions where climate change impacts are liable to be most rapid and substantial
12 (Stocker et al., 2013). The foundation of HAB knowledge has accumulated mainly through
13 isolated investigations, as with most environmental sciences, but this piecemeal process does not
14 readily foster as powerful a knowledge structure as can be achieved through synergistic,
15 collective, and collaborative approaches. That is, a collective vision is needed that can identify
16 the "known knowns" and rank the levels of the "known unknowns" if the community is to
17 presage climate change-HAB linkages before they develop.

18 In working to achieve a higher level of cooperation among HAB and climate scientists, there
19 is some guidance to be gleaned from the ocean acidification field, who used broad collaboration
20 to create the infrastructure and standard methods needed to generate scientific awareness and
21 funding streams that critically address the environmental and biological questions of greatest
22 importance. Moving the understanding of HAB-climate change interactions beyond informed
23 speculation will require rigorous, testable hypotheses to guide scientists, managers and the public

1 on what changes are happening or are projected, estimation of the confidence limits on those
2 projected changes, and establishing the infrastructure and studies needed to capture these
3 necessary data.

4 As a beginning, there is a strong need to outline clearly what currently is known (and not
5 known) about the environmental conditions that favor initiation and maintenance of different
6 types of HAB events, and how sensitive those key parameters are to changes in the climate
7 system (Fig. 1). As a first step in that process, a four-day workshop was held in Spring 2013 at
8 Friday Harbor Laboratories, University of Washington, comprised of 11 HAB researchers with
9 diverse expertise spanning the ecophysiology and nutrient acquisition of HAB species, their
10 nutritional quality and implications for food web structure and ecosystem health, and
11 observational platforms, time series analyses and prediction. This paper summarizes the
12 discussion at that workshop, illustrated by an overview assessment of how environmental change
13 may affect different HAB types (Fig. 2). This document is not intended to be a comprehensive
14 description of potential linkages between climate change and harmful algal blooms, but rather to:
15 1) give a sense of near-term research that may hold the greatest promise for knowledge
16 advancement and impact, 2) provide funding agencies, managers, and interested stakeholders an
17 overview assessment of current knowledge and key gaps in this knowledge, 3) assist in
18 leveraging the use of current ocean observing systems to obtain important, HAB-related
19 parameters, and 4) perhaps most importantly, attract the interest of non-HAB researchers who
20 are developing relevant new tools or approaches (molecular, cellular, modeling, sensor) that hold
21 promise for HAB research. A focus on this broad picture will be necessary if there is to be
22 improvement in the understanding and tools needed to identify and forecast the links of harmful
23 algal blooms and climate, and to ascertain the earliest signals of this change.

1

2 **2.0 Anticipated Linkages Between Harmful Algal Blooms and Climate Change**

3 **2.1 Direct Temperature Effects on Harmful Algal Blooms**

4 Temperature is one of the main environmental factors affecting physiological processes in
5 phytoplankton, acting at many different stages of growth and bloom development. It not only is
6 one of the most important environmental drivers expected to change with climate, but also is the
7 least contentious, since there already has been measurable warming of the surface mixed layer
8 (Beardall et al., 2009) and the upper several hundred meters of the oceans (Roemmich et al.,
9 2012). But this warming is not globally uniform (Roemmich et al., 2012; Stocker et al., 2013).
10 Regional assessments and downscaling of global models are needed to understand and predict
11 temperature changes in specific coastal regions. Some regions clearly will be affected more by
12 global warming than others, but high latitudes will experience the greatest absolute and relative
13 warming (Locarnini et al., 2006; Stocker et al., 2013).

14 Increases in atmospheric and surface water temperature will be accompanied by altered
15 seasonal patterns, with longer duration of summertime conditions and corresponding shifts in the
16 timing of spring and fall transitions. These changes lengthen the “windows of opportunity” for
17 growth (Moore et al., 2009) and germination (Itakura and Yamaguchi, 2005), affecting both
18 species selection and phytoplankton population dynamics in temperate and boreal habitats. At
19 the same time, increased temperatures may narrow “growth windows” of HAB species in sub-
20 tropical/tropical waters if temperature optima are exceeded.

21 **2.1.1 What is known about temperature effects on the *relative success* of HAB species?**

22 The link between increasing water temperatures and phytoplankton growth rates has long
23 been recognized (Bissenger et al., 2008; Eppley, 1972), and it is expected that increased potential

1 growth rates will accompany warming. Temperature influences motility (Kamykowski and
2 McCollum, 1986), germination (Montresor and Lewis, 2006; Yamochi and Joh, 1986), nutrient
3 uptake, photosynthesis, and other physiological processes (Beardall and Raven, 2004; Raven and
4 Geider, 1988). Optimal and inhibitory threshold temperatures differ among metabolic processes.
5 The optimal temperature for photosynthesis is generally greater than the optimum for growth (Li,
6 1980). Indeed, the biogeography of phytoplankton species boundaries is determined in large part
7 by temperature regimes (Longhurst, 1998; Okolodkov, 1999, 2005), as is almost certainly is true
8 for HAB species. But phytoplankton, including HAB species, can show strong intraspecific
9 differences in temperature tolerance and responses (de Boer, 2005).

10 All species have a temperature niche described by optimal, lethal and tolerable water
11 temperatures at which cells do not grow well, but can survive (de Boer, 2005; Fehling et al.,
12 2004; Magaña and Villareal, 2006; Rhodes and O'Kelly, 1994). Even so, there usually is a
13 mismatch between optimal growth rate temperatures for species in culture and those at which
14 these species occur in natural systems, with many species dropping out of the successional
15 sequence prior to appearance of their optimum isotherms (Karentz and Smayda, 1984, 1998).
16 While methodological artifacts explain some of the discrepancy, the mismatch largely reflects
17 the multifactorial control of *in situ* populations that is absent in the ungrazed, non-dispersed,
18 monospecific, and nutritionally optimal culture experiments. Since the optimal temperature and
19 tolerance of a species are genetically, not environmentally determined, current insights may stem
20 disproportionately from an inherent selection of the best growers, and often the experimental
21 focus on non-HAB species. There also are genetic differences among isolates that may reflect
22 their adaptive strategies to different regions (Ruiz et al., 2005; Scholin et al., 1995).
23 Relative to diatoms and raphidophytes, dinoflagellates generally have low growth rates

1 (Honjo, 1987; Honjo and Tabata, 1985; Tang, 1996), but species capable of rapid growth in
2 culture, including HAB species, are known (Smayda, 1996). Some non-toxic species differ from
3 toxic species within the same genus in their temperature-growth relationship (Rhodes and
4 O'Kelly, 1994), but in most cases, specific information about differences between HAB and non-
5 HAB species is lacking. Various cyanobacterial species respond differently than other groups to
6 temperature changes (Fu et al., 2007), but it seems unlikely that there are differences in
7 temperature tolerance between toxic and non-toxic cyanobacteria within the same species
8 (Huisman et al., 2005). *Gambierdiscus toxicus* is known to generally favor warmer conditions,
9 and increased ciguatera fish poisoning has been observed with elevated sea surface temperatures
10 related to El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO)
11 (Rongo and van Woesik, 2011). But this linkage is correlative, rather than determined, and
12 temperature optima differ substantially among different *Gambierdiscus* species or phylotypes
13 (Yoshimatsu et al., 2014). The cell-size dependent population response to warming also differs
14 among phytoplankton groups. Specifically, picophytoplankton biomass appears to increase with
15 temperature, unlike non-cyanobacterial communities which tend to respond in the opposite
16 (Karlberg and Wulff, 2013; Morán et al., 2010). Despite this, unusual blooms of both may be
17 linked to climatic events (Gómez and Souissi, 2007).

18 Temperature, along with light, influences the germination of dinoflagellate cysts (Anderson
19 et al., 2005; Bravo and Anderson, 1994; although exceptions are known - Perez et al., 1998).
20 Earlier spring warming trends might result in HAB seed populations appearing sooner in surface
21 coastal waters, reflecting earlier onset of permissive temperatures for germination (Kremp and
22 Anderson, 2000; Pfister and Anderson, 1987) and increased germination rates at higher
23 temperatures (Anderson et al., 2005). An important caveat is that both low and high temperatures

1 can be inhibitory, thereby maintaining cyst quiescence (e.g. Anderson and Rengefors, 2006;
2 Hallegraeff et al., 1998; Itakura and Yamaguchi, 2005). This temperature “window” for
3 germination figures prominently in a species’ response to a changing climate.

4 The chemical composition of a species’ (e.g., lipids, fatty acids, and toxicity) also is a
5 function of temperature (Guerrini et al., 2007; Jahnke, 1989). While higher toxicity (i.e., toxin
6 accumulation) of some species can occur with slowing growth, temperature and toxin production
7 appear to be directly linked in some species (Ogata et al., 1989) but not others (e.g., Lewis et al.,
8 1993). Much of the basic information needed to generate a preliminary forecast of which regions
9 or habitats (poles vs. tropics, estuaries vs. coasts) HAB species will be the most resilient or
10 susceptible to temperature change likely is available. As a start, the temperature niche approach
11 versus the temperature at which HAB species isolates were collected can be utilized (Boyd et al.,
12 2013). Cells isolated from areas where temperature variations are small likely are not as resilient
13 to temperature change as those from areas experiencing large seasonal temperature fluctuations.

14 It may be, however, that resilience is less a cellular trait than a population trait wherein the
15 molecular diversity (strain composition) of the population, not individual cells, provides the
16 resilience (Burkholder and Glibert, 2009).

17 **2.1.2 What are important “known unknowns” about direct temperature effects on harmful
18 algal blooms?**

19 At the present time, knowledge of *in situ* population dynamics of representative HAB species
20 on appropriate temporal and spatial time scales, and environmental regulation of their selection,
21 blooms, toxicity and trophic impacts is inadequate. This knowledge gap is a major impediment.
22 It compromises extrapolation of laboratory-based results to natural populations and identification
23 of thresholds, and because of imperfect insight into the indirect effects of temperature, it restricts

1 understanding of the regulation of population growth and succession. Another constraint is the
2 difficulty in downscaling global climate model predictions to forecast the extent and rate of
3 temperature changes in specific regional habitats. One approach to deal with this uncertainty is to
4 evaluate a range of possible temperature windows, thereby generating an ensemble of forecasts
5 that may reveal thresholds for HAB species growth, distribution, and physiology; thresholds that
6 model output of downscaled regional temperature changes can be compared against. But even
7 then, not all species will respond equally, and there is little information about how HAB species
8 may adapt to temperature increases or decreases relative to non-HAB species. For example, does
9 the net progressive northward migration of warmer temperatures exceed the ability of HAB
10 species, relative to other phytoplankton, to adapt and optimize their growth? It would be useful
11 to rank HAB species in terms of the most temperature tolerant to the least tolerant using the large
12 body of laboratory-based experimental data available, but the degree of genetic heterogeneity
13 among strains of key HAB species with respect to temperature tolerances needs to be
14 determined. Understanding strain variability within co-occurring non-HAB species is equally
15 important, as it will influence their ability to adaptively compete.

16 Temperature effects will cascade through the ecosystem, affecting bacteria, HAB species,
17 competing phytoplankton grazers, parasites, and other organisms (Alheit et al., 2005; Edwards
18 and Richardson, 2004; Hansen, 1991). How will these indirect temperature effects affect the
19 success of HAB species? Are there temperature-sensitive processes or stages in the bloom
20 progression of some HAB species? For example, the effects of temperature on the quiescence,
21 timing of germination, or survival of HAB resting cysts and spores is not understood (Lewis et
22 al., 1999; Pfiester and Anderson, 1987), nor is the effect of warming in lengthening the duration
23 of the seeding process. Will increasing temperatures affect the long-term persistence of a species

1 in a given region, and will the establishment of range extensions become easier as temperatures
2 increase? What temperature changes are expected for benthic environments (e.g. reefs)? These
3 “known unknowns” all are relevant issues, but there are central stumbling blocks that hamper
4 understanding temperature:HAB interactions where significant advances in research are feasible
5 over the next decade.

6 **2.1.3 Pressing questions about direct temperature effects on harmful algal blooms**

7 *Most studies of temperature effects on HAB species utilize single strains – how*
8 *representative are these responses to that of the more genetically diverse natural populations?*
9 While the available limited evidence suggests that increasing temperatures will lead to expansion
10 or contraction of a problem species (e.g., *Gambierdiscus* spp., *Heterosigma* spp.), the real
11 situation is almost certainly more complex as a consequence of strain variability. It is critical that
12 there be quantitative assessment of the strain variability in temperature tolerances and optima of
13 key HAB species. This will require studies involving many strains of individual species – a
14 dramatic departure from current practices (Burkholder and Glibert, 2009; Martinez et al., 2010).
15 A good place to start are culture collections that contain numerous isolates of the species of
16 interest, but even these may not be ideally representative of natural population variability. A
17 high priority should also then be given to isolating and characterizing strains associated with
18 different temperature regimes.

19 *What is the potential for multiplicative or additive effects of temperature with other*
20 *environmental parameters in affecting the relative success of HAB species?* There are good
21 examples where temperature strongly modulates the effects of other stressors (e.g., elevated CO₂
22 – Feng et al., 2009), which argues for a shift to multifactorial experiments as the norm (e.g.,
23 Kremp et al., 2012). But the resulting large matrices create practical challenges for traditional

1 laboratory culture studies. One way around this constraint may be to take advantage of natural
2 weather perturbations to simulate future scenarios with complete ecosystems (e.g., see Moore et
3 al., 2011), although identifying the driving parameters for HAB species behavior will be
4 challenging. Long-term records of temperature are robust, and will make it easier to identify
5 anomalies for study.

6 *Can range expansions or contractions due to warm temperatures be identified?* This is a
7 fundamental question that is remarkably hard to answer, much the same as for phytoplankton
8 species introductions via ship's ballast water. Range extensions and species shifts are being
9 reported for other phytoplankton, but with few exceptions (e.g., Hajdu et al., 2000) there are no
10 firm conclusions about HAB species, through either monitoring, cyst distributions, toxicity
11 events, or retrospective analysis of long-term data sets and time series (e.g., the Continuous
12 Plankton Recorder). More common are reports of significant temporal and spatial changes in the
13 abundance of indigenous dinoflagellate species in response to climate change, as in the North
14 Sea where decreasing dinoflagellate abundance appears to be the collective result of increased
15 summer temperature combined with stronger and more frequent winds (Hinder et al., 2012).

16 *From an ecological perspective, will any significant shifts in HAB distributions stem more*
17 *from temperature-linked physiological effects, such as growth rates, or simply to longer periods*
18 *of adequate growth windows, leading to a greater probability that HAB events may occur in a*
19 *given year?* Answering this question will depend upon acquisition of better mechanistic
20 understanding of HAB initiation, maintenance, and demise as well as physical characterizations
21 of ocean temperature effects on circulation, which will affect the spatial redistribution of species.
22 There also is the challenge to distinguish between blooms of introduced species from those of
23 indigenous, cryptic species that emerge (i.e., the “hidden flora”) in response to climate-induced

1 changes in temperature and anthropogenic disruption, such as eutrophication. An observational
2 network of sensors and quantitative field studies would facilitate *in situ* validation of model
3 simulations or other forecast efforts. Regional or local model simulations
4 (physical/chemical/biological) based on HAB versus non-HAB species are lacking in the
5 literature, but would serve as an intellectual foundation for better identifying (with sensitivity
6 analysis) the direct effects of temperature on these and other HAB climate-change issues.

7 **2.1.4 Summary of direct temperature effects on harmful algal blooms**

8 Temperature is a keystone parameter differentially affecting a range of metabolic processes,
9 and thus is anticipated to have a strong influence on phytoplankton community compositions and
10 trajectories. While increasing annual temperatures should broaden the windows of some HAB
11 activity it will not affect others or even lessen other harmful algal blooms. Ecosystem
12 interactions, strain variability within HAB and non-HAB species, and concurrent hydrographic
13 or oceanographic changes all complicate even this seemingly straightforward expectation. It is
14 logical that HAB habitats should expand to higher latitudes, but there is little clear evidence that
15 this has happened and the time series observation systems needed to verify this change currently
16 are lacking. There is little evidence to date that changing temperatures directly affect toxin
17 production in HAB species although these findings are by no means comprehensive. It is
18 unlikely that temperature alone will drive competitive selection of HAB species over non-HAB
19 species, but it is probable that temperature effects on metabolic rates will magnify or lessen the
20 influence of other climatic pressures on HAB prevalence.

21 **2.2 Direct Effects of Stratification on Harmful Algal Blooms**

22 The surface ocean is anticipated to become generally more stratified with increasing global
23 temperature, glacial and snowpack meltwater, and precipitation runoff (Stocker et al., 2013). In

1 addition to increasing strength and depth of stratification, variations in its seasonal timing will
2 alter mid-latitude spring and fall transitional periods with corresponding changes to
3 phytoplankton phenology and community succession. Based future global biomass and
4 productivity projections (e.g., Behrenfeld et al., 2006), it is likely that mid- and high-latitude
5 regions will be most strongly impacted by changes in stratification, while changes low-latitude
6 tropical systems will be relatively minor. But species respond to local and regional changes, not
7 global patterns, and the manifested effects will incorporate changes in wind stress (leading to
8 changes in turbulence), local hydrography, depth and intensity of the pycnocline, relative
9 contribution of upwelled nutrients versus runoff as well as changes in nutrient ratios, and indirect
10 changes in subsurface irradiance (e.g., Kahru et al., 2015).

11 Perhaps the most obvious effect of increased stratification on phytoplankton, and therefore
12 HAB organisms, will be the changing patterns of nutrient availability (e.g., Marinov et al., 2010).
13 At a global scale, changes in thermal stratification already have been linked to oligotrophication
14 at low latitudes (decreased mixing and nutrient inputs) and increases in phytoplankton biomass at
15 higher latitude transitional zones where greater stratification provides enhanced stability and
16 shoaling of the mixed layer (Behrenfeld et al., 2006). These altered seasonal patterns may
17 lengthen the “window of opportunity” for some HAB species (Moore et al., 2009), particularly
18 chain-forming dinoflagellates that take advantage of strong thermal stratification with higher
19 nutrient concentrations at relatively shallow depths (Figueras et al., 2006; Smayda and Trainer,
20 2010).

21 **2.2.1 What is known about stratification effects on the *relative* success of HAB species?**

22 As a generalization, prolonged stratification favors organisms with a smaller surface area to
23 volume ratio, such as nano- and picoplankton, which facilitates nutrient uptake (e.g., Hein et al.,

1 1995) and, where vertical migration distances are reasonable, stratification also favors swimmers
2 (Peacock and Kudela, 2014). Moderate turbulence can be expected to help chain-forming
3 swimmers (Acker and Leptoukh, 2007), such as *Alexandrium*, *Cochlodinium*, and *Gymnodinium*
4 spp., to thrive (Fraga et al., 1989).

5 Stratification also promotes intensification of the pycnocline, which potentially leads to
6 formation of thin layers. These can serve as biological “hotspots” accounting for 50-75% of the
7 total water column biomass, and affect a multitude of biological processes including growth,
8 reproduction, grazing, and toxin production (c.f. Berdalet et al., 2012). There are numerous
9 examples of HAB organisms associated with thin layers, defined here as order of a few cm to
10 several meters (see review by Sullivan et al., 2010). These include *Karenia mikimotoi* and
11 *Dinophysis* spp. (e.g., Farrell et al., 2012; Raine, 2014), *Chattonella antiqua* and
12 *Pseudochattonella* spp. (e.g., Aoki et al., 2014; Pettersson and Pozdnyakov, 2013), and
13 *Heterosigma akashiwo* (e.g., Strom et al., 2013). The diatom *Pseudo-nitzschia* also is commonly
14 found in layers (McManus et al., 2008; Rines et al., 2002; Ryan et al., 2010), despite the
15 generalization that diatoms are not favored with increased stratification.

16 There are several recent dramatic examples of emerging HAB issues associated with changes
17 in stratification. Decadal changes in temperature and stratification in the California Current
18 system have led to prolonging periods of increased dinoflagellate dominance (Jester et al., 2009).
19 This shift is closely related to increasing intensity and decreasing depth of the pycnocline
20 (Kudela et al., 2010), and is associated with an increased frequency of visual “red tide” events
21 (Ryan et al., 2014; Ryan et al., 2008; Ryan et al., 2010). Bird mortalities have been associated
22 with these stratification events through foam production with intense *Akashiwo sanguinea* events
23 in Monterey Bay, CA in 2007 (Jessup et al., 2009) and the Pacific Northwest in 2010 (Berdalet et

1 al., 2014), as well as elsewhere (e.g., off eastern Africa in 2013 - Wim Mullié, pers. comm.).
2 Sub-lethal but disruptive effects of harmful algal blooms in stratified conditions on seabird
3 ecology also may include reduced feeding, lowered fecundity, and loss of motor coordination
4 (Shumway et al., 2003). The apparent linkage of harmful algal blooms to increased stratification
5 is the recent emergence of *Dinophysis* spp. in several regions where it has not historically caused
6 problems, including several coastal areas of the United States, the west coast of Canada, and
7 coastal South Africa (Campbell et al., 2010; Hattenrath-Lehmann et al., 2013; Hubbart et al.,
8 2012; Pitcher et al., 1993; Taylor et al., 2013; Trainer et al., 2013). But all the correlative
9 associations of harmful algal blooms and stratification lack the mechanistic insights to be
10 considered causative, beyond simply creating conditions where harmful algal blooms might
11 occur.

12 **2.2.2 What are important “known unknowns” about direct effects of stratification on**
13 **harmful algal blooms?**

14 Stratification and associated changes in temperature, salinity, mixed layer depth, subsurface
15 irradiance, and nutrient concentrations and ratios will affect HAB (and all phytoplankton)
16 ecophysiology. A key question is do changes in stratification (duration, position, persistence)
17 alter the frequency or intensity of harmful algal blooms? In particular, climate change likely will
18 affect large-scale circulation, thermal stratification, runoff (including the dynamics of flow) and
19 both wind intensity and timing. Increased stratification could initially promote harmful algal
20 blooms before intensification of this stratification ultimately limits access to nutrients below the
21 thermocline (e.g., McGillicuddy et al., 2011). The selection of turbulent-tolerant organisms
22 versus stratification-tolerant organisms will be strongly influenced by the balance between
23 thermal heating, freshwater inputs, and increased wind stress. Not only are downscaled climate

1 and regional ocean predictions needed to address these unknowns, but also fundamental
2 knowledge about how HAB species (and strains of those species) respond to changes in
3 temperature, nutrients, irradiance, and turbulence.

4 An important task will be to identify those areas that are more susceptible to changes in
5 stratification. For example, it is broadly assumed that low-latitude systems will be relatively
6 unaffected since they already exhibit strong annual stratification, but this assumption does not
7 take into account the destabilizing effect of increased storm/typhoon/hurricane activity, or shifts
8 in the global wind fields (Stocker et al., 2013). For regions strongly influenced by terrestrial
9 runoff, how will climate change affect the timing and pulsed magnitudes of freshwater inputs,
10 and how will these changes influence the frequency and intensity of stratification events driven
11 by temperature changes? How will these projected changes in either the strength or seasonal
12 duration of stratification affect the windows of opportunity for HAB species?

13 Although often considered to enhance harmful algal blooms, stratification is a double-edged
14 sword because harmful algal blooms also can be restrained under intensely stratified conditions.
15 For example, the Gulf of Maine is subject to large recurrent annual blooms of *Alexandrium*
16 *fundyense*, with the dramatic exception of 2010 (McGillicuddy et al., 2011). An influx of an
17 abnormally fresh and warm water mass this year led to more unusually intense stratification,
18 resulting in an early and large spring diatom bloom that crashed rapidly leaving highly nutrient-
19 deplete surface waters. *Alexandrium* spp. cyst germination, which is controlled by an internal
20 clock and thus is annually invariant (Binder and Anderson, 1987), introduced vegetative cells
21 into those waters, and growth was constrained by the unfavorable conditions. This example
22 emphasizes the difficulties that some HAB species may have in dealing with stratification
23 changes that exceed the levels of interannual variability to which they have adapted.

1 **2.2.3 Pressing questions about direct effects of stratification on harmful algal blooms**

2 *How will changes in stratification work in conjunction with other environmental parameters*
3 *to influence the relative success of HAB species?* Given these potentially complex interactions,
4 there are two clear ways forward. First, there are benefits from recent technological advances,
5 emergence of new sampling methods, and a better understanding of the complex biological
6 interactions and life cycles that govern harmful algal blooms in stratified systems. To better
7 ascertain the effects of stratification on HAB species success, these methods must be consistently
8 applied to build high-quality time-series of HAB observations in stratified systems. Coupling
9 these observations with coincident datasets of physical and ecological drivers, including
10 stratification intensity and depth, wind stress and turbulence, nutrient concentrations and ratios,
11 runoff, and upwelling intensity will provide the mechanistic underpinning for the pattern of HAB
12 eruptions. Second, these combined observations should lead to advances in both conceptual and
13 numerical modeling that already are beginning to improve our understanding of harmful algal
14 blooms in stratified systems (GEOHAB 2011; Berdalet et al. 2014).

15 *How important will swimming behavior, the response to turbulence, and pycnoclines and*
16 *thin layers as biological refugia be in contributing to HAB species success relative to other*
17 *phytoplankton?* These and the response to turbulence remain key questions that are readily
18 amenable for direct testing in laboratory, *in situ* imaging systems, and mesocosm studies (Greer
19 et al., 2013; Smayda, 2002). There also are some natural experiments, such as the changes in
20 HAB frequency and intensity associated with climate patterns of ENSO, PDO, and the North
21 Pacific Gyre Oscillation (NPGO) or changes in coastal communities in response to historically
22 wet and dry years, that provide opportunities to assess measured changes in stratification relative
23 to HAB frequency, intensity, and duration. While these complex systems cannot be used to

1 provide clear evidence that increased stratification enhances (or disrupts) HAB events, it should
2 be possible to ascertain what stratification characteristics (e.g., strength, duration) may correlate
3 consistently with harmful algal blooms. Regardless of the methods chosen, regions that globally
4 exhibit a larger signal-to-noise relationship for HAB impacts, including coastal enclosed and
5 semi-enclosed water bodies, brackish estuaries and fjords, and coastal upwelling systems, offer
6 good opportunities to specifically investigate stratification effects on HAB development.

7 **2.2.4 Summary of direct effects of stratification on harmful algal blooms**

8 Climate change will expand and intensify vertical stratification, particularly at high latitudes.
9 It is clear that water column stratification alone does not cause harmful algal blooms; vertical
10 stability of the water column underpins all global primary production while HAB represent
11 sporadic shifts in an otherwise “non-harmful” planktonic system. But multiple HAB species can
12 flourish under well-stratified conditions (Berdalet et al., 2014), and the emergence of new HAB
13 threats, and expansion of existing HAB organisms, appear to be coincident with global changes
14 in stratification, suggesting that this physical process is a significant contributor. The challenge
15 will be to ascertain whether and how these climate-induced changes will affect the prevalence of
16 harmful algal blooms.

17 **2.3 Altered Light Field Effects on Harmful Algal Blooms**

18 Climate change projections for atmospheric conditions are beginning to be more consistent in
19 global models. Most show a net global increase in clouds near the tropopause and a general trend
20 of reduced cloud fraction (i.e., the percentage of each gridbox in a climate model that is covered
21 with clouds) between 50° N and 50°S, except near the equator (Stocker et al., 2013). Increasing
22 cloud fractions are projected for higher latitudes (Stocker et al., 2013). The *in situ* light fields
23 also are expected to change in association with the introduction of particulate material from

1 runoff or ice melting (Häder et al., 2010), and the trends towards “brownification” of coastal
2 waters due to increased inputs of humic matter (Hansson et al., 2013; Monteith et al., 2007). In
3 contrast, the expectation of shallower mixed layers due to increased stratification will cause
4 phytoplankton to be exposed to higher intensities/doses of photosynthetically active radiation
5 (PAR: 400-700 nm) and ultraviolet radiation (UVR: 315-400 nm). Any effects from UVR,
6 particularly UVB radiation; 280-315 nm) may be magnified because increased levels of
7 greenhouse gases are expected to delay recovery of the stratospheric ozone layer (McKenzie et
8 al., 2010). While there remains considerable uncertainty over these projections (Stocker et al.,
9 2013), there seems little doubt that the light field in surface waters will be shifting.

10 **2.3.1 What currently is known about light effects on harmful algal blooms?**

11 There are no unique PAR requirements or tolerances of HAB species relative to non-HAB
12 species, but surface irradiance may influence toxin production, particularly at high light
13 intensities. Phytoplankton species have different strategies to adjust to radiation conditions by
14 altering their photosynthetic and photoprotective pigments, including the production of UV-
15 absorbing compounds such as mycosporine-like amino acids (MAA) (Jeffrey et al., 1999). Many
16 of the MAA-containing species are toxic and form dense surface blooms, so enhanced UVR
17 might facilitate some harmful algal blooms. For example, surface-dwelling harmful
18 cyanobacteria contain photoprotective carotenoids and UV-absorbing compounds (e.g. MAA),
19 enabling high growth rates under intense radiation conditions (Carreto and Carignan, 2011;
20 García-Pichel and Castenholz, 1993; Mohlin et al., 2012; Mohlin and Wulff, 2009). Several
21 cyanobacteria also produce the sheath pigment scytonemin with maximum absorbance around
22 380 nm (Castenholz and Garcia-Pichel, 2005), complementing the UVR absorption of MAA
23 (310-360 nm). Like carotenoids and other photoprotective pigments, some MAA also are

1 proposed to act as antioxidants providing protection against photodamage at high PAR
2 (Castenholz and Garcia-Pichel, 2005).

3 High amounts of MAA have been found in the raphidophyte *Chattonella* spp. (Jeffrey et al.,
4 1999) responsible for fish-killing blooms in Asian and European waters. Raphidophytes, such as
5 *Heterosigma akashiwo* and *Chattonella subsalsa*, show no sign of photoinhibition at PAR
6 intensities $>600 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$ (Zhang et al., 2006). Some toxic dinoflagellates also have
7 been reported to tolerate high radiation intensities, including *Alexandrium catenella* (Carignan et
8 al., 2002; Laabir et al., 2011; Smayda and Borkman, 2008), *Ceratium furca* and *C. fusus* (Baek et
9 al., 2008), *Karenia brevis* (Evens et al., 2001), among others. The polar water HAB species,
10 *Phaeocystis pouchetii*, also produces high concentrations of MAA (Marchant et al., 1991). But
11 not all HAB species tolerate high radiation intensities, with *Aureococcus* spp. and *Karenia brevis*
12 preferring low radiation conditions (MacIntyre et al., 2004; Magaña and Villareal, 2006).

13 The significance of the high-light tolerance of some HAB species has less to do with their
14 survival than with their ability to thrive throughout a wider portion of the photic zone to
15 maximize photosynthetic potential. Some HAB species can limit photodamage through vertical
16 migration or regulation of buoyancy through gas vesicles (Huisman et al., 2005; Walsby et al.,
17 1995), but non-HAB species also have this capability so it does not necessary give HAB species
18 a competitive advantage.

19 There is evidence that high penetrating radiation intensities (including UVR) may influence
20 toxin production in some HAB species, but the findings remain equivocal. The toxic filamentous
21 cyanobacterium *Nodularia spumigena* shows the highest intra- and extracellular nodularin
22 concentrations under the combined conditions of high ambient radiation and low nitrogen
23 availability, when shielded from UVR (Pattanaik et al., 2010). The toxicity of two isolates of

1 *Alexandrium fundyense* generally increased with increasing PAR intensities up to 425 μmol
2 photons $\text{m}^{-2} \text{s}^{-1}$ (Etheridge and Roesler, 2005); however, there is no apparent overall trend in
3 light dependent toxicity for *Alexandrium* spp. (Fu et al., 2012). In *Microcystis aeruginosa*,
4 microcystin synthesis increased with increasing radiation (Kaebernik et al., 2000) and van de
5 Vaal et al. (2011) concluded that growth of the toxic *Microcystis aeruginosa* strain was greater
6 than the non-toxic variety at high light. Light intensity also positively correlated with the
7 ichthyotoxicity of *Chattonella marina* (Ishimatsu et al., 1996; Marshall et al., 2001). Based on *in*
8 *situ* observations, Mengelt and Prezelin (2005) concluded that the toxic diatom *Pseudo-nitzschia*
9 sp. was well adapted to utilizing UVA (320-400 nm) to enhance carbon fixation, contributing to
10 its capacity to produce large surface blooms. Field observations by MacIntyre et al. (2011)
11 support the findings that toxin concentration and abundance of *Pseudo-nitzschia* are strongly
12 correlated with high radiation. Interestingly, a toxic variety of *Pseudo-nitzschia*
13 *pungens/multiseries* was shown to be more tolerant to UVB than its non-toxic variety (Hargraves
14 et al., 1993). While none of these relationships are characterized well enough to generalize, there
15 clearly is significant reason to expect major changes in the global light field of surface waters has
16 the potential influence the competitive success and toxicity of HAB species.

17 **2.3.2 What are important “known unknowns” about altered light field effects on harmful
18 algal blooms?**

19 The projected changes in insolation at both lower and higher latitudes are likely to affect
20 phytoplankton community compositions, but without comparative studies among HAB and non-
21 HAB species there is little basis to conclude that HAB species will be better adapted. Similarly,
22 there are few data to assess the light-induced production of UV-absorbing compounds and toxins
23 in HAB species. Although some toxins absorb UVR, it is yet to be determined whether these

1 compounds serve a physiological role as UV-absorbing compounds (i.e., are less toxic strains
2 more susceptible to UVR damage). Nevertheless the frequent co-occurrence of MAA and toxins
3 in cyanobacteria, dinoflagellates, and at least a few diatom species (see Klisch and Hader, 2008),
4 argues for the need of more studies.

5 Increased light intensity with depth in tropical and sub-tropical regions may benefit benthic
6 HAB communities and their macrophytic hosts, with implications for more widespread ciguatera
7 effects. This would be particularly important if ciguatoxin-producing species were more UVR
8 tolerant than non-toxic benthic microalgae. Ecosystems where cysts are vital life stages that
9 experience increased benthic radiant flux may also experience selective effects, though light is
10 rapidly attenuated in sediments, so the effects could only be important at the thin veneer of the
11 sediment surface (Stock et al., 2005). Turbulent systems may also experience increased light
12 penetration with deeper mixing and potentially increased production at depth. In contrast, climate
13 projections for increased runoff and prevalence of low, dense clouds at high latitudes will reduce
14 light availability. These changes will increase the selective pressures for low-light adapted
15 species, and changes in UVR may diminish metal (e.g., Fe) availability (e.g., Roy and Wells,
16 2011), potentially decreasing the toxicity of *Pseudo-nitzschia* spp. (Maldonado et al., 2002;
17 Wells et al., 2005).

18 **2.3.3 What are the pressing questions regarding altered light field effects on harmful algal
19 blooms?**

20 *Do HAB species possess unique light harvesting and protection capabilities that increase
21 their competitiveness, and do changes in the spectrum and intensity of surface irradiance
22 contribute to altered toxin production?* In the first, it will be important to determine whether
23 HAB species are better adapted than non-HAB species to respond to increased, or decreased

1 PAR and UVR; essential knowledge to enable first order assessment of the likelihood of
2 irradiance-derived changes in HAB outbreaks. Second, one of our key unknowns is the extent to
3 which UVR influences the putative relationship between MAA and other toxin synthesis. A
4 better understanding of the postulated role of some toxins as photoprotective compounds (Ha et
5 al., 2014), and the competitive advantages provided, would help to forecast the community
6 responses to elevated UVR. While these fundamentals can be tested mechanistically with well-
7 controlled laboratory studies, investigation under ambient radiation conditions will be needed to
8 tease out the community-scale responses.

9 *Will increasing PAR and UV light fields have particular relevance to benthic HAB species in*
10 *lower latitude regions?* Ciguatera Fish Poisoning arguably is the single greatest global HAB-
11 human health problem today. Determining the light factors that may exacerbate the toxicity or
12 niche dominance of these HAB species in reef environments should be of high priority.

13 **2.3.4 Summary of altered light field effects on harmful algal blooms**

14 The modeled trends in cloud feedback mechanisms suggest that climate-driven changes in
15 the light fields will occur at both low and high latitudes, and these changes will impact
16 phytoplankton metabolism and community composition. While currently there are no compelling
17 insights that changing light fields will cause competitive selection of HAB species, there are
18 reasons that they might. Increased light penetration could magnify high biomass harmful algal
19 blooms, and some toxins may enhance UVR protection. If climate driven changes in light fields
20 do contribute to increased harmful algal blooms, these effects would manifest at the extremes,
21 either at high (inhibiting) irradiance or by extending (or diminishing) the depth of the light field.

22 **2.4. Ocean Acidification Effects on Harmful Algal Blooms**

1 Increasing atmospheric CO₂ is being modulated partly by its dissolution into surface
2 seawater, leading to ocean acidification (OA) (Stocker et al., 2013). Although OA is a
3 consequence rather than proximal effect of climate change, its influence is distributed across all
4 ocean surface waters and so its potential effects on harmful algal blooms are considered here.
5 While uncertain, projections suggest that surface water pH may decrease by 0.3-0.4 units by the
6 end of the century (Feely et al., 2004), with upwelling regions being sites of extreme
7 acidification (Feely et al., 2008). Although the majority of early concern about ocean
8 acidification has focused on calcium carbonate precipitating marine organisms (e.g., Bednarsek
9 et al., 2014; Orr et al., 2005), the pH dependent changes in the marine carbonate system also
10 have broad implications for carbon acquisition for both marine phytoplankton (e.g., Beardall et
11 al., 2009; Hansen, 2002; Hinga, 2002) and microbes (e.g., Hutchins et al., 2009). The opposite
12 trend of surface water basification, where biological production drives increased pH during high
13 biomass blooms, is not considered here.

14 **2.4.1 What is known about the effects of ocean acidification on harmful algal blooms?**

15 The complexity of the myriad effects stemming from decreased pH and increased pCO₂ on
16 phytoplankton community composition is daunting. Although marine phytoplankton appear to be
17 well adapted to grow at low pH levels (by oceanic standards, Berge et al., 2010) understanding
18 the subtleties of individual species responses is far more difficult. CO₂ enrichment is expected to
19 relieve the energy requirements of carbon concentrating mechanisms (CCM) and particularly
20 benefit those species having Form II Rubisco (ribulose-1,5-bis- phosphate carboxylase-
21 oxygenase), which has a low affinity for CO₂ (Beardall et al., 2009; Giordano et al., 2005; Raven
22 and Beardall, 2014; Rost et al., 2003; Tortell, 2000). Many bloom-forming dinoflagellates fall
23 into this category, and in particular some toxic dinoflagellates are known to have very limited

1 CCM abilities (Dason and Colman, 2004) while some raphidophytes appear not to have CCM
2 systems at all (Nimer et al., 1997). Even so, the effects of increasing CO₂ on dinoflagellates are
3 not uniform. Kremp et al. (2012) found that increasing CO₂ stimulated only two of eight
4 *Alexandrium ostenfeldii* clones, while increasing temperatures universally stimulated growth.
5 Similarly, elevated pCO₂ in culture has been observed to increase (Sun et al., 2011; Tatters et al.,
6 2012), decrease (Lundholm et al., 2004), or have no effect on growth of *Pseudo-nitzschia* (Cho et
7 al., 2001), depending on the species and experimental conditions. So while there is concern that
8 blooms may reach high biomass faster, and that these blooms may have increasing abundances
9 of harmful species, the jury remains out on the likely effects of OA on harmful algal blooms.

10 The study of OA effects on phytoplankton has focused mainly on carbon acquisition, but
11 decreasing pH also will directly affect cellular membrane potential, enzyme activity, and energy
12 partitioning (Beardall and Raven, 2004; Giordano et al., 2005), all of which influence cell
13 metabolism. Altered transmembrane potential affects a wide range of cellular processes that
14 depend upon proton pumps, such as nutrient uptake. Lowered pH also may affect nutrient
15 acquisition by altering the chemical speciation of dissolved nutrients, particularly trace metals,
16 which can affect interspecies competition (Shi et al., 2010) and HAB toxicity (Maldonado et al.,
17 2002; Wells et al., 2005). Transmembrane proton gradients also are essential for flagellar motion
18 (Manson et al., 1977), so changes in extracellular pH can affect cell mobility and thus perhaps
19 behaviors that enhance nutrient uptake (Hallegraeff et al., 2012). For example exposure of the
20 harmful algal bloom species *Heterosigma akashiwo* to lower pH increased its photosynthetic
21 growth rates (Fu et al., 2008; Nimer et al., 1997) and substantially increased its swimming speed
22 (30%) and downward velocities (46%), implying that changing pCO₂ is a signaling factor for this
23 organism to alter its behavior (Kim et al., 2013). In contrast, increasing pCO₂ diminished the

1 presence of toxic haptophyte *Chrysochromulina* spp. in a mesocosm study (Hama et al., 2012).
2 On the other hand, the filamentous toxic cyanobacteria *Nodularia spumigena* and
3 *Aphanizomenon* sp. were not affected by increased levels of pCO₂ (Karlberg and Wulff, 2013). It
4 is no exaggeration to say that current knowledge of the growth or competitive responses of
5 phytoplankton to OA, let alone those of HAB species, is extraordinarily limited.

6 There also is very little information regarding the potential impact of OA on the cellular
7 toxicity of HAB species, and findings that do appear in the literature are conflicting. Kremp et al
8 (2012) found an overall trend of increasing cell toxicity with increasing pCO₂ (and temperature)
9 for eight strains of *Alexandrium ostenfeldii*. In culture experiments, strains of *A. fundyense*
10 isolated from Northport Bay, New York, and the Bay of Fundy, Canada, grew significantly faster
11 when exposed to elevated levels of pCO₂ compared to lower levels (Hattenrath-Lehmann et al.,
12 2015). Exposure of these strains to higher levels of pCO₂ significantly increased cellular toxicity
13 in the Northport Bay strain, while no changes in toxicity were detected in the Bay of Fundy
14 strain. In another study, acidification led to a doubling of saxitoxin concentrations in nutrient
15 replete *A. catenella*, but toxicity increased by an order of magnitude under P limitation (Tatters
16 et al., 2013a), indicating the OA effect was minor relative to nutrient status. Even then, the
17 toxicity increases with OA were strongly suppressed by elevated temperatures, illustrating how
18 difficult it is to interpret and compare OA effects even in simple laboratory experiments without
19 fully considering all factors that contribute to the response (see Boyd and Hutchins, 2012).
20 Similarly, Van de Waal et al. (2011) found using different culturing methods that elevated pCO₂
21 led to decreasing cellular toxicity in *A. tamarensis*.

22 Current certainty about the effects of pH on toxicity of the diatom genus *Pseudo-nitzschia* is
23 not much better. Some experiments show 2-3 fold increases in cellular domoic acid

1 concentrations under elevated pCO₂ conditions (reduced pH) when either P- (Sun et al., 2011) or
2 Si-limited (Tatters et al., 2012), and these authors suggest that increased availability of inorganic
3 carbon may be mechanistically responsible. But other studies, using different techniques and
4 *Pseudo-nitzschia* species, found that cellular toxicity increased up to 70-fold at elevated pH
5 rather than more acidic conditions (Lundholm et al., 2004; Trimborn et al., 2008). Although
6 these differences are not yet explained, the implication is that ocean acidification may impact
7 diatom toxicity even if the sign and magnitude of this change so far is unpredictable.

8 On perhaps a brighter note, early evidence suggests that “medium” term (1-2 yr) evolutionary
9 shifts in phytoplankton adaptation to decreased pH are not sufficient to substantially alter
10 interspecific competitive success. Tatters et al. (2013c) found that the recombination of cell lines
11 acclimated for one year to different pCO₂ conditions yielded the same general competitive
12 responses observed in the two-week natural diatom community experiment from which they
13 were isolated. Similar “artificial” communities comprising clonal isolates of dinoflagellates
14 conditioned to altered pCO₂ conditions for one year generally matched the outcome of the short-
15 term (2 week) experiment with the natural dinoflagellate community (Tatters et al., 2013b). Even
16 so, it may be that the successful evolutionary adaptations of non-HAB species (e.g., Collins et
17 al., 2014) will be more important in determining the frequency of future harmful algal blooms.

18 **2.4.2 What are important “known unknowns” about ocean acidification effects on harmful
19 algal blooms?**

20 The key issues surrounding high biomass HAB events and OA (vs. other aspects of climate
21 change) are still not well defined. On the one hand, there is ample evidence that the potential
22 growth rates of phytoplankton could increase as the need for CCM diminish, and so increased
23 CO₂ availability may intensify blooms and their impacts, particularly where impact zones are

1 confined (e.g., embayments, restricted coastlines). There currently is little understanding about
2 how decreased pH affects the rates of zooplankton grazing (Caron and Hutchins, 2013) or
3 mixotrophy (e.g., Kim et al., 2013) (see below). Changes in grazing pressure in high biomass
4 harmful algal blooms may exacerbate (feeding on less harmful species) or help modulate bloom
5 intensity and disperse carbon export over larger spatial zones, thereby potentially diminishing the
6 potential for hypoxia. To date there is no evidence as to the balance of these drivers will be in
7 response to OA.

8 On the other hand, there is evidence that increasing CO₂ concentrations will affect
9 competition among major phytoplankton groups (Feng et al., 2009; Fu et al., 2007; Hare et al.,
10 2007; Tortell et al., 2002), and toxic algal groups (Fu et al., 2008; Ratti et al., 2007; Rost et al.,
11 2006), although very few species have been studied. It is, however, unclear whether these
12 changes in carbon acquisition potential will affect harmful species disproportionately,
13 contributing to either increases or decreases in the frequency of harmful algal blooms. That is,
14 the important issue is not whether ocean acidification will increase the predominance of
15 dinoflagellates, as anticipated, but whether it will select for more frequent flourishing of toxic or
16 harmful dinoflagellate species. More comparative studies along the lines of Eberlein et al. (2014)
17 are needed. In this vein, multiple stressor effects very likely will alter how OA influences HAB
18 species.

19 The question of whether OA increases the toxicity of HAB species remains open, with
20 conflicting findings in the literature sowing more confusion than consensus. Phytoplankton
21 toxins account for a very small proportion of total cellular carbon (e.g., Fu et al., 2010) and there
22 is no evidence to suggest that they are directly related to intra- or extracellular pH. Even subtle
23 shifts in metabolic processes could affect toxin production or retention by the cell. So slight

1 differences in culture conditions, even those independent of pCO₂, might affect the trends in
2 toxin production. Identifying the indirect drivers of ocean acidification on cell toxicity will be
3 challenging.

4 The effects of OA on the grazing pressure may significantly alter top-down controls of HAB
5 prevalence. Decreasing calcite saturation levels projected for future oceans lower the recruitment
6 success of benthic grazers (Waldbusser et al., 2015), as already observed in upwelling regions
7 (Ekstrom et al., 2015), potentially leading to higher toxin loadings in surviving bivalves. Effects
8 of OA on mesozooplankton are less well understood, but there are indications that it may be
9 more important than previously recognized (Cripps et al., 2014).

10 **2.4.3 What are the pressing questions regarding ocean acidification effects on harmful algal
11 blooms?**

12 *What effect does increased CO₂ availability have on the competitive success of HAB species,
13 and does it alter bloom dynamics sufficiently to intensify their impacts?* There is a rich literature
14 describing the physiology, growth characteristics, and toxicity of HAB species in laboratory and
15 field conditions but there is very little quantitative insight to how competitive these organisms
16 are relative to their “non-HAB” counterparts, let alone how OA may alter their competitive
17 success. In the case of high biomass blooms, if rates or magnitude of bloom formation increase
18 significantly there is a potential to spatially compress the zones of impact, leading to greater
19 hypoxia or other environmental consequences.

20 *Are our current methods adequate for gaining consensus about how OA may affect HAB
21 toxicity?* First, there is little definitive knowledge of the role toxins have in cell physiology or
22 ecological interactions, so there are no clear, testable hypotheses for why OA *might* affect cell
23 toxicity. Second, culture conditions vary among studies (light, temperature, nutrient addition, the

1 basal seawater used for media amendments). Given current uncertainty over the metabolic
2 controls of toxin production, it will be critical to seek uniformity in experimental methods among
3 studies, and this is particularly true in the methodology of pH alteration and maintenance
4 (bubbling, acid/base additions). A best practices manual for ocean acidification studies exists
5 (Riebesell et al., 2010) and this should be expanded to serve as a benchmark for HAB
6 investigations. Without unifying methods, confusion will persist over whether disparate results
7 among studies stem from true variability among organisms, or from methodological quirks. The
8 third, and perhaps main challenge ahead is defining how best to go about isolating and evaluating
9 the integrative effects of environmental and biochemical processes altered by OA on HAB
10 species success and toxicity.

11 **2.4.4 Summary of ocean acidification effects on harmful algal blooms**

12 Progressively increasing OA has the potential to alter many aspects of phytoplankton
13 physiology. The two proximal effects of OA on cell physiology will result from increased pCO₂
14 (reducing the value and costs for CCM) and potentially altered transmembrane proton gradients
15 (with impacts on ion transport and ion-channel activities). More distal effects include altered
16 micronutrient chemistries with likely impacts on their bioavailability. Both will exert selective
17 pressure on phytoplankton community composition, but how these might alter the competitive
18 success of HAB species is unknown. More than any other climate-associated stress factor
19 discussed here, small methodological differences among OA studies have the potential to alter
20 experimental findings dramatically, so it is critical that well-defined and uniform methods be
21 adopted.

22 **2.5 Nutrients and Harmful Algal Blooms**

1 Species causing HAB events are primarily photoautotrophs with generally simple
2 macronutrient needs. The majority of high-biomass harmful algal blooms, in many cases
3 resulting in hypoxia, are linked unequivocally to cultural eutrophication (Paerl et al., 2014;
4 Rabalais et al., 2010), but as for “natural” blooms, there is little understanding of the proximate
5 reasons for species selection within phytoplankton blooms. The most common approach to study
6 this core ecological principle is to quantify the presence or flux of dissolved forms of nitrogen,
7 phosphorus, and silicon, or trace nutrients such as iron and vitamins, and to then seek
8 correlations with the competitive outcomes among species (e.g., nutrient preferences, nutrient
9 affinities). The most common metrics for measuring HAB species success are biomass
10 accumulation (i.e., assimilation of a larger portion of the nutrient pool), or changes in the levels
11 of ecologically- or socially-important toxins (e.g., allelochemicals, food chain toxins). The
12 challenge is to stretch this thin knowledge across the projected alterations in nutrient fluxes to
13 the photic zone through warming-induced decreases in vertical mixing, changes in upwelling
14 intensities, and through substantial change in the spatial and temporal patterns of freshwater
15 inputs.

16 **2.5.1 What is known about nutrient effects on HAB species?**

17 There is little experimental or theoretical information to indicate that changes in
18 macronutrient supply and form will lead directly to a switch towards HAB species and bloom
19 events in most marine environments, in contrast to the impact of increased phosphorus and
20 nitrogen inputs to freshwater environments (e.g., Thornton et al., 2013). Futurist visions of
21 climate-driven increases in harmful algal blooms often emphasize “Global Change” issues,
22 which include population-driven anthropogenic alterations of the earth system, and there is little
23 dispute that future population increases are likely to alter regional nitrogen or phosphorus cycles

1 (e.g., Glibert et al., 2006). Here the emphasis instead is to describe how climate change pressures
2 may affect the prevalence of harmful algal blooms by alteration of surface water nutrient fields
3 through physical or precipitation-related processes, without assuming added changes due to
4 localized human pressures.

5 While there remain significant uncertainties in global climate models, projections for the
6 climate system suggest that there will be net increases in rainfall over the next century but that
7 these changes will not be uniform among regions, with southern Europe, the Middle East, and
8 southwestern USA experiencing decreases in precipitation while increases are projected for
9 Southeast Asia, tropical East Africa and high northern latitudes (Boberg et al., 2010; Gutowski et
10 al., 2007; Sun et al., 2007). Moreover, there are expectations for a shift to more intense
11 precipitation events (Seneviratne et al., 2012), increasing the episodic flux of macro- and micro-
12 nutrients into coastal waters.

13 These “great floods” may serve to supply coastal plankton communities in a massive, and
14 temporally restricted manner – as a horizontal “upwelling” event. When presented to possibly
15 warmer, predictably more stable surface waters, the runoff provides a nutrient source to increase
16 existing biomass or to possibly modify community structure through enhanced competitiveness
17 of certain species. The end result of a more nutrient-rich, warm, stable regime could be the
18 selection of certain HAB species (Smayda, 1998). This type of precipitation pulse, when
19 combined with possibly increased rates of *in situ* nutrient recycling (Doney et al., 2012), may
20 result in the elevated growth of HAB species that are not held ‘in check’ by grazing and do not
21 rely on recycled nutrients (Sunda and Shertzer, 2012). Thus, there would be a tendency for
22 “late-bloom species”, such as ecosystem destructive algal blooms (EDAB), to dominate more
23 frequently providing that the stable temperature/salinity environment is maintained.

1 With increased frequency of climate-change precipitation events, higher runoff and unused
2 (excess) fertilizer inputs can be anticipated, leading to the overall enhancement of phytoplankton
3 growth and biomass accumulation. Depending on the fertilizer type and method of application,
4 this input can be highly concentrated in ammonium, urea, or nitrate, and each may have
5 differential effects on phytoplankton and HAB community composition. Much attention has been
6 directed to the increased use of urea fertilizers and the correlation with regions of increased
7 cyanobacteria and dinoflagellate HAB events of the last few decades (Glibert et al., 2006). But
8 urea has been shown to support the growth of both HAB and non-HAB species, and it has not
9 been proven whether urea selects for HAB species, although one might expect dinoflagellates to
10 dominate given their higher rates of urease activity per cell compared to other phytoplankton
11 classes grown in culture (Glibert et al., 2008). A review of HAB species associated with
12 upwelling regions by Kudela et al. (2010) summarizes the inexact relationship between the
13 ecophysiology of cells, their toxin content, and the comparative nutrient supply. Under present
14 nutrient regimes and ratios, cellular toxin levels are genus specific, and thus no global statement
15 is applicable. The effect of N substrate (oxidized vs. reduced forms) on the toxicity of HAB
16 species is complex, illustrated by the many laboratory studies of dinoflagellates. Here,
17 exponential growth on nitrate generates greater overall cellular toxin content (= cell toxin quota)
18 compared to growth on ammonium or urea for *Alexandrium fundyense*, whereas during N-
19 depleted stationary growth, nitrate-grown cells are slightly less toxic than ammonium-grown
20 cells, but more toxic than cells grown on urea (Dyhrman and Anderson, 2003). Another strain of
21 *A. fundyense*, however, showed increased cellular toxicity on ammonium-grown cells compared
22 to nitrate-grown cells during exponential phase, but similar or less during stationary phase
23 depending on the degree of phosphorus stress (John and Flynn, 2000). Similarly enhanced

1 toxicity for ammonium-grown cells compared to nitrate-grown cells has been reported during
2 exponential growth for *A. excavatum* (Levasseur et al., 1995), during batch growth of
3 *Gymnodinium catenatum* (Flynn et al., 1996), and for *A. tamarens*e where ammonium induced
4 the highest cellular toxin concentrations, followed by urea, and then nitrate (Leong et al., 2004).
5 Increased intracellular toxin in ammonium-grown stationary cells compared to nitrate-grown
6 cells of Japanese strains of *A. tamarens*e is also suggested by Hamasaki et al. (2001), but direct
7 experimental comparisons using the two N substrates were not conducted. The opposite result
8 was found for *A. catenella* where growth on nitrate resulted in 5-6 fold increases in cellular toxin
9 concentration compared to growth on urea during both the N-replete exponential and N-depleted
10 stationary phases of growth (Dyhrman and Anderson, 2003), and for nitrate-grown cells of
11 *Karenia brevis* (formerly *G. breve*), toxin content per cell was only marginally influenced by
12 urea enrichment (Shimizu et al., 1995).

13 The influence of N substrate on cellular toxicity of diatoms of the genus *Pseudo-nitzschia* is
14 also highly variable but unlike most dinoflagellates, the cellular toxin (domoic acid)
15 concentration is generally much greater during the stationary phase of growth, rather than the
16 nutrient-replete exponential growth phase. This generalization is based primarily on culture
17 studies of *P. multiseries* and *P. australis*, where stationary growth is induced by P or Si depletion
18 (cf. reviews by Bates and Trainer, 2006; Lelong et al., 2012; Trainer et al., 2012), rather than N
19 limitation where enhancement of cellular toxicity is not observed during stationary growth (Auro
20 and Cochlan, 2013). Absolute N concentrations, light availability, and cellular growth phase
21 have all been shown to affect the differential toxicity of *Pseudo-nitzschia* species as a function of
22 N substrate (Auro and Cochlan, 2013, and references therein); these and other abiotic factors
23 associated with changing climate need to be considered when evaluating the influence of N

1 substrate on the cellular toxicity of toxigenic diatoms. Based on current evidence, neither
2 specific growth rate nor cellular domoic acid concentration can be predicted based on the N
3 substrate supporting growth as both vary among species and strains of *Pseudo-nitzschia* (Auro
4 and Cochlan, 2013; Thessen et al., 2009, and references therein). Arguments to suggest that a
5 specific N source will result in greater growth or toxicity of HAB species in general (or even just
6 toxic diatom blooms), and thus more frequent, or more toxic HAB events, are not supported by
7 empirical data from culture studies.

8 The projected increase in the flux of dissolved organic matter (DOM), or brownification of
9 coastal waters (Hansson et al., 2013; Monteith et al., 2007) could affect the nutrition of marine
10 plankton communities. The role of elevated DOM containing dissolved organic nitrogen and
11 phosphorus is not well studied, and the trace (nutrient) metal loading and complexation capacity
12 of DOM (Laglera and Berg, 2009) also may facilitate the growth or toxicity of HAB species (see
13 in Loureiro et al., 2011).

14 Climate-related changes in the intensity of storm events, the frequency of hurricanes, or great
15 floods may break down the natural biogeographical barriers that restrict the expansion of HAB
16 species. Any new, higher frequency exchange of waters due to storms may enhance the transport
17 of invasive harmful algal blooms to areas presently outside their range. Even without the
18 elevated flux of new nutrients, variations in storm events increase the likelihood of invasive,
19 exploitative HAB species. As documented a decade ago by Anderson et al. (Anderson et al., 2002),
20 there is more advanced understanding regarding the extent of climate-induced supply of nutrients
21 than on the selective pressures that these changes have on the HAB community structure. The
22 importance of nutrient supply-changes is, without question, critically important in community

1 development, yet the complexity of response of individual species and their subsequent
2 competitive or adversarial activities (allelopathy, mixotrophy) remains elusive.

3 A well-stratified surface water provides a common environment of enhanced nutrient
4 regeneration, and comparative studies generally show that these conditions favor flagellate
5 dominance (Smayda, 1998). Flagellates can flourish under long periods of low nutrient
6 concentrations where reduced forms of nitrogen (e.g., ammonium) comprise a large proportion
7 of the available N pool [e.g., *Alexandrium* spp. (Maguer et al., 2007); *Prorocentrum minimum*
8 (Fan et al., 2003)]. This does not mean that all flagellates prefer reduced nitrogen forms – only
9 that reduced forms tend to dominate when ambient N concentrations are low (Bonachela et al.,
10 2011). Indeed some HAB species appear to favor greater ambient (i.e., non-reduced) nutrient
11 conditions, due perhaps to higher physiological quota requirements; e.g., *Alexandrium* spp.
12 (Collos et al., 2006), *Heterosigma akashiwo* (Herndon and Cochlan, 2007), *Noctiluca* spp.
13 (Harrison et al., 2011), *Prorocentrum* spp. (Anderson et al., 2012); or perhaps it is a consequence
14 of the higher nutrients establishing more robust cyst seed beds. For example, the dramatic
15 drawdown of nutrients that occurs during high-density blooms leads to nutrient-depletion,
16 followed by encystment of *Alexandrium* spp., creating a seedbed density sufficient for the
17 reintroduction of the HAB population in subsequent years (Anderson et al., 2014).

18 The relative supply rates of nitrogen and phosphorus to surface waters can significantly
19 impact the physiology and dynamics of the phytoplankton community, as well as the community
20 composition (Geider and La Roche, 2002; Sterner et al., 2008). But this ratio is of most use in
21 interpreting succession and resultant community composition only when either the ambient
22 nitrogen or phosphorus concentrations are low. When there is an abundance of both, or when
23 nutrients are not limiting phytoplankton growth, there is no compelling evidence that N:P ratios

1 provide a predictive value for the floristic composition of the phytoplankton community and the
2 likelihood of HAB development (Davidson et al., 2012, and references therein).

3 **2.5.2 What are important “known unknowns” about nutrients and harmful algal blooms?**

4 As a driving force, nutrients control the production and influence the composition of
5 phytoplankton communities. Nutrient concentrations, ratios, and speciation are known to directly
6 affect the community and metabolites produced, such as toxins and allelopathic compounds,
7 even though the specifics of these interactions remain elusive. Perhaps the biggest unknowns
8 though are the extent and scale of change in nutrient influx via runoff or altered upwelling
9 intensities that these communities will experience, balanced against other global factors such as
10 eutrophication, demophoric (population X energy consumption) growth and land use. Ecological
11 shifts due to climate-induced changes in nutrient fluxes or nutrient use might already be
12 emerging, but they may not be evident or significant in the milieu of other coastal ocean
13 processes.

14 There are large knowledge gaps in how nutrient quality and quantity effect changes in
15 phytoplankton community physiology and ecology to select for HAB species. For example, how
16 do the nutrient-use efficiencies of HAB species change relative to non-HAB species when
17 presented with lower pH, increased temperature or salinity. This baseline understanding, related
18 primarily through nutrient uptake kinetic studies, is essential to provide a theoretical and
19 quantitative foundation to evaluate the potential role of nutrients under future climate conditions.

20 While N tends to be the primary nutrient of interest (in its oxidized and reduced forms), equal
21 efforts will have to be devoted to assessing under what conditions will shifting nutrient ratios
22 contribute to shaping phytoplankton communities in the future ocean.

1 Paramount to forecasting potential nutrient effects in the future ocean is the need for clear
2 insight to the range of conditions that will be faced. What changes in regional supply patterns of
3 reduced or oxidized forms of N and other nutrients are anticipated (e.g., Hutchins et al., 2009)
4 and will they vary in concert or disproportionately, resulting in altered nutrient ratios? It is
5 ambitious to obtain these quantitative insights from current models, but consideration of the
6 possible ranges would help to set the boundaries for experimental studies that then could be used
7 to inform improved model development.

8 In almost all cases, “nutrient effects” on harmful algal blooms pertains to macronutrients
9 such as N, P, or Si, yet there is almost no understanding of micronutrient effects on harmful algal
10 blooms: i.e., trace elements and vitamins. Micronutrients have strong potential effects on
11 phytoplankton community composition (Brand et al., 1983; Sunda, 1989), given their role in
12 photosynthesis, enzymatic and other functions throughout cell metabolism. But little is known
13 about micronutrient requirements (and tolerances in the case of metals) of HAB species
14 compared to non-HAB species, or whether these differences are likely to shape phytoplankton
15 communities. Given that experimental cultures traditionally have metal conditions radically
16 different than natural conditions, most current data are inadequate to address this question.
17 Moreover, the chemistry of trace metals and the HAB specific availabilities and quotients remain
18 poorly understood, and thus it will be difficult to predict climate-driven changes in micronutrient
19 supply may affect the prevalence of harmful algal blooms without concerted research in this
20 direction.

21 **2.5.3 Pressing questions about nutrients and harmful algal blooms?**

22 *How do nutrient uptake kinetics and preferences of HAB species compare quantitatively to
23 non-HAB species?* These critical data are missing for many HAB species, and in particular their

1 relation to non-HAB species, and thus models lack appropriate parameterization. It is essential to
2 know if HAB species in general, or certain specific HAB species, will thrive by outcompeting
3 other species in the future ocean chemical matrix. Current foundation knowledge regarding the
4 role of nutrients in establishing the competitive selection of HAB species needs to be challenged.
5 Nutrient kinetic and nutrient use efficiency studies have been generated under controlled
6 laboratory conditions using cells in seawater with a relative stable chemical matrix. Given the
7 anticipated changes in P, iron, and other micronutrient inputs to surface waters, these nutrient
8 competition studies must be revisited. Embedded within this research must be efforts to
9 normalize experimental methods enough to enable better assessment of nutrient effects on cell
10 toxicity. Similarly, HAB responses in hypereutrophic environments, where nutrients are
11 available in considerable excess, need to be revisited because existing models employing
12 rectangular hyperbolic (e.g., Michaelis-Menten) approaches to parameterize phytoplankton
13 growth or uptake relative to external nutrient concentration are inadequate for assessing
14 competitive success. New theoretical and experimental approaches need to be considered.

15 *How can linkages be improved between observed nutrient fields, nutrient acquisition kinetics*
16 *by HAB and non-HAB species, and physical, ecological, and climate change models to increase*
17 *competence in forecasting harmful algal blooms in present day and future oceans?* More
18 stabilized surface waters, extended seasons, and intense storms all are predicted for the future
19 ocean –factors that will influence the extent and timing of nutrient inputs into the photic zone.
20 There are few biological models of individual HAB species that couple alterations in seasonal
21 and pulsed nutrient supply to physical models for HAB forecasts under present day or future
22 ocean scenarios. Moving forward it will be important that these modeling activities develop

1 along with modified understanding of changes in cell physiology, cell competition, and the
2 physical environment of the HAB and non-HAB species.

3 *How do changes in micronutrient and vitamin supply to phytoplankton communities affect*
4 *success of HAB species relative to the broader phytoplankton community, and what effect may*
5 *fluctuations in this supply affect cell toxicity?* While it is known from culture studies that trace
6 elements and vitamins (micronutrients) are critical in harmful algal blooms, there is uncertainty
7 with regards to the natural supply levels of these trace nutrients. The chemistry and availability
8 of trace metals remain poorly understood and characterized for HAB species and habitats, and
9 thus it will be difficult to predict their effects on specific harmful algal blooms as a function of
10 climate change.

11 **2.5.4 Summary of nutrients and harmful algal blooms**

12 Current understanding is insufficient to determine how absolute concentrations and
13 speciation of nutrients challenge the metabolic “skills” of phytoplankton, so there is limited
14 ability to predict how changing nutrient fields result in “winners” and “losers” within natural
15 phytoplankton assemblages. Reduced N species, particularly from anthropogenic sources, often
16 appear associated with some HAB and HAB species, yet non-HAB species also flourish in
17 culture with these N sources, so the issues are more complicated. Climate change will affect
18 nutrient flux to surface waters, through alteration in vertical mixing and runoff, and the challenge
19 will be to incorporate quantitative measures of nutrient acquisition among HAB and non-HAB
20 species, along with the effects of strain variability, to forecast likely outcomes. It will be
21 particularly difficult to differentiate between climate change pressures and those stemming from
22 societal changes (population/social/economic) in many regions.

23 **2.6 Grazing Effects on Harmful Algal Blooms**

1 Most efforts to understand and forecast harmful algal blooms have focused on bottom up
2 controls of species success and biomass development. The ecological consequences of grazing
3 pressures on bloom characteristics either are not effective, in the case of high-biomass blooms, or
4 are not well understood in the case of toxic blooms. Indeed among the factors that govern
5 harmful algal blooms, grazing arguably is the most difficult because it adds not only the
6 complexity of top down effects upon the bottom-up controls introduced by temperature,
7 stratification, acidification, nutrients, and other environmental stressors, but also these effects
8 upon the grazer activity.

9 **2.6.1 What is knowns about grazing effects on harmful algal blooms?**

10 Five different tiers of grazers predate on HAB species, each characterized by unique modes
11 of predation, prey preference, toxin effects, and ecologies. Arrayed along a template of
12 increasing size, the primary grazers on HAB species are: microbial pathogens, micro-
13 zooplankton, copepods and other mesozooplankton components, benthic invertebrates, and fish.
14 Microbial pathogens include algicidal bacteria, infectious viruses, and parasites (Coats and Park,
15 2002; Salomon and Umai, 2006). The microzooplankton, known also as the protozooplankton
16 (Smetacek, 1981), include heterotrophic dinoflagellates and ciliates < 200 μm in size, tintinnids
17 and aloricate ciliates (Stoecker and Evans, 1985; Turner, 2006). Copepods and cladocerans are
18 the major mesozooplankton (> 200 μm) grazers (Turner, 2006), with copepods being particularly
19 voracious, having prey clearance rates that exceed filter-feeding rates of cladocerans and
20 meroplankton larvae by 10-fold (Hansen et al., 1997). Commercially important shellfish are
21 prominent filter feeders on HAB species among the diverse benthic invertebrate grazers, and are
22 important vectors of shellfish borne toxins that impact human health (Shumway, 1990). The
23 larval and adult stages of many other invertebrate species are also copious feeders on

1 phytoplankton. Farmed fish stocks, particularly salmonid species, are vulnerable to ichthyotoxic
2 blooms (see Rensel et al., 2010), and the larval and adult stages of many species are sensitive to
3 dinoflagellate toxins ingested directly or in other prey-vectoring toxins acquired through food
4 web transfer (Bruslé, 1995; Smayda, 1992; White et al., 1989). But the first-feeding or adult
5 stages of many naturally-occurring and commercially important fish species selectively graze
6 dinoflagellate species (Lasker and Zweifel, 1978; Last, 1980; Samson et al., 2008), whose caloric
7 value generally is twice that of diatoms of equivalent biovolume (Hitchcock, 1981). Some fish
8 species have evolved spawning migrations to coincide with blooms on which their first-feeding
9 stages consume (Gosselin et al., 1989). There is spawn cueing behavior, i.e., synchrony between
10 invertebrate spawning and increases in phytoplankton biomass on which larvae graze (Fernandez
11 et al., 2012; Himmelman, 1975; Starr et al., 1990). Trophic linkages between harmful algal
12 blooms and predatory food web components are reviewed in Smayda (1992). All life cycle stages
13 and bloom phases of HAB species are subject to multiple and changing grazer attacks. For
14 example, Jeong et al. (2013) listed 33 species of heterotrophic dinoflagellates, microzooplankton,
15 mesozooplankton and invertebrate larvae that graze on ichthyotoxic *Heterosigma akashiwo*, a
16 predator-prey association they termed a “grazing hub”; a concept that also can be applied to
17 some dinoflagellates (Jeong et al., 2010).

18 The prevailing conceptual view is that HAB species are grazed, their blooms develop when
19 the population growth rate exceeds grazing rate, and phycotoxins allelochemically protect
20 against grazers. But the ultimate predator-prey interactions occur at the organismal level, and the
21 experimental results, primarily with mesozooplankton (copepod) species, indicate that those
22 concepts are conditional. The physiological and ecological effects on copepods that graze on
23 toxic species, and their growth and bloom responses vary greatly. Copepod species generally

1 feed on a variety of HAB species, selecting prey based on their cell size and toxicity, with the
2 latter selection mode indicative of highly sensitive and specific chemoreceptive abilities
3 (Teegarden and Cembella, 1996). Ingestion of toxic prey can adversely affect predator grazing
4 rate, fecundity, egg hatching success, growth, survival, and incapacitate or cause death of the
5 grazer (Fiedler, 1982; Huntley et al., 1986; Koski et al., 1999; Koski et al., 2002; Schultz and
6 Kjørboe, 2009; Smayda, 1992; Teegarden, 1999). Adverse effects can be reversed when the
7 grazer is exposed to different diets, or the HAB species to different grazers (Koski et al., 2002;
8 Lincoln et al., 2001; Teegarden et al., 2001). Some copepod species actively graze, grow and
9 reproduce on HAB prey without deleterious effects; conversely, they also reject non-toxic
10 species, and a species toxic or avoided by one species is grazed by another species (Smayda,
11 1992; Turner, 2006; Uye and Takamatsu, 1990). The availability of alternative prey influences
12 grazing rates on HAB species, with the intensity of grazing a function of the inherent toxicity of
13 each prey species, its strain, and the magnitude of toxicity induced by nutrient-limitation. The
14 presence of a toxic species can reduce feeding rates on all species (Schultz and Kjørboe, 2009).
15 There is the potential that all of these interactions may shift if climate change pressures lead to
16 changes in the toxicity or nutritional quality of the HAB prey (e.g., Fu et al., 2010; Leu et al.,
17 2013).

18 The impacts of zooplankton community grazing on a HAB likewise vary. Grazing may retard
19 initial development, terminate harmful algal blooms, or be too sluggish to prevent a bloom from
20 developing (Schultz and Kjørboe, 2009). Trophic breakdowns in community grazing may sustain
21 a bloom for years, as in a Texas brown tide (Buskey et al., 2001). The impact of grazing on HAB
22 species phenology and their blooms is likely a function of the historical exposure of the predator-
23 prey pairings, with both predator and prey species capable of counter-measure capture and

1 avoidance adaptations, respectively. Some copepods routinely exposed to a toxic species and its
2 specific toxin become less vulnerable physiologically to that toxin/HAB species than other meta-
3 populations of the same copepod species not naturally exposed to that species/toxin (Colin and
4 Dam, 2002). There is experimental evidence that waterborne cues emanating from copepods
5 induce prey to develop morphological defense protectants (Jiang et al., 2010), or to synthesize
6 chemical grazing deterrents, re-directing grazing pressure towards competing non-toxic species
7 (Bergkvist et al., 2008; Guissande et al., 2002). While lethal effects of prey on grazers can be
8 dramatic, this vulnerability is not equally distributed among grazer groups. Microzooplankton
9 are considered the dominant grazers on HAB species, consuming 60 to 70% of the biomass
10 (Turner, 2006), but most toxic prey within the microzooplankton are not known to kill their
11 protistan grazers, relying, instead, on sub-lethal chemical defenses that impair grazer activity, or
12 chemically signal noxiousness (Strom, 2002). Lethal effects of HAB species against
13 mesozooplankton, invertebrate larvae, and larval fish appear to be more common.

14 **2.6.2 What are important “known unknowns” about grazing effects on harmful algal
15 blooms?**

16 Extrapolation of experimental grazing data to *in situ* behavior is problematic. For many
17 studies, it is difficult to determine whether the responses are ecologically representative because
18 of the methodological use of high prey population densities, un-natural predator-prey pairings,
19 strain differences, and experimental presentation of a single prey species rather than a mixed-
20 diet. Trainer et al. (2002) found domoic acid concentrations were higher during natural blooms
21 than expected from cellular production rates in laboratory experiments. Extrapolation of bivalve
22 data to assess potential climate change effects on shellfish-borne phycotoxin uptake and
23 transmission is likewise problematic.

1 Detailed understanding of saxitoxin kinetics in bivalves is largely restricted to a few
2 commercially important species that are relatively resistant to toxins, e.g. the mussel *Mytilus*
3 *edulis* and Atlantic surf clam *Spisula solidissima* (Bricelj and Shumway, 1998). Under-study of
4 PSP and other shellfish-borne toxin kinetics greatly hampers the current understanding because
5 bivalves show up to 100-fold interspecific differences in their accumulation of PSP toxins. In
6 general, bivalves are avid suspension feeders (Jørgensen, 1966). Species with nerves less
7 sensitive to saxitoxins (e.g. *Mytilus edulis*, Bricelj et al., 2005; sea scallop *Placopecten*
8 *magellanicus*, Cembella et al., 1994) readily feed on toxic cells and accumulate high toxin levels,
9 whereas bivalves more sensitive to PSP toxins (e.g. oyster *Crassostrea virginica*) attain
10 relatively low toxicities, although factors other than toxin sensitivity also influence bivalve
11 toxicity (Bricelj and Shumway, 1998).

12 The HAB-grazing relationship and outcomes are not fixed, linear or invariant in any given
13 predator-prey coupling. A more important impediment in forecasting climate-induced predator-
14 prey alterations is that grazing reciprocally affects both prey and predator. That is, each element
15 of the predator:prey interaction is both an ecological driver and a responder, unlike the uni-
16 directional, non-reciprocal affects that changing temperature or pH have on HAB species growth
17 rate, range extension and bloom phenology. The altered distribution, abundance and phenology
18 of both grazers and their prey in response to climate change may intensify or diminish the prior
19 predator-prey association, with the response dependent on biogeographical location, trophic
20 structure and strength of benthic (i.e., filter feeding bivalve) – pelagic coupling. Adding further
21 complexity, the influence of climate change likely also will influence the temporal convergence
22 of “bottom-up” (i.e., nutrient regulated growth) and “top-down” grazing control during bloom
23 and succession cycles.

1 Similarly, mixotrophy is a critical feature of many HAB species, particularly those that
2 inhabit an ecological niche near the end of a bloom sequence. While generally relegated to
3 secondary processes in productive waters, alteration in the balance of carbon fixation and growth
4 in the future ocean may elevate the role of mixotrophy in ocean surface waters. Thus,
5 mixotrophic HAB species may have a significant ecological space opened for their activities
6 depending on whether future ocean conditions alter present patterns of balanced/unbalanced cell
7 growth.

8 **2.6.3 What are the pressing questions regarding grazing effects on harmful algal blooms?**

9 *What is the best approach to study grazing effects on the success or demise of harmful algal
10 blooms?* Forecasting climate-induced changes in the coupled grazing-HAB relationship differs
11 fundamentally, and is considerably less tractable, than for other climate-linked impacts. Grazing
12 is a process of transient seasonal, regional, and trophic predator-prey interactions, each governed
13 by its own range of tolerance and vulnerability to the operative climate change variable, further
14 modified by the particular prey and predator species pairings. Altered grazing pressures will
15 affect both HAB and non-HAB species, so it is unlikely that climate-altered grazing effects will
16 be singular, or easily tractable. Temperature effects will act as a community and trophic
17 pacemaker, regulating grazer and prey metabolic rates, life history transitions, and community
18 development. Acidification will pose major physiological threats in some species, e.g. through
19 decreased skeletal calcification of larvae that cause secondary impacts on grazing potential
20 (Byrne, 2011). The challenge will be to disentangle these intricate couplings, perhaps starting
21 with prominent grazer-prey couplings, to ascertain net effects on HAB species from these
22 climate-altered balances in predator-prey interactions.

23 *Will the effects of climate change in some cases decouple existing grazer and prey life*

1 *histories sufficiently to fundamentally alter their predator:prey relationships, or to create*
2 *opportunities for new grazer coupling?* There exist primary unknowns about the optimal ranges
3 of environmental conditions for grazer life histories. For example, will range extension of grazer
4 populations depend more upon their environmental requirements or that of their prey, so that
5 potential ranges extensions of current predator-prey interactions will become decoupled. If so,
6 conditions may be moving into novel and unpredictable future states in some coastal regions.
7 Will metabolic shifts in prey species disproportionately affect their food “quality”, changing
8 grazing selective pressures on either HAB or non-HAB species and the resultant trajectories of
9 planktonic communities? In shallow coastal regions, how will the temperature dependency of
10 collective benthic feeding rates affect seasonal feeding windows differently than HAB growth in
11 overlying waters, and what effect will this have on HAB and non-HAB abundance? Longer
12 warm seasonal windows will increase the relative impacts of gelatinous zooplankton with
13 possible changes in the relative grazing pressure on HAB vs. non-HAB species.

14 *How will grazer behavior and sensing capabilities be affected by OA, and will this alter*
15 *grazing pressure?* Given that chemical cues can enhance or diminish grazer:prey interactions, it
16 is important to recognize the potentially unique effect of pH on grazing pressures. Recent
17 evidence shows that OA depresses the sensory detection of chemical cues in fish (e.g., Lonnstedt
18 et al., 2013), so there may be precedent for similar effects in planktonic and benthic grazers. The
19 potential effects of OA on grazing of HAB and non-HAB species, as well as the relative degree
20 of toxin accumulation in bivalves, remains unknown.

21 **2.6.4 Summary of grazing effects on harmful algal blooms**

22 Projecting how climate change may affect HAB prevalence by altering grazing pressure, and
23 carrying out the requisite ecological experiments to test these hypotheses, will be extraordinarily

1 difficult. These experiments and field investigations must deal with the enormous functional and
2 ecological diversity of the grazers (mixotrophy through pelagic and benthic heterotrophs), the
3 diversity of phycotoxins, and their differing inimical effects. No single predator-prey relationship
4 describes the great diversity of prey ecology and predator feeding strategies found, so it is
5 unlikely that any uniform, generally applicable predator-prey interaction model can be expected.
6 Instead the focus will need to be on the interactions of specific grazer-prey couples — e.g., how
7 prey characteristics influence grazing efficiencies, and how these in turn affect net growth —
8 with hope that some general patterns of response emerge so that more adequate representation of
9 grazing pressure can be incorporated into ecological and climate change models.

10 **3.0 Multiple Stressor Effects on Harmful Algal Blooms**

11 An overwhelming proportion of laboratory studies on environmental effects on HAB
12 organisms are single stressor or single factor experiments, yet it can be expected that parameter
13 interactions will yield unpredicted outcomes and mechanisms driving harmful algal blooms
14 (“unknown unknowns”). There is a very short list of known interactions, and in some cases they
15 generate unexpected results. For example, unlike the diatoms tested, nutrient stress does not
16 increase the sensitivity of the Baltic HAB cyanobacteria *N. spumigena* to high ambient UVR
17 (Mohlin et al., 2012; Mohlin and Wulff, 2009; Pattanaik et al., 2010), meaning the multistressor
18 conditions do not necessarily lead to increasingly negative effects. Another example is the
19 combined effects of stratification and nutrient limitation that intuitively should enhance the
20 potential for toxic HAB formation (Raine, 2014) but may also prevent HAB formation
21 (McGillicuddy et al., 2011). On the other hand, the interaction between stratification and grazing
22 may lead to more concentrated blooms of *Heterosigma akashiwo* (Strom et al., 2013). In the
23 broader context, the multiple stressor effects on non-HAB species may be highly relevant as well

1 in that they affect the relative competitiveness and opportunities for HAB species to flourish or
2 perhaps just survive better, which is all that is needed for increased HAB impacts of some toxic
3 species. Far greater efforts are needed to assess interactive parameter outcomes using laboratory,
4 mesocosm and field studies. Although quantitative predictive models for harmful algal blooms
5 are in their infancy (Anderson et al., 2013), there is much that can be learned from these
6 multifactorial data by using quantitative models and sensitivity analysis to evaluate our
7 understanding of multiple stressor effects. Findings from multifactorial experiments at all scales
8 should be incorporated step-wise into global models to evaluate whether ecologically realistic
9 outcomes are generated, and to guide experimentalists to better refine their studies, evaluate
10 other HAB strains, or to help identify key observer sites for validation of apparent knowledge
11 advancement.

12 **4.0 Local Human-Introduced Pressures and Global Change**

13 Climate related changes in the intensity of storm events, the frequency of hurricanes, or great
14 floods may break down the natural biogeographical barriers that restrict the expansion of HAB
15 species, but it is important to also consider societal-derived transport of invasive harmful algal
16 blooms to areas presently outside their range. The human transfer of HAB and grazer species to
17 new regions via ballast water, fouling of vessels, and aquaculture is well documented (e.g.,
18 Hallegraeff, 2007; Ruiz et al., 1997). This often cryptic seeding and spreading mechanism may
19 lead to false positive signals of climate change effects on phytoplankton community
20 composition, and the changing prevalence of harmful algal blooms. Similarly, global change
21 effects stemming from increased future populations will lead to greater cultural eutrophication
22 pressures in some coastal regions, a factor well recognized to affect HAB conditions (GEOHAB,
23 2006) as well as certain HAB species and predators (Smayda, 2007, 2008). These human-

1 introduced “point source” effects will vary greatly among coastal regions according to local
2 social and economic conditions, and may obscure underlying shifts in harmful algal blooms
3 driven by climate change. The challenge will be to develop suitable metrics for disentangling the
4 ecological outcomes from climate and global change pressures in those regions.

5 **5.0 The Critical Need for HAB Observer Sites**

6 Although culture and mesocosm studies can serve as foundations for hypothesis testing of
7 mechanistic linkages between climate change stressors and the competitive success of HAB
8 organisms, structured field observations will be essential not only to inform on shifting HAB
9 responses within natural ecosystems, but also to reveal unexpected patterns that transcend our
10 knowledge. Currently, very few time series of HAB data describing annual phytoplankton cycles
11 are available in the literature. This trend needs to change if researchers are to have the
12 information needed to proactively assess the *potential* changes in HAB impacts, rather than
13 simply *hindcasting* the mechanisms underlying emerged patterns of new HAB eruptions.
14 National HAB monitoring data are a useful starting point, but these datasets most often lack the
15 requisite physical, chemical and biological data needed to critically test hypotheses explaining
16 the observed changes in seafood safety. Automation of HAB sensing is an emerging science
17 (Campbell et al., 2010; Preston et al., 2011) and the continuing development towards user
18 friendly systems will greatly accelerate this critical data acquisition. Trend detection of harmful
19 algal blooms in marine and freshwater systems could be greatly assisted by development of
20 simplified tools for societal-based sampling [e.g., microscope ranking of relative abundance and
21 simplified optical measurements of chlorophyll (Hydrocolor, iTunes Store)]. As was the case for
22 climate change, greater accumulation of data across broad regions and environments will be
23 critical for establishing long-term HAB trends.

1 Moving forward it is important that existing datasets on HAB occurrence and absence be
2 integrated to the extent possible with environmental data, and this base then needs to be
3 expanded to create a global-scale program of observations to facilitate investigations of HAB-
4 climate interactions. To this end, it is proposed that a suite of Long Term Observer sites be
5 chosen that combine climate, oceanography and HAB-specific observations to provide the
6 essential test beds for these evaluations. Suggestions of potential sites for consideration are
7 shown in Table 1, which is not intended to be comprehensive. This list of reference sites
8 encompass key ecosystem types, and includes biogeographical transition zones (e.g. ~40-50°N),
9 high latitude (Greenland, Russia, Canada, USA), and polar environments (Palmer LTR). These
10 sites all represent existing or near-existing monitoring programs, so facilitating their use as HAB
11 sentinels could be accomplished by only expanding their currently monitored parameters.
12 Grouping data from these sentinel sites would enable for the first time a comprehensive review
13 of the region-to-region patterns that necessarily underlie any critical assessment of global
14 changes in harmful algal blooms.

15 It is to be expected that not all of these sites will be equally rich in data acquisition, and
16 indeed even sites that regularly monitor a minor subset of parameters will be of high value. The
17 observing network should comprise a combination of reference (climate sensitive) sites and a
18 small subset of HAB Super Observer Sites (HAB SOS). In this case, reference sites would focus
19 on collecting basic time series data while the HAB SOS sites instead would be geared toward the
20 more intense data acquisition needed to facilitate process studies (Table 2). These Long Term
21 Observer sites should correspond to satellite ground-truthing sites for the Global Coastal Ocean
22 Observing System, thereby facilitating the future development of algorithms for remotely
23 monitoring the HAB initiation and progression. All of these data should be made available over

1 appropriate time frames through publicly accessible data centers. Together, these collective
2 datasets should be coupled to downscaled physical ecosystem models to evaluate the drivers of
3 HAB distributions.

4 **6.0 Linkage to Other Programs and the Social Sciences**

5 There are many global, regional and national programs and initiatives that can provide
6 substantial capabilities to better understand the linkages between climate change and HAB
7 dynamics, distribution and the underlying causative mechanisms. These range from components
8 of global observational systems to national resource monitoring programs. They provide a wide
9 scope of capabilities that need to be assessed with regard to quantitative applicability, and fully
10 capitalized upon through engagement and even optimization with regard to HAB observation and
11 characterization.

12 ***Global Observation Systems: GEOSS and GOOS:*** The Global Earth Observation System of
13 Systems (GEOSS) is the primary vehicle of the Group on Earth Observations (GEO), an
14 international initiative promoting the use of integrated earth observations for sustainable
15 development. The Global Ocean Observing System (GOOS) is considered to be the ocean
16 implementation of GEOSS. The GEO Task SB-01 Oceans and Society: Blue Planet (Djavidnia et
17 al., 2014) is the single largest initiative of relevance here and consists of components addressing
18 global ocean information systems, forecasting networks, ecosystem monitoring, and
19 fisheries/aquaculture management. HAB specific applications are a recognized task component
20 (Bernard et al., 2014), namely “*Integrated Earth observation-based systems can play a
21 significant role in the detection, monitoring and analysis of harmful algal blooms in marine and
22 freshwater ecosystems. The GEO Blue Planet HAB initiative seeks to consolidate and expand on
23 existing capabilities, building a global community to develop and maximise the use and societal*

1 *benefits of an integrated HAB observation and prediction system*”. Freshwater and
2 cyanobacterial blooms are considered in another GEO Task; WA-01-C4 Global Water Quality
3 Products and Services. The GEO Work Plan also is seen as an implementation plan for
4 programmatic funding in Europe and other countries, and so linkages with GEO also provide a
5 means of policy integration and impact. The International Ocean Colour Co-ordinating Group
6 (IOC CG) is of particular relevance to ongoing earth observation HAB capabilities, with outputs
7 focusing on methods for phytoplankton functional type, HAB and water quality from space. In
8 addition the IOC CG provides a mechanism to provide space agencies with recommendations
9 from the HAB community for optimising HAB applications for current and future sensors.

10 ***Regional and National Programs:*** Regional or national initiatives can contribute to elucidating
11 the link between climate and HAB phenomena in a number of ways. Operational programs such
12 as NOAA CoastWatch, or the MyOcean-linked ASIMUTH, MarCoast and AquaMar projects
13 can provide considerable regionally-optimized earth observation and historical *in situ* data. In
14 addition, national water quality programs and monitoring frameworks provide policy impact
15 vehicles and can potentially serve as sources of data for long time series of *in situ* data relevant
16 to HAB geographical distribution. Examples of such programs include the European Water
17 Framework Directive; the EPA and other agencies monitoring under the Clean Water Act in the
18 USA; the Canadian Water Act; the South African National Eutrophication Monitoring
19 Programme; and the Australian National Water Quality Management Strategy, among others.

20 ***Linkages to Social Science:*** “Harmful” algal blooms is a societal-based moniker that
21 traditionally stems from the consequence of either their direct or indirect human health impacts,
22 but these blooms also have socio-economic and cultural implications (e.g., Smayda, 1997;
23 Trainer and Yoshida, 2014). There is emerging recognition of the complexities and synergies

1 that exist among the fields of marine science, social science and economics (e.g., Moore et al.,
2 2013), and that human well-being, the state characterized by health, happiness, and prosperity,
3 should be the currency by which environmental perturbations are measured. Yet research on this
4 broader perspective progresses largely independent of traditional HAB science, which focuses
5 more on the ecological (e.g., species characterization, presence/absence), toxicity, or direct
6 economic consequences of harmful algal blooms. The insular nature of HAB research needs to
7 diminish if the field is to adequately respond to the shifting perspectives of human well-being
8 overlain upon changes in the natural environment over the next century.

9 **7.0 Summary and Next Steps**

10 As a field of research, harmful algal science has progressed to the stage where numerous
11 avenues by which climate change might alter HAB prevalence, distribution, and character can be
12 anticipated. For example, there can be high confidence that, barring improved societal practices
13 in agriculture and other land use policies, climate-driven increases in riverine inflows from
14 human-modified watersheds will increase the prevalence of HAB-induced hypoxia/anoxia. The
15 case for other types of harmful algal blooms, however, remains equivocal because compelling
16 evidence that climate change will enhance the growth of HAB species over the far larger pool of
17 competing non-HAB species is lacking. This shortcoming is partly due to the complexity and
18 multiplicity of phytoplankton community processes (e.g., interspecies competition, grazing) but
19 it also stems in part from the “insular” nature of most HAB research, where a species is studied
20 in far more detail than the community of organisms in which it occurs. Studies of the physiology
21 of HAB species often occur within the limited perspective of clonal cultures, and the benefits of
22 this simplicity falter when efforts are made to use these experimental insights to forecast a
23 species’ potential success in complex communities. Additionally, HAB scientists generally focus

1 their research either on localized regions or locally important HAB species, and rarely conform
2 to common experimental designs and methods. While there clearly are exceptions, this
3 “boutique” style of science is poorly suited for acquiring the datasets needed to globally assess
4 the current distributions of HAB frequency and character, let alone for estimating how climate
5 change pressures may alter those patterns. Global datasets on HAB observations, such as IOC-
6 ICES-PICES Harmful Algae Event Database (HAEDAT), are a good beginning but some
7 “change” also is needed regarding how HAB science is done. Suggestions are offered on steps
8 to advance more rapidly the understanding of the effects of climate change on harmful algal
9 blooms.

10

11 1. ***A Best Practices Manual for HAB and Climate Change Research:*** There is a strong need to
12 develop some consensus with regard to the “best” practices for studying the effect of climate
13 change pressures on harmful algal blooms. By example, the guide to best practices for ocean
14 acidification research (Riebesell et al., 2010) provides a unifying methodological framework
15 that enables direct intercomparison among independent studies from different global regions.
16 To accomplish this within the HAB community, a small working group should be
17 established, perhaps through the Intergovernmental Oceanographic Commission (IOC)
18 Intergovernmental Panel on Harmful Algal Blooms (IPHAB) that would formulate draft
19 guidelines. After review and revision by the broader community, the resultant manual should
20 adopted by IPHAB and kept current with advancing knowledge.

21 2. ***Select representative model organisms of HAB types for intensified study:*** Biomedical
22 research has been greatly accelerated by utilizing a small subset of model organisms (e.g., the
23 thale cress *Arabidopsis thaliana*, the common fruit fly *Drosophila melanogaster*, the water

1 flea *Daphnia*, and the zebrafish *Danio rerio*). Rather than directly representing the species of
2 interest (*Homo sapien*), these model systems are effective investigative platforms of the
3 linkages among genomic, molecular, and metabolic processes. Selecting a small subset of
4 HAB species/isolates for similar intensive study would generate greater advances than the
5 equivalent investigative effort spread across many species/isolates. The quantitative genomic
6 knowledge that emerged from these “model” systems would offer critical insight for
7 deciphering the genetic and molecular architecture that regulates the growth and toxicity of
8 these and other HAB species. This subset of model organisms also would serve as valuable
9 reference species for inter-lab comparisons and for inclusion into experiments testing other
10 experimental strains or organisms. A draft listing of proposed HAB genera or species for this
11 purpose is shown in Table 3. This list is not meant to be inclusive or exhaustive, but rather a
12 start for discussion among the HAB community on what species or genera should be
13 included, and indeed, the relative values of such a prioritization process.

14 3. ***Inclusion of Co-Occurring Non-HAB Species in Longer Term HAB Laboratory Studies:***

15 Culture studies investigating the responses of HAB species to climate change stressors or
16 factors should as a rule include at least one non-HAB phytoplankton species common to the
17 coastal waters of interest. Better still, simulated or “artificial” community studies should
18 become more prevalent, where simplified “communities” comprising HAB clonal isolates and
19 a few to several commonly co-occurring non-HAB isolates are subjected to climate change
20 pressures. A step beyond parallel clonal culture studies, artificial communities allow for
21 direct interactions among phytoplankton and so provide a better integrative assessment of the
22 relative success of HAB species. These laboratory culture experiments should range from
23 short (days/weeks) to long (months) duration so as to better evaluate HAB (and non-HAB)

1 physiological plasticity to the climate stress conditions. Long-term acclimation to
2 experimental conditions should be part of many studies, as responses to applied stresses may
3 vary significantly depending on the extent of prior pre-conditioning. In the case of artificial
4 communities, a combination of cultures acclimated for extended periods provides an
5 opportunity to test the stability of competitive responses (see Tatters et al., 2013c).

6 **4. A Greater Emphasis on Multifactorial Laboratory Experiments:** There currently is
7 insufficient understanding about the responses of HAB and non-HAB species under more
8 realistic climate change scenarios, where simultaneous variation of multiple factors (e.g.,
9 temperature, salinity, OA) will regulate competitive outcomes. These data then can be fed
10 into coupled HAB-IPCC climate models to generate ecologically realistic results that, in turn,
11 can be used to design new multifactorial experiments and highlight key observer sites for
12 exploring these ecological transitions.

13 **5. Better Global Assessment of HAB Species Responses Through “Common Garden”**
14 **Experiments:** Greater emphasis should be placed on conducting the same investigations
15 across multiple laboratories with identical experimental designs (temperature, light, nutrients,
16 etc.) using widely distributed HAB and non-HAB species. An example would be determining
17 the response of several HAB species, or multiple clones of a single species, from different
18 geographical locations or habitats to the same environmental perturbations. These studies
19 would provide critical insight into interspecies and interclonal phenotypic variability.

20 **6. Retrospective Analyses of Long-Term Plankton and Cyst Core Data Sets:** Looking to the
21 past may help inform our forecasts for the future. Re-examination, and continued collection,
22 of long-term plankton and core data sets in the context of climate change data likely will

1 provide the first “canary in the mine” evidence of climate-driven changes in ecological
2 conditions.

3 7. ***Rapid Response Strategies to Investigate Harmful Algal Blooms During Major Weather or***
4 ***Other Environmental Fluctuations:*** One of the best ways to study climate change effects on
5 harmful algal blooms may be to utilize major weather shifts that mimic projected future
6 climate scenarios. These shifts for example, might be a major warming event, increased runoff
7 (or drought), water mass intrusion, or other perturbations such as has occurred recently in areas
8 subject to harmful algal blooms (see McGillicuddy et al., 2011, the emerging
9 warming/*Pseudo-nitzschia* bloom conditions in the western USA in summer 2015). Taking
10 advantage of these situations to study entire eco- and hydrographic systems under a common
11 forcing would help develop a more complete understanding.

12 8. ***A Stronger Linkage Among Global, National, and Regional Climate Change and HAB***
13 ***Observation Programs:*** A greater focus on unifying global HAB observations is essential if
14 the changes in HAB distribution, character, and intensity are to be understood, and in
15 particular to support needed annual or bi-annual global assessments of the environmental and
16 human impacts from harmful algal blooms. As suggested here, a network of sentinel ocean-
17 observing reference sites should be established that includes both “basic” and HAB SOS
18 (Table 2). This network should encompass existing regional and national monitoring
19 programs and expand observations to regions of concern in the future (e.g., high latitude
20 environments). Stronger linkages need be fostered with the Global Ocean Observing System
21 (GOOS) to improve algorithms for the detection and monitoring of HAB outbreaks. On a
22 practical level, HAB investigators need to: a) utilize data from state or federal monitoring
23 programs that provide continuity through time and broad spatial coverage, as well as

1 information on the onset, termination, and intensity of outbreaks; b) identify key locations
2 within individual countries or regions where sufficient data can be collected to provide the
3 necessary perspectives; c) add HAB species (and techniques to identify them) to existing
4 plankton monitoring programs; and d) develop and utilize new sensors and instruments that
5 can obtain long-term data in an automated and relatively inexpensive fashion. Installing HAB
6 sensors on existing ocean observing moorings and linking HAB researchers to established
7 Long Term Ecological Research (LTER) sites, which already are measuring and archiving
8 ecologically relevant data, would greatly facilitate collection of the needed time-series data.

9 **9. A Greater Emphasis on Development of HAB Modeling and Forecasting Platforms:** As
10 with other complex systems, there is a need to develop virtual assessments of the factors
11 initiating, maintaining, and dispersing HAB outbreaks. There are few numerical
12 oceanographic models currently optimized for HAB forecasting, but advances have made
13 these tools important learning platforms for investigating interspecies competition and HAB
14 impacts. Models are essential for any quantitative forecasting of climate change effects on
15 harmful algal blooms in the future oceans, so a high priority should be given to the
16 development of such capabilities for multiple harmful algal blooms in multiple regions. Many
17 elements of the existing models can be transferred from one HAB to another or one region to
18 another with appropriate guidance and precautions, so progress can be accelerated through a
19 concerted community effort to share model formulations and to collaborate.

20 **10. Explicit Coupling of HAB Modeling and Forecasting Platforms to Complex Ecosystem**

21 **Models:** Regional physical-biological HAB models need to be better coupled to larger,
22 ecosystem-level models. That is, creating model products that incorporate growth and success
23 of HAB species within the context of complex ecosystem changes under different climate

1 scenarios. Developing the modeling infrastructure needed for these efforts would provide
2 tools for stepwise assessment of our understanding about the likely prevalence of harmful
3 algal blooms under future conditions.

4 **11. A Stronger Connection Among HAB and Climate Change Researchers:** The research
5 network investigating the physical science basis of climate change (e.g. temperature,
6 precipitation, sea level change) has developed a strong foundation for forecasting the
7 magnitude and character of change. Determining how these changes will differentially affect
8 phytoplankton functional groups is more complex (e.g., Marinov et al., 2010), and extending
9 this approach to studying intra-functional group changes (i.e., harmful algal blooms) is far
10 more challenging. Success along this path will depend upon greater levels of organization and
11 cooperation between HAB scientists and their counterparts in the broader climate change
12 research community.

13 **12. Expand Studies on the Social Science of Harmful Algal Blooms:** Incorporation of social
14 science into HAB climate change research should be a firm goal, enabling more
15 comprehensive assessment of HAB impacts on human well-being (e.g., cultural, economic,
16 human health). “HAB” is a societal-defined term, so better understanding of how societal
17 effects will change with climate stress is essential to attaining a comprehensive assessment of
18 projected changes in future harmful algal blooms.

19 **13. Retain a Strong Focus on the Fundamental Core Research on HAB Species and Events:**
20 Although this paper focuses on questions related to climate change and the current inadequate
21 understanding of how harmful algal bloom may be affected, it must be recognized that many
22 important research questions persist in HAB ecology, physiology, genetics, and other aspects
23 of HAB science. The current understanding of harmful algal blooms stems from this basic

1 foundation, and it would be counterproductive if an overemphasis on climate change studies
2 led to a decrease in these “core” research efforts.

3

4 The response of harmful algal blooms to the multifaceted forcing of projected climate change
5 is largely unknown and highly speculative. Worse, it appears unlikely that this understanding
6 will improve quickly without broad changes in the general strategies of HAB research, which
7 largely fail to address the complex ecological and multi-environmental stresses that shape
8 phytoplankton communities. There are two central goals moving forward. First, obtain
9 compelling evidence that climate change has caused alterations in HAB distribution, prevalence
10 or character. This fundamental foundation currently is lacking. Second, develop the theoretical,
11 experimental, and empirical evidence for how changes in environmental and ecological factors
12 may influence the geospatial distribution, range expansion or contraction, and emergence of new
13 patterns for harmful algal blooms. Fundamental changes in HAB research strategies will be
14 necessary to meet these critical challenges.

15

16 **Acknowledgements:**

17

18 Support for the workshop was provided by the North Pacific Marine Science Organization
19 (PICES) and the U.S. National Office for Marine Biotoxins and Harmful Algal Blooms, Woods
20 Hole Oceanographic Institution. Additional support for MLW, CGT, and WPC was from the
21 National Science Foundation (NSF) Grants OCE-1131657 and OCE 1130748 and NOAA
22 NCCOS grants NA10NOS4780161 and NA10NOS4780160, respectively. Support for DMA was
23 provided through the Woods Hole Center for Oceans and Human Health, National Science

1 Foundation (NSF) Grants OCE- 1128041 and OCE-1314642; and National Institute of
2 Environmental Health Sciences (NIEHS) Grant 1-P50-ES021923-01. Support for RMK was
3 provided through California Sea Grant and California Ocean Protection Council award
4 R/OPCCONT-12 A 10, National Aeronautics and Space Administration grant NNX13AL28G,
5 and the NOAA award NA11NOS4780030. We express our sincere appreciation to G.
6 Hallegraeff, S. Moore, and an anonymous reviewer for their contributions that improved this
7 work. This is ECOHAB Contribution ECO829
8
9
10

1 **REFERENCES**

2 Acker, J.G., Leptoukh, G., 2007. Online analysis enhances use of NASA earth science data. *EOS*
3 88(2), 14-17.

4 Alheit, J., Mollmann, C., Dutz, J., Kornilovs, G., Loewe, P., Mohrholz, V., Wasmund, N., 2005.
5 Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s.
6 *ICES J. Mar. Sci.* 62(7), 1205-1215.

7 Anderson, D.M., Alpermann, T.J., Cembella, A.D., Collos, Y., Masseret, E., Montresor, M.,
8 2012. The globally distributed genus *Alexandrium*: Multifaceted roles in marine ecosystems and
9 impacts on human health. *Harmful Algae* 14, 10-35.

10 Anderson, D.M., Glibert, P.M., Burkholder, J.M., 2002. Harmful algal blooms and
11 eutrophication: Nutrient sources, composition, and consequences. *Estuaries* 25(4B), 704-726.

12 Anderson, D.M., Keafer, B.A., Kleindinst, J.L., McGillicuddy, D.J., Martin, J.L., Norton, K.,
13 Pilskaln, C.H., Smith, J.L., Sherwood, C.R., Butman, B., 2014. *Alexandrium fundyense* cysts in
14 the Gulf of Maine: Long-term time series of abundance and distribution, and linkages to past and
15 future blooms. *Deep-Sea Res. Part II-Top. Stud. Oceanogr.* 103, 6-26.

16 Anderson, D.M., Keafer, B.A., McGillicuddy, D.J., Solow, A.R., Kleindinst, J.L., 2013.
17 Improving the accuracy and utility of harmful algal bloom forecasting systems. *Geological Soc*
18 Publishing House, Bath.

19 Anderson, D.M., Rengefors, K., 2006. Community assembly and seasonal succession of marine
20 dinoflagellates in a temperate estuary: The importance of life cycle events. *Limnol. Oceanogr.*
21 51(2), 860-873.

22 Anderson, D.M., Stock, C.A., Keafer, B.A., Nelson, A.B., Thompson, B., McGillicuddy, D.J.,
23 Keller, M., Matrai, P.A., Martin, J., 2005. *Alexandrium fundyense* cyst dynamics in the Gulf of
24 Maine. *Deep-Sea Res. Part II-Top. Stud. Oceanogr.* 52(19-21), 2522-2542.

1 Aoki, K., Onitsuka, G., Shimizu, M., Kuroda, H., Matsuo, H., Kitadai, Y., Sakurada, K., Ando,
2 H., Nishi, H., Tahara, Y., 2014. Variability of factors driving spatial and temporal dispersion in
3 river plume and *Chattonella antiqua* bloom in the Yatsushiro Sea, Japan. Mar. Pollut. Bull.
4 81(1), 131-139.

5 Auro, M.E., Cochlan, W.P., 2013. Nitrogen utilization and toxin production by two diatoms of
6 the *Pseudo-nitzschia pseudodelicatissima* complex: *P. cuspidata* and *P. fryselliana*. J. Phycol.
7 49(1), 156-169.

8 Baek, S.H., Shimode, S., Kikuchi, T., 2008. Growth of dinoflagellates, *Ceratium furca* and
9 *Ceratium fusus* in Sagami Bay, Japan: the role of temperature, light intensity and photo - period.
10 Harmful Algae 7, 163-173.

11 Bates, S.S., Trainer, V.L., 2006. The Ecology of Harmful Diatoms, In: Graneli, E., Turner, J.T.
12 (Eds.), Ecology of Harmful Algae. Springer-Verlag, Berlin, Germany, pp. 81-93.

13 Beardall, J., Raven, J.A., 2004. The potential effects of global climate change on microbial
14 photosynthesis, growth and ecology. Phycologia 43, 26-40.

15 Beardall, J., Stojkovic, S., Larsen, S., 2009. Living in a high CO₂ world: impacts of global
16 climate change on marine phytoplankton. Plant Ecology & Diversity 2(2), 191-205.

17 Bednarsek, N., Tarling, G.A., Bakker, D.C.E., Fielding, S., Feely, R.A., 2014. Dissolution
18 dominating calcification process in polar pteropods close to the point of aragonite
19 undersaturation. PLoS One 9(10), 10.1371/journal.pone.0109183.

20 Behrenfeld, M.J., O'Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C.,
21 Milligan, A.J., Falkowski, P.G., Letelier, R.M., Boss, E.S., 2006. Climate-driven trends in
22 contemporary ocean productivity. Nature 444(7120), 752-755.

1 Berdalet, E., McManus, M.A., Ross, O.N., Burchard, H., Chavez, F.P., Jaffe, J.S., Jenkinson,
2 I.R., Kudela, R., Lips, I., Lips, U., Lucas, A., Rivas, D., Ruiz-de la Torre, M.C., Ryan, J.,
3 Sullivan, J.M., Yamazaki, H., 2014. Understanding harmful algae in stratified systems: Review
4 of progress and future directions. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 101, 4-20.

5 Berdalet, E., Tester, P., Zingone, A., 2012. Global Ecology and Oceanography of Harmful Algal
6 Blooms, GEOHAB Core Research Project: HABs in Benthic Systems. IOC of UNESCO and
7 SCOR, Paris and Newark, p. 64.

8 Berge, T., Daugbjerg, N., Andersen, B.B., Hansen, P.J., 2010. Effect of lowered pH on marine
9 phytoplankton growth rates. Marine Ecology Progress Series 416, 79-91.

10 Bergkvist, J., Selander, E., Pavia, H., 2008. Induction of toxin production in dinoflagellates: the
11 grazer makes a difference. Oecologia 156, 147-154.

12 Bernard, S., Kudela, R., Velo-Suarez, L., 2014. Developing global capabilities for the
13 observation and prediction of harmful algal blooms, In: Djavidnia, S., Cheung, V., Ott, M.,
14 Seeyave, S. (Eds.), Oceans and Society, Blue Planet. Cambridge Scholars Publishing, Newcastle
15 upon Tyne, pp. 46-52.

16 Binder, B.J., Anderson, D.M., 1987. Physiological and environmental-control of germination in
17 *Scrippsiella-trochoidea* (Dinophyceae) resting cysts. J. Phycol. 23(1), 99-107.

18 Bissenger, J.E., Montagnes, S., J., Atkinson, D., 2008. Predicting marine phytoplankton
19 maximum growth rates from temperature: Improving on the Eppley curve using quantile
20 regression. Limnol. Oceanogr. 53, 487-493.

21 Boberg, F., Berg, P., Thejll, P., Gutowski, W.J., Christensen, J.H., 2010. Improved confidence in
22 climate change projections of precipitation further evaluated using daily statistics from
23 ENSEMBLES models. Climate Dynamics 35(7-8), 1509-1520.

1 Bonachela, J.A., Raghib, M., Levin, S.A., 2011. Dynamic model of flexible phytoplankton
2 nutrient uptake. Proceedings of the National Academy of Sciences of the United States of
3 America 108(51), 20633-20638.

4 Boyd, P.W., Hutchins, D.A., 2012. Understanding the responses of ocean biota to a complex
5 matrix of cumulative anthropogenic change. Marine Ecology Progress Series 470, 125-135.

6 Boyd, P.W., Rynearson, T.A., Armstrong, E.A., Fu, F.X., Hayashi, K., Hu, Z.X., Hutchins, D.A.,
7 Kudela, R.M., Litchman, E., Mulholland, M.R., Passow, U., Strzepek, R.F., Whittaker, K.A., Yu,
8 E., Thomas, M.K., 2013. Marine Phytoplankton Temperature versus Growth Responses from
9 Polar to Tropical Waters - Outcome of a Scientific Community-Wide Study. PLoS One 8(5),
10 10.1371/journal.pone.0063091.

11 Brand, L.E., Sunda, W.G., Guillard, R.R.L., 1983. Limitation of marine phytoplankton
12 reproductive rates by zinc, manganese, and iron. Limnol. Oceanogr. 28(6), 1182-1198.

13 Bravo, I., Anderson, D.M., 1994. The effects of temperature, growth medium and darkness on
14 excystment and growth of the toxic dinoflagellate *Gymnodinium catenatum* from northwest
15 Spain. J. Plankton Res. 16, 513-525.

16 Bricelj, V.M., Connell, L., Konoki, K., MacQuarrie, S.P., Scheuer, T., Catterall, W.A., Trainer,
17 V.L., 2005. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of
18 PSP. Nature 434(7034), 763-767.

19 Bricelj, V.M., Shumway, S.E., 1998. Paralytic shellfish toxins in bivalve molluscs: occurrence,
20 transfer kinetics and biotransformation. Rev. Fish. Sci. 6, 315-383.

21 Bruslé, J., 1995. The impact of harmful algal blooms on finfish mortality, pathology and
22 toxicology, IFREMER Repères Océan No. 10, pp. 1-75.

1 Burkholder, H.M., Glibert, P.M., 2009. The importance of intraspecific variability in harmful
2 algae-Preface to a collection of topical papers. *Harmful Algae* 8, 744-822.

3 Buskey, E.J., Liu, H., Collumb, C., Bersano, J.G.F., 2001. The decline and recovery of a
4 persistent Texas brown tide algal bloom in the Laguna Madre (Texas, USA). *Estuaries* 24, 337-
5 346.

6 Byrne, M., 2011. Impact of ocean warming and ocean acidification on marine invertebrate life
7 history stages: Vulnerabilities and potential for persistence in a changing ocean. *Oceanogr. Mar.*
8 *Biol. Annu. Rev.* 49, 1-42.

9 Campbell, L., Olson, R.J., Sosik, H.M., Abraham, A., Henrichs, D.W., Hyatt, C.J., Buskey, E.J.,
10 2010. First harmful *Dinophysis* (Dinophyceae, Dinophysiales) bloom in the us is revealed by
11 automated imaging flow cytometry. *J. Phycol.* 46(1), 66-75.

12 Carignan, M.O., Montoya, N.G., Carreto, J.I., 2002. Long-term effects of ultraviolet radiation on
13 the composition of pigment and mycosporine-like amino acids (MAAs) composition in
14 *Alexandrium catenella*. *Aquaculture* 34(191-207).

15 Caron, D.A., Hutchins, D.A., 2013. The effects of changing climate on microzooplankton
16 grazing and community structure: drivers, predictions and knowledge gaps. *J. Plankton Res.*
17 35(2), 235-252.

18 Carreto, J.I., Carignan, M.O., 2011. Mycosporine-like amino acids: relevant secondary
19 metabolites. *Chemical and ecological aspects. Mar. Drugs* 9(3), 387-446.

20 Castenholz, R.W., Garcia-Pichel, F., 2005. Cyanobacterial responses to UV radiation, In: BA,
21 W., M, P. (Eds.), *The ecology of cyanobacteria*. Kluwer Academic Publishers, Dordrecht, pp.
22 591-611.

1 Cembella, A.D., Shumway, S.E., Larocque, R., 1994. Sequestering and putative
2 biotransformation of paralytic shellfish toxins by the sea scallop *Placopecten magellanicus* -
3 seasonal and spatial scales in natural-populations. *J. Exp. Mar. Biol. Ecol.* 180(1), 1-22.

4 Cho, E.S., Kotaki, Y., Park, J.G., 2001. The comparison between toxic *Pseudo-nitzschia*
5 *multiseries* (Hasle) Hasle and non-toxic *P. pungens* (Grunow) Hasle isolated from Jinhae Bay,
6 Korea. *Algae* 16, 275-285.

7 Coats, D.W., Park, M.G., 2002. Parasitism of photosynthetic dinoflagellates by three strains of
8 *Amoebophrya* (Dinophyta): parasite survival, infectivity, generation time, and host specificity.
9 *Journal of Phycology* 38, 520-528.

10 Colin, S.P., Dam, H., 2002. Latitudinal differentiation in the effects of the toxic dinoflagellate
11 *Alexandrium* spp. on the feeding and reproduction of populations of the copepod *Acartia*
12 *hudsonica*. *Harmful Algae* 1, 113-125.

13 Collins, S., Rost, B., Rynearson, T.A., 2014. Evolutionary potential of marine phytoplankton
14 under ocean acidification. *Evolutionary Applications* 7, 140-155.

15 Collos, Y., Lespilette, M., Vaquer, A., Laabir, M., Pastoureaud, A., 2006. Uptake and
16 accumulation of ammonium by *Alexandrium catenella* during nutrient pulses. *Afr. J. Mar. Sci.*
17 28(2), 313-318.

18 Cripps, G., Lindeque, P., Flynn, K.J., 2014. Have we been underestimating the effects of ocean
19 acidification in zooplankton? *Global Change Biol.* 20(11), 3377-3385.

20 Dason, J.S., Colman, B., 2004. Inhibition of growth in two dinoflagellates by rapid changes in
21 external pH. *Canadian Journal of Botany-Revue Canadienne De Botanique* 82(4), 515-520.

22 Davidson, K., Gowen, R.J., Tett, P., Bresnan, E., Harrison, P.J., McKinney, A., Milligan, S.,
23 Mills, D.K., Silke, J., Crooks, A.M., 2012. Harmful algal blooms: How strong is the evidence

1 that nutrient ratios and forms influence their occurrence? *Estuarine Coastal and Shelf Science*
2 115, 399-413.

3 de Boer, M.K., 2005. Temperature responses of three *Fibrocapsa japonica* strains
4 (Raphidophyceae) from different climate regions. *J. Plankton Res.* 27(1), 47-60.

5 Djavidnia, S., Cheung, V., Ott, M., Seeyave, S., 2014. *Oceans and Society, Blue Planet*.
6 Cambridge Scholars Publishing, Newcastle upon Tyne.

7 Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, C.A., Galindo, H.M.,
8 Grebmeier, J.M., Hollowed, A.B., Knowlton, N., Polovina, J., Rabalais, N.N., Sydeman, W.J.,
9 Talley, L.D., 2012. Climate change impacts on marine ecosystems. *Annual Review of Marine
Science* 4, 11-37.

11 Dyhrman, S.T., Anderson, D.M., 2003. Urease activity in cultures and field populations of the
12 toxic dinoflagellate *Alexandrium*. *Limnol. Oceanogr.* 48(2), 647-655.

13 Eberlein, T., de Waal, D.B.V., Rost, B., 2014. Differential effects of ocean acidification on
14 carbon acquisition in two bloom-forming dinoflagellate species. *Physiol. Plant.* 151(4), 468-479.

15 Edwards, M.E., Richardson, A.J., 2004. Impact of climate change on marine pelagic phenology
16 and trophic mismatch. *Nature* 430, 881-883.

17 Ekstrom, J.A., Suatoni, L., Cooley, S.R., Pendleton, L.H., Waldbusser, G.G., Cinner, J.E., Ritter,
18 J., Langdon, C., van Hooidonk, R., Gledhill, D., Wellman, K., Beck, M.W., Brander, L.M.,
19 Rittschof, D., Doherty, C., Edwards, P.E.T., Portela, R., 2015. Vulnerability and adaptation of
20 US shellfisheries to ocean acidification. *Nat. Clim. Chang.* 5(3), 207-214.

21 Eppley, R.W., 1972. Temperature and phytoplankton growth in the sea. *Fish. Bull.* 70, 1063-
22 1085.

1 Etheridge, S.M., Roesler, C.S., 2005. Effects of temperature, irradiance, and salinity on
2 photosynthesis, growth rates, total toxicity, and toxin composition for *Alexandrium fundyense*
3 isolates from the Gulf of Maine. Deep-Sea Res II 52, 2491-2500.

4 Evens, T.J., Kirkpatrick, G.J., Millie, D.F., Chapman, D.J., Schofield, O.M.E., 2001.
5 Photophysiological responses of the toxic red-tide dinoflagellate *Gymnodinium breve*
6 (Dinophyceae) under natural sunlight. J. Plankton Res. 23, 1177-1193.

7 Fan, C.L., Glibert, P.M., Burkholder, J.M., 2003. Characterization of the affinity for nitrogen,
8 uptake kinetics, and environmental relationships for *Prorocentrum minimum* in natural blooms
9 and laboratory cultures. Harmful Algae 2(4), 283-299.

10 Farrell, H., Gentien, P., Fernand, L., Lunven, M., Reguera, B., González-Gil, S., Raine., R.,
11 2012. Scales characterising a high density thin layer of *Dinophysis acuta* Ehrenberg and its
12 transport within a coastal jet. Harmful Algae 15, 36-46.

13 Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J., Millero, F.J., 2004.
14 Impact of anthropogenic CO₂ on the CaCO₃ system in the oceans. Science 305(5682), 362-366.

15 Feely, R.A., Sbaine, C.L., Hernandex-Ayon, J.M., Ianson, D., Hales, B., 2008. Evidence of
16 upwelling of corrosive acidified water onto the continental shelf. Science 320, 1490-1492.

17 Fehling, J., Green, D.H., Davidson, K., Bolch, C.J., Bates, S.S., 2004. Domoic acid production
18 by *Pseudo-nitzschia seriata* (Bacillariophyceae) in Scottish waters. J. Phycol. 40, 622-630.

19 Feng, Y.Y., Hare, C.E., Leblanc, K., Rose, J.M., Zhang, Y.H., DiTullio, G.R., Lee, P.A.,
20 Wilhelm, S.W., Rowe, J.M., Sun, J., Nemcek, N., Gueguen, C., Passow, U., Benner, I., Brown,
21 C., Hutchins, D.A., 2009. Effects of increased pCO₂ and temperature on the North Atlantic
22 spring bloom. I. The phytoplankton community and biogeochemical response. Marine Ecology
23 Progress Series 388, 13-25.

1 Fernandez, L., Quintanila, J., Monteiro-Ribas, W., Gonzalez-Rodriguez, E., Goutinho, R., 2012.

2 Seasonal and interannual coupling between sea surface temperature, phytoplankton and

3 meroplankton in the subtropical south-western Atlantic Ocean. *J. Plankton Res.* 34, 236-224.

4 Fiedler, P., 1982. Zooplankton avoidance and reduced grazing responses to *Gymnodinium*

5 *splendens* (Dinophyceae). *Limnology and Oceanography* 27, 961-965.

6 Figueras, F.G., Pitcher, G.C., Estrada, M., 2006. Harmful algal bloom dynamics in relation to

7 physical processes, In: Granéli, E., Turner, J.T. (Eds.), *Ecology of Harmful Algae*. Springer-

8 Verlag, Berlin, pp. 127-138.

9 Flynn, K.J., Flynn, K., John, E.H., Reguera, B., Reyero, M.I., Franco, J.M., 1996. Changes in

10 toxins, intracellular and dissolved free amino acids of the toxic dinoflagellate *Gymnodinium*

11 *catenatum* in response to changes in inorganic nutrients and salinity. *J. Plankton Res.* 18(11),

12 2093-2111.

13 Fraga, S., M., G.S., Anderson, D.M., 1989. Chain-forming dinoflagellates: an adaptation to red

14 tides, In: Okaichi, T., Anderson, D.M., Nemoto, T. (Eds.), *Red Tides: Biology, Environmental*

15 *and Science and Toxicology*. Elsevier, New York, pp. 281-284.

16 Fu, F.-X., Warner, M.E., Zhang, Y., Feng, Y., Hutchins, D.A., 2007. Effects of increased

17 temperature and CO₂ on photosynthesis, growth, and elemental ratios in marine *Synechococcus*

18 and *Prochlorococcus* (cyanobacteria). *J. Phycol.* 43(3), 485-496.

19 Fu, F.X., Place, A.R., Garcia, N.S., Hutchins, D.A., 2010. CO₂ and phosphate availability

20 control the toxicity of the harmful bloom dinoflagellate *Karlodinium veneficum*. *Aquat.*

21 *Microbiol. Ecol.* 59(1), 55-65.

22 Fu, F.X., Tatters, A.O., Hutchins, D.A., 2012. Global change and the future of harmful algal

23 blooms in the ocean. *Marine Ecology Progress Series* 470, 207-233.

1 Fu, F.X., Zhang, Y.H., Warner, M.E., Feng, Y.Y., Sun, J., Hutchins, D.A., 2008. A comparison
2 of future increased CO₂ and temperature effects on sympatric *Heterosigma akashiwo* and
3 *Prorocentrum minimum*. *Harm. Algae* 7(1), 76-90.

4 García-Pichel, F., Castenholz, R.W., 1993. Occurrence of UV-absorbing, mycosporine-like
5 compounds among cyanobacterial isolates and an estimate of their screening capacity. *Appl.*
6 *Environ. Microbiol.* 59(1), 163-169.

7 Geider, R.J., La Roche, J., 2002. Redfield revisited: variability of C : N : P in marine microalgae
8 and its biochemical basis. *European Journal of Phycology* 37(1), 1-17.

9 GEOHAB, 2006. *Global Ecology and Oceanography of Harmful Algal Blooms, Harmful Algal*
10 *Blooms in Eutrophic Systems*, IOC and SCOR, Paris and Baltimore.

11 Giordano, M., Beardall, J., Raven, J.A., 2005. CO₂ concentrating mechanisms in algae:
12 Mechanisms, environmental modulation, and evolution, *Annu. Rev. Plant Biol.* Annual Reviews,
13 Vol. 56, Palo Alto, pp. 99-131.

14 Glibert, P.M., Azanza, R., Burford, M., Furuya, K., Abal, E., Al-Azri, A., Al-Yamani, F.,
15 Andersen, P., Anderson, D.M., Beardall, J., Berg, G.M., Brand, L., Bronk, D., Brookes, J.,
16 Burkholder, J.M., Cembella, A., Cochlan, W.P., Collier, J.L., Collos, Y., Diaz, R., Doblin, M.,
17 Drennen, T., Dyhrman, S., Fukuyo, Y., Furnas, M., Galloway, J., Graneli, E., Ha, D.V.,
18 Hallegraeff, G., Harrison, J., Harrison, P.J., Heil, C.A., Heimann, K., Howarth, R., Jauzein, C.,
19 Kana, A.A., Kana, T.M., Kim, H., Kudela, R., Legrand, C., Mallin, M., Mulholland, M., Murray,
20 S., O'Neil, J., Pitcher, G., Qi, Y.Z., Rabalais, N., Raine, R., Seitzinger, S., Salomon, P.S.,
21 Solomon, C., Stoecker, D.K., Usup, G., Wilson, J., Yin, K.D., Zhou, M.J., Zhu, M.Y., 2008.
22 Ocean urea fertilization for carbon credits poses high ecological risks. *Mar. Pollut. Bull.* 56(6),
23 1049-1056.

1 Glibert, P.M., Harrison, J., Heil, C., Seitzinger, S., 2006. Escalating worldwide use of urea - a
2 global change contributing to coastal eutrophication. *Biogeochemistry* 77(3), 441-463.

3 Gómez, F., Souissi, S., 2007. Unusual diatoms linked to climatic events in the northeastern
4 English Channel. *J. Sea Res.* 58(4), 283-290.

5 Gosselin, S., Fortier, L., Gagné, A., 1989. Vulnerability of marine fish larvae to the toxic
6 dinoflagellate *Protogonyaulax tamarensis*. *Marine Ecology and Progress Series* 57, 1-10.

7 Greer, A.T., Cowen, R.K., Guigand, C.M., McManus, M.A., Sevadjan, J.C., Timmerman,
8 A.H.V., 2013. Relationships between phytoplankton thin layers and the fine-scale vertical
9 distributions of two trophic levels of zooplankton. *J. Plankton Res.* 35(5), 939-956.

10 Guerrini, F., Ciminiello, P., Dell'Aversano, C., Tartaglione, L., Fattorusso, E., Boni, L.,
11 Pistocchi, R., 2007. Influence of temperature, salinity and nutrient limitation on yessotoxin
12 production and release by the dinoflagellate *Protoceratium reticulatum* in batch-cultures.
13 *Harmful Algae* 6(5), 707-717.

14 Guissande, C., Frangopoulos, M., Maneiro, I., Vergara, A.R., Riveiro, I., 2002. Ecological
15 advantages of toxin production by the dinoflagellate *Alexandrium minutum* under phosphorus
16 limitation. *Marine Ecology and Progress Series* 225, 169-176.

17 Gutowski, W.J., Kozak, K.A., Arritt, R.W., Christensen, J.H., Patton, J.C., Takle, E.S., 2007. A
18 possible constraint on regional precipitation intensity changes under global warming. *Journal of*
19 *Hydrometeorology* 8(6), 1382-1396.

20 Ha, S.Y., La, H.S., Min, J.O., Chung, K.H., Kang, S.H., Shin, K.H., 2014. Photoprotective
21 function of mycosporine-like amino acids in a bipolar diatom (*Porosira glacialis*): evidence from
22 ultraviolet radiation and stable isotope probing. *Diatom Research* 29(4), 399-409.

1 Häder, D.P., Helbling, W., Williamson, C.E., Worrest, R.C., 2010. Effects of UV radiation on
2 aquatic ecosystems and interactions with climate change, The environmental effects of ozone
3 depletion and its interactions with climate change: 2010 Assessment. UNEP, pp. 113-150.

4 Hajdu, S., Edler, L., Olenina, I., Witek, B., 2000. Spreading and establishment of the potentially
5 toxic dinoflagellate *Prorocentrum minimum* in the Baltic Sea. Internationale Revue gesamten
6 Hydrobiologie 85, 561-575.

7 Hallegraeff, G., 2007. Special Issue: Ballast water. Harmful Algae 6, 461-622.

8 Hallegraeff, G.M., Blackburn, S.I., Doblin, M.A., Bolch, C.J.S., 2012. Global toxicology,
9 ecophysiology and population relationships of the chainforming PST dinoflagellate
10 *Gymnodinium catenatum*. Harm. Algae 14, 130-143.

11 Hallegraeff, G.M., Marssahall, J.A., Valentine, J., Hardiman, S., 1998. Short cyst-dormancy
12 period of an Australian isolate of the toxic dinoflagellate *Alexandrium catenella*. Marine and
13 Freshwater Research 49, 415-420.

14 Hama, T., Kawashima, S., Shimotori, K., Satoh, Y., Omori, Y., Wada, S., Adachi, T., Hasegawa,
15 S., Midorikawa, T., Ishii, M., Saito, S., Sasano, D., Endo, H., Nakayama, T., Inouye, I., 2012.
16 Effect of ocean acidification on coastal phytoplankton composition and accompanying organic
17 nitrogen production. J. Oceanogr. 68(1), 183-194.

18 Hamasaki, K., Horie, M., Tokimitsu, S., Toda, T., Taguchi, S., 2001. Variability in toxicity of
19 the dinoflagellate *Alexandrium tamarense* isolated from Hiroshima Bay, western Japan, as a
20 reflection of changing environmental conditions. J. Plankton Res. 23(3), 271-278.

21 Hansen, P.J., 1991. Quantitative importance and trophic role of heterotrophic dinoflagellates in a
22 coastal pelagic food web. Marine Ecology and Progress Series 73, 253-261.

1 Hansen, P.J., 2002. Effect of high pH on the growth and survival of marine phytoplankton:
2 implications for species succession. *Aquat. Microb. Ecol.* 28(3), 279-288.

3 Hansen, P.J., Bjørnseth, P.K., Hansen, B.W., 1997. Zooplankton grazing and growth: Scaling
4 within the 2 – 2,000- μ m body size range. *Limnol. Oceanogr.* 42, 687-704.

5 Hansson, L.A., Nicolle, A., Graneli, W., Hallgren, P., Kritzberg, E., Persson, A., Bjork, J.,
6 Nilsson, P.A., Bronmark, C., 2013. Food-chain length alters community responses to global
7 change in aquatic systems. *Nat. Clim. Chang.* 3(3), 228-233.

8 Hare, C.E., Leblanc, K., DiTullio, G.R., Kudela, R.M., Zhang, Y., Lee, P.A., Riseman, S.,
9 Hutchins, D.A., 2007. Consequences of increased temperature and CO₂ for phytoplankton
10 community structure in the Bering Sea. *Marine Ecology Progress Series* 352, 9-16.

11 Hargraves, P.E., Zhang, J., Wang, R., Shimizu, Y., 1993. Growth characteristics of the diatoms
12 *Pseudonitzschia pungens* and *P. fraudulenta* exposed to ultraviolet radiation. *Hydrobiologia* 269,
13 207-212.

14 Harrison, P.J., Furuya, K., Glibert, P.M., Xu, J., Liu, H.B., Yin, K., Lee, J.H.W., Anderson,
15 D.M., Gowen, R., Al-Azri, A.R., Ho, A.Y.T., 2011. Geographical distribution of red and green
16 *Noctiluca scintillans*. *Chin. J. Oceanol. Limnol.* 29(4), 807-831.

17 Hattenrath-Lehmann, K., T., Marcoval, M.A., Berry, D.L., Fire, S., Wang, Z., Morton, S.L.,
18 Gobler, C.J., 2013. The emergence of *Dinophysis acuminata* blooms and DSP toxins in shellfish
19 in New York waters. *Harmful Algae* 26, 33-44.

20 Hattenrath-Lehmann, T.K., Smith, J.L., Wallace, R.B., Merlo, L.R., Koch, F., Mitteldorf, H.,
21 Goleski, J.A., Anderson, D.M., Gobler, C.J., 2015. The effects of elevated CO₂ on the growth
22 and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate,
23 *Alexandrium fundyense*. *Limnol. Oceanogr.* 60(1), 198-214.

1 Hein, M., Pedersen, M.F., Sandjensen, K., 1995. SIZE-DEPENDENT NITROGEN UPTAKE IN
2 MICRO- AND MACROALGAE. Mar. Ecol. Prog. Ser. 118(1-3), 247-253.

3 Herndon, J., Cochlan, W.P., 2007. Nitrogen utilization by the raphidophyte *Heterosigma*
4 *akashiwae*: Growth and uptake kinetics in laboratory cultures. Harmful Algae 6(2), 260-270.

5 Himmelman, J.H., 1975. Phytoplankton as a stimulus for spawning in 3 marine invertebrates. J.
6 Exp. Mar. Biol. Ecol. 20, 199-214.

7 Hinder, S.L., Hays, G.C., Edwards, M., Roberts, E.C., Walne, A.W., Gravenor, M.B., 2012.
8 Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim.
9 Chang. 2(4), 271-275.

10 Hinga, K.R., 2002. Effects of pH on coastal marine phytoplankton. Mar. Ecol. Prog. Ser. 238,
11 281-300.

12 Hitchcock, G.L., 1981. A comparative study of the size-dependent organic composition of
13 marine diatoms and dinoflagellates. J. Plankton Res. 4, 363-377.

14 Honjo, T., 1987. Growth potential of *Chattonella marina* (Raphidophyceae) collected in
15 Gokasho Bay, Japan. Bull. Plankton Soc. Japan 34, 119-124.

16 Honjo, T., Tabata, K., 1985. Growth dynamics of *Olisthodiscus luteus* in outdoor tanks with
17 flowing coastal water and in small vessels. Limnol. Oceanogr. 30, 653-664.

18 Hubbart, B., Pitcher, G.C., Krock, B., Cembella, A.D., 2012. Toxigenic phytoplankton and
19 concomitant toxicity in the mussel *Choromytilus meridionalis* off the west coast of South Africa.
20 Harmful Algae 20, 30-41.

21 Huisman, J.M., Matthijs, H.C.P., Visser, P.M., 2005. Harmful Cyanobacteria. Springer,
22 Dordrecht, The Netherlands.

1 Huntley, M., Sykes, P., Rohan, S., Martin, V., 1986. Chemically mediated rejection of
2 dinoflagellate prey by the copepods *Calanus pacificus* and *Paracalanus parvus*: mechanism,
3 occurrence and significance. *Marine Ecology and Progress Series* 28, 105-128.

4 Hutchins, D.A., Mulholland, M.R., Fu, F.X., 2009. Nutrient cycles and marine microbes in a
5 CO₂-enriched ocean. *Oceanography* 22(4), 128-145.

6 Ishimatsu, A., Oda, T., Yoshida, M., Ozaki, M., 1996. Oxygen radicals are probably involved in
7 the mortality of yellowtail by *Chattonella marina*. *Fish. Sci.* 62, 836-837.

8 Itakura, S., Yamaguchi, M., 2005. Morphological and physiological differences between the cysts
9 of *Alexandrium catenella* and *A. tamarensis* (Dinophyceae) in the Seto Inland Sea, Japan.
10 *Plankton Biol. Ecol.* 57, 85-91.

11 Jahnke, J., 1989. The light and temperature dependence of growth rate and elemental
12 composition of *Phaeocystis globosa* Scherffel and *P. pouchetii* (Har.) Lager in batch cultures.
13 *Netherlands Journal of Sea Research* 23, 15-21.

14 Jeffrey, S.W., MacTavish, H.S., Dunlap, W.C., Vesk, M., Groenewoud, K., 1999. Occurrence of
15 UVA- and UVB-absorbing compounds in 152 species (206 strains) of marine microalgae. *Mar.*
16 *Ecol. Prog. Ser.* 189, 35-51.

17 Jeong, H.J., Yoo, Y.D., Kim, J.S., Seong, K.A., Kang, N.S., Kim, T.H., 2010. Growth, feeding
18 and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic
19 food webs. *Ocean Sc. J.* 45(2), 65-91.

20 Jeong, H.J., Yoo, Y.D., Lim, A.S., Kim, T.-W., Lee, K., C.K., K., 2013. Raphidophyte red tides
21 in Korean waters. *Harmful Algae* 30S, 541-552.

1 Jessup, D.A., Miller, M.A., Ryan, J.P., Nevins, H.M., Kerkering, H.A., Mekebri, A., Crane,
2 D.B., Johnson, T.A., Kudela, R.M., 2009. Mass stranding of marine birds caused by a surfactant-
3 producing red tide. *PLoS One* 4(2), 10.1371/journal.pone.0004550.

4 Jester, R., Lefebvre, K., Langlois, G., Vigilant, V., Baugh, K., Silver, M.W., 2009. A shift in the
5 dominant toxin-producing algal species in central California alters phycotoxins in food webs.
6 *Harmful Algae* 8(2), 291-298.

7 Jiang, X., Lonsdale, D., Gobler, C.J., 2010. Grazers and vitamins shape chain formation in a
8 bloom-forming dinoflagellate, *Cochlodinium polykrikoides*. *Oecologia* 164, 455-464.

9 John, E.H., Flynn, K.J., 2000. Growth dynamics and toxicity of *Alexandrium fundyense*
10 (Dinophyceae): the effect of changing N : P supply ratios on internal toxin and nutrient levels.
11 *Eur. J. Phycol.* 35(1), 11-23.

12 Kaebernik, M., Brett, A.N., Börner, T., Dittmann, E., 2000. Light and the transcriptional
13 response of the microcystin biosynthesis gene cluster. *Appl. Environ. Microbiol.* 66, 3387-3392.

14 Kahru, M., Lee, Z., Kudela, R., Manzano-Sarabia, M., 2015. Multi-satellite time series of
15 inherent optical properties in the California Current. *Deep Sea Research Part II: Topical Studies*
16 in *Oceanography* 112, 91-106.

17 Kamykowski, D., McCollum, S.A., 1986. The temperature acclimatized swimming speed of
18 selected marine dinoflagellates. *J. Plankton Res.* 8, 275-287.

19 Karentz, D., Smayda, T.J., 1984. Temperature and the seasonal occurrence pattern of 30
20 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959-1980). *Mar.*
21 *Ecol. Prog. Ser.* 18, 277-293.

1 Karentz, D., Smayda, T.J., 1998. Temporal patterns and variations in phytoplankton community
2 organization and abundance in Narragansett Bay during 1959-1980. *J. Plankton Res.* 20, 145-
3 168.

4 Karlberg, M., Wulff, A., 2013. Impact of temperature and species interaction on filamentous
5 cyanobacteria may be more important than salinity and increased pCO(2) levels. *Mar. Biol.*
6 160(8), 2063-2072.

7 Kim, H., Spivack, A.J., Menden-Deuer, S., 2013. pH alters the swimming behaviors of the
8 raphidophyte *Heterosigma akashiwo*: Implications for bloom formation in an acidified ocean.
9 *Harm. Algae* 26, 1-11.

10 Klisch, M., Hader, D.P., 2008. Mycosporine-like amino acids and marine toxins--the common
11 and the different. *Mar. Drugs* 6(2), 147-163.

12 Koski, M., Rosenberg, M., Viitasalo, M., Tanskanen, S., Sjöland, U., 1999. Is *Prymnesium*
13 *patelliferum* toxic for copepods? – Grazing, egg production, and egestion of the calanoid
14 copepod *Eurytemora affinis* in mixtures of “good” and “bad” food. *ICES J. Mar. Sci.* 56, 131-
15 139.

16 Koski, M., Schmidt, K., Engström-Ost, J., Viitasalo, M., Jónasddottir, S.H., Repka, S., Sivonen,
17 K., 2002. Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria
18 *Nodularia spumigena*. *Limnol. Oceanogr.* 47, 878-885.

19 Kremp, A., Anderson, D.M., 2000. Factors regulating germination of resting cysts of the spring
20 bloom dinoflagellate *Scrippsiella hangoei* from the northern Baltic Sea. *J. Plankton Res.* 22(7),
21 1311-1327.

1 Kremp, A., Godhe, A., Egardt, J., Dupont, S., Suikkanen, S., Casabianca, S., Penna, A., 2012.

2 Intraspecific variability in the response of bloom-forming marine microalgae to changed climate
3 conditions. *Ecology and Evolution* 2(6), 1195-1207.

4 Kudela, R.M., Seeyave, S., Cochlan, W.P., 2010. The role of nutrients in regulation and
5 promotion of harmful algal blooms in upwelling systems. *Prog. Oceanogr.* 85(1-2), 122-135.

6 Laabir, M., Jauzein, C., Genovesi, B., Masseret, E., Grzebyk, D., Cecchi, P., Vaquer, A., Perrin,
7 Y., Collos, Y., 2011. Influence of temperature, salinity and irradiance on the growth and cell
8 yield of the harmful red tide dinoflagellate *Alexandrium catenella* colonizing Mediterranean
9 waters. *J. Plankton Res.* 33(10), 1550-1563.

10 Laglera, L.M., Berg, C.M.G.v.d., 2009. Evidence for geochemical control of iron by humic
11 substances in seawater. *Limnol. Oceanogr.* 54(2), 610-619.

12 Lasker, R., Zweifel, J.R., 1978. Growth and survival of first-feeding northern anchovy larvae
13 (*Engraulis mordax*) in patches containing different proportions of large and small prey, In:
14 Steele, J.H. (Ed.), *Spatial Patterns in Plankton Communities*. Plenum Press, New York, pp. 329-
15 354.

16 Last, J.M., 1980. The food of twenty species of fish larvae in the west-central North Sea,
17 Fisheries Research Technical Report. MAFF Directorate Fishery Research, Lowestoft, pp. 1-44.

18 Lelong, A., Hegaret, H., Soudant, P., Bates, S.S., 2012. *Pseudo-nitzschia* (Bacillariophyceae)
19 species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. *Phycologia*
20 51(2), 168-216.

21 Leong, S.C.Y., Murata, A., Nagashima, Y., Taguchi, S., 2004. Variability in toxicity of the
22 dinoflagellate *Alexandrium tamarensense* in response to different nitrogen sources and
23 concentrations. *Toxicon* 43(4), 407-415.

1 Leu, E., Daase, M., Schulz, K.G., Stuhr, A., Riebesell, U., 2013. Effect of ocean acidification on
2 the fatty acid composition of a natural plankton community. *Biogeosciences* 10(2), 1143-1153.

3 Levasseur, M., Gamache, T., St.-Pierre, I., Michaud, S., 1995. Does the cost of NO₃ reduction
4 affect the production of harmful compounds by *Alexandrium excavatum*?, In: Lassus, P., Arzul,
5 G., Erard, E., Gentien, P., Marcaillou, C. (Eds.), *Harmful Marine Algal Blooms*. Technique et
6 Documentation-Lavoisier, Intercept Ltd, pp. 463-468.

7 Lewis, J., Harris, A.S.D., Jones, K.J., Edmonds, R.L., 1999. Long-term survival of marine
8 planktonic diatoms and dinoflagellates in stored sediment samples. *J. Plankton Res.* 21, 343-354.

9 Lewis, N.I., Bates, S.S., McLachlan, J.L., Smith, J.C., 1993. Temperature effects on growth,
10 domoic acid production, and morphology of the diatom *Nitzschia-pungens f. multiseries*. Elsevier
11 Science Publ B V, Amsterdam.

12 Li, W.K.W., 1980. Temperature adaptation in phytoplankton; cellular and photosynthetic
13 characteristics, In: Falkowski, P.G. (Ed.), *Primary Productivity in the Sea*. Plenum Press, NY.

14 Lincoln, J.A., Turner, J.T., Bates, S.S., Léger, C., Gauthier, D.A., 2001. Feeding, egg production,
15 and egg hatching success of the copepods *Acartia tonsa* and *Temora longicornis* on diets of the
16 toxic diatom *Pseudo-nitzschia multiseries* and the non-toxic diatom *Pseudo-nitzschia pungens*.
17 *Hydrobiologia* 453/454, 107-120.

18 Locarnini, R.A., Mishonov, V., Antonov, J.I., Boyer, T.P., Garcia, H.E., 2006. *World Ocean
19 Atlas 2005, Volume 1: Temperature*. U.S. Government Printing Office, Washington, D.C., 182
20 pp.

21 Longhurst, A., 1998. *Ecological Geography of the Sea*. Academic Press, San Diego, 398 pp.

1 Lonnstedt, O.M., Munday, P.L., McCormick, M.I., Ferrari, M.C.O., Chivers, D.P., 2013. Ocean
2 acidification and responses to predators: can sensory redundancy reduce the apparent impacts of
3 elevated CO₂ on fish? *Ecol. Evol.* 3(10), 3565-3575.

4 Loureiro, C., Castro, B.B., Pereira, J.L., Goncalves, F., 2011. Performance of standard media in
5 toxicological assessments with *Daphnia magna*: chelators and ionic composition versus metal
6 toxicity. *Ecotoxicology* 20(1), 139-148.

7 Lundholm, N., Hansen, P.J., Kotaki, Y., 2004. Effect of pH on growth and domoic acid
8 production by potentially toxic diatoms of the genera *Pseudo-nitzschia* and *Nitzschia*. *Mar. Ecol.*
9 *Prog. Ser.* 273, 1-15.

10 MacIntyre, H.L., Lomas, M.W., Cornwell, J., Suggett, D.J., Gobler, C.J., Koch, E.W., Kana,
11 T.M., 2004. Mediation of benthic pelagic coupling by microphytobenthos: an energy- and
12 material-based model for initiation of blooms of *Aureococcus anophagefferens*. *Harmful Algae*
13 3, 403-437.

14 MacIntyre, H.L., Stutes, A.L., Smith, W.L., Dorsey, C.P., Abraham, A., Dickey, R.W., 2011.
15 Environmental correlates of community composition and toxicity during a bloom of *Pseudo-*
16 *nitzschia* spp. in the northern Gulf of Mexico. *J. Plankton Res.* 33, 273-295.

17 Magaña, H.A., Villareal, T.A., 2006. The effect of environmental factors on the growth rate of
18 *Karenia brevis* (Davis) G. Hansen and Moestrup. *Harmful Algae* 5(2), 192-198.

19 Maguer, J.F., L'Helguen, S., Madec, C., Labry, C., Le Corre, P., 2007. Nitrogen uptake and
20 assimilation kinetics in *Alexandrium minutum* (Dynophyceae): Effect of N-limited growth rate
21 on nitrate and ammonium interactions. *J. Phycol.* 43(2), 295-303.

1 Maldonado, M.T., Hughes, M., Rue, E., Wells, M.L., 2002. The effect of Fe and Cu on the
2 growth and domoic acid production of *Pseudo-nitzschia multiseries* and *Pseudo-nitzschia*
3 *australis*. Limnol. Oceanogr. 47, 515-526.

4 Manson, M.D., Tedesco, P., Berg, H.C., Harold, F.M., Vanderdrift, C., 1977. Protonmotive force
5 drives bacterial flagella. Proceedings of the National Academy of Sciences of the United States
6 of America 74(7), 3060-3064.

7 Marchant, H.J., Davidson, A.T., Kelly, G.J., 1991. UV-B absorbing compounds in the marine
8 alga *Phaeocystis pouchetii* from Antarctica. Mar. Biol. 109, 391-395.

9 Marinov, I., Doney, S.C., Lima, I.D., 2010. Response of ocean phytoplankton community
10 structure to climate change over the 21st century: partitioning the effects of nutrients,
11 temperature and light. Biogeosciences 7(12), 3941-3959.

12 Marshall, J.A., Munday, B., Yoshizawa, Y., Hallegraeff, G.M., 2001. Effect of irradiance on
13 superoxide production by *Chattonella marina* (Raphidophyceae) from South Australia and
14 Japan, In: Hallegraeff, G.M., Blackburn, S.I., Bolch, C.J., Lewis, R.D. (Eds.), Harmful algal
15 blooms 2000. UNESCO, Paris, pp. 316-319.

16 Martinez, R., Orive, E., Laza-Martinez, A., Seoane, S., 2010. Growth response of six strains of
17 *Heterosigma akashiwo* to varying temperature, salinity and irradiance conditions. J. Plankton
18 Res. 32(4), 529-538.

19 McGillicuddy, D.J., Townsend, D.W., He, R., Keafer, B.A., Kleindinst, J.L., Li, Y., Manning,
20 J.P., Mountain, D.G., Thomas, M.A., Anderson, D.M., 2011. Suppression of the 2010
21 *Alexandrium fundyense* bloom by changes in physical, biological, and chemical properties of the
22 Gulf of Maine. Limnol. Oceanogr. 56(6), 2411-2426.

1 McKenzie, R.L., Aucamp, P.J., Bais, A.F., Björn, L.O., Ilyas, M., Madronich, S., 2010. The
2 environmental effects of ozone depletion and its interactions with climate change, UNEP
3 Assessment Panel Report for 2010, pp. 1-30.

4 McManus, M.A., Kudela, R.M., Silver, M.W., Steward, G.F., Donaghay, P.L., Sullivan, J.M.,
5 2008. Cryptic blooms: Are thin layers the missing connection? *Estuaries Coasts* 31(2), 396-401.

6 Mengelt, C., Prézelin, B.B., 2005. UVA enhancement of carbon fixation and resilience to UV
7 inhibition in the genus *Pseudo-nitzschia* may provide a competitive advantage in high UV
8 surface waters. *Mar. Ecol. Prog. Ser.* 301, 81-93.

9 Mohlin, M., Roleda, M.Y., Pattanaik, B., Tenne, S.J., Wulff, A., 2012. Interspecific resource
10 competition-combined effects of radiation and nutrient limitation on two diazotrophic
11 filamentous cyanobacteria. *Microb. Ecol.* 63(4), 736-750.

12 Mohlin, M., Wulff, A., 2009. Interaction effects of ambient UV radiation and nutrient limitation
13 on the toxic cyanobacterium *Nodularia spumigena*. *Microb. Ecol.* 57(4), 675-686.

14 Monteith, D.T., Stoddard, J.L., Evans, C.D., de Wit, H.A., Forsius, M., Hogasen, T., Wilander,
15 A., Skjelkvale, B.L., Jeffries, D.S., Vuorenmaa, J., Keller, B., Kopacek, J., Vesely, J., 2007.
16 Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry.
17 *Nature* 450(7169), 537-U539.

18 Montresor, M., Lewis, J., 2006. Phases, stages and shifts in the life cycles of marine
19 phytoplankton, In: Subba-Rao, D.V. (Ed.), *Algal Cultures Analogues of Blooms and*
20 *Applications*. Science Publishers, Enfield, USA, pp. 91-129.

21 Moore, M.N., Depledge, M.H., Fleming, L., Hess, P., Lees, D., Leonard, P., Madsen, L., Owen,
22 R., Pirlet, H., Seys, J., Vasconcelos, V., Viarengo, A., *Marine Board, E.S.F.W.G.O.*, 2013.

1 Oceans and Human Health (OHH): a European Perspective from the Marine Board of the
2 European Science Foundation (Marine Board-ESF). *Microb. Ecol.* 65(4), 889-900.

3 Moore, S.K., Mantua, N.J., Hickey, B.M., Trainer, V.L., 2009. Recent trends in paralytic
4 shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic
5 events. *Harmful Algae* 8(3), 463-477.

6 Moore, S.K., Mantua, N.J., Salathe, E.P., 2011. Past trends and future scenarios for
7 environmental conditions favoring the accumulation of paralytic shellfish toxins in Puget Sound
8 shellfish. *Harmful Algae* 10(5), 521-529.

9 Morán, S.A.G., López-Urrutia, A., Calvo-Díaz, A., Li, W.K.W., 2010. Increasing importance of
10 small phytoplankton in a warmer ocean. *Global Change Biol.* 16, 1137-1144.

11 Nimer, N.A., Iglesias-Rodriguez, M.D., Merrett, M.J., 1997. Bicarbonate utilization by marine
12 phytoplankton species. *J. Phycol.* 33(4), 625-631.

13 Ogata, T., Kodama, M., Ishimaru, T., 1989. Effect of water temperature and light intensity on
14 growth rate and toxin production of toxic dinoflagellates, In: Okaichi, T., Anderson, D.M.,
15 Nemoto, T. (Eds.), *Red Tides, Biology, Environmental Science and Toxicology*. Elsevier, NY,
16 pp. 423-426.

17 Okolodkov, Y.B., 1999. Species range types of recent marine dinoflagellates recorded from the
18 Arctic. *Grana* 38(2-3), 162-169.

19 Okolodkov, Y.B., 2005. The global distributional patterns of toxic, bloom dinoflagellates
20 recorded from the Eurasian Arctic. *Harmful Algae* 4(2), 351-369.

21 Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A.,
22 Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray,
23 P., Mouchet, A., Najjar, R.G., Plattner, G.K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L.,

1 Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.F., Yamanaka, Y., Yool, A., 2005.

2 Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying

3 organisms. *Nature* 437(7059), 681-686.

4 Paerl, H.W., Hall, N.S., Peierls, B.L., Rossignol, K.L., 2014. Evolving Paradigms and

5 Challenges in Estuarine and Coastal Eutrophication Dynamics in a Culturally and Climatically

6 Stressed World. *Estuaries Coasts* 37(2), 243-258.

7 Pattanaik, B., Wulff, A., Roleda, M.Y., Garde, K., Mohlin, M., 2010. Production of the

8 cyanotoxin nodularin - a multifactorial approach. *Harmful Algae* 10, 30-38.

9 Peacock, M.B., Kudela, R.M., 2014. Evidence for active vertical migration by two

10 dinoflagellates experiencing iron, nitrogen, and phosphorus limitation. *Limnol. Oceanogr.* 59(3),

11 660-673.

12 Perez, C.C., Roy, S., Levasseur, M., Anderson, D.M., 1998. Control of germination of

13 *Alexandrium tamarense* (Dinophyceae)-cysts from the lower St. Lawrence estuary (Canada). *J.*

14 *Phycol.* 34, 242-249.

15 Pettersson, L.H., Pozdnyakov, D., 2013. Biology and ecology of harmful algal species. Springer,

16 Berlin Heidelberg, pp. 25-47.

17 Pfiester, L.A., Anderson, D.M., 1987. Dinoflagellate reproduction, In: Taylor, F.J.R. (Ed.), *The*

18 *Biology of Dinoflagellates*. Blackwell Scientific Publications Ltd, pp. 611-648.

19 Pitcher, G.C., Horstman, D.A., Calder, D., Debruyn, J.H., Post, B.J., 1993. The first record of

20 diarrhetic shellfish poisoning on the south-african coast. *S. Afr. J. Sci.* 89(10), 512-514.

21 Preston, C.M., Harris, A., Ryan, J.P., Roman, B., Marin, R., Jensen, S., Everlove, C., Birch, J.,

22 Dzenitis, J.M., Pargett, D., Adachi, M., Turk, K., Zehr, J.P., Scholin, C.A., 2011. Underwater

23 Application of Quantitative PCR on an Ocean Mooring. *PLoS One* 6(8), 12.

1 Rabalais, N.N., Diaz, R.J., Levin, L.A., Turner, R.E., Gilbert, D., Zhang, J., 2010. Dynamics and
2 distribution of natural and human-caused hypoxia. *Biogeosciences* 7(2), 585-619.

3 Raine, R., 2014. A review of the biophysical interactions relevant to the promotion of HABs in
4 stratified systems: The case study of Ireland. *Deep Sea Research Part II: Topical Studies in*
5 *Oceanography* 101, 21-31.

6 Ratti, S., Giordano, M., Morse, D., 2007. CO₂-concentrating mechanisms of the potentially toxic
7 dinoflagellate *Protoceratium reticulatum* (Dinophyceae, Gonyaulacales). *J. Phycol.* 43(4), 693-
8 701.

9 Raven, J.A., Beardall, J., 2014. CO₂ concentrating mechanisms and environmental change.
10 *Aquat. Bot.* 118, 24-37.

11 Raven, J.A., Geider, R.J., 1988. Temperature and algal growth. *New Phytol.* 110, 411-416.

12 Rensel, J.E.J., Haigh, N., Tynan, T.J., 2010. Fraser river sockeye salmon marine survival decline
13 and harmful blooms of *Heterosigma akashiwo*. *Harmful Algae* 10, 98-115.

14 Rhodes, L.L., O'Kelly, H., J.A., 1994. Comparison of growth characteristics of New Zealand
15 isolates of the prymnesiophytes *Chrysochromulina quadrikonta* and *C. camella* with those of the
16 ichthyotoxic species *C. polylepis*. *J. Plankton Res.* 16, 69-82.

17 Riebesell, U., Fabry, V.J., Hansson, L., Gattuso, J.-P., 2010. Guide to best practices for ocean
18 acidification research and data reporting. Publications Office of the European Union,
19 Luxembourg, p. 260.

20 Rines, J.E.B., Donaghay, P.L., Dekshenieks, M.M., Sullivan, J.M., Twardowski, M.S., 2002.
21 Thin layers and camouflage: hidden *Pseudo-nitzschia* spp. (Bacillariophyceae) populations in a
22 fjord in the San Juan Islands, Washington, USA. *Mar. Ecol. Prog. Ser.* 225, 123-137.

1 Roemmich, D., Gould, W.J., Gilson, J., 2012. 135 years of global ocean warming between the
2 Challenger expedition and the Argo Programme. *Nat. Clim. Chang.* 2(6), 425-428.

3 Rongo, T., van Woesik, R., 2011. Ciguatera poisoning in Rarotonga, southern Cook Islands.
4 *Harmful Algae* 10(4), 345-355.

5 Rost, B., Richter, K.U., Riebesell, U., Hansen, P.J., 2006. Inorganic carbon acquisition in red
6 tide dinoflagellates. *Plant Cell and Environment* 29(5), 810-822.

7 Rost, B., Riebesell, U., Burkhardt, S., Sultemeyer, D., 2003. Carbon acquisition of bloom-
8 forming marine phytoplankton. *Limnol. Oceanogr.* 48(1), 55-67.

9 Roy, E., Wells, M.L., 2011. Regulation of Fe(II) oxidation rates by organic complexing ligands
10 in the eastern subarctic Pacific. *Marine Chemistry* 127, 115-122.

11 Ruiz, G.M., Carlton, J.T., Grosholz, E.D., Hines, A.H., 1997. Global invasions of marine and
12 estuarine habitats by non-indigenous species: Mechanisms, extent, and consequences. *Am. Zool.*
13 37, 621-634.

14 Ruiz, S., Etheridge, S.M., Cook, P.A., O’Ryan, C., Pitcher, G.C., 2005. Phylogenetic analysis of
15 toxic *Alexandrium* (Dinophyceae) isolates from South Africa: implications for the global
16 phylogeography of the *Alexandrium tamarensis* species complex. *Phycologia* 44, 49-60.

17 Ryan, J.P., McManus, M.A., Kudela, R.M., Artigas, M.L., Bellingham, J.G., Chavez, F.P.,
18 Doucette, G., Foley, D., Godin, M., Harvey, J.B.J., Marin, R., Messie, M., Mikulski, C.,
19 Pennington, T., Py, F., Rajan, K., Shulman, I., Wang, Z., Zhang, Y., 2014. Boundary influences
20 on HAB phytoplankton ecology in a stratification-enhanced upwelling shadow. *Deep-Sea Res.*
21 Part II-Top. *Stud. Oceanogr.* 101, 63-79.

22 Ryan, J.P., McManus, M.A., Paduan, J.D., Chavez, F.P., 2008. Phytoplankton thin layers caused
23 by shear in frontal zones of a coastal upwelling system. *Mar. Ecol. Prog. Ser.* 354, 21-34.

1 Ryan, J.P., McManus, M.A., Sullivan, J.M., 2010. Interacting physical, chemical and biological
2 forcing of phytoplankton thin-layer variability in Monterey Bay, California. *Cont. Shelf Res.*
3 30(1), 7-16.

4 Salomon, P.S., Umai, I., 2006. Pathogens of harmful algae, In: Granéli, E., Turner, J.T. (Eds.),
5 *Ecology of Harmful Algae*. Springer, Heidelberg, pp. 271-282.

6 Samson, J.C., Shumway, S.E., Weis, J.S., 2008. Effects of the toxic dinoflagellate *Alexandrium*
7 *fundyense* on three species of larval fish: a food-chain approach. *J. Fish Biol.* 72, 168188.

8 Scholin, C.A., Hallegraeff, G.M., Anderson, D.M., 1995. Molecular evolution of the
9 *Alexandrium tamarense* 'species complex' (Dinophyceae): Dispersal in North American and
10 West Pacific regions. *Phycologia* 34, 472-485.

11 Schultz, M., Kjørboe, T., 2009. Active prey selection in two pelagic copepods feeding on
12 potentially toxic and non-toxic dinoflagellates. *J. Plankton Res.* 31, 553-561.

13 Shi, D.L., Xu, Y., Hopkinson, B.M., Morel, F.M.M., 2010. Effect of Ocean Acidification on Iron
14 Availability to Marine Phytoplankton. *Science* 327(5966), 676-679.

15 Shimizu, Y., Watanabe, N., Wrensford, G., 1995. Biosynthesis of brevetoxins and heterotrophic
16 metabolism in *Gymnodinium breve*, In: Lassus, P., Arzul, G., Erard, E., Gentien, P., Marcaillou,
17 C. (Eds.), *Harmful Marine Algal Blooms*. Technique et Documentation-Lavoisier, Intercept Ltd,
18 pp. 351-357.

19 Shumway, S.E., 1990. A review of the effects of algal blooms on shellfish and aquaculture. *J.*
20 *World Aquacult. Soc.* 21, 65-104.

21 Shumway, S.E., Allen, S.M., Dee Boersma, P., 2003. Marine birds and harmful algal blooms:
22 sporadic victims or under-reported events? *Harmful Algae* 2, 1-17.

1 Smayda, T.J., 1992. Global epidemic of noxious phytoplankton blooms and food chain
2 consequences in large ecosystems, In: Sherman, K., Alexander, L., Gold, B.D. (Eds.), Food
3 Chains, Yields, Models, and Management of Large Marine Ecosystems. Westview Press, San
4 Francisco, pp. 275-307.

5 Smayda, T.J., 1996. Dinoflagellate bloom cycles: What is the role of cellular growth rate and
6 bacteria?, In: Yasumoto, T., Oshima, Y., Fukuyo, Y. (Eds.), Harmful and Toxic Algal Blooms.
7 Intergovernmental Commission on Oceanography of UNESCO, Paris, pp. 331-334.

8 Smayda, T.J., 1997. What is a Bloom? A Commentary. Limnol. Oceanogr. 42(5), 1132-1136.

9 Smayda, T.J., 1998. Patterns of variability characterizing marine phytoplankton, with examples
10 from Narragansett Bay. ICES J. Mar. Sci. 55(4), 562-573.

11 Smayda, T.J., 2002. Turbulence, watermass stratification and harmful algal blooms: An
12 alternative view. Harmful Algae 1, 95-112.

13 Smayda, T.J., 2007. Reflections on the ballast water dispersal-harmful algal bloom paradigm.
14 Harmful Algae 6, 601-622.

15 Smayda, T.J., 2008. Complexity in the eutrophication-harmful algal bloom relationship, with
16 comment on the importance of grazing. Harmful Algae 8, 140-151.

17 Smayda, T.J., Borkman, D., 2008. Nutrient and phytoplankton gradients in Narragansett Bay, In:
18 Desbonnet, A., Costa-Pierce, B. (Eds.), Science for Ecosystem-Based Management: Narragansett
19 Bay in the 21st Century. Springer, Berlin, pp. 423-476.

20 Smayda, T.J., Trainer, V.L., 2010. Dinoflagellate blooms in upwelling systems: Seeding,
21 variability, and contrasts with diatom bloom behaviour. Prog. Oceanogr. 85(1-2), 92-107.

22 Smetacek, V., 1981. The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63, 1-11.

1 Starr, M., Himmelman, J.H., Therriault, J.C., 1990. Direct coupling of marine invertebrate
2 spawning with phytoplankton blooms. *Science* 247(4946), 1071-1074.

3 Sterner, R.W., Andersen, T., Elser, J.J., Hessen, D.O., Hood, J.M., McCauley, E., Urabe, J.,
4 2008. Scale-dependent carbon : nitrogen : phosphorus seston stoichiometry in marine and
5 freshwaters. *Limnol. Oceanogr.* 53(3), 1169-1180.

6 Stock, C.A., McGillicuddy, D.J., Solow, A.R., Anderson, D.M., 2005. Evaluating hypotheses for
7 the initiation and development of *Alexandrium fundyense* blooms in the western Gulf of Maine
8 using a coupled physical-biological model. *Deep-Sea Res. Part II-Top. Stud. Oceanogr.* 52(19-
9 21), 2715-2744.

10 Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y.,
11 Bex, V., Midgley, P.M., 2013. IPCC, 2013: Climate Change 2013: The Physical Science Basis.
12 Contribution of Working Group I to the Fifth Assessment Report of the Intergovern- mental
13 Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New
14 York, NY USA, 1535 pp.

15 Stoecker, D.K., Evans, G.T., 1985. Effects of protozoan herbivory and carnivory in a
16 microplankton food web. *Mar. Ecol. Prog. Ser.* 24, 159-167.

17 Strom, S.L., Harvey, E.L., Fredrickson, K.A., Menden-Deuer, S., 2013. Broad salinity tolerance
18 as a refuge from predation in the harmful raphidophyte alga *Heterosigma akashiwo*
19 (Raphidophyceae). *J. Phycol.* 49(1), 20-31.

20 Strom, Z., 2002. Novel interactions between phytoplankton and microzooplankton: their
21 influence on the coupling between growth and grazing rates in the sea. *Hydrobiologia* 180, 41-
22 54.

1 Sullivan, J.M., Van Holliday, D., McFarland, M., McManus, M.A., Cheriton, O.M., Benoit-Bird,
2 K.J., Goodman, L., Wang, Z.K., Ryan, J.P., Stacey, M., Greenlaw, C., Moline, M.A., 2010.
3 Layered organization in the coastal ocean: An introduction to planktonic thin layers and the
4 LOCO project. *Cont. Shelf Res.* 30(1), 1-6.

5 Sun, J., Hutchins, D.A., Feng, Y.Y., Seubert, E.L., Caron, D.A., Fu, F.X., 2011. Effects of
6 changing pCO₂ and phosphate availability on domoic acid production and physiology of the
7 marine harmful bloom diatom *Pseudo-nitzschia multiseries*. *Limnol. Oceanogr.* 56(3), 829-840.

8 Sun, Y., Solomon, S., Dai, A., Portmann, R.W., 2007. How often will it rain? *J. Clim.* 20(19),
9 4801-4818.

10 Sunda, W.G., 1989. Trace metal interactions with marine phytoplankton. *Biol. Oceanogr.* 6, 411-
11 442.

12 Sunda, W.G., Shertzer, K.W., 2012. Modeling ecosystem disruptive algal blooms: positive
13 feedback mechanisms. *Mar. Ecol. Prog. Ser.* 447, 31-U69.

14 Tang, E.P.Y., 1996. Why do dinoflagellates have lower growth rates? *J. Phycol.* 32(80-84).

15 Tatters, A.O., Flewelling, L.J., Fu, F.X., Granholm, A.A., Hutchins, D.A., 2013a. High CO₂
16 promotes the production of paralytic shellfish poisoning toxins by *Alexandrium catenella* from
17 Southern California waters. *Harm. Algae* 30, 37-43.

18 Tatters, A.O., Fu, F.X., Hutchins, D.A., 2012. High CO₂ and silicate limitation synergistically
19 increase the toxicity of *Pseudo-nitzschia fraudulenta*. *PLoS One* 7(2),
20 10.1371/journal.pone.0032116.

21 Tatters, A.O., Roleda, M.Y., Schnetzer, A., Fu, F.X., Hurd, C.L., Boyd, P.W., Caron, D.A., Lie,
22 A.A.Y., Hoffmann, L.J., Hutchins, D.A., 2013b. Short- and long-term conditioning of a

1 temperate marine diatom community to acidification and warming. Philosophical Transactions of
2 the Royal Society B-Biological Sciences 368(1627), 10.1098/rstb.2012.0437.

3 Tatters, A.O., Schnetzer, A., Fu, F.X., Lie, A.Y.A., Caron, D.A., Hutchins, D.A., 2013c. Short-
4 versus long-term responses to changing CO₂ in a coastal dinoflagellate bloom: Implications for
5 interspecific competitive interactions and community structure. Evolution 67(7), 1879-1891.

6 Taylor, M., McIntyre, L., Ritson, M., Stone, J., Bronson, R., Bitzikos, O., Rourke, W., Galanis,
7 E., 2013. Outbreak of Diarrhetic Shellfish Poisoning associated with mussels, British Columbia,
8 Canada. Mar. Drugs 11(5), 1669-1676.

9 Teegarden, G.J., 1999. Copepod grazing selection and particle discrimination on the basis of PSP
10 toxin content. Marine Ecology and Progress Series 181, 163-176.

11 Teegarden, G.J., Campbell, R.G., Durbin, E.G., 2001. Zooplankton feeding behavior and particle
12 selection in natural plankton assemblages containing toxic *Alexandrium* spp. Marine Ecology
13 and Progress Series 218, 213-226.

14 Teegarden, G.J., Cembella, A.D., 1996. Grazing of toxic dinoflagellates, *Alexandrium* spp., by
15 adult copepods of coastal Maine: Implications for the fate of paralytic shellfish toxins in marine
16 food webs. J. Exp. Mar. Biol. Ecol. 196, 145-176.

17 Thessen, A.E., Bowers, H.A., Stoecker, D.K., 2009. Intra- and interspecies differences in growth
18 and toxicity of *Pseudo-nitzschia* while using different nitrogen sources. Harmful Algae 8(5),
19 792-810.

20 Tortell, P.D., 2000. Evolutionary and ecological perspectives on carbon acquisition in
21 phytoplankton. Limnol. Oceanogr. 45(3), 744-750.

1 Tortell, P.D., DiTullio, G.R., Sigman, D.M., Morel, F.M.M., 2002. CO₂ effects on taxonomic
2 composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. *Marine
3 Ecology Progress Series* 236, 37-43.

4 Trainer, V., Yoshida, M., 2014. Proceedings of the Workshop on Economic Impacts of Harmful
5 Algal Blooms on Fisheries and Aquaculture, PICES Sci. Rep., p. 85.

6 Trainer, V.A., Hickey, B.M., Horner, R.A., 2002. Biological and physical dynamics of domoic
7 acid production off the Washington coast. *Limnol. Oceanogr.* 47, 1438-1446.

8 Trainer, V.L., Bates, S.S., Lundholm, N., Thessen, A.E., Cochlan, W.P., Adams, N.G., Trick,
9 C.G., 2012. *Pseudo-nitzschia* physiological ecology, phylogeny, toxicity, monitoring and
10 impacts on ecosystem health. *Harmful Algae* 14, 271-300.

11 Trainer, V.L., Moore, L., Bill, B.D., Adams, N.G., Harrington, N., Borchert, J., da Silva,
12 D.A.M., Eberhart, B.T.L., 2013. Diarrhetic Shellfish Toxins and Other Lipophilic Toxins of
13 Human Health Concern in Washington State. *Mar. Drugs* 11(6), 1815-1835.

14 Trimborn, S., Lundholm, N., Thoms, S., Richter, K.U., Krock, B., Hansen, P.J., Rost, B., 2008.
15 Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced
16 changes in seawater carbonate chemistry. *Physiol. Plant.* 133(1), 92-105.

17 Turner, J.T., 2006. Harmful algae interactions with marine planktonic grazers, In: Granéli, E.,
18 Turner, J.T. (Eds.), *Ecology of Harmful Algae*. Springer, Heidelberg, pp. 259-270.

19 Uye, S.I., Takamatsu, K., 1990. Feeding interactions between planktonic copepods and red tide
20 flagellates from Japanese coastal waters. *Marine Ecology and Progress Series* 49, 97-107.

21 Van de Waal, D.B., Verspagen, J.M., Finke, J.F., Vournazou, V., Immers, A.K., Kardinaal,
22 W.E., Tonk, L., Becker, S., Van Donk, E., Visser, P.M., Huisman, J., 2011. Reversal in

1 competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO₂.

2 The ISME Journal 5(9), 1438-1450.

3 Waldbusser, G.G., Hales, B., Langdon, C.J., Haley, B.A., Schrader, P., Brunner, E.L., Gray,

4 M.W., Miller, C.A., Gimenez, I., 2015. Saturation-state sensitivity of marine bivalve larvae to

5 ocean acidification. Nat. Clim. Chang. 5(3), 273-280.

6 Walsby, A.E., Hayes, P.K., Boje, R., 1995. The gas vesicles, buoyancy and vertical distribution

7 of cyanobacteria in the Baltic Sea. Eur. J. Phycol. 30(2), 87-94.

8 Wells, M.L., Trick, C.G., Cochlan, W.P., Hughes, P., Trainer, V.L., 2005. Domoic Acid: The

9 synergy of iron, copper and the toxicity of diatoms. Limnol. Oceanogr. 50(6), 1908-1917.

10 White, A.W., Fukuhara, O., Anraku, M., 1989. Mortality of fish larvae from eating toxic

11 dinoflagellates or zooplankton containing dinoflagellate toxins, In: Okaichi, T., Anderson, D.M.,

12 Nemoto, T. (Eds.), Red Tides: Biology, Environmental Science and Toxicology. Elsevier,

13 Amsterdam, pp. 3-8.

14 Yamochi, S., Joh, H., 1986. Effects of temperature on the vegetataive cell liberation of seven

15 species of red-tide algae from the bottom mud in Osaka Bay, Japan. Journal of the

16 Oceanographical Society of Japan 42, 266-275.

17 Yoshimatsu, T., Yamaguchi, H., Iwamoto, H., Nishimura, T., Adachi, M., 2014. Effects of

18 temperature, salinity and their interaction on growth of Japanese *Gambierdiscus* spp.

19 (Dinophyceae). Harmful Algae 35, 29-37.

20 Zhang, Y., Fu, F.-X., Whereat, E., Coyne, K.J., Hutchins, D.A., 2006. Bottom-up controls on a

21 mixed-species HAB assemblage: A comparison of sympatric *Chattonella subsalsa* and

22 *Heterosigma akashiwo* (Raphidophyceae) isolates from the Delaware Inland Bays, USA.

23 Harmful Algae 5(3), 310-320.

List of Figures

Figure 1. The progression of climate change pressure on key variables and related HAB interactions that will drive HAB responses in the future ocean.

Figure 2. A general overview of the current understanding from the literature of how different HAB types will be affected by climate change stressors. Arrows indicate changes that either increase, decrease, or can occur in both directions. Symbols suggest the level of confidence: + (reasonably likely), ++ (more likely).

Table 1. Ecosystem types for climate and HAB studies: example reference sites and selected publications describing analyses of long-term data sets.

Ecosystem Types	Example study areas	Example HAB genus	Selected References
Open Coast	East China Sea	<i>Cochlodinium</i>	(Matsuoka et al., 2010)
	East China Sea and Yellow Sea	<i>Trichodesmium</i>	(Tang et al., 2006)
	Arabian Sea	<i>Prorocentrum</i>	
	French coast of the English channel	<i>Dinophysis</i>	(Singh et al., 2014)
	Southern North Sea	<i>Pseudo-nitzschia</i>	(Hernandez-Farinés et al., 2013; Singh et al., 2014)
	Australian east coast	<i>Pseudo-nitzschia</i>	(Ajani et al., 2014)
Coastal marine systems (semi-enclosed)	Gulf of Maine	<i>Alexandrium</i>	(McGillicuddy et al., 2005)
	Monterey Bay	<i>Pseudo-nitzschia</i>	(Jessup et al., 2009; Jester et al., 2009; Kudela et al., 2008)
		<i>Cochlodinium</i>	
		<i>Akashiwo</i>	
	Todos Santos Bay	<i>sanguinea</i>	(García-Mendoza et al., 2009)
	Paracas Bay	<i>Pseudo-nitzschia</i>	(Kahru et al., 2004)
	Peter the Great Bay	<i>Akashiwo</i>	(Selina et al., 2014)
		<i>sanguinea</i>	
		<i>Amphidinium</i>	
	Kattegat-Skagerrak	<i>Ostreopsis</i>	(Håkansson, 2002)
		<i>Prorocentrum</i>	
		<i>Dinophysis</i>	
		<i>Prymnesium</i>	
		<i>Chrysochromulina</i>	
	Bohai Sea	<i>Pseudochattonella</i>	(Wu et al., 2013)
		<i>Karenia</i>	
		<i>Ceratium</i> ,	
		<i>Heterosigma</i> ,	
	Seto Inland Sea	<i>Mesodinium</i> ,	(Itakura et al., 2002;
		<i>Prorocentrum</i>	Nishikawa et al., 2011;
		<i>Alexandrium</i> ,	Nishikawa et al., 2014;
		<i>Chattonella</i>	Nishikawa et al., 2009)
	Buzzards Bay	<i>Heterosigma</i> ,	
		<i>Eucampia</i>	(Turner et al., 2009)
		<i>Cochlodinium</i> ,	
	Florida coast	<i>Alexandrium</i>	
	Korean coast	<i>Pseudo-nitzschia</i>	(Brand and Compton, 2007)
	Bay of Fundy	<i>Karenia</i>	(Lee et al., 2013)
		<i>Cochlodinium</i>	(Kaczmarśka et al., 2007;
	W. Scottish waters	<i>Alexandrium</i>	Martin et al., 2009)
		<i>Pseudo-nitzschia</i>	(Fehling et al., 2006)

<i>Pseudo-nitzschia</i>			
Coastal Marine System (enclosed)	Narragansett Bay	<i>Heterosigma</i> <i>Alexandrium</i> <i>Cochlodinium</i> <i>Fibrocapsa</i> <i>Karlodinium</i> <i>Pfiesteria</i> <i>Prorocentrum</i> <i>Pseudo-nitzschia</i>	(Borkman et al., 2014; Borkman et al., 2012; Li and Smayda, 2000; Smayda, 1998; Smayda and Borkman, 2008; Smayda et al., 2004)
	Salish Sea	<i>Alexandrium</i> <i>Dinophysis</i> <i>Pseudo-nitzschia</i>	(Moore et al., 2010; Trainer et al., 2007; Trainer et al., 2003; Trainer et al., 2013)
	Manila Bay	<i>Pyrodinium bahamense</i> var. <i>compressum</i> <i>Chaetoceros</i> , <i>Karenia</i> <i>Dinophysis</i> , <i>Gymnodinium</i> , <i>Gonyaulax</i> , <i>Noctiluca</i> , <i>Prorocentrum</i> <i>Cochlodinium</i>	(Azanza and Taylor, 2001)
	Arabian Gulf	<i>cyanobacteria</i> <i>Alexandrium</i> <i>Prymnesium</i> <i>Chrysochromulina</i> <i>Pseudo-nitzschia</i> <i>P. minimum</i> <i>Pseudo-nitzschia</i> <i>Gymnodinium</i> <i>Prorocentrum</i>	(Al-Azri et al., 2012)
Coastal Brackish System (enclosed)	Baltic Sea		(Suikkanen et al., 2007)
	Chesapeake Bay		(Anderson et al., 2010; Brownlee et al., 2005; Moncheva et al., 2001)
	Black Sea		(Moncheva et al., 2001)
Fjords	Norwegian coastline Gullmar fjord	<i>Dinophysis</i> <i>Dinophysis</i>	(Naustvoll et al., 2012) (Belgrano et al., 1999)
Coastal upwelling system	Washington State	<i>Pseudo-nitzschia</i>	(Trainer et al., 2009; Trainer and Suddleson, 2005)
	Benguela	<i>Alexandrium</i> <i>Dinophysis</i> <i>Pseudo-nitzschia</i>	(Pitcher and Calder, 2000)
Shallow estuarine systems	Iberian coast		(Pérez et al., 2010)
	Thau Lagoon	<i>Alexandrium</i>	(Collos et al., 2009; Collos et al., 2014)
	Nauset Estuary	<i>Alexandrium</i> , <i>Dinophysis</i>	(Ralston et al., 2014)
Freshwater systems	Northport Harbor	<i>Alexandrium</i>	(Hattenrath et al., 2010)
	Great Lakes, reservoirs, lakes,	<i>Anabaena</i> , <i>Lyngbya</i>	(Lopez et al., 2008)

		<i>Aphanizomenon</i> <i>Nodularia, Nostoc</i> <i>Oscillatoria</i> <i>Microcystis</i> cyanobacteria <i>Microcystis</i>	
	Lake Taihu		(Chen et al., 2003)
Benthic Tropical	Reef systems, Mediterranean Sea, St. Thomas, Virgin Islands Caribbean Sea, West Indies	<i>Ostreopsis</i> , <i>Gambierdiscus</i>	(GEOHAB, 2012) (Tester et al., 2010)
Open Ocean	E1 Plymouth; Station Papa Northeast Atlantic	<i>Pseudo-nitzschia</i> <i>Trichodesmium</i> <i>Dinophysis</i>	(Edwards et al., 2013; Edwards and Johns, 2006; Kraberg et al., 2012; Widdicombe et al., 2010) (Edwards and Johns, 2006)
Polar	Palmer Site	<i>Pseudo-nitzschia</i>	(Grigorov et al., 2014)

See also GEOHAB references on HABs in upwelling systems (GEOHAB, 2005), fjords and embayments (GEOHAB, 2010), eutrophic systems (GEOHAB, 2006), stratified systems (GEOHAB, 2013) and benthic systems (GEOHAB, 2012).

Table 2. A suggested list of parameters for routine measurement at HAB Reference Observer Sites and Super Observer Sites.

Reference Observer Sites	Super Observer Sites
Single depth sampling in the photic zone	Full vertical resolution
1. Physical parameters (T, S, chlorophyll, pH, light field (Secchi)	1. Physical parameters (T, S, chlorophyll <i>a</i> fluorescence, chlorophyll <i>a</i> , CO ₂ , O ₂ , pH, light field (Secchi)
2. Qualitative phytoplankton identification and enumeration (microscope) of HAB species (whole water bottle samples)	2. Phytoplankton speciation - whole water, total abundance and biomass (e.g., light microscopy, Flow-CAM, electron microscopy, imaging flow cytometry, in-situ autonomous sensors, or molecular methods including metagenomic analyses for HAB and non-HAB species)
3. Macronutrients (N, P, Si) concentrations	3. Macronutrients concentrations of NO ₃ , NH ₄ , urea, P, Si
4. HAB toxin concentrations or shellfish toxicity	4. Zooplankton biomass and community composition (macro and microzooplankton)
	5. Toxin identification and quantification (shellfish if appropriate or whole water and solid phase adsorption toxin tracking bags)
	6. Bio-optics for ocean color validation

The goal for HAB Reference sites is the routine monitoring of HAB presence, character, and intensity in conjunction with time series data on a few or several oceanographic parameters. Even sites that can provide a consistent subset of these data will be highly valued. These combined long-term datasets should reveal any regional and intraregional correlations between environmental parameters and the spatial and temporal distribution of HABs. In contrast, a much more limited number of Super Observer Sites in the global HAB monitoring program would be targeted for more extensive measurements that

would enable process-style assessments of the mechanisms underlying the patterns of change observed.

Table 3. Marine HAB species suggested as model organisms for deep study towards quantitative genomic capabilities to determine their physiological, genetic and molecular architecture regulating their responses to climate change factors. The quantitative insight on this subset of organisms would elevate the foundation for study of all other HAB organisms.

HAB Types	Species	Justification
1. Paralytic Shellfish Poisoning	<i>Alexandrium fundyense</i>	Long subject to field and laboratory studies, northern expansion is expected
2. Diatom (Domoic Acid Poisoning)	<i>Pseudo-nitzschia multiseries</i>	Wide distribution, toxic, and the genome has been mapped, quantitative genomic studies are underway
3. Fish Killing	<i>Heterosigma akashiwo</i> (toxic Pacific strain)	Historical harmful impact, growth-temperature relationships known, northern expansion is expected
	<i>Cochlodinium polykrikoides</i> (toxic Pacific strain)	Widespread impacts in Asian waters, long subject of field and laboratory studies
	<i>Karenia brevis</i> (Atlantic strain)	Large spatial scale blooms, broad field studies, human health impacts
4. Diarrhetic Shellfish poisoning	<i>Dinophysis</i> spp.	Limited data makes a species selection difficult, but this genus serves a useful role as both toxic and mixotrophic model organism
5. High biomass	<i>Aureococcus anophageffens</i> (Long Island, NY)	Large scale blooms with long lasting ecological and aesthetic consequences. Already subject to increasing genomic study

6. Cyanobacteria	<i>Nodularia spumigena</i> (Baltic strain)	Persistent high biomass over large salinity ranges, stimulated by eutrophication
7. Ciguatera fish poisoning	<i>Gambierdiscus</i> spp.	Large species complex with highly variable toxicity and temperature tolerances

HAB Type

Environmental Factor

↑ T°C ↑ Stratification ↑ OA ↑ Cultural Eutroph. Grazing

Diatoms
(e.g., *Pseudo-nitzchia* spp.)

↔ +

↓ ++

↔

↓

↔

Toxic Flagellates
(e.g., *Alexandrium*,
Pyrodinium, *Gymnodinium*)

↑

↑ ++

↔

↑

↔

Benthic
(e.g., *Gambierdiscus* spp.)

↔ ++

↑ ++

?

↑

↔

Fish Killing
(e.g., *Heterosigma* spp.)

↓

↑ ++

?

↑ +

↑ +

High Biomass
(e.g., mixed spp.)

↔

↔

↔

↑ ++

↔

Cyanobacteria
(e.g., *Nodularia* spp.)

↑ +

↑ ++

↔

↑ ++

?

Cell Toxicity

?

?

↑

↔

↔